EFEKTIVITAS PAKET PUPUK DAUN GROWMORE 12-45-10
DENGAN PUPUK KONVENSIONAL TERHADAP
PERTUMBUHAN, PRODUKSI, DAN KADAR HARA
TANAMAN JAGUNG (Zea mays L.) PADA TANAH LATOSOL
DARMAGA

Oleh:
VITA PUSPITA SARI
A24103098

PROGRAM STUDI ILMU TANAH
FAKULTAS PERTANIAN
INSTITUT PERTANIAN BOGOR
2007
SUMMARY

The limitation of corn commodity in the country has not been enough to fill the national needs. The increasing of production corn could be made by giving correct fertilizer on time, the amount and the kind of the fertilizer in the application. Beside giving fertilizer through the soil it can be done also through the leaves. Fertilizing through the leaves have strongness point, the dosage will be Standard, then the sensivity can be arranged and the accuracy is better, it provides good result in macro and micro, in the amount and limited time. The leaves shell and the root shell, take good result through “apoplast”.

This research is hoped to observe the effectivity of Growmore leaves 12-45-10 on the dosage of conventional fertilizer is differenitizing by using conventional standard dosage (advice from “Depart. Pamanian”) on the increasing of products parameter and the basic plantation c are well as the economic growth. The design of this research used is rando method (planning random group) 10 treatment and 3 replicates.

The result of this research indicates that the application of the Growmore leaves fertilizer 12-45-10 gives positive effect better than standard dosage activities and the control on the growth parameter, product component and basic flora (N, K and Ca). The value of RAE (Relative Agronomic Effectiveness) on the treatment of dosage conventional fertilizer 225 Kg/ha Urea, 100 Kg/ha SP-36, 75 Kg/ha KCL and the dosage of Growmore fertilizer 15 Kg/ha, can reach 173,4% compare with treatment standard.

On the analysis at farmer business effort competence by using R/C ratio, the package of Growmore leaves fertilizer 12-45-10 with conventional growth fertilizer the biggest one is on the conventional fertilizer 150 Kg/ha Urea, 50 Kg/ha SP-36, 37,5 Kg/haKCL and dosage of the Growmore fertilizer 12 Kg/ha, the ratio score is 1,60 and the profit will be taken is about 0,60 times from capital.
RINGKASAN

Ketersediaan komoditas jagung dalam negeri belum mampu mengimbangi kebutuhan secara nasional. Peningkatan produksi jagung dapat dilakukan dengan menggunakan pemupukan yang tepat. Selain pemupukan lewat tanah, pemupukan daun dapat dilakukan lewat daun. Pemupukan lewat daun mempunyai kelebihan yaitu dosis lebih merata, kepekatan dapat diatur, tangerang lebih cepat, penyediaan unsur hara makro dan mikro dalam jumlah tertentu serta waktu tertentu. Sel daun seperti halnya sel akar, menyerap unsur hara melalui apoplas.

Penelitian ini bertujuan untuk menguji efektivitas pupuk daun Growmore 12-45-10 pada dua dosis pupuk konvensional yang berbeda dan mengbandingkannya dengan pemupukan konvensional dosis standar (anjuran partemen Pertanian) pada parameter pertumbuhan, produksi dan kadar hara tanaman jagung serta kelayakan ekonominya. Rancangan yang digunakan dalam penelitian ini adalah Rancangan Acak Kelompok (RAK) dengan 10 perlakuan dan ulangan.

Hasil penelitian ini menunjukkan bahwa aplikasi pupuk daun Growmore 12-45-10 memberikan pengaruh yang lebih baik dari perlakuan dosis Standar dan control pada parameter pertumbuhan, komponen produksi dan kadar hara (N, K dan Ca). Nilai RAE (*Relative Agronomic Effectiveness*) pada perlakuan dengan dosis pupuk konvensional 225 Kg/ha Urea, 100 Kg/ha SP-36, 75 Kg/ha KCL dan dosis pupuk daun Growmore sebesar 12 Kg/ha, dapat mencapai 173,4% dibandingkan perlakuan Standar.

Pada analisis kelayakan usaha tani dengan menggunakan *R/C ratio*, paket pupuk daun Growmore 12-45-10 dengan pupuk konvensional yang terbesar adalah pada dosis pupuk konvensional 150 Kg/ha Urea, 50 Kg/ha SP-36, 37,5 Kg/ha KCL dan dosis pupuk Growmore 12 Kg/ha, nilai R/C rasionya adalah 1,60 dan keuntungan yang diperoleh sebesar 0,60 kali dari modal.
EFEKTIVITAS PAKET PUPUK DAUN GROWMORE 12-45-10 DENGAN PUPUK KONVENSIONAL TERHADAP PERTUMBUHAN, PRODUKSI, DAN KADAR HARA TANAMAN JAGUNG (Zea mays L.) PADA TANAH LATOSOL DARMAGA

Skripsi
Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Pertanian pada Fakultas Pertanian Institut Pertanian Bogor

Oleh
Vita Puspita Sari
A24103098

PROGRAM STUDI ILMU TANAH
FAKULTAS PERTANIAN
INSTITUT PERTANIAN BOGOR
2007
LEMBAR PENGESAHAN

Nama Mahasiswa : Vita Puspita Sari
Nomor Pokok : A24103098

Menyetujui :

Pembimbing I

Dr. Ir. Atang Sutandi, M. Si.
NIP. 130 927 427

Pembimbing II

Dr. Ir. Oteng Haridjaja, M.Sc.
NIP. 131 422 695

Mengetahui :

Dekan Fakultas Pertanian

Prof. Dr. Ir. Didy Sopandie, M.Agr
NIP. 137 124 019

Tanggal Lulus : 22 AUG 2007
RIWAYAT HIDUP

Selama mengikuti perkuliahan, penulis aktif di HMIT (Himpunan Mahasiswa Ilmu Tanah) periode 2005/2006 menjabat sebagai Bendahara.
KATA PENGANTAR

Nama Allah Yang Maha Pengasih Lagi Maha Penyayang,

Puji syukur penulis panjatkan kepada Allah, Tuhan Semesta Alam atas kasih Nya yang abadi sehingga skripsi ini dapat diselesaikan dengan baik. Skripsi ini berdasarkan hasil penelitian yang telah dilaksanakan penulis guna memenuhi tuntutan untuk memperoleh gelar Sarjana Pertanian pada Departemen Ilmu Tanah dan Umtbdaya Lahan, Fakultas Pertanian, Institut Pertanian Bogor.

Penulis mengucapkan terima kasih kepada:

1. Dr. Ir. Atang Sutandi, M.Si. dan Dr. Ir. Oteng Haridjadja, M.Sc. sebagai dosen pembimbing yang telah banyak memberikan bimbingan dan arahan yang bermanfaat kepada penulis.
2. Dr. Ir. Sri Djuniwati, M.Sc., sebagai dosen penguji atas bimbingan, arahan dan informasinya dalam pelaksanaan dan penyelesaian penelitian ini.
3. PT Nusa Tani distributor Growmore atas proyek pengujian pupuknya.
4. Manah, Papah, Mia dan Fitri atas dukungan fisik, materi, moril dan kasih sayang yang tidak terukur banyaknya.

Keluarga Besar Fathom Syah (Garut) dan Keluarga Besar Hadits (Bandung).

Soil ‘40, Risha Pratama, Tim GM (Anto, Santi, Mami Wida, Dimaz, David, Erfan, Efi, dan Anggi), dan pihak-pihak lain yang tak dapat disebut satu persatu yang turut mendukung.

Galih Rubiana buat inspirasi, semangat, energi, ketabahan, kesabaran dan kasih sayang.

Yang terakhir dari penulis, semoga karya ilmiah ini dapat bermanfaat bagi yang memerlukannya.

Bogor, Agustus 2007
DAFTAR ISI

DAFTAR TABEL

DAFTAR GAMBAR

PENDAHULUAN

<table>
<thead>
<tr>
<th>Latar Belakang</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tujuan Penelitian</td>
<td>2</td>
</tr>
<tr>
<td>Hipotesis</td>
<td>2</td>
</tr>
</tbody>
</table>

DAFTUAN PUSTAKA

<table>
<thead>
<tr>
<th>Karakteristik Tanaman Jagung</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latosol Darmaga</td>
<td>4</td>
</tr>
<tr>
<td>Pupuk Daun</td>
<td>5</td>
</tr>
<tr>
<td>Pupuk Majemuk</td>
<td>6</td>
</tr>
<tr>
<td>Nitrogen dalam Tanah dan Tanaman</td>
<td>8</td>
</tr>
<tr>
<td>Fosfor dalam Tanah dan Tanaman</td>
<td>9</td>
</tr>
<tr>
<td>Kalium dalam Tanah dan Tanaman</td>
<td>11</td>
</tr>
</tbody>
</table>

BAHAN DAN METODE

<table>
<thead>
<tr>
<th>Waktu dan Tempat</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahan dan Alat</td>
<td>12</td>
</tr>
<tr>
<td>Metode Penelitian</td>
<td>13</td>
</tr>
<tr>
<td>Rancangan Penelitian</td>
<td>13</td>
</tr>
<tr>
<td>Pelaksanaan Percobaan</td>
<td>14</td>
</tr>
</tbody>
</table>

HASIL DAN PEMBAHASAN

<table>
<thead>
<tr>
<th>Hasil Analisis Pendahuluan Tanah</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pertumbuhan Tinggi Tanaman Jagung</td>
<td>18</td>
</tr>
<tr>
<td>Komponen Produksi</td>
<td>20</td>
</tr>
<tr>
<td>4.3.1 Pengukuran Buah</td>
<td>20</td>
</tr>
</tbody>
</table>
4.3.2 Bobot Pipilan Kering .. 21
4.3.3 RAE ... 22
Kadar Hara Tanaman Jagung .. 23
Analisis Usaha Tani ... 26
Dosis Optimum .. 27

KESIMPULAN DAN SARAN
Kesimpulan .. 29
Saran .. 29

DAFTAR PUSTAKA ... 30
AMPIRAN .. 33
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Nomor</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Komposisi Hara dan Ikutan dalam Pupuk Growmore 12-45-10</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>(Balai Penelitian Tanah, Bogor, 2005)</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Keseluruhan Perlakuan yang Dicobakan</td>
<td>13</td>
</tr>
<tr>
<td>3.</td>
<td>Analisis Pendahuluan Tanah Lokasi Percobaan</td>
<td>18</td>
</tr>
<tr>
<td>4.</td>
<td>Pertumbuhan Tinggi Tanaman</td>
<td>19</td>
</tr>
<tr>
<td>5.</td>
<td>Pengukuran Buah</td>
<td>20</td>
</tr>
<tr>
<td>6.</td>
<td>Nilai RAE dan Bobot Pipilan kering</td>
<td>22</td>
</tr>
<tr>
<td>7.</td>
<td>Kadar Hara Tanaman Jagung</td>
<td>24</td>
</tr>
<tr>
<td>8.</td>
<td>Analisis Usaha Tani</td>
<td>27</td>
</tr>
</tbody>
</table>

Lampiran

<table>
<thead>
<tr>
<th>Nomor</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Rataan Tinggi Tanaman Jagung 4-9 MST</td>
<td>33</td>
</tr>
<tr>
<td>4.</td>
<td>Analisis Ragam Tinggi Tanaman Jagung 4-9 MST</td>
<td>33</td>
</tr>
<tr>
<td>5.</td>
<td>Ringkasan Hasil Analisis Ragam Tinggi Tanaman Per Minggu</td>
<td>34</td>
</tr>
<tr>
<td>6.</td>
<td>Analisis Ragam Pengukuran Buah</td>
<td>34</td>
</tr>
<tr>
<td>7.</td>
<td>Ringkasan Hasil Analisis Ragam Pengukuran Buah</td>
<td>35</td>
</tr>
<tr>
<td>8.</td>
<td>Analisis Ragam Kadar Hara 9 MST</td>
<td>35</td>
</tr>
<tr>
<td>9.</td>
<td>Ringkasan Hasil Analisis Ragam Kadar Hara 9 MST</td>
<td>36</td>
</tr>
<tr>
<td>10.</td>
<td>Biaya Tetap Pada Analisis Usaha Tani</td>
<td>37</td>
</tr>
<tr>
<td>11.</td>
<td>Biaya Variabel Pupuk Pada Analisis Usaha Tani</td>
<td>37</td>
</tr>
<tr>
<td>12.</td>
<td>Biaya Variabel Tenaga Kerja Pada Analisis Usaha Tani</td>
<td>38</td>
</tr>
<tr>
<td>13.</td>
<td>Biaya Variabel Peralatan Pada Analisis Usaha Tani</td>
<td>38</td>
</tr>
<tr>
<td>14.</td>
<td>Interpretasi nilai serapan hara jagung</td>
<td>38</td>
</tr>
</tbody>
</table>
DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Nomor</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Skema Plot Percobaan</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Uji Efektivitas Growmore 12-45-10</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Kurva Persamaan Produksi Perlakuan dengan Growmore 12-45-10</td>
<td>28</td>
</tr>
</tbody>
</table>

Hak cipta dilindungi undang-undang. Penyediaan karya tulis ini hanya untuk keperluan pendidikan, penelitian, penerbitan karya ilmiah, penyusunan laporan, penulisan kritik atau teks ilmiah suatu modul.
I. PENDAHULUAN

1.1 Latar Belakang

Komoditas jagung dalam negeri belum mampu mengimbangi kebutuhan pangan nasional karena ketersediaannya dalam bentuk bahan terbatas. Dengan demikian perlu dilakukan upaya peningkatan produksi melalui perluasan lahan tanaman dan peningkatan produktivitas. Peningkatan produksi jagung melalui pengembangan budidaya dapat dilakukan dengan menggunakan pemupukan yang tepat dan tepat waktu, serta cara aplikasinya.

Saat ini harga pupuk konvensional semakin melonjak dan sering terjadi kelangkaan pupuk tersebut di pasaran. Dimana pupuk P dan pupuk K masih harus mengimpor dari negara lain. Disisi lain dalam pendistribusian pupuk, pupuk konvensional pembagiannya sudah diatur berdasarkan SK MENERINDAG, namun fenomena di lapangan menunjukan bahwa petani menggunakan pupuk ini dengan dosis yang berlebih, mereka beranggapan dengan semakin banyaknya pupuk yang diberikan ke dalam tanah dapat lebih meningkatkan hasil produksi, padahal dengan pemupukan berlebih maka pengeluaran yang harus dikeluarkan untuk pemupukan besar dan memicu kerusakan tanah serta polusi pertanian.

Untuk mengurangi dampak negatif dari pemupukan konvensional maka dapat diupayakan dengan penggunaan pupuk daun sebagai pupuk tambahan. Pupuk daun memberikan beberapa keuntungan di antaranya mencegah terjadinya kerusakan bagian tanaman atau gangguan pada akar yang melimarkan akibat pemupukan lewat tanah, pemberian pupuk daun dapat dilakukan dalam jumlah yang rendah tergantung kebutuhan tanaman, aplikasi pemupukannya dapat menyediakan unsur hara makro dan mikro dalam jumlah dan waktu tertentu.
(Collings, 1955). Dengan demikian, pemupukan lewat daun diharapkan dapat meningkatkan efektivitas hara tanaman.

Pupuk Growmore 12-45-10 merupakan jenis pupuk majemuk NPK (12-45-10) yang berbentuk padatan. Cara pengaplikasian pupuk ini adalah dengan disempotkan ke daun setelah terlebih dahulu dilarutkan dalam air.

2. Tujuan

Tujuan Penelitian ini adalah untuk menguji efektifitas pupuk daun Growmore 12-45-10 pada dua dosis pupuk konvensional yang berbeda dan membandingkannya dengan pemupukan konvensional dosis standar (anjuran departemen Pertanian) terhadap parameter pertumbuhan, produksi dan serapan hara tanaman jagung yang ditanam pada tanah Latosol Darmaga.

3. Hipotesis Penelitian

Bila dibandingkan dengan pemupukan dosis standar, penggunaan pupuk daun Growmore 12-45-10 pada dua dosis pupuk konvensional yang berbeda, lebih efektif dalam meningkatkan produksi dan kadar hara tanaman jagung.
II. TINJAUAN PUSTAKA

2.1 Karakteristik Tanaman Jagung

Jagung termasuk tanaman yang membutuhkan air cukup banyak, terutama pada saat pertumbuhan awal, saat berbunga, dan saat pengisian biji. Kebutuhan jumlah air setiap varietas sangat beragam. Namun demikian, secara umum tanaman jagung membutuhkan 2 liter air per tanaman per hari saat kondisi panas dan berangin (Hartonono dan Purwono, 2006). Dengan ketersediaan air yang cukup, penggunaan pupuk meningkatkan hasil jagung cukup besar, sehingga efisiensi pemakaian air meningkat. Dalam kondisi terbatasnya ketersediaan air, pertumbuhan yang terlalu cepat dapat memperbesar laju pemakaian air dan pada kondisi tertentu dapat menyebabkan tanaman kekurangan air (Shaw, 1977).

Tanaman jagung merupakan tanaman yang sangat efisien dalam penggunaan energi karena tergolong tanaman C4 (dicarboxylic acid pathway) yang menyimpan energi hasil fotosintesis dalam biji (Koswara, 1982). Hal ini disirikan oleh adanya kloroplas pada jaringan mesofil di sekitar pembuluh yang mampu mengikat CO₂ hasil metabolisme sehingga sangat efisien dalam penggunaan energi matahari, penggunaan air, translokasi asimilat dan serapan Ca serta mempunyai laju pertumbuhan relatif dan nisbah biji jerami yang lebih tinggi dibanding tanaman C3 (Koswara, 1982).
Dari segi pengelolaan, keuntungan bertanam jagung adalah kemudahan dalam budidaya. Tanaman jagung merupakan tanaman yang tidak membutuhkan perawatan intensif (tidak manja) dan dapat ditanam pada hampir semua jenis tanah. Resiko kegagalan bertanam jagum umurnya sangat kecil dibandingkan tanaman palawija lainnya (Hartono dan Purwono, 2006).

Nilai nutrisi jagung seimbang dengan beras. Persentasi kegunaan jagung di Indonesia adalah: 71,7 % untuk bahan pangan, 15,5 % untuk pakan ternak, 0,8 % untuk industri, 0,1 % untuk ekspor, dan 11,9 % kegunaan lainnya.

2.2 Latosol Darmaga

Dudal dan Soepraptohardjo (1957) mendefinisikan latosol sebagai tanah yang bersolum dalam, mengalami pelapukan lanjut, batas horizon baur, kandungan mineral dan unsur hara rendah, konsistensi gembur dengan stabilitas eragat kuat dan terdapat pemupukan sesokuksida di dalam tanah sebagai akibat pencucian silikat. Berdasarkan warna, latosol dibedakan atas latosol coklat, latosol oklat merah, merah kuning (Soeparaaptohardjo, 1979). Latosol merupakan tanah yang umumnya terbentuk di daerah tropika basah, mempunyai curah hujan dan tinggi yang menyebabkan proses pelapukan dan pencucian berlangsung yang menyebabkan pencucian basa-basa dan silikat (Buringh, 1970).

Latosol Darmaga menurut taksonomi tanah (USDA, 1975), termasuk dalam Oxic Dystropept. Tanah ini terletak pada zone fisiografi Bogor bagian timur dan berbahan induk batuan vulkanik kuarter gunung Salak yang bersusunan
Andesitik dengan asosiasi Augit. Pada fraksi beratnya mempunyai mineral mudah lapuk cukup banyak (Yogaswara, 1977), jumlahnya relatif semakin menurun dengan semakin dalamnya solum dan semakin curamnya lereng (Dewaway, 1977). Sifat kimia dan fisik dari tanah Oxic Dystropept Dermaga adalah KTK tanah lebih dari 16 me/100 g liat, retensi kation dengan NH₄Cl lebih dari 12 me/100 g liat, potensi kesuburan alaminya cukup baik yang dicirikan oleh kandungan Augit dan Plagioklas intermedi dan cukup banyak pada fraksi 200-20 sikro. Tingkat kesuburan NPK rendah sampai sedang, sangat responsif terhadap pemupukan P, permeabilitasnya agak lambat sampai sedang (Yogaswara, 1977).

Menurut Soepardi (1983), Kandungan silika yang rendah, seskuiksidita gersgi dan kandungan Al dan Fe tinggi pada Latosol menyebabkan fosfat mudah sikat dan membentuk senyawa Al-P dan Fe-P sehingga ketersediaan P dalam bau rendah atau kurang tersedia bagi tanaman.

3. Pupuk Daun

Beberapa keuntungan yang dapat diperoleh dari penggunaan pupuk daun adalah mengatasi kekurangan unsur hara yang dibutuhkan tanaman dengan langsung langsung pada tanaman, keuntungan lain yaitu penyerapan hara percabangan lebih cepat dibanding pemupukan pada akar selain itu tanah tidak basak (Lingga dan Marsono, 2003).
Kelemahan dalam menggunakan pupuk daun adalah dalam menentukan konsentras pemberian hara yang cukup tanpa menyebabkan plasmolisis dan tanpa pemberian dalam jumlah yang banyak, konsentras atau dosis yang terlalu tinggi dapat menyebabkan keracunan (Tisdale et al., 1985). Pupuk daun juga mudah tercuci oleh air, terutama oleh air hujan. Pemupukan melalui daun dilakukan untuk menghindari larutnya unsur hara sebelum diserap oleh akar atau mengalami lasis dalam tanah yang berakibat tidak dapat diserap oleh tanaman (Setyamidjaya, 1986).

Menurut Neuman (1979), sel-sel daun akan mengalami plasmolisis dan "leaf burn" akibat pemberian pupuk daun dengan konsentrasi tinggi, sehingga empengaruh luas permukaan daun yang berfotosintesis. Pengaruh lainnya pada fisiologi tanaman adalah menurunkan berat akar dan menghambat kerja aksin sehingga pertumbuhan tanaman terhambat.

Salah satu jenis pupuk daun yang lain adalah pupuk cair Dharmavit merupakan pupuk lengkap cair yang diperkaya dengan unsur mikro berbentuk Chelated (senyawa kompleks) yang dapat merangsang pertumbuhan tanaman. Pupuk daun ini dapat memberikan zat-zat makanan yang seimbang untuk meningkatkan pertumbuhan dan hasil 65 persen, serta menjamin kualitas tanaman. Pupuk daun cair kemasan lain dari pupuk ini adalah dapat meningkatkan pembuahan dan memperbesar ukuran buah, mengurangi pengguguran bunga dan ungklik melalui pengontrolan pengeluaran "Abscissic Acid" (Anonim, 2004).

Pupuk Majemuk

Pupuk majemuk mengandung dua atau lebih unsur makro atau campuran makro dan mikro. Oleh sebab itu disebut juga *multi nutrient fertilizers*. Bahan utama dalam pembuatan pupuk majemuk N-P-K adalah fosfat alam, asam

Pada umumnya tanah pertanian kurang N, P dan K disamping kebutuhan yang banyak oleh tanaman untuk menunjang pertumbuhan dan produksi yang baik. Terutama sehubungan dengan fosfat dan kalium, maka sejak beberapa tahun yang telah beralih menggunakan pupuk dari kelompok pupuk tunggal ke pupuk NPK. Namun untuk nitrogen, maka bagian yang dicakup oleh produk dalam kelompok pupuk tunggal masih tetap tidak berubah (Rinsema, 1983).

Keuntungan dari segi agronomik diperoleh dengan cara menyesuaikan impuran pupuk dengan kebutuhan tanaman dan kondisi tanah. Penggunaan pupuk NPK membawa keuntungan dalam hal penghematan tenaga kerja, karena bagai berikut:

Pupuk buatan yang harus dikerjakan biasanya lebih sedikit
Menaburkan pupuk dapat dilakukan dalam satu kali kerja (Rinsema, 1983).

Namun, walaupun betapa besar manfaat yang dapat diberikannya, segala sesuatu tetap akan tergantung dari situasi dan kondisi dari perusahaan yang bersangkutan. Beberapa faktor negatif yang terpenting dalam menggunakan pupuk- NPK adalah sebagai berikut:

1. Kemungkinan pemupukan kurang merata bila dibandingkan dengan menggunakan pupuk tunggal,

Jenis pupuk majemuk lainnya adalah Dekaform yaitu pupuk lengkap yang aplikasikan lewat lubang. Bentuknya berupa tablet dan sistem penyediaan haranya terkendali. Artinya, hara yang dikandungnya terlepas perlahan dalam waktu lama. Sebabnya, sifat senyawa kimianya lambat daya larut dalam air
sehingga pencucian unsur hara dapat teratasi. Selain itu, Dekaform pun dapat bertahan 18-20 bulan hanya sekaligus pemupukan dan yang tidak kalah pentingnya adalah resiko kebanyakan pupuk yang sering merusak tanaman dan tanah relatif kecil (Lingga dan Marsono, 2004).

2.5 Nitrogen dalam Tanah dan Tanaman

Nitrogen merupakan unsur penting bagi tanaman dan dapat disediakan oleh manusia melalui pemupukan. Nitrogen merupakan unsur yang tergolong ke dalam unsur makro esensial bagi tanaman, selain dibutuhkan dalam jumlah yang sangat banyak, fungsi hara nitrogen juga tidak dapat digantikan oleh unsur lain. Nitrogen umumnya diserap oleh tanaman dalam bentuk \(\text{NO}_3^- \) dan \(\text{NH}_4^+ \) walaupun \(\text{H}_2\text{NCONH}_2 \) dapat juga dimanfaatkan oleh tanaman karena urea secara langsung dapat diserap melalui epidermis daun. Jarang sekali urea diabsorpsi melalui tunak karena di dalam tanah urea dihidrolisis menjadi \(\text{NH}_4^+ \) (Leiwakabessy et al., 1998).

Sebagian besar nitrogen diserap dalam bentuk ion nitrat karena ion tersebut bermuatan negatif sehingga selalu berada di dalam larutan tanah, ion nitrat lebih mudah tercuci oleh aliran air. Arahan pencucian menuju lapisan dibawah daerah perakaran sehingga tidak dapat dimanfaatkan oleh tanaman. Sebaliknya, ion amonium bermuatan positif sehingga terkat oleh koloid tanah. Ion tersebut dapat dimanfaatkan oleh tanaman setelah melalui proses pertukaran kation. Karena bermuatan positif, ion amonium tidak mudah hilang oleh proses pencucian (Novizan, 2002).

Bentuk N yang diabsorpsi oleh tanaman berbeda-beda. Ada tanaman yang lebih baik tumbuh bila diberi \(\text{NH}_4^+ \) ada pula tanaman yang lebih baik diberi \(\text{NO}_3^- \) serta ada pula tanaman yang tidak terpengaruh oleh bentuk-bentuk N ini. Tanaman-tanaman darat mengabsorpsi bentuk \(\text{NO}_3^- \) yang terbanyak. Nitrogen yang terserap ini, di dalam tanaman dirubah menjadi \(-\text{N} \), - \(\text{NH}_3 \), - \(\text{NH}_2 \). bentuk reduksi ini kemudian dirubah menjadi yang lebih kompleks dan akhirnya menjadi protein (Leiwakabessy et al., 1998).

Menurut Sutoro et al., (1988), adsorpsi N oleh tanaman jagung terlangsung selama pertumbuhannya. Pada awal pertumbuhan, akumulasi N

2.6 Fosfor dalam Tanah dan Tanaman

Fosfor merupakan bagian integral tanaman di bagian penyimpanan (storage) dan pemindahan (transfer) energi. Fosfor terlibat pada penangkapan energi sinar matahari yang menghantam sebuah molekul klorofil. Ada hubungan yang erat antara konsentrasi fosfor di dalam larutan tanah dengan pertumbuhan tanaman yang baik (Henry, 1986). Tanaman biasanya mengabsorpsi P dalam bentuk ion orthofosfat primer, H_2PO_4^- dan sebagian kecil dalam bentuk sekunder, PO_4^{2-}. Tanaman juga dapat mengabsorpsi fosfat dalam bentuk P-organik seperti asam nukleik dan phytin. Bentuk-bentuk ini berasal dari dekomposisi bahan organik dan dapat langsung dipakai oleh tanaman, tetapi karena tidak stabil dalam masa dimana aktifitas mikroba tinggi, maka peranan mereka sebagai sumber fosfat bagi tanaman di lapangan menjadi kecil (Leiwakabessy et al., 1998).
Fosfor merupakan unsur yang mobil di dalam tanah. Defisiensi fosfor selalu timbul akibat faktor kapasitas dari fosfor yang rendah sehingga menyebabkan stres fosfor. Perbaikan dengan pemupukan lewat tanah membutuhkan waktu yang relatif lama. Pemupukan lewat daun dapat diperbantukan, karena penyerapan fosfor melalui daun dapat lebih cepat berlangsung (Henry, 1986). Faktor-faktor yang mempengaruhi pengikatan P bagi menjadi beberapa kelompok, yaitu: (1) sifat dan jumlah komponen tanah, (2) pH, (3) ion-ion lain, (4) kejenuhan komplek jerapan, dan (5) kinetika (Tisdale et al., 1985).

Beberapa peranan fosfat yang penting ialah dalam proses fotosintesa, ubahan-perubahan karbohidrat, dan senyawa-senyawa yang berhubungan dengan glikolisis, metabolisme asam-amino, metabolisme lemak dan sulfur, asidasi biologis, dan sejumlah reaksi dalam hidup. Apabila terjadi kekurangan fosfat maka akan menghambat seluruh pertumbuhan dan perkembangan tanaman. Fosfor merupakan unsur yang sangat penting dalam proses transfer energi, suatu proses vital dalam hidup dan pertumbuhan (Leiwakabessy et al., 1998).

Berdasarkan hasil penelitian Sifana (2000), bahwa semakin tinggi produksi biji kering, semakin tinggi pula produksi bahan kering yang dihasilkan, dan semakin banyak hara P yang terambil. Meningkatnya produksi biji pipilan yang disebabkan peningkatan ketersediaan P tanah dan dosis pupuk P meningkatkan pertumbuhan vegetatif yaitu brangkas tanaman dan pengisian bonggol atau produksi biji pipilan kering.
2.7 Kalium dalam Tanah dan Tanaman

Faktor-faktor tanah yang mempengaruhi ketersediaan K adalah jenis mineral liat, kapasitas tukar kation, jumlah kalium dapat ditukar, kelembaban tanah, aerasi, suhu tanah, pH tanah, kalsium dan magnesium (Tisdale et. al., 1985).
III. BAHAN DAN METODE

3.1 Waktu dan Tempat

3.2 Bahan dan Alat

Bahan yang digunakan dalam percobaan lapang, antara lain adalah: pupuk urea, SP-36, KCl, pupuk daun Growmore 12-45-10, benih jagung hibrida Pioneer 12, furadan dan dolomit, sedangkan alat yang dipergunakan untuk percobaan lapang antara lain adalah: plang, alat tulis, selang, ember, gayung, corong, labu kur, pacul, meteran dan tali plastik.

<table>
<thead>
<tr>
<th>No</th>
<th>Unsur</th>
<th>Satuan</th>
<th>Nilai</th>
<th>No</th>
<th>Unsur</th>
<th>Satuan</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N-Organik</td>
<td>%</td>
<td>1,94</td>
<td>12</td>
<td>Mn</td>
<td>ppm</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>N-NH₄</td>
<td>%</td>
<td>9,25</td>
<td>13</td>
<td>Cu</td>
<td>ppm</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>N-NO₃</td>
<td>%</td>
<td>0,23</td>
<td>14</td>
<td>Zn</td>
<td>ppm</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Total N</td>
<td>%</td>
<td>11,45</td>
<td>15</td>
<td>B</td>
<td>ppm</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>P₂O₅</td>
<td>%</td>
<td>45,05</td>
<td>16</td>
<td>Pb</td>
<td>ppm</td>
<td>Tr</td>
</tr>
<tr>
<td></td>
<td>K₂O</td>
<td>%</td>
<td>10,63</td>
<td>17</td>
<td>Cd</td>
<td>ppm</td>
<td>Tr</td>
</tr>
<tr>
<td></td>
<td>Ca</td>
<td>%</td>
<td>0,02</td>
<td>18</td>
<td>Co</td>
<td>ppm</td>
<td>6,6</td>
</tr>
<tr>
<td></td>
<td>Mg</td>
<td>%</td>
<td>0,06</td>
<td>19</td>
<td>As</td>
<td>ppm</td>
<td>Tr</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>%</td>
<td>3,78</td>
<td>20</td>
<td>Mo</td>
<td>ppm</td>
<td>Tr</td>
</tr>
<tr>
<td></td>
<td>Kadar Air</td>
<td>%</td>
<td>1,68</td>
<td>21</td>
<td>Hg</td>
<td>ppm</td>
<td>< 0,1</td>
</tr>
</tbody>
</table>

Keterangan: Tr = Tidak Terukur
3.3 Metode Penelitian

Percobaan ini menggunakan rancangan acak kelompok (RAK) yang terdiri dari 10 perlakuan dosis pupuk yang tertera pada Tabel 2.

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Dosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Growmore (12-45-10)</td>
</tr>
<tr>
<td>Kontrol</td>
<td>0,0</td>
</tr>
<tr>
<td>Standar</td>
<td>0,0</td>
</tr>
<tr>
<td>S1G1 (1,25 g/l)*</td>
<td>4</td>
</tr>
<tr>
<td>S1G2 (2,5 g/l)*</td>
<td>8</td>
</tr>
<tr>
<td>S1G3 (3,75 g/l)*</td>
<td>12</td>
</tr>
<tr>
<td>S1G4 (5 g/l)*</td>
<td>16</td>
</tr>
<tr>
<td>S2G1 (1,25 g/l)*</td>
<td>4</td>
</tr>
<tr>
<td>S2G2 (2,5 g/l)*</td>
<td>8</td>
</tr>
<tr>
<td>S2G3 (3,75 g/l)*</td>
<td>12</td>
</tr>
<tr>
<td>S2G4 (5 g/l)*</td>
<td>16</td>
</tr>
</tbody>
</table>

*) 400 l/ha x 8

Keterangan:
S1 = Dosis pupuk Konvensional (150 Kg/ha Urea, 50 Kg/ha SP-36 dan 37,5 Kg/ha KCL)
S2 = Dosis pupuk Konvensional (225 Kg/ha Urea, 100 Kg/ha SP-36 dan 75 Kg/ha KCL)
G1 = Dosis pupuk Growmore 12-45-10 4 Kg/ha
G2 = Dosis pupuk Growmore 12-45-10 8 Kg/ha
G3 = Dosis pupuk Growmore 12-45-10 12 Kg/ha
G4 = Dosis pupuk Growmore 12-45-10 16 Kg/ha

4 Rancangan Penelitian

Rancangan percobaan yang digunakan dalam penelitian ini adalah Rancangan Acak Kelompok (RAK) dengan 10 perlakuan dan 3 ulangan yang juga sebagai kelompok atau blok. Model persamaan matematikanya adalah sebagai berikut:

\[Y_{ijk} = \mu + B_i + T_j + E_{ij} \]
Keterangan:

\[Y_{ijk} = \text{respon produksi tanaman jagung akibat pengaruh } T \text{ ke } i \text{ dan } P \text{ ke } j \]
\[\mu = \text{nilai tengah umum} \]
\[B_i = \text{pengaruh kelompok/ulangan ke-i (1, 2, 3)} \]
\[T_j = \text{pengaruh jenis perlakuan ke-j (Standar, Kontrol, S1G1, S1G2, S1G3, S1G4, S2G1, S2G2, S2G3 dan S2G4)} \]
\[= \text{galat percobaan Blok ke-i dan perlakuan ke-j} \]

Pengujian lanjutan dengan Uji Duncan dilakukan bila didapatkan analisis sebagai pada parameter yang diamati menunjukkan pengaruh perlakuan yang nyata.

3. Pelaksanaan Percobaan

Persiapan Lahan

Pertama-tama dilakukan pengolahan lahan dengan mempergunakan rotary selanjutnya petak dengan ukuran 3 x 4 m² disiapkan sebanyak 30 petak untuk perlakuan dengan 3 ulangan atau kelompok. Skema plot percobaan ini sahkan pada Gambar 2.

<table>
<thead>
<tr>
<th>Blok 1</th>
<th>KON</th>
<th>S1G3</th>
<th>S1G2</th>
<th>S2G2</th>
<th>S1G4</th>
<th>S2G4</th>
<th>S2G3</th>
<th>S1G1</th>
<th>S2G1</th>
<th>STD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blok 2</td>
<td>STD</td>
<td>S1G2</td>
<td>S1G1</td>
<td>S2G4</td>
<td>S2G2</td>
<td>S2G3</td>
<td>S1G3</td>
<td>KON</td>
<td>S2G1</td>
<td>S1G4</td>
</tr>
<tr>
<td>Blok 3</td>
<td>S1G2</td>
<td>S1G4</td>
<td>S2G3</td>
<td>S1G1</td>
<td>S1G3</td>
<td>S2G4</td>
<td>S2G1</td>
<td>KON</td>
<td>STD</td>
<td>S2G2</td>
</tr>
</tbody>
</table>

Gambar 1. Skema Plot Percobaan Uji Efektivitas Grow More 12-45-10

Penanaman

Tanaman yang digunakan untuk penelitian ini adalah jagung hibrida varietas Pioneer P-12 dengan jarak tanam 40 x 75 cm. Sebelum menanam, terlebih dahulu dilakukan pengapuran tanah dengan dosis 1 x Al-dd, yaitu sebesar 2625 kg/ha.

Pemupukan

Pupuk Urea dan KCl diberikan dua kali, sedangkan SP-36 diberikan hanya pada saat tanam. Pemupukan Urea dan KCl pertama dilakukan pada saat penanaman sebesar ½ dosis yang diterapkan dan sisanya diberikan pada saat tanaman jagung berumur 35 hari setelah tanam (HST).
Pupuk Growmore yang berupa padatan terlebih dahulu dilarutkan dalam air, diberikan sesuai dengan perlakuan yang ditetapkan, dilakukan sebanyak 8 kali dengan interval satu minggu sekali dan penyemprotan pertama dilakukan saat tanaman jagung berumur 2 minggu.

Pemeliharaan

Kegiatan pemeliharaan meliputi : 1) penyulaman, dilakukan pada umur 7-HST; 2) penyiangan dari gulma; 3) pembersihan saluran; 4) pembumbunan.

Pemanenan

Pemanenan dilakukan pada saat tongkol masak, yaitu pada 100 HST.

Parameter yang dianalisis

Parameter yang diamati sebelum panen yaitu tinggi tanaman. Contoh yang diamati dalam 1 petak adalah 5 tanaman yang dipilih secara acak. Tinggi tanaman diukur dari permukaan tanah sampai pucuk daun tertinggi. Pengamatan dilakukan diap satu minggu sekali dimulai dari 4 Minggu Setelah Tanam (MST) sampai dengan 9 MST.

Komponen produksi tanaman yang diamati, yaitu: Bobot pipilan kering per petak yang kemudian dikonversi dalam kw/ha, bobot 100 butir pipilan kering (g/petak), panjang serta diameter tongkol jagung (cm), dan perhitungan RAE berdasarkan bobot pipilan kering.

Analisis Kadar Hara

Analisis Usahatani

Pengujian pendapatan usaha tani adalah untuk melihat apakah usaha tani masih menguntungkan atau tidak. Ukuran layak dalam penelitian ini menggunakan konsep pendapatan bersih usahatani yaitu selisih pendapatan kotor
usaha tani dengan pengeluaran total usahatani. Selain itu pendapatan bersih usahatani mengukur imbalan yang diperoleh dari penggunaan tenaga kerja, penyusutan alat-alat pertanian, dan sewa lahan. Pengeluaran total usaha tani adalah semua faktor produksi yang habis terpakai di dalam produksi.

Revenue Cost Ratio atau rasio biaya dan pendapatan, nilai ini menunjukan pendapatan kotor yang diterima untuk setiap rupiah yang dikeluarkan untuk memproduksi. Bila nilai R/C Ratio lebih besar dari 1,25 maka usaha tersebut pat diasumsikan menguntungkan karena penerimaan dapat melebihi jumlah biaya. Nilai ini ditetapkan sebagai astimasi karena sifat produk pertanian yang sudah rusak.

Benefit Cost Ratio (B/C) merupakan salah satu cara untuk mengukur layaknya usaha tani jagung yang sederhana. B/C merupakan rasio antara untung dengan total biaya usaha.
VI. HASIL DAN PEMBAHASAN

4.1 Hasil Analisis Pendahuluan Tanah

Areal lahan dalam penelitian ini merupakan tanah jenis latosol. Latosol merupakan salah satu jenis tanah pada lahan kering yang memiliki potensi untuk dikembangkan, pada umumnya terbentuk di daerah tropika basah, mempunyai curah hujan dan suhu tinggi. Hasil analisis pendahuluan tanah Latosol Darmaga yang digunakan sebagai lokasi penelitian ini disajikan pada Tabel 3.

Berdasarkan kriteria penilaian sifat kimia dan fisik tanah (PPT, 1983 dan Hardjowigeno, 1989) menunjukkan bahwa tanah Latosol Darmaga mengandung C-organik, Ca dan Mg yang tergolong sedang serta N-total dan KTK tergolong rendah, sedangkan kejenuhan Al tergolong rendah yaitu sebesar 10,03.

Rendahnya kandungan kalium dan natrium diduga disebabkan oleh pencucian basa-basa akibat curah hujan yang tinggi.

Nilai P-HCl 25 %, termasuk sedang, meskipun demikian P-Bray I tergolong sangat rendah hal ini dapat disebabkan oleh beberapa hal, yaitu rendahnya pH tanah, telah mengalami pelapukan lanjut, dan daya fiksasi yang kuat dari tanah terhadap unsur ini sehingga bentuk P yang ada tidak mudah diambil oleh tanaman. Tekstur pada tanah ini memiliki persentase liat yang besar yaitu 69,60 % dan debu sebesar 24,66 %, sehingga tanah ini memiliki daya serap air yang baik.

Dari parameter-parameter yang telah dianalisis dapat disimpulkan bahwa tingkat kesuburan tanah ini termasuk rendah. Oleh karena itu perlu dilakukan pengapuran dan pemupukan baik lewat tanah maupun lewat daun.

Tabel 3. Analisis Pendahuluan Tanah Lokasi Penelitian

<table>
<thead>
<tr>
<th>Analisis</th>
<th>Metode</th>
<th>Nilai</th>
<th>Kriteria (PPT 1983)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH H2O</td>
<td>pH meter</td>
<td>5.90</td>
<td>Agak Masam</td>
</tr>
<tr>
<td>pH KCl</td>
<td>pH meter</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>Corg (%)</td>
<td>Walley & Black</td>
<td>2.10</td>
<td>Sodang</td>
</tr>
<tr>
<td>N total (%)</td>
<td>Kjeldahl</td>
<td>0.18</td>
<td>Rendah</td>
</tr>
<tr>
<td>Bray 1</td>
<td>2.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCl 25 % (ppm)</td>
<td>213.50</td>
<td></td>
<td>Sedang</td>
</tr>
<tr>
<td>NH4OAc pH 7 (me/100 g)</td>
<td>7.21</td>
<td></td>
<td>Sedang</td>
</tr>
<tr>
<td>NH4OAc pH 7 (me/100 g)</td>
<td>1.18</td>
<td></td>
<td>Sedang</td>
</tr>
<tr>
<td>NH4OAc pH 7 (me/100 g)</td>
<td>0.16</td>
<td></td>
<td>Rendah</td>
</tr>
<tr>
<td>K (me/100 g)</td>
<td>NH4OAc pH 7</td>
<td>12.66</td>
<td>Rendah</td>
</tr>
<tr>
<td>P (%)</td>
<td>Perhitungan</td>
<td>69.12</td>
<td>Tinggi</td>
</tr>
<tr>
<td>1 N KCl</td>
<td>1.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penutup Al (%)</td>
<td>10.05</td>
<td></td>
<td>Rendah</td>
</tr>
<tr>
<td>NaCl (ppm)</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05 N HCl (ppm)</td>
<td>1.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05 N HCl (ppm)</td>
<td>1.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satu</td>
<td>Pipet</td>
<td>List</td>
<td></td>
</tr>
<tr>
<td>Isir (%)</td>
<td>24.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bui (%)</td>
<td>5.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natri (%)</td>
<td>69.60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2 Pertumbuhan Tinggi Tanaman Jagung

Tinggi tanaman merupakan salah satu ukuran peubah tanaman yang sering diamati dalam suatu percobaan karena tinggi tanaman merupakan indikator pertumbuhan tanaman. Hal tersebut berdasarkan atas kenyataan bahwa tinggi tanaman adalah ukuran peubah pertumbuhan tanaman yang paling mudah dilihat, bagai pengukur peubah pertumbuhan, tinggi tanaman sensitif terhadap faktor lingkungan tertentu (Robiatul, 2004)

Hasil analisis ragam tinggi tanaman per minggu (Tabel Lampiran 2-7) menunjukkan bahwa paket pupuk daun Growmore 12-45-10 dengan pupuk konvensional tidak berpengaruh nyata terhadap tinggi tanaman jagung pada umur 8 masa setelah tanam (MST) dan berpengaruh nyata pada umur 9 MST. Hal ini menunjukkan bahwa pada umur 4-8 MST peubah tinggi tanaman memberikan respon yang sama terhadap semua perlakuan yang diberikan dan pada umur 9 MST perlakuan yang diberikan mulai berpengaruh terhadap peubah tinggi
tanaman. Hara yang diberikan baru terlihat pengaruhnya pada saat tanaman telah mencapai petumbuhan yang maksimal, hara yang ada digunakan untuk pertumbuhan fase generatif yang berkenaan dengan pembentukan bunga, buah dan biji.

Tabel 4. Pengaruh Perlakuan terhadap Tinggi Tanaman pada umur 9 MST

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Tinggi tanaman 9MST (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol</td>
<td>138,33 a</td>
</tr>
<tr>
<td>Standar</td>
<td>167,23c</td>
</tr>
<tr>
<td>S1G1</td>
<td>154,18abc</td>
</tr>
<tr>
<td>S1G2</td>
<td>150,02ab</td>
</tr>
<tr>
<td>S1G3</td>
<td>170,12ab</td>
</tr>
<tr>
<td>S1G4</td>
<td>159,28bc</td>
</tr>
<tr>
<td>S2G1</td>
<td>152,45abc</td>
</tr>
<tr>
<td>S2G2</td>
<td>186,20ab</td>
</tr>
<tr>
<td>S2G3</td>
<td>188,35c</td>
</tr>
<tr>
<td>S2G4</td>
<td>185,23c</td>
</tr>
</tbody>
</table>

Keterangan: Angka yang diikuti oleh huruf yang sama pada kolom yang sama tidak berbeda nyata pada taraf nyata 0,05 (α=0,05) dengan uji Wilayah Berganda Duncan (DMRT)
4.3 Komponen Produksi

4.3.1 Pengukuran Buah

Pertumbuhan adalah suatu perkembangan yang progresif dari suatu organisme. Tetapi untuk pertumbuhan tanaman ada banyak cara menyatakannya. Pertumbuhan dapat ditunjukkan terhadap perkembangan satu atau beberapa organ atau seluruh tanaman dan dapat dinyatakan dalam berat kering, panjang, tinggi atau pun diameter buah (Webster dalam Lewikabessy et. al., 1998).

Analisis ragam pada Tabel Lampiran 9-12 menunjukkan bahwa paket pupuk daun Growmore 12-45-10 dengan pupuk konvensional berpengaruh nyata terhadap diameter tongkol, panjang tongkol dan bobot 100 butir jagung. Hal ini mengindikasikan bahwa unsur hara yang terkandung didalam paket pupuk daun dan pupuk konvensional dapat digunakan oleh tanaman secara optimal untuk perkembangan bunga, buah dan biji. Hasil uji lanjut dari pengaruh pemberian pupuk daun Growmore 12-45-10 terhadap diameter, panjang dan bobot 100 butir jagung disajikan pada Tabel 6.

Tabel 6. Pengaruh Perlakuan terhadap Diameter Tongkol, Panjang Tongkol dan Bobot 100 Butir

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Diameter Tongkol (cm)</th>
<th>Panjang tongkol (cm)</th>
<th>Bobot 100 butir (gram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol</td>
<td>3,47b</td>
<td>11,43c</td>
<td>17,15a</td>
</tr>
<tr>
<td>Standar</td>
<td>4,01a</td>
<td>13,24a</td>
<td>21,21ab</td>
</tr>
<tr>
<td>S1G1</td>
<td>4,13a</td>
<td>10,62bc</td>
<td>20,73ab</td>
</tr>
<tr>
<td>S1G2</td>
<td>4,25a</td>
<td>15,90a</td>
<td>23,08bc</td>
</tr>
<tr>
<td>S1G3</td>
<td>4,27a</td>
<td>16,33a</td>
<td>24,66bc</td>
</tr>
<tr>
<td>S1G4</td>
<td>3,95a</td>
<td>15,16a</td>
<td>25,80c</td>
</tr>
<tr>
<td>S2G1</td>
<td>4,19a</td>
<td>17,18ab</td>
<td>21,32b</td>
</tr>
<tr>
<td>S2G2</td>
<td>4,16a</td>
<td>16,01ab</td>
<td>23,94bc</td>
</tr>
<tr>
<td>S2G3</td>
<td>4,10a</td>
<td>16,50a</td>
<td>23,30bc</td>
</tr>
<tr>
<td>S2G4</td>
<td>4,09a</td>
<td>15,74a</td>
<td>22,47bc</td>
</tr>
</tbody>
</table>

Keterangan: Angka yang diikuti oleh huruf yang sama pada kolom yang sama tidak berbeda nyata pada taraf nyata 0,05 (P = 5%) dengan uji Wilayah Berganda Duncan (DMRT)

Pada Tabel 6. dapat dilihat bahwa diameter tongkol seluruh paket perlakuan dengan penambahan Growmore nyata lebih tinggi dibandingkan dengan perlakuan Kontrol dan tidak berbeda nyata dibandingkan dengan Standar. Dari hasil pengukuran panjang tongkol, menunjukan seluruh paket perlakuan kecuali perlakuan S1G1 tidak berbeda nyata dibandingkan perlakuan Standar dan nyata lebih tinggi dari Kontrol, sedangkan perlakuan S1G1 nyata lebih rendah dari
Standar dan tidak berbeda nyata terhadap Kontrol. Perlakuan S1G2, S1G3, S1G4, S2G3 dan S2G4 berpengaruh nyata lebih tinggi dari perlakuan S1G1, sedangkan perlakuan S2G1 dan S2G2 tidak berbeda nyata dengan perlakuan S1G1 dan perlakuan S1G2, S1G3, S1G4, S2G3, S2G4 tidak berbeda nyata dengan perlakuan S2G1 dan S2G2.

Hasil uji lanjut bobot 100 butir biji jagung menunjukkan pada perlakuan G1 tidak berbeda nyata dengan perlakuan Standar dan Kontrol. Perlakuan S1G, S1G3, S2G1, S2G1, S2G2, S2G3 dan S2G4 tidak berbeda nyata dibandingkan dengan Standar dan nyata lebih tinggi dibandingkan dengan perlakuan Kontrol, sedangkan perlakuan S1G4 berpengaruh nyata lebih tinggi dari perlakuan Standar dan Kontrol. Perlakuan S1G1 dan S2G1 nyata lebih rendah dibandingkan perlakuan S1G4, sedangkan pada perlakuan S1G2, S1G3, S2G2, S2G3 dan S2G4 tidak berbeda nyata dengan perlakuan S1G4 dan S2G1.

Berdasarkan hasil pengukuran diameter, panjang dan bobot 100 butir biji jagung seluruh perlakuan paket pupuk daun growmore 12-45-10 dan pupuk konvensional memberikan pengaruh yang sama dengan pupuk standar terhadap pertumbuhan buah dan dapat meningkatkan ukuran dan bobot buah dibandingkan dengan pupuk standar.

4.3.2 Bobot Pipilan Kering

Hasil pipilan biji kering tanaman merupakan komponen yang sangat berkaitan dengan produksi serta distribusi bahan kering. Pemilihan di lakukan untuk memisahkan biji jagung yang melekat pada tongkolnya, hampir sama dengan proses perontokan gabah yaitu memisahkan biji dari tempat pelekat sehingga memudahkan atau memperingan pengangkutan (Purwono, 2007).

Hasil uji DMRT pada Tabel 5, menunjukkan bahwa pada seluruh paket pupuk daun dengan pupuk konvensional tidak berbeda nyata dibandingkan dengan perlakuan Standar, hal ini menunjukkan pada setiap perlakuan memberikan kontribusi atau pengaruh yang sama seperti pada perlakuan Standar. Perlakuan S1G1, S1G2, S2G1, S2G2, dan S2G4 tidak berbeda nyata dibandingkan dengan perlakuan Kontrol sedangkan perlakuan S1G3, S1G4 dan S2G3 nyata lebih tinggi dari Kontrol karena pada perlakuan Kontrol tidak diberikan pupuk sehingga bobot
yang dihasilkan lebih rendah yaitu sebesar 14,82 Kw/ha. Perlakuan S1G1 dan S2G4 nyata lebih rendah dari perlakuan S1G4 dan S2G3, sedangkan perlakuan S1G2, S2G1, S2G2 tidak berbeda nyata dengan perlakuan S1G1, S1G4, S2G3 dan S2G4. Hasil produksi pipilan kering pada seluruh perlakuan tidak memenuhi bobot standar jagung hibrida pioner pada umur 9 MST, yaitu sebesar 68,00-89,80 bwntal per hektar. Rendahnya produksi pipilan kering ini disebabkan tanaman kurangnya hara N, P, dan K yang dibutuhkan dalam perkembangannya sehingga menghambat pertumbuhan vegetatif yaitu brangkasan tanaman dan pengisian panen atau produksi biji pipilan kering. Pengaruh pemberian pupuk daun Growmore 12-45-10 terhadap bobot pipilan kering disajikan pada Tabel 5.

Secara umum pada perlakuan S1G1, S1G2, S1G3, S1G4, S2G1, S2G2, S2G3, dan S2G4 tidak berbeda nyata dengan Standar dan pada perlakuan S1G3, S1G4, dan S2G3 berpengaruh nyata terhadap Kontrol.

3.3 Relative of Agronomical Effectiveness (RAE)

RAE adalah suatu nilai pembanding dalam uji efektifitas pupuk, RAE digunakan untuk membandingkan efektivitas pupuk yang diteliti terhadap pupuk pupuk standar, dimana persamaannya adalah:

\[
RAE \text{ Growmore (\%)} = \frac{\text{Produksi Perlakuan Growmore} - \text{Produksi Kontrol}}{\text{Produksi Standar} - \text{Produksi Kontrol}} \times 100\%
\]

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>RAE (%)</th>
<th>Produksi Pipilan Kering (kw/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol</td>
<td>0,00</td>
<td>14,82 a</td>
</tr>
<tr>
<td>S1G1</td>
<td>26,21</td>
<td>20,16 ab</td>
</tr>
<tr>
<td>S1G2</td>
<td>112,51</td>
<td>37,75 abc</td>
</tr>
<tr>
<td>S1G3</td>
<td>155,37</td>
<td>46,49 bc</td>
</tr>
<tr>
<td>S1G4</td>
<td>178,56</td>
<td>51,22 c</td>
</tr>
<tr>
<td>S2G1</td>
<td>71,33</td>
<td>29,36 abc</td>
</tr>
<tr>
<td>S2G2</td>
<td>107,02</td>
<td>36,63 abc</td>
</tr>
<tr>
<td>S2G3</td>
<td>173,36</td>
<td>50,16 c</td>
</tr>
<tr>
<td>S2G4</td>
<td>14,19</td>
<td>17,71 a</td>
</tr>
<tr>
<td>Standar</td>
<td>100,00</td>
<td>35,20 abc</td>
</tr>
</tbody>
</table>

Keterangan: Angka yang diikuti huruf yang sama pada kolom yang sama tidak berbeda nyata pada taraf nyata 0,05 (α=0,05) dengan uji Wilaysah Berganda Duncan (DMRT)

Pada Tabel 5, dapat dilihat bahwa hasil perhitungan RAE, perlakuan dosis G1, S1G2, S1G3, S1G4, S2G1, S2G2, S2G3, dan S2G4 mempunyai persentasi
lebih tinggi dari perlakuan pupuk standar, kecuali pada perlakuan S1G1, S2G1 dan S2G4. Pada perlakuan S2G3 mampu mencapai 173,4 % dari hasil perlakuan dosis Standar. Hal ini menunjukkan bahwa dengan paket pupuk daun dan pupuk konvensional yang diberikan dalam jumlah tertentu seperti yang diujikan lebih efektif dibandingkan dengan perlakuan standar, tanaman jagung masih mampu memberikan respon tumuh dan berproduksi lebih baik.

Pupuk daun dapat mensubstitusi pupuk konvensional baik pada perlakuan dan perlakuan S2, hal ini dikarenakan meskipun pada perlakuan S1 hanya menggunakan ¼ dosis pupuk standar dan pada perlakuan S2 menggunakan ½ dosis pupuk standar, produktivitas perlakuan kombinasi dengan pupuk daun Growmore 12-45-10 lebih efektif dibandingkan dengan perlakuan yang menggunakan dosis anjuran Departemen Pertanian.

4 Kadar Hara Tanaman Jagung

Data hasil pengukuran rata-rata kadar hara N, P, K, Ca, dan Mg tanaman jagung pada umur 9 MST disajikan pada Tabel 7, sedangkan analisis ragamnya dapat dilihat pada Tabel Lampiran 14-18. Dari hasil analisis ragam dapat dilihat bahwa perlakuan yang diuji berpengaruh nyata terhadap kadar N, K dan Ca tetapi tidak berpengaruh nyata terhadap kadar P dan Mg tanaman jagung pada umur 9 MST. Hal ini menunjukkan paket pupuk daun Growmore 12-45-10 dan pupuk konvensional memberikan pengaruh yang sama disetiap perlakuan terhadap unsur hara P dan Mg, dan terdapat perbedaan pada setiap perlakuan yang diberikan dari pengaruh unsur hara N, K, dan Ca.

Hasil uji lanjut dari pengaruh aplikasi pupuk daun Growmore 12-45-10 terhadap kadar hara N, P, K, Ca dan Mg tanaman jagung pada umur 9 MST juga dapat dilihat pada Tabel 7.
Tabel 7. Pengaruh Perlakuan terhadap Kadar Hara Tanaman Jagung pada Umur 9 MST

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>N (%)</th>
<th>P (%)</th>
<th>K (%)</th>
<th>Ca (%)</th>
<th>Mg (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol</td>
<td>2,11 a</td>
<td>0,19</td>
<td>1,60 a</td>
<td>0,34 a</td>
<td>0,16</td>
</tr>
<tr>
<td>Standar</td>
<td>2,03 ab</td>
<td>0,21</td>
<td>1,64 b</td>
<td>0,42 bc</td>
<td>0,17</td>
</tr>
<tr>
<td>S1G1</td>
<td>1,98 cd</td>
<td>0,21</td>
<td>1,48 b</td>
<td>0,54 a</td>
<td>0,16</td>
</tr>
<tr>
<td>S1G2</td>
<td>2,50 bc</td>
<td>0,22</td>
<td>1,42 b</td>
<td>0,45 cd</td>
<td>0,18</td>
</tr>
<tr>
<td>S1G3</td>
<td>2,15 abc</td>
<td>0,22</td>
<td>1,44 ab</td>
<td>0,50 cd</td>
<td>0,15</td>
</tr>
<tr>
<td>S1G4</td>
<td>1,96 d</td>
<td>0,23</td>
<td>1,25 ab</td>
<td>0,46 cd</td>
<td>0,18</td>
</tr>
<tr>
<td>S2G1</td>
<td>2,12 cd</td>
<td>0,23</td>
<td>1,43 ab</td>
<td>0,35 e</td>
<td>0,20</td>
</tr>
<tr>
<td>S2G2</td>
<td>1,94 abc</td>
<td>0,23</td>
<td>1,59 a</td>
<td>0,36 de</td>
<td>0,17</td>
</tr>
<tr>
<td>S2G3</td>
<td>1,55 cd</td>
<td>0,22</td>
<td>1,28 ab</td>
<td>0,33 ab</td>
<td>0,18</td>
</tr>
<tr>
<td>S2G4</td>
<td>1,63 abc</td>
<td>0,21</td>
<td>1,66 b</td>
<td>0,40 ab</td>
<td>0,19</td>
</tr>
</tbody>
</table>

Keterangan: Angka yang diikuti oleh huruf yang sama pada kolom yang sama tidak berbeda nyata pada taraf nyata 0,05 (P = 5%) dengan uji Wilayah Berganda Duncan (DMRT)

Tabel 7 menunjukkan bahwa pemberian pupuk daun Growmore 12-45-10 terhadap kadar hara N tanaman jagung pada umur 9 MST untuk perlakuan S1G3, S2G2 dan S2G4 tidak berbeda nyata dengan perlakuan Standar dan Kontrol, perlakuan S1G2 memberikan pengaruh tidak berbeda nyata dengan Standar dan nyata lebih tinggi dari Kontrol. Perlakuan S1G1, S1G4, S2G1 dan S2G3 berbeda nyata dengan Standar dan nyata lebih tinggi dari Kontrol sedangkan perlakuan S1G2, S1G3, S2G2 dan S2G4 nyata berbeda dibandingkan perlakuan S1G4 dan perlakuan S1G1, S2G1, dan S2G3 tidak berbeda nyata dengan perlakuan S1G4. Kadar N tanaman jagung berkisar antara 2,70 - 4,0 % (Jones et. al., 1991). Maka berdasarkan kisaran kecukupan hara tanaman jagung, kadar nitrogen pada semua perlakuan masih di bawah kadar kecukupan hara. Rendahnya kadar N dapat disebabkan adanya pencucian oleh air hujan atau penguapan dan volatilisasi, manfa nitrogen merupakan unsur yang sangat mobil, baik di dalam tanah maupun tanaman. Dengan demikian pupuk N selalu perlu ditambahkan ke dalam tanah agar ketersediaannya meningkat dan pertumbuhan tanaman lebih baik (Kobiatul, 2004). Nitrogen sangat diperlukan untuk pembentukan atau pertumbuhan bagian-bagian vegetatif tanaman seperti daun, batang, dan akar (Arief, 1986).

Perlakuan tidak memberikan perbedaan nyata terhadap kadar fosfor (P). Kadar P tanaman jagung berkisar antara 0,25-0,5 % (Jones et. al., 1991). Dari hasil percobaan terlihat semua perlakuan mengalami defisiensi unsur P.
Marschner (1986), menyatakan bahwa rendahnya kadar P dapat disebabkan karena penyerapan P oleh daun dari tanaman yang mengalami defisiensi P akan 2 kali lebih besar dari tanaman yang diberi cukup P melalui tanah, bahkan P tersebut akan di alokasikan dari daun ke bagian akar yang kekurangan P tersebut. Fosfor paling banyak diserap pada saat pengisian tongkol, jadi selama masa vegetatif, fosfor tidak diserap sebanyak nitrogen dan kalium. Begitu juga dengan kadar Mg, pada setiap perlakuan yang diuji tidak memberikan perbedaan nyata. Kadar Mg tanaman jagung berkisar antara 0,20-1,0 % (Jones et. al., 1991). Kadar Mg tergolong cukup pada beberapa perlakuan.

Kadar K tanaman jagung berkisar antara 1,70-3,0 % (Jones et. al., 1991). Dari kisaran kecukupan hara dapat dilihat semua perlakuan memiliki kadar K yang rendah. Hal ini dapat disebabkan karena unsur hara tanaman mengalami pengenceran unsur hara (dilution effect) oleh pertambahan biomassa, sehingga menghambat petumbuhan dan produksi tanaman jagung. Kadar kalium (K) perlakuan S1G1, S1G2 dan S2G4 tidak berbeda nyata dengan perlakuan Standar berpengaruh nyata dengan Kontrol. Perlakuan S1G3, S1G4, S2G1 dan S2G3 berbeda nyata dibandingkan dengan perlakuan Standar dan Kontrol, sedangkan perlakuan S2G2 nyata lebih rendah dari standar dan tidak berbeda nyata dengan perlakuan Kontrol. Perlakuan S1G1, S1G2, S2G4 nyata berbeda dengan perlakuan S2G2 dan perlakuan S1G3, S1G4, S2G1 dan S2G3 tidak berbeda nyata dengan perlakuan S2G2 dan S2G4.

Untuk mendukung pertumbuhan tanaman selama masa vegetatif, unsur yang diperlukan dalam jumlah yang paling besar adalah N dan K. Kalium peranan dalam pembentukan pati, mengaktifkan enzim, unsur penyusun jaringan tahanan, pembukaan stomata (mengatur pernapasan dan penguapan), proses fisiologis dalam tanaman, proses metabolik dalam sel, mempengaruhi penyerapan unsur-unsur lain (Hardjowigeno, 1995).

Dari Tabel 7. terlihat bahwa kadar Ca pada perlakuan S1G1 berpengaruh nyata lebih tinggi dari perlakuan Standar dan tidak berbeda nyata dengan Kontrol. Perlakuan S1G2, S1G3 dan S1G4 tidak berbeda nyata dengan Standar dan nyata lebih tinggi dari Kontrol. Perlakuan S2G3 dan S2G4 tidak berbeda nyata dengan Standar dan Kontrol dan perlakuan S2G1 dan S2G2 nyata lebih rendah dari
Standar dan nyata lebih tinggi dibandingkan Kontrol. Perlakuan S1G1, S2G3, S2G4 berbeda nyata dengan perlakuan S1G2, S1G3, S1G4, S2G1 dan S2G2, sedangkan perlakuan S1G2, S1G3 dan S1G4 tidak berbeda nyata dengan perlakuan S2G2 dan nyata lebih tinggi dari S2G1, dan perlakuan S2G2 tidak berbeda nyata dengan perlakuan S2G1. Menurut Jones et. al. (1991), Kadar Ca suamuan jagung berkisar antara 0,21-1,0%, sehingga pada seluruh perlakuan pada pada kisaran yang cukup untuk memenuhi jumlah hara yang dibutuhkan tanaman.

4.5 Analisis Usaha Tani

Hasil ringkasan analisis usaha tani disajikan pada Tabel 8 dan rincian biaya disajikan pada Tabel Lampiran 20-23.

Kriteria kelayakan pada analisis usaha tani yaitu menggunakan Revenue/Costr (R/C) Ratio. R/C ratio ini menunjukan pendapatan kotor yang diterima untuk setiap rupiah yang dikeluarkan untuk memproduksi (total biaya produksi). Bila nilai R/C Ratio lebih besar dari 1,20 usaha tersebut dapat disimpulkan memperoleh keuntungan, atau dengan kata lain, tidak akan mengalami kerugian karena penerimaan melebihi jumlah biaya. Berdasarkan hasil analisis usaha tani (Tabel 8) didapatkan bahwa pada perlakuan kontrol, standar, S1G4, S2G1, dan S2G3 mengalami kerugian atau dapat dikatakan tidak layak. nilai R/C Ratio dan B/C Ratio yang terbesar adalah perlakuan S1G3, yaitu sebesar 6,0 dan nilai B/C yaitu 0,60. Artinya, setiap keuntungan Rp 1,00 maka keuntungan yang diterima sebesar Rp 0,60 dari modal.

Pada seluruh paket perlakuan pupuk daun Growmore dengan pupuk konvensional memiliki nilai R/C rasio yang lebih tinggi dibandingkan dengan
standar kecuali pada perlakuan S2G3, hal ini berarti biaya yang dikeluarkan untuk pembelian pupuk dan penyemprotannya (biaya tenaga kerja) mampu mengimbangi hasil pendapattannya, dengan dosis pupuk tanah yang sudah dikurangi.

<table>
<thead>
<tr>
<th>Perkara</th>
<th>Biaya</th>
<th>Penda</th>
<th>Keuntungan</th>
<th>R/C</th>
<th>B/C</th>
<th>Kela layak</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tetap</td>
<td>Variabel</td>
<td>Total</td>
<td>Patan</td>
<td>Tunan</td>
<td>Ratio</td>
</tr>
<tr>
<td>KOT</td>
<td>4878,75</td>
<td>313,34</td>
<td>5192,09</td>
<td>2964</td>
<td>2228,09*</td>
<td>0.57</td>
</tr>
<tr>
<td>STB</td>
<td>4878,75</td>
<td>1673,15</td>
<td>6551,9</td>
<td>4033</td>
<td>2518,9*</td>
<td>0.62</td>
</tr>
<tr>
<td>S1G</td>
<td>4878,75</td>
<td>1263,98</td>
<td>6142,73</td>
<td>7551</td>
<td>1408,27</td>
<td>1.23</td>
</tr>
<tr>
<td>S1G</td>
<td>4878,75</td>
<td>1391,84</td>
<td>6270,59</td>
<td>9298</td>
<td>3027,41</td>
<td>1.48</td>
</tr>
<tr>
<td>S1G</td>
<td>4878,75</td>
<td>1516,09</td>
<td>6394,84</td>
<td>10243</td>
<td>3848,16</td>
<td>1.60</td>
</tr>
<tr>
<td>S1G</td>
<td>4878,75</td>
<td>1616,42</td>
<td>6495,17</td>
<td>5872</td>
<td>623,17*</td>
<td>0.90</td>
</tr>
<tr>
<td>S2G3</td>
<td>4878,75</td>
<td>1601,72</td>
<td>6480,47</td>
<td>7327</td>
<td>846,53</td>
<td>1.13</td>
</tr>
<tr>
<td>S2G3</td>
<td>4878,75</td>
<td>1733,89</td>
<td>6612,64</td>
<td>10031</td>
<td>3418,36</td>
<td>1.52</td>
</tr>
<tr>
<td>S2G4</td>
<td>4878,75</td>
<td>1842,69</td>
<td>6721,44</td>
<td>3543</td>
<td>3178,44*</td>
<td>0.53</td>
</tr>
<tr>
<td>S2G4</td>
<td>4878,75</td>
<td>1960,43</td>
<td>6839,18</td>
<td>7041</td>
<td>201,82</td>
<td>1.03</td>
</tr>
</tbody>
</table>

Keterangan: * mengalami kerugian sebesar
Pendapatan berdasarkan harga jual pili panjang jagung Rp. 2000/Kg

4.6 Dosis Optimum

Dosis optimum pupuk adalah dosis untuk mencapai keuntungan maksimum.

Dosis optimum didapatkan dari kurva persamaan produksi dan persamaan harga pupuk.
Gambar 2: Kurva Persamaan Produksi Perlakuan dengan Growmore 12-45-10

Dari kurva produksi didapatkan persamaan produksi untuk perlakuan G1, S1G2, S1G3, dan S1G4 adalah \(y = 2,547x + 13,43 \) dan S2G1, S2G2, S2G3, dan S2G4 adalah \(y = -0,620x^2 + 11,87x - 10,82 \); di mana \(y \) = produksi jagung apilan kering (Kw/ha) dan \(x \) = dosis pupuk Growmore (Kg/ha), sedangkan persamaan harga Growmore adalah \(y = 0,15x \), dimana harga pupuk konvensional diasumsikan konstan.

Pada perlakuan S1G1, S1G2, S1G3, dan S1G4 tidak terdapat dosis optimum karena persamaan yang diperoleh adalah persamaan linier, sedangkan pada perlakuan S2G1, S2G2, S2G3, dan S2G4, Perhitungan dosis optimum didasarkan pada turunan pertama persamaan produksi dengan persamaan harga Growmore.

Pada perlakuan S2G1, S2G2, S2G3, dan S2G4 turunan pertamanya adalah \(y' = -1,24x + 11,87 \) dan persamaan harganya adalah \(y' = 0,15 \), sehingga didapat dosis optimum untuk S2G1, S2G2, S2G3, dan S2G4 adalah 12,96 kg Growmore/ha atau setara dengan 4,05 gram/liter, yang berarti pada dosis tersebut terjadi keuntungan maksimum untuk pemakaian pupuk Growmore 12-45-10 dengan 225 Kg urea, 100 Kg SP-36 dan 75 Kg KCl.
V. KESIMPULAN DAN SARAN

1. KESIMPULAN

1. Paket pupuk daun Growmore 12-45-10 dengan pupuk konvensional menunjukkan respon tumbuh, serapan hara dan produktivitas yang lebih baik dibandingkan dengan perlakuan Kontrol dan Standar dilihat dari parameter tinggi tanaman, kadar hara N, K, dan Ca, diameter tongkol, panjang tongkol, bobot 100 butir jagung dan bobot pipilan kering.

2. Hasil produksi pipilan kering pada beberapa perlakuan paket pupuk daun Growmore 12-45-10 dengan pupuk konvensional dapat memberikan efektivitas pupuk yang lebih efektif dalam meningkatkan hasil dibandingkan dengan perlakuan dosis standar pada parameter pertumbuhan, komponen produksi dan kadar hara (N, K dan Ca).

3. Pada hasil analisis usaha tani, keuntungan dan R/C ratio paket pupuk daun Growmore 12-45-10 dengan pupuk konvensional yang terbesar adalah pada dosis pupuk konvensional 150 Kg/ha Urea, 50 Kg/ha SP-36, 37,5 Kg/ha KCL dan dosis pupuk Growmore 12-45-10 sebesar 12 Kg/ha, nilai R/C ratio-nya adalah 1,60 dengan keuntungan 0,60 dari modal.

2. SARAN

1. Perlu pengujian tanaman pada dosis dan volume semprot yang berbeda untuk mencukupi kebutuhan pertumbuhan dan produksi tanaman dan tingkat keragaman yang rendah.

2. Perlu pengujian lebih lanjut dengan menggunakan paket perlakuan yang lebih lengkap (paket tanpa pupuk konvensional yang dikombinasikan dengan pupuk daun pada dosis yang berbeda dan paket tanpa pupuk daun yang dikombinasikan pada dua dosis pupuk konvensional yang berbeda).
DAFTAR PUSTAKA

LAMPIRAN
LAMPIRAN

Tabel Lampiran 1. Rataan Tinggi Tanaman Jagung 4-9 MST

<table>
<thead>
<tr>
<th>PERLAKUAN</th>
<th>MST 4</th>
<th>MST 5</th>
<th>MST 6</th>
<th>MST 7</th>
<th>MST 8</th>
<th>MST 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>KON</td>
<td>102,58</td>
<td>111,46</td>
<td>142,60</td>
<td>147,27</td>
<td>131,72</td>
<td>138,33</td>
</tr>
<tr>
<td>S1G1</td>
<td>102,02</td>
<td>141,60</td>
<td>157,47</td>
<td>169,99</td>
<td>164,08</td>
<td>167,23</td>
</tr>
<tr>
<td>S1G2</td>
<td>112,05</td>
<td>145,27</td>
<td>168,07</td>
<td>179,94</td>
<td>145,87</td>
<td>154,18</td>
</tr>
<tr>
<td>S1G3</td>
<td>129,67</td>
<td>157,83</td>
<td>177,13</td>
<td>184,05</td>
<td>138,38</td>
<td>150,02</td>
</tr>
<tr>
<td>S1G4</td>
<td>116,08</td>
<td>145,62</td>
<td>141,47</td>
<td>146,06</td>
<td>168,32</td>
<td>170,12</td>
</tr>
<tr>
<td>S2G1</td>
<td>83,52</td>
<td>106,02</td>
<td>119,33</td>
<td>134,54</td>
<td>151,58</td>
<td>159,28</td>
</tr>
<tr>
<td>S2G2</td>
<td>121,17</td>
<td>139,78</td>
<td>168,68</td>
<td>173,47</td>
<td>149,57</td>
<td>152,45</td>
</tr>
<tr>
<td>S2G3</td>
<td>109,47</td>
<td>125,67</td>
<td>150,78</td>
<td>157,18</td>
<td>173,90</td>
<td>186,20</td>
</tr>
<tr>
<td>S2G4</td>
<td>110,88</td>
<td>129,92</td>
<td>151,12</td>
<td>158,58</td>
<td>164,03</td>
<td>188,35</td>
</tr>
<tr>
<td>TD</td>
<td>121,05</td>
<td>141,00</td>
<td>171,17</td>
<td>182,17</td>
<td>184,52</td>
<td>185,23</td>
</tr>
</tbody>
</table>

Tabel Lampiran 2. Analisis Ragam Tinggi Tanaman 4 MST

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Derajat Bebas</th>
<th>Jumlah Kuadrat</th>
<th>Kuadrat Tengah</th>
<th>F-hitung</th>
<th>F-Tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blok</td>
<td>2</td>
<td>4466,28</td>
<td>496,25</td>
<td>1,33</td>
<td>2,46</td>
</tr>
<tr>
<td>Perlakuan</td>
<td>9</td>
<td>7350,24</td>
<td>3675,12</td>
<td>9,85</td>
<td>3,55</td>
</tr>
<tr>
<td>Galat</td>
<td>18</td>
<td>6716,29</td>
<td>373,13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>18532,81</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel Lampiran 3. Analisis Ragam Tinggi Tanaman 5 MST

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Derajat Bebas</th>
<th>Jumlah Kuadrat</th>
<th>Kuadrat Tengah</th>
<th>F-hitung</th>
<th>F-Tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blok</td>
<td>2</td>
<td>7037,73</td>
<td>781,97</td>
<td>1,79</td>
<td>2,46</td>
</tr>
<tr>
<td>Perlakuan</td>
<td>9</td>
<td>5269,97</td>
<td>2634,98</td>
<td>6,03</td>
<td>3,55</td>
</tr>
<tr>
<td>Galat</td>
<td>18</td>
<td>7857,00</td>
<td>436,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>20164,70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel Lampiran 4. Analisis Ragam Tinggi Tanaman 6 MST

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Derajat Bebas</th>
<th>Jumlah Kuadrat</th>
<th>Kuadrat Tengah</th>
<th>F-hitung</th>
<th>F-Tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blok</td>
<td>2</td>
<td>8269,68</td>
<td>918,85</td>
<td>2,05</td>
<td>2,46</td>
</tr>
<tr>
<td>Perlakuan</td>
<td>9</td>
<td>2828,20</td>
<td>1414,10</td>
<td>3,16</td>
<td>3,55</td>
</tr>
<tr>
<td>Galat</td>
<td>18</td>
<td>8050,88</td>
<td>447,27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>19148,76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sumber Keragaman</td>
<td>Derajat Bebas</td>
<td>Jumlah Kuadrat</td>
<td>Kuadrat Tengah</td>
<td>F-hitung</td>
<td>F-Tabel</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Blok</td>
<td>2</td>
<td>7957,31</td>
<td>884,15</td>
<td>2,36</td>
<td>2,46</td>
</tr>
<tr>
<td>Perlakuan</td>
<td>9</td>
<td>2865,38</td>
<td>1432,69</td>
<td>3,82</td>
<td>3,55</td>
</tr>
<tr>
<td>Galat</td>
<td>18</td>
<td>6755,38</td>
<td>375,29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>17578,07</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Derajat Bebas</th>
<th>Jumlah Kuadrat</th>
<th>Kuadrat Tengah</th>
<th>F-hitung</th>
<th>F-Tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blok</td>
<td>2</td>
<td>7393,41</td>
<td>821,49</td>
<td>2,26</td>
<td>2,46</td>
</tr>
<tr>
<td>Perlakuan</td>
<td>9</td>
<td>44,17</td>
<td>22,08</td>
<td>0,06</td>
<td>3,55</td>
</tr>
<tr>
<td>Galat</td>
<td>18</td>
<td>6549,76</td>
<td>363,88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>13987,34</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Derajat Bebas</th>
<th>Jumlah Kuadrat</th>
<th>Kuadrat Tengah</th>
<th>F-hitung</th>
<th>F-Tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blok</td>
<td>2</td>
<td>8033,87</td>
<td>892,65</td>
<td>3,85</td>
<td>2,46</td>
</tr>
<tr>
<td>Perlakuan</td>
<td>9</td>
<td>49,09</td>
<td>24,55</td>
<td>0,11</td>
<td>3,55</td>
</tr>
<tr>
<td>Galat</td>
<td>18</td>
<td>4170,12</td>
<td>231,67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>12253,08</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel Lampiran 8. Ringkasan Hasil Analisis Ragam Pengaruh Pupuk Daun Growmore 12-45-10 Terhadap Pertumbuhan Tinggi Tanaman Per Minggu

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Minggu Setelah Tanam</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Perlakuan</td>
<td>ns</td>
</tr>
</tbody>
</table>

Pengaturan : * : Berbeda Nyata Pada Taraf Nyata (α) = 0,05 ns : Tidak Berbeda Nyata Pada Taraf Nyata (α) = 0,05

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Jumlah Kuadrat</th>
<th>Derajat Bebas</th>
<th>Kuadrat Tengah</th>
<th>F-hitung</th>
<th>F-Tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td>80,06</td>
<td>9</td>
<td>8,89</td>
<td>5,34</td>
<td>2,46</td>
</tr>
<tr>
<td>Blok</td>
<td>8,46</td>
<td>2</td>
<td>4,23</td>
<td>2,54</td>
<td>3,55</td>
</tr>
<tr>
<td>Galat</td>
<td>29,98</td>
<td>18</td>
<td>1,67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>118,50</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sumber Keragaman</td>
<td>Jumlah</td>
<td>Kuadrat Bebas</td>
<td>Kuadrat Tengah</td>
<td>F-hitung</td>
<td>F-Tabel</td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>---------------</td>
<td>----------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Perlakuan</td>
<td>14,34</td>
<td>9</td>
<td>1,59</td>
<td>5,58</td>
<td>2,46</td>
</tr>
<tr>
<td>Blok</td>
<td>0,59</td>
<td>2</td>
<td>0,29</td>
<td>1,03</td>
<td>3,55</td>
</tr>
<tr>
<td>Galat</td>
<td>5,14</td>
<td>18</td>
<td>0,29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>20,07</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Jumlah</th>
<th>Kuadrat Bebas</th>
<th>Kuadrat Tengah</th>
<th>F-hitung</th>
<th>F-Tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td>159,67</td>
<td>9</td>
<td>17,74</td>
<td>3,13</td>
<td>2,46</td>
</tr>
<tr>
<td>Blok</td>
<td>49,05</td>
<td>2</td>
<td>24,52</td>
<td>4,33</td>
<td>3,55</td>
</tr>
<tr>
<td>Galat</td>
<td>101,93</td>
<td>18</td>
<td>5,66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>310,65</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Jumlah</th>
<th>Kuadrat Bebas</th>
<th>Kuadrat Tengah</th>
<th>F-hitung</th>
<th>F-Tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td>4746,03</td>
<td>9</td>
<td>527,34</td>
<td>2,71</td>
<td>2,46</td>
</tr>
<tr>
<td>Blok</td>
<td>764,42</td>
<td>2</td>
<td>382,21</td>
<td>1,96</td>
<td>3,55</td>
</tr>
<tr>
<td>Galat</td>
<td>3505,73</td>
<td>18</td>
<td>194,76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8016,18</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Panjang Tongkol</th>
<th>Keliling Tongkol</th>
<th>Bobot 100 butir</th>
<th>Produksi Pipilan Kering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Keterangan: * : Berbeda Nyata Pada Taraf Nyata (α) = 0,05
ns : Tidak Berbeda Nyata Pada Taraf Nyata (α) = 0,05

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Jumlah</th>
<th>Kuadrat Bebas</th>
<th>Kuadrat Tengah</th>
<th>F-hitung</th>
<th>F-Tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td>1,96</td>
<td>9</td>
<td>0,22</td>
<td>3,63</td>
<td>2,46</td>
</tr>
<tr>
<td>Blok</td>
<td>1,02</td>
<td>2</td>
<td>0,51</td>
<td>8,49</td>
<td>3,55</td>
</tr>
<tr>
<td>Galat</td>
<td>1,08</td>
<td>18</td>
<td>0,06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4,05</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabel Lampiran 15. Analisis Ragam Kadar Fosfor (P) Tanaman

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Jumlah Derajat Kuadrat Bebas</th>
<th>Kuadrat Tengah</th>
<th>F-hitung</th>
<th>F-Tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perkara</td>
<td>0,32</td>
<td>9</td>
<td>0,04</td>
<td>0,80</td>
</tr>
<tr>
<td>Blok</td>
<td>0,25</td>
<td>2</td>
<td>0,13</td>
<td>2,84</td>
</tr>
<tr>
<td>Galat</td>
<td>0,08</td>
<td>18</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0,14</td>
<td>29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel Lampiran 16. Analisis Ragam Kadar Kalium (K) Tanaman

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Jumlah Derajat Kuadrat Bebas</th>
<th>Kuadrat Tengah</th>
<th>F-hitung</th>
<th>F-Tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perkara</td>
<td>0,56</td>
<td>9</td>
<td>0,06</td>
<td>2,79</td>
</tr>
<tr>
<td>Blok</td>
<td>0,3</td>
<td>2</td>
<td>0,16</td>
<td>6,99</td>
</tr>
<tr>
<td>Galat</td>
<td>0,40</td>
<td>18</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,28</td>
<td>29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel Lampiran 17. Analisis Ragam Kadar Kalsium (Ca) Tanaman

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Jumlah Derajat Kuadrat Bebas</th>
<th>Kuadrat Tengah</th>
<th>F-hitung</th>
<th>F-Tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perkara</td>
<td>0,09</td>
<td>9</td>
<td>0,01</td>
<td>11,43</td>
</tr>
<tr>
<td>Blok</td>
<td>0,02</td>
<td>2</td>
<td>0,01</td>
<td>9,63</td>
</tr>
<tr>
<td>Galat</td>
<td>0,02</td>
<td>18</td>
<td>0,001</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0,12</td>
<td>29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel Lampiran 18. Analisis Ragam Kadar Magnesium (Mg) Tanaman

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Jumlah Derajat Kuadrat Bebas</th>
<th>Kuadrat Tengah</th>
<th>F-hitung</th>
<th>F-Tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perkara</td>
<td>74,66</td>
<td>9</td>
<td>8,30</td>
<td>0,99</td>
</tr>
<tr>
<td>Blok</td>
<td>16,99</td>
<td>2</td>
<td>8,49</td>
<td>1,02</td>
</tr>
<tr>
<td>Galat</td>
<td>150,56</td>
<td>18</td>
<td>8,36</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>242,21</td>
<td>29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel Lampiran 19. Ringkasan Hasil Analisis Ragam Kadar Hara Tanaman Jagung 9 MST

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Unsur</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perkara</td>
<td></td>
<td>*</td>
<td>ns</td>
<td>*</td>
<td>*</td>
<td>ns</td>
</tr>
</tbody>
</table>

Penceratan: * : Berbeda Nyata Pada Taraf Nyata (α) = 0,05
ns : Tidak Berbeda Nyata Pada Taraf Nyata (α) = 0,05
Tabel Lampiran 20. Biaya Tetap Pada Analisis Usaha Tani

<table>
<thead>
<tr>
<th>Komponen</th>
<th>Harga Satuan (Rp)</th>
<th>Jumlah</th>
<th>Total (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sewa Lahan per musim tanam</td>
<td>Rp. 1000000 per hektar</td>
<td>1 Hektar</td>
<td>1000.000</td>
</tr>
<tr>
<td>Benih</td>
<td>Rp. 400000 per Kg</td>
<td>15 Kg</td>
<td>600.000</td>
</tr>
<tr>
<td>Pestisida</td>
<td>Rp. 600000 per Kg</td>
<td>5 Kg</td>
<td>30.000</td>
</tr>
<tr>
<td>Kapur</td>
<td>Rp. 270000 per Kg</td>
<td>2625 Kg</td>
<td>708.750</td>
</tr>
<tr>
<td>Tenaga Kerja:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pengolahan Lahan</td>
<td>Rp. 200000 per HOK</td>
<td>50 HOK</td>
<td>1000.000</td>
</tr>
<tr>
<td>Penanaman</td>
<td></td>
<td>10 HOK</td>
<td>200.000</td>
</tr>
<tr>
<td>Pemeliharaan</td>
<td></td>
<td>20 HOK</td>
<td>400.000</td>
</tr>
<tr>
<td>Pemanenan</td>
<td></td>
<td>25 HOK</td>
<td>500.000</td>
</tr>
<tr>
<td>Pasca Panen</td>
<td></td>
<td>20 HOK</td>
<td>400.000</td>
</tr>
<tr>
<td>Peralatan:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penyusutan Cangkul*</td>
<td>Rp20.000</td>
<td></td>
<td>20.000</td>
</tr>
<tr>
<td>Penyusutan Plastik Penjemur**</td>
<td>Rp20.000</td>
<td></td>
<td>20.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sub total</td>
</tr>
</tbody>
</table>

Perhatian:
- Asumsi Harga Cangkul Rp.30000 dengan waktu penyusutan 2 tahun Sehingga biaya penyusutan untuk 1 musim tanam (12 bulan) adalah Rp.5000, menggunakan 4 Cangkul
- Asumsi Harga Plastik Penjemur Rp3000 dengan waktu penyusutan 1 tahun Sehingga biaya penyusutan untuk 1 musim tanam (12 bulan) adalah Rp.10000, menggunakan 2 plastik

Tabel Lampiran 21. Biaya Variabel Pupuk Pada Analisis Usaha Tani

<table>
<thead>
<tr>
<th>Pertanian</th>
<th>Urea SP-36</th>
<th>KCl</th>
<th>Growmore 12-45-10</th>
<th>Urea Rp 1350/Kg</th>
<th>SP-36 Rp 2200/Kg</th>
<th>KCl Rp 3400/Kg</th>
<th>Growmore 12-45-10 Rp 30000/Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumlah Pupuk (Kg)</td>
<td>Harga Pupuk (Rp)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STD</td>
<td>300 200 150</td>
<td>405.000</td>
<td>440.000</td>
<td>510.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1G1</td>
<td>150 50 37,5</td>
<td>4 202.500</td>
<td>110.000</td>
<td>127.500</td>
<td>120.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1G2</td>
<td>150 50 37,5</td>
<td>8 202.500</td>
<td>110.000</td>
<td>127.500</td>
<td>240.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1G3</td>
<td>150 50 37,5</td>
<td>12 202.500</td>
<td>110.000</td>
<td>127.500</td>
<td>360.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1G4</td>
<td>150 50 37,5</td>
<td>16 202.500</td>
<td>110.000</td>
<td>127.500</td>
<td>480.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2G1</td>
<td>225 100 75</td>
<td>4 303.750</td>
<td>220.000</td>
<td>255.000</td>
<td>120.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2G2</td>
<td>225 100 75</td>
<td>8 303.750</td>
<td>220.000</td>
<td>255.000</td>
<td>240.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2G3</td>
<td>225 100 75</td>
<td>12 303.750</td>
<td>220.000</td>
<td>255.000</td>
<td>360.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S2G4</td>
<td>225 100 75</td>
<td>16 303.750</td>
<td>220.000</td>
<td>255.000</td>
<td>480.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabel Lampiran 22. Biaya Variabel Tenaga Kerja Pada Analisis Usaha Tani

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Tenaga Kerja Penanaman + Pemupukan + Penyulaman (Rp)</th>
<th>Penyemporan (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KON</td>
<td>300.000 (15 HOK)</td>
<td></td>
</tr>
<tr>
<td>STD</td>
<td>300.000 (15 HOK)</td>
<td></td>
</tr>
<tr>
<td>S1G1</td>
<td>300.000 (15 HOK)</td>
<td>320.000 (16 HOK)</td>
</tr>
<tr>
<td>S1G2</td>
<td>300.000 (15 HOK)</td>
<td>320.000 (16 HOK)</td>
</tr>
<tr>
<td>S1G3</td>
<td>300.000 (15 HOK)</td>
<td>320.000 (16 HOK)</td>
</tr>
<tr>
<td>S1G4</td>
<td>300.000 (15 HOK)</td>
<td>320.000 (16 HOK)</td>
</tr>
<tr>
<td>2G1</td>
<td>300.000 (15 HOK)</td>
<td>320.000 (16 HOK)</td>
</tr>
<tr>
<td>2G2</td>
<td>300.000 (15 HOK)</td>
<td>320.000 (16 HOK)</td>
</tr>
<tr>
<td>2G3</td>
<td>300.000 (15 HOK)</td>
<td>320.000 (16 HOK)</td>
</tr>
<tr>
<td>2G4</td>
<td>300.000 (15 HOK)</td>
<td>320.000 (16 HOK)</td>
</tr>
</tbody>
</table>

Tabel Lampiran 23. Biaya Variabel Peralatan Pada Analisis Usaha Tani

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Peralatan (Penyusutan Alat Semprot) (Rp.)</th>
<th>Produksi Pipilan Kerang (Kg)</th>
<th>Pasca Panen Sewa Mesin Rp. 90/Kg</th>
<th>Sub Total Biaya Variabel (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KON</td>
<td>0</td>
<td>1482</td>
<td>13338</td>
<td>313.338</td>
</tr>
<tr>
<td>STD</td>
<td>0</td>
<td>2016,33</td>
<td>18147</td>
<td>1.673.147</td>
</tr>
<tr>
<td>S1G1</td>
<td>50.000</td>
<td>3775,33</td>
<td>33978</td>
<td>1.263.978</td>
</tr>
<tr>
<td>S1G2</td>
<td>50.000</td>
<td>4649</td>
<td>41841</td>
<td>1.391.841</td>
</tr>
<tr>
<td>S1G3</td>
<td>50.000</td>
<td>5121,67</td>
<td>46095</td>
<td>1.516.096</td>
</tr>
<tr>
<td>S1G4</td>
<td>50.000</td>
<td>2936</td>
<td>26424</td>
<td>1.616.424</td>
</tr>
<tr>
<td>2G1</td>
<td>50.000</td>
<td>3663,33</td>
<td>32970</td>
<td>1.601.720</td>
</tr>
<tr>
<td>2G2</td>
<td>50.000</td>
<td>5015,67</td>
<td>45141</td>
<td>1.733.891</td>
</tr>
<tr>
<td>2G3</td>
<td>50.000</td>
<td>1771,33</td>
<td>15942</td>
<td>1.824.692</td>
</tr>
<tr>
<td>2G4</td>
<td>50.000</td>
<td>3520,33</td>
<td>31683</td>
<td>1.960.433</td>
</tr>
</tbody>
</table>

Tabel Lampiran 24. Tabel Interpretasi Nilai Serapan Hara Jagung

<table>
<thead>
<tr>
<th>Tanaman : Jagung (Zea mays L.)</th>
<th>P<sub>y</sub> : 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsur</td>
<td>Rendah</td>
</tr>
<tr>
<td>---</td>
<td>%</td>
</tr>
<tr>
<td>N</td>
<td>2,00-2,60</td>
</tr>
<tr>
<td>P</td>
<td>0,15-0,24</td>
</tr>
<tr>
<td>K</td>
<td>1,00-1,60</td>
</tr>
<tr>
<td>Ca</td>
<td>0,10-0,22</td>
</tr>
<tr>
<td>Mg</td>
<td>0,10-0,19</td>
</tr>
<tr>
<td>S</td>
<td>0,10-0,20</td>
</tr>
<tr>
<td>Sifat Tanah</td>
<td>Sangat Rendah</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>C-Organik (%)</td>
<td>< 1.00</td>
</tr>
<tr>
<td>N-Total (%)</td>
<td>< 0.10</td>
</tr>
<tr>
<td>C/N</td>
<td>< 5</td>
</tr>
<tr>
<td>P2O5 HCl (mg/100g)</td>
<td>< 10</td>
</tr>
<tr>
<td>P2O5 Bray 1 (ppm)</td>
<td>< 10</td>
</tr>
<tr>
<td>P2O5 Olsen (ppm)</td>
<td>< 10</td>
</tr>
<tr>
<td>CTK (me/100g)</td>
<td>< 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Susunan Kation</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K (me/100g)</td>
<td>< 0.1</td>
<td>0.1-0.2</td>
<td>0.3-0.5</td>
<td>0.6-1.0</td>
<td>> 1.0</td>
</tr>
<tr>
<td>Ca (me/100g)</td>
<td>< 0.1</td>
<td>0.1-0.3</td>
<td>0.4-0.7</td>
<td>0.8-1.0</td>
<td>> 1.0</td>
</tr>
<tr>
<td>Mg (me/100g)</td>
<td>< 0.4</td>
<td>0.4-0.1</td>
<td>1.1-2.0</td>
<td>2.1-8.0</td>
<td>> 8.0</td>
</tr>
<tr>
<td>Al (me/100g)</td>
<td>< 2</td>
<td>2-5</td>
<td>6-10</td>
<td>11-20</td>
<td>> 20</td>
</tr>
<tr>
<td>KB (%)</td>
<td>< 20</td>
<td>20-35</td>
<td>36-50</td>
<td>51-70</td>
<td>> 70</td>
</tr>
</tbody>
</table>

| Kejenuhan Al (%) | < 10 | 10-20 | 21-30 | 31-60 | > 60 |

<table>
<thead>
<tr>
<th>pH H2O</th>
<th>Sangat Masam</th>
<th>Masam</th>
<th>Masam</th>
<th>Netral</th>
<th>Alkalin Alkalin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 4.5</td>
<td>4.5-5.5</td>
<td>5.6-6.5</td>
<td>6.6-7.5</td>
<td>7.6-8.5</td>
</tr>
</tbody>
</table>