LINGKUNGAN WIDE AREA NETWORK
UNTUK PEMROSESAN PARALEL

CHAIRINA

DEPARTEMEN ILMU KOMPUTER
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR
2006
ABSTRAK

CHAIRINA. Lingkungan Wide Area Network untuk Pemrosesan Paralel. Dibimbing oleh MOCHAMAD TITO JULIANTO dan PANJI WASMANA.

Kinerja proses paralel dalam jaringan dapat diukur dengan memperhatikan waktu komputasi dan waktu komunikasi antar prosesor. Penelitian ini merekomendasikan algoritma routing, topologi jaringan, ukuran paket dan bandwidth port router agar waktu komunikasi antar prosesor dalam WAN dapat diminimalisir sehingga kinerja proses paralel menjadi lebih baik.

Penelitian ini dilaksanakan pada teknologi ethernet, menggunakan dua metrik performa, yaitu throughput dan delay. Perbandingan pengukuran performa proses paralel pada ukuran paket 100, 1,000, 10,000 dan 100,000 byte memperlihatkan bahwa nilai throughput terbaik dicapai pada saat ukuran paket 1,000 byte. Paket yang lebih besar dari 1,000 byte membutuhkan waktu pemotongan paket dan penggabungan paket kembali. Paket yang lebih kecil dari 1,000 byte, meski tidak mengalami pemotongan paket, data tersebut akan mendapatkan overhead dari penambahan header dan ack yang besarnya sama pada setiap pengiriman paket, berapapun data yang dibawa.

Perbandingan pengukuran performa proses paralel pada algoritma routing OSPF dan EIGRP dalam penelitian ini memberikan hasil yang bervariasi. Penambahan ukuran bandwidth port pada router tidak memperlihatkan perbedaan. Selanjutnya, ada perbandingan pengukuran performa proses paralel pada topologi linear dan ring pada penelitian ini juga tidak memperlihatkan perbedaan.
LINGKUNGAN WIDE AREA NETWORK
UNTUK PEMROSESAN PARALEL

CHAIRINA

Skripsi
sebagai salah satu syarat untuk memperoleh gelar
Sarjana Komputer pada
Departemen Ilmu Komputer

DEPARTEMEN ILMU KOMPUTER
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR
2006
PRAKATA

Alhamdulillah, puji dan syukur senantiasa penulis panjatkan kepada Allah SWT, karena hanya dengan izin dan kehendak-Nya penulis dapat menyelesaikan karya ilmiah ini.

Penyeselesaian penulisan karya ilmiah ini tidak lepas dari berbagai pihak yang telah banyak membantu. Oleh karena itu penulis ingin mengucapkan terima kasih kepada:

3. Kedua orang tua yang sudah memberikan doa, dorongan, arahan, nasihat dan kasih sayangnya hingga karya ilmiah ini dapat selesai ditulis.

4. Adik-adik, uwo, mba Andi dan Akang yang dengan doa dan kasih sayangnya selalu menyertai penulis.

5. Dini (teman sekelas sekaligus teman seangkat), Asep, Muishtofa dan Baim yang sudah banyak memberi masukan serta teman-teman lainnya dari idolmers37. Teman-teman ajangkita, komunitas maya yang telah memberikan motivasi dan penghiburan.

Penulis berharap semoga karya ilmiah ini dapat bermanfaat bagi perkembangan dunia ilmu pengetahuan di Indonesia. Semoga Allah SWT membals budi baik semua pihak yang telah membantu penulis dan mencatatnya sebagai amal sholeh, amin.

Bogor, Mei 2006

Chairina
RIWAYAT HIDUP

Penulis dilahirkan di Pekanbaru pada tanggal 12 Maret 1982 sebagai anak pertama dari tiga bersaudara, dari pasangan ayah Chairuddin Hasyim dan ibu Muswarni.

Tahun 2000 penulis lulus dari SMU Negeri 70 Jakarta dan pada tahun yang sama melanjutkan pendidikan ke Institut Pertanian Bogor melalui jalur Ujian Masuk Perguruan Tinggi Negri dengan memilih Jurusan Ilmu Komputer, Fakultas Matematika dan Ilmu Pengetahuan Alam

DAFTAR ISI

HALAMAN

DAFTAR TABEL .. viii
DAFTAR GAMBAR ... viii
DAFTAR LAMPIRAN .. ix

PENDAHULUAN

Latar Belakang .. 1
Tujuan ... 1
Ruang Lingkup ... 1

TINJAUAN PUSTAKA

Pemrosesan Paralel ... 1
Parallel Virtual Machine (PVM) ... 1
Parameter Pengukuran Performa Paralel ... 2
Jaringan Komputer ... 2
Topologi Jaringan ... 2
Layer Modelling ... 2
Maximum Transmission Unit (MTU) ... 3
Fragmentasi .. 3
Routing .. 3
Algoritma Routing Dinamis .. 3
Open Shortest Path First (OSPF) .. 4
Enhanced Interior Gateway Routing Protocol (EIGRP) .. 4
Metrik Performa Jaringan ... 4
Crony ... 4

METODE PENELITIAN

Membangun Program Paralel ... 4
Perbandingan Performa Program Paralel pada Jaringan ... 4
Ukuran Performa Sistem ... 6
Lingkungan Penelitian ... 6

HASIL DAN PEMBAHASAN

Program Master dan Slave ... 7
Hasil Pengujian .. 7

KESIMPULAN DAN SARAN

Kesimpulan .. 12
Saran ... 12

DAFTAR PUSTAKA .. 12
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Rancangan Percobaan</td>
</tr>
<tr>
<td>2 Pasangan Master Slave pada Skenario Pertama</td>
</tr>
<tr>
<td>3 Pasangan Master Slave pada Skenario Kedua</td>
</tr>
<tr>
<td>4 Pasangan Master Slave pada Skenario Ketiga</td>
</tr>
<tr>
<td>5 Pasangan Master Slave pada Skenario Keempat</td>
</tr>
<tr>
<td>6 Pasangan Master Slave pada Skenario Kelima</td>
</tr>
</tbody>
</table>

DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Arsitektur PVM</td>
</tr>
<tr>
<td>2 Beberapa Bentuk Topologi pada WAN</td>
</tr>
<tr>
<td>3 Komunikasi Antar Layer pada Model TCP/IP</td>
</tr>
<tr>
<td>4 Frame pada Ethernet</td>
</tr>
<tr>
<td>5 Topologi Linear</td>
</tr>
<tr>
<td>6 Skema Pengujuan Program Paralel pada Topologi Linear</td>
</tr>
<tr>
<td>7 Topologi Ring</td>
</tr>
<tr>
<td>8 Skema Pengujuan Program Paralel pada Topologi Ring</td>
</tr>
<tr>
<td>9 Perbandingan Throughput pada Skenario Pertama dengan Bandwidth Port Router 1,000 bps (a) dan 10,000 bps (b)</td>
</tr>
<tr>
<td>10 Perbandingan Throughput pada Skenario Keempat dengan Bandwidth Port Router 1,000 bps (a) dan 10,000 bps (b)</td>
</tr>
<tr>
<td>11 Perbandingan Delay pada Skenario Pertama dengan Bandwidth Port Router 1,000 bps (a) dan 10,000 bps (b)</td>
</tr>
<tr>
<td>12 Perbandingan Throughput pada Skenario Kedua dengan Bandwidth Port Router 1,000 bps (a) dan 10,000 bps (b)</td>
</tr>
<tr>
<td>13 Perbandingan Throughput pada Skenario Ketiga dengan Bandwidth Port Router 1,000 bps (a) dan 10,000 bps (b)</td>
</tr>
<tr>
<td>14 Perbandingan Throughput pada Skenario Kelima dengan Bandwidth Port Router 1,000 bps (a) dan 10,000 bps (b)</td>
</tr>
<tr>
<td>15 Perbandingan Delay pada Skenario Kedua dengan Bandwidth Port Router 1,000 bps (a) dan 10,000 bps (b)</td>
</tr>
<tr>
<td>16 Perbandingan Throughput pada Skenario Kedua dengan Bandwidth Port Router 1,000 bps (a) dan 10,000 bps (b)</td>
</tr>
<tr>
<td>17 Perbandingan Throughput pada Skenario Kelima dengan Bandwidth Port Router 1,000 bps (a) dan 10,000 bps (b)</td>
</tr>
<tr>
<td>18 Perbandingan Delay pada Skenario Kedua dengan Bandwidth Port Router 1,000 bps (a) dan 10,000 bps (b)</td>
</tr>
<tr>
<td>19 Perbandingan Throughput dengan Bandwidth Port Router 1,000 bps pada Skenario Kedua (a) dan pada Skenario Kelima (b)</td>
</tr>
<tr>
<td>20 Perbandingan Throughput dengan Bandwidth Port Router 10,000 bps pada Skenario Kedua (a) dan pada Skenario Kelima (b)</td>
</tr>
<tr>
<td>21 Perbandingan Delay dengan Bandwidth Port Router 1,000 bps pada Skenario Kedua (a) dan pada Skenario Kelima (b)</td>
</tr>
</tbody>
</table>
DAFTAR LAMPIRAN

<table>
<thead>
<tr>
<th>Lampiran</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Program timing.c</td>
<td>14</td>
</tr>
<tr>
<td>2. Program timing_slave.c</td>
<td>18</td>
</tr>
<tr>
<td>3. Data Hasil Percobaan</td>
<td>19</td>
</tr>
</tbody>
</table>
PENDAHULUAN

Latar Belakang

Banyak aplikasi dalam bidang numerik yang memerlukan komputasi dalam jumlah besar dan waktu komputasi yang relatif singkat. Untuk mengatasi hal ini, diperlukan komputer yang memiliki kecepatan komputasi tinggi. Secara umum, kecepatan komputasi dapat ditingkatkan melalui dua cara, pertama dengan meningkatkan kecepatan komponen-komponen yang terdapat dalam komputer, terutama prosesor. Kedua, dengan menggunakan sejumlah prosesor yang bekerja secara paralle pada sebuah jaringan. Pengembangan prosesor yang bekecepatan sangat tinggi bukanlah suatu hal yang mudah. Dibutuhkan penelitian yang cukup lama dan biaya yang sangat besar. Langkah tercepat dan termurah untuk meningkatkan kecepatan komputasi adalah dengan menempatkan sejumlah prosesor berkecepatan tinggi yang mumpu melakukan komputasi secara paralle.

Pemrosesan parallel dalam jaringan dapat diatur dengan mempertahankan waktu komputasi dan waktu komunikasi antar prosesor. Semakin cepat waktu komunikasi, semakin baik performa proses parallel. Beberapa faktor dalam jaringan akan mempengaruhi waktu komunikasi tersebut.

Dalam penelitian ini diharapkan akan terlihat kondisi terbaik saat komunikasi antar program parallel berjalan dalam suatu jaringan Wide Area Network (WAN).

Tujuan

Penelitian ini bertujuan untuk merekomendasikan algoritma routing, topologi jaringan, ukuran paket, dan bandwidth port router yang terbaik saat program parallel dijalankan dalam WAN untuk mencapai waktu komunikasi yang lebih baik.

Ruang Lingkup

Penelitian ini dibatasi pada perbandingan lingkungan proses parallel dengan protokol OSPF dan EIGRP, pada bandwidth tiap port 1,000 dan 10,000 bps serta dijelaskan pada topologi ring dan linear. Metrik performa yang diukur dalam penelitian ini yaitu throughput dan delay paket.

Penelitian ini menggunakan router Cisco 2600 dan menggunakan multi komputer yang terhubung bersama dalam jaringan. Lingkungan proses parallel menggunakan PVM 3.4.4 sebagai perangkat lunak.

TINJAUAN PUSTAKA

Pemrosesan Parallel

Pemrosesan parallel adalah proses yang berjalan bersama pada task yang berbeda oleh dua atau lebih mikroprosesor, baik dengan satu komputer dengan lebih dari satu prosesor maupun dengan multi komputer yang terhubung bersama dalam jaringan. (Anonim, 2006)

Parallel Virtual Machine (PVM)

Parallel Virtual Machine (PVM) adalah perangkat lunak yang memungkinkan sekumpulan komputer yang heterogen terlihat seperti satu sistem komputer parallel dan dapat digunakan sebagai sumber daya komputasi yang koheren (Uditaratmo, 2002). Komputer tersebut dapat berupa workstation, multiprocessor, specialized graphic engine sampai dengan vector supercomputer yang dihubungkan dengan jaringan yang bermacam-macam.

Pada Gambar 1 terlihat bahwa sistem PVM dapat digunakan untuk berbagai jenis arsitektur komputer yang terhubung dalam jaringan baik berupa LAN (local Area Network) maupun WAN. Program aplikasi parallel dibuat dengan memanfaatkan rutin-rutin yang disediakan oleh PVM. Rutin-rutin tersebut berguna untuk proses pengirim pesan (message), pembuatan proses, koordinasi proses, dan modifikasi mesin virtual.
Parameter Pengukuran Performa Paralel

Untuk mengetahui seberapa baik performa program paralel dapat digunakan beberapa parameter, dalam pengukuran tersebut (Urdfiratamto, 2002) antara lain:

1. Waktu proses paralel
 Waktu proses paralel yang diukur adalah waktu eksekusi program paralel termasuk waktu overhead, tetapi tidak termasuk waktu eksekusi I/O

2. Overhead
 Overhead pada pemrosesan paralel merupakan biaya tetap yang diperlukan dalam melakukan proses paralel. Overhead diukur dari waktu yang diperlukan untuk membuat proses anak, distribusi pengiriman data dan pengumpulan/penerimaan data.

Pada jaringan, terdapat overhead pada protokol, seperti adanya handshakes, penambahan header, serta adanya fragmentasi. Selain itu terdapat juga overhead router seperti penggunaan algoritma routing, perhitungan CPU dan kompresi port serial. (Bloomers, 1996).

Salah satu cara mempercepat overhead yaitu dengan meminimalkan waktu komunikasi antar program paralel.

Jaringan Komputer

Sekumpulan komputer yang terpisah pisahkan akan tetapi saling berhubungan dalam menjalankan tugasnya disebut sebagai jaringan komputer. (Tanenbaum, 1997)

Menurut Comer (2001), teknologi jaringan berdasarkan luas dari jaringan yang dapat dibentuk dapat diklasifikasikan menjadi tiga kategori (Comer, 2001), yaitu:

1. Local Area Network (LAN) atau Jaringan komputer lokal, merupakan jaringan yang di dalamnya terdapat beberapa komputer menggunakan media yang dipakai bersama untuk komunikasi lokal.

2. Metropolitan Area Network (MAN) merupakan versi yang lebih besar dari LAN dan umumnya menggunakan teknologi yang sama dengan LAN.

Topologi Jaringan

Topologi jaringan adalah pola garis-garis (link) yang menghubungkan pasangan titik-titik (node) dalam jaringan. Tiap titik memiliki satu atau lebih link yang menghubungkan kemungkinan dengan link yang lain dan link-link tersebut dapat muncul dengan berbagai macam bentuk yang berbeda. Hubungan yang paling sederhana disebut 'link' pada diagram.

Topologi jaringan ditentukan oleh konfigurasi koneksi antar titik. (Wikipedia, 2006)

Beberapa bentuk topologi, hubungan antar router pada jaringan WAN yaitu topologi Star, topologi ring dan topologi linear dapat dilihat pada Gambar 2.

Gambar 2 Beberapa Bentuk Topologi pada WAN

Layer Modelling

Untuk mengurangi kerumitan, kebanyakan jaringan diatur dalam beberapa lapisan (layer). (Tanenbaum, 1997). Pemodelan lapisan (layer modelling) adalah alat untuk membantu pemahaman disain protokol membentuk protokol yang cocok untuk menyelesaikan masalah dalam komunikasi. (Comer, 2001)

Dua di antara pemodelan layer yang umum digunakan, yaitu model OSI (Open System Interconnection) dan model TCP/IP. Tiap layer pada suatu mesin berkomunikasi dengan layer yang sama pada mesin lainnya. Komunikasi ini memiliki aturan yang biasanya disebut dengan protokol. (Tanenbaum, 1997)

Gambar 3 Komunikasi antar Layer pada Model TCP/IP

1. Layer 1 (Physical)
 Physical layer yang memungkinkan antara 1-1 komunikasi yang paling dasar.

2. Layer 2 (Network Interface)
 Layer ini mengatur komunikasi antar router.

3. Layer 3 (Internet)
 Layer ini mengatur komunikasi antar komputer.

4. Layer 4 (Transport)
 Layer ini mengatur komunikasi antar aplikasi.

5. Layer 5 (Application)
 Layer ini membawa data dari aplikasi ke layer 4.
Maximum Transmission Unit (MTU)

MTU adalah batasan data maksimum yang dapat dibawa dalam sebuah frame pada lapisan ke dua dari pemodelan TCP/IP. Layer Network Interface pada pemodelan TCP/IP tidak didesain untuk menerima atau mengirim frame yang memuat data lebih dari yang ditetapkan MTU. Dengan demikian, sebuah IP datagram harus lebih kecil atau sama besarnya dengan MTU atau dia tidak bisa di enkapsulasi untuk pengiriman (Comer, 2001).

Fragmentasi

Agar protokol IP bebas dari jaringan fisik (physical network) atau network interface pada pemodelan TCP/IP, proses pembatasan membuat panjang maksimum IP datagram sama dengan MTU yang terpanjang (65.536 byte). Untuk jaringan fisik yang lebih kecil, maka datagram harus dibagi sehingga dapat melewati jaringan. Hal ini disebut fragmentasi (Ferouzian, 2003).

Besarnya MTU jaringan Ethernet adalah 1.500 byte, ditunjukkan pada Gambar 4.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Dest.</th>
<th>Source</th>
<th>Frame</th>
<th>Data</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 byte</td>
<td>6 byte</td>
<td>6 byte</td>
<td>2 byte</td>
<td>46 - 1500 byte</td>
</tr>
</tbody>
</table>

Gambar 4 Frame pada Ethernet

Routing

Routing adalah bagaimana mendapatkan arah dari satu jaringan ke jaringan yang lain. Arah-arah ini yang dikenal sebagai route (route). Penentuan route dapat dilakukan secara dinamis maupun statik (ditentukan oleh administrator jaringan). Proses routing ini dilakukan pada layer Internet dalam model TCP/IP.

Algoritma Routing Dinamis

Seorang administrator jaringan memilih routing dinamis berdasarkan beberapa pertimbangan. Ukuran dari jaringan, bandwidth yang tersedia dalam satu route, kekuatan prosesor pada router, model dan tipe dari router, dan protokol yang sudah digunakan oleh router lain dalam jaringan adalah faktor-faktor yang harus dipertimbangkan dalam memilih protokol routing.

Sebuah router digunakan untuk mengelola lalu lintas jaringan dan menentukan route terbaik bagi paket yang akan dikirim. Router harus memiliki informasi mengenai status dari jaringan agar dapat menentukan bagaimana pengiriman paket terjadi. Algoritma routing digunakan oleh router untuk mencari route terbaik. Beberapa parameter yang diperlukan untuk memilih route terbaik di antaranya jumlah lompatan (sebuah lompatan adalah perjalanan sebuah paket data dari satu router ke router lainnya dalam jaringan), waktu delay dan biaya komunikasi dari pengiriman data.

(Razafi, 2003)

Berdasarkan cara mengumpulkan informasi tentang struktur dari jaringan dan hasil analisa dari informasi yang didapatnya untuk menentukan route terbaik, maka router dapat dikelompokkan menjadi dua jenis algoritma routing yaitu: Algoritma Routing Global dan Algoritma Routing Desentralisasi.

(Cisco, 2003). Contoh dari algoritma Link State adalah OSPF dan EIGRP.

Protokol Distance Vector menggunakan sumber daya sistem yang lebih sedikit namun memilki kekurangan dalam hal lambatnya konvergensi dan menggunakan pengukuran yang tidak cocok digunakan pada sistem yang lebih besar. Contoh dari protokol Distance Vector adalah RIP dan IGRP.

Open Shortest Path First (OSPF)
OSPF adalah protokol routing LS sesuai dengan open standard. OSPF memilki rule menggunakan besarnya biaya, sebuah pengukuran yang didasarkan pada bandwidth. Semua router OSPF harus mengetahui informasi yang lengkap tentang jaringan pada semua router untuk menghitung route terpendek. Ini adalah algoritma yang kompleks, karena itu sebagian besar protokol LS lainnya, OSPF adalah protocol yang powerful dan memori lebih banyak dibandingkan pada protokol DV.

Enhanced Interior Gateway Routing Protocol (EIGRP)
EIGRP adalah protokol routing yang dipatok oleh Cisco berdasarkan Interior Gateway Routing Protocol (IGRP).

EIGRP dapat menggantikan Novell Routing Information Protocol (RIP) dan AppleTalk Routing Table Maintenance Protocol (RTMP), dan melalui jaringan IPX dan AppleTalk dengan efisien.

EIGRP kadang digambarkan sebagai routing protokol yang hibrid karena menawarkan gabungan algoritma DV dan LS. EIGRP merupakan protokol routing yang lebih maju yang pada umumnya diasosiasikan dengan protokol LS karena beberapa fitur terbatas dari OSPF seperti update yang parsial dan penemuan link tetap yang secara mirip digunakan oleh EIGRP (Cisco, 2003)

Metrik Performa Jaringan
Jaringan dapat diukur menggunakan pengukuran kuantitatif. Pengukuran kuantitatif ini sangat penting karena dapat membandingkan performa dua jaringan (Comer, 2001). Dua pengukuran kuantitatif yang paling dasar yaitu:

1.

 Delay

 Delay dalam sebuah jaringan adalah waktu yang diperlukan untuk setiap bit data berpindah dari satu komputer ke komputer yang lain. Delay diukur dengan satuan detik atau fraksi dari detik (Comer, 2001)

2.

 Throughput

 Throughput adalah jumlah data paket yang diterima dalam satuan waktu, secara sederhana dapat dirumuskan:

 \[\text{Throughput} = \frac{\sum \text{RcvPacket}}{\Delta t}\]

Chrony
Chrony adalah sepassan program yang digunakan untuk mengatur sinkronisasi waktu sistem di sebuah jaringan komputer.

Tiap-tiap host menginstal program ini. Salah satu host bertindak sebagai master yang menjadi acuan waktu bagi komputer lain dalam jaringan.

Program-program dalam chrony adalah chronyd dan chronyadm. Program chronyd adalah program daemon yang dapat dijalankan pada saat waktu boot. Chrony menyediakan antar muka pada chronyd untuk memonitor performanya dan untuk mengkonfigurasi bermacam pengaturan (Curnow,1996)

METODE PENELITIAN

Untuk dapat menentukan perbandingan performa komunikasi antar program paralel dalam WAN, maka ada dua hal yang dilakukan dalam penelitian ini, yaitu:

1. Membangun program paralel
2. Membandingkan performa komunikasi antar program paralel dalam WAN

Membangun Program Paralel
Dalam penelitian ini akan dibangun dua program paralel yang dinamakan master dan slave.

1. Program Master
Program master bertanggung jawab dalam pembuatan proses, inisialisasi, pengumpulan, dan penampilan hasil.

Langkah-langkah yang dilakukan program master yaitu:
- Bangkitkan program slave
- Kirim paket kepada slave
- Terima ack dari slave
- Hitung waktu pengiriman dari paket
- Tampilkan keluaran

2. Program Slave
Program slave bertanggung jawab menerima paket dari master dan mengirimkan pemberitaan (ack) bahwa paket telah diterima.

Perbandingan Performa Program Paralel pada Jaringan
Untuk mengetahui perbandingan performa komunikasi antar program paralel dalam jaringan, maka digunakan rancangan percobaan seperti disusun dalam Tabel 1 di bawah ini:
Gambar 5 Topologi Linear

1. Skenario Pertama
 Kondisi dalam skenario ini adalah kondisi yang diharapkan memiliki hasil terbaik, di mana pertukaran paket terjadi pada dua host yang terdekat yang hanya perlu melalui dua router pada topologi linear seperti yang terlihat pada Gambar 5. Pasangan master – slave pada skenario ini yaitu seperti tertera pada Tabel 2:

<table>
<thead>
<tr>
<th>Master</th>
<th>Slave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kom2</td>
<td>Kom1</td>
</tr>
<tr>
<td>Kom4</td>
<td>Kom3</td>
</tr>
<tr>
<td>Kom6</td>
<td>Kom5</td>
</tr>
</tbody>
</table>

Skenario pertama ini dilaksanakan pada topologi linear, yang dicobakan pada masing-masing protokol yang diuji dengan besar bandwidth 1,000 atau 10,000 dan variasi ukuran paket seperti yang tertera pada Gambar 6.

2. Skenario Kedua
 Kondisi dalam skenario ini adalah kondisi di mana pertukaran paket terjadi pada dua host yang perlu melalui 4 router pada topologi linear seperti yang terlihat pada Gambar 5.

Gambar 6 Skema Pengujian Program Paralel pada Topologi Linear

Pasangan master – slave pada skenario ini yaitu seperti tertera pada Tabel 3:

<table>
<thead>
<tr>
<th>Master</th>
<th>Slave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kom4</td>
<td>Kom1</td>
</tr>
<tr>
<td>Kom5</td>
<td>Kom2</td>
</tr>
<tr>
<td>Kom6</td>
<td>Kom3</td>
</tr>
</tbody>
</table>

Pada skenario ini paket yang dikirim atau diterima tiap-tiap pasangan master-slave diharapkan bersamaan bertemu paket yang dikirim atau diterima oleh pasangan master-slave lainnya. Hal ini untuk melihat pengaruhnya terhadap nilai throughput dan delay.

Skenario kedua ini dilaksanakan pada topologi linear yang dicobakan pada masing-masing protokol yang diuji dengan besar bandwidth 1,000 atau 10,000 dan variasi ukuran paket seperti yang tertera pada Gambar 6.

3. Skenario Ketiga
 Pasangan master – slave pada skenario ini yaitu seperti tertera pada Tabel 4:

<table>
<thead>
<tr>
<th>Master</th>
<th>Slave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kom2</td>
<td>Kom3</td>
</tr>
<tr>
<td>Kom4</td>
<td>Kom5</td>
</tr>
<tr>
<td>Kom6</td>
<td>Kom1</td>
</tr>
</tbody>
</table>

Kondisi pertukaran paket pada pasangan kom2-kom3 dan kom4-kom5 melalui dua router pada topologi linear (Gambar 7) untuk pengirim/penerimaan paket. Pada pasangan kom1-kom6, terjadi kondisi yang secara teorinya terburuk karena dalam kondisi ini proses pengirim/penerimaan paket melalui enam router.

Skenario ketiga ini juga dilakukan sebanyak empat kali berdasarkan faktor bandwidth dan protokol yang ingin diuji.
Skenario ke lima ini dilaksanakan empat kali pada topologi ring yang dicobakan pada masing-masing protokol yang diuji dengan besar bandwidth 1,000 atau 10,000 dengan variasi ukuran paket seperti pada Tabel 1.

Ukuran Performa Sistem

Pengujian dilakukan untuk mengetahui seberapa besar performa komunikasi pada program paralel pada kondisi lingkungan jaringan yang diuji. Beberapa parameter yang digunakan dalam uji ini adalah:

- **Delay**
 Semakin kecil delay, maka performa program paralel semakin baik. Dengan menggunakan program master, akan diketahui besarnya delay masing-masing protokol pada topologi tertentu serta menguji apakah batasan bandwidth pada tiap port memiliki pengaruh pada delay dalam pengujian.

- **Throughput**
 Semakin besar throughput, maka program paralel semakin baik. Untuk melihat nilai throughput, maka digunakan program master berdasarkan skenario yang ada. Dalam penelitian ini juga akan menguji pengaruh batasan bandwidth konsekuensi antar router terhadap throughput pada performa proses paralel yang diuji.

Lingkungan Penelitian

Pengujian kedua protokol ini menggunakan enam buah router Cisco 2600 dengan memori main/shared 28672 Kbyte /4096 Kbyte, 16384 Kbyte flash, dan menggunakan IOS sofware C2600 versi 12.3(8)T10, enam buah komputer personal dengan spesifikasi Intel Pentium IV 1.7 Ghz dengan RAM 128 Mb dan menggunakan sistem operasi Fedora Core 1.

Perangkat lunak yang digunakan pada host yaitu PVM 3.4.4 untuk melakukan proses paralel dan chrony untuk menentukan waktu pada enam host. Program master dan slave digunakan sebagai program paralel yang dijalankan pada PVM.
HASIL DAN PEMBAHASAN

Program Master dan Slave

Pada proses ini dibangun dua buah program dalam bahasa C. Kedua program ini adalah program dari paket PVM dengan beberapa modifikasi Program master yaitu timing.c dapat dilihat pada Lampiran 1. Program slave yaitu timing_slave.c dapat dilihat pada Lampiran 2.

Hasil Pengujian Sistem
1. Metrik Performa Sistem Pada Ukuran Paket yang Berbeda

Hasil pengujian sistem pada ukuran paket yang berbeda dapat terlihat pada Gambar 9, 10, dan 11. Tabel hasil pengujian selengkapnya pada Lampiran 3.

Throughput

Nilai throughput berdasarkan metrik performa pengukuran paket yang berbeda terlihat pada Gambar 9 dan 10.

Gambar 9 Perbandingan Throughput pada Skenario Pertama dengan Bandwidth Port Router 1,000 bps (a) dan 10,000 bps (b)

Gambar 10 Perbandingan Throughput pada Skenario Keempat dengan Bandwidth Port Router 1,000 bps (a) dan 10,000 bps (b)

Delay

Nilai delay berdasarkan metrik performa pengukuran paket yang berbeda terlihat pada Gambar 11.

Pada Gambar 11 a dan 11 b terlihat bahwa semakin besar paket semakin lama waktu pengirimannya. Pertambahan bandwidth menjadi 10,000 (Gambar 11 b) bps tidak mengubah nilai delay dibandingkan dengan bandwidth 1,000 (Gambar 11 a).
Gambar 11 Perbandingan Delay pada Skenario Pertama dengan Bandwidth Port Router 1,000 bps (a) dan 10,000 bps (b)

Gambar 12 Perbandingan Throughput pada Skenario Kedua dengan Bandwidth Port Router 1,000 bps (a) dan 10,000 bps (b)

Gambar 13 Perbandingan Throughput pada Skenario Ketiga dengan Bandwidth Port Router 1,000 bps (a) dan 10,000 bps (b)

2. Metrik Performa Sistem Pada Algoritma Routing yang Berbeda

Hasil pengujian sistem pada algoritma routing terlihat pada Gambar 12, 13, 14 dan 15. Tabel hasil pengujian selengkapnya pada Lampiran 3.

Throughput
Nilai throughput berdasarkan metrik performa algoritma yang berbeda terlihat pada Gambar 12 dan 13.

Pada Gambar 12 terlihat skenario kedua, yaitu menggunakan topologi linear, dengan ukuran paket berbeda perbedaan performa komunikasi program paralel berdasarkan algoritma routing memberikan hasil yang bervariasi.

Pada Gambar 12 a, dengan pasangan Komputer 4 dan Komputer 1, pada ukuran paket 100 byte, algoritma OSPF tampak lebih baik dibandingkan dengan algoritma EIGRP. Sebaliknya, pada pasangan Komputer 6 dengan Komputer 3, algoritma EIGRP tampak lebih baik dibandingkan dengan algoritma OSPF. Di sisi lain, pada saat ukuran paket 1,000 byte nilai EIGRP tampak lebih baik dari OSPF.

Gambar 13 memperlihatkan hasil dari skenario ke tiga, menggunakan topologi ring.

1. Dilakukan pengujian dengan menggunakan topologi ring (skenario ke 5) memberikan hasil seperti terlihat Gambar 14 berikut.

Gambar 14 Perbandingan Throughput pada Skenario Kelima dengan Bandwidth Port Router 1,000 bps (a) dan 10,000 bps (b)

Pada Gambar 14 merupakan skenario kelima, menggunakan topologi ring, dengan ukuran paket yang berbeda, terlihat bahwa performa komunikasi program paralel berdasarkan algoritma routing juga bervariasi hasilnya.

Pada Gambar 14 a, dengan pasangan Komputer 4 dengan Komputer 1, pada ukuran paket 100 byte, algoritma OSPF tampak lebih baik dibandingkan dengan algoritma EIGRP, sebaliknya pada pasangan Komputer 5 dengan Komputer 2, algoritma EIGRP tampak lebih baik dibandingkan dengan algoritma OSPF. Di lain pihak saat ukuran paket 1,000 byte throughput untuk semua pasangan master-slave pada EIGRP lebih baik dibandingkan OSPF.

2. Metrik Performa Sistem Pada Bandwidth Port Berbeda Pada Router

Throughput
Nilai throughput berdasarkan metrik performa bandwidth port yang berbeda terlihat pada Gambar 16.

Pada Gambar 16 terlihat skenario kedua, menggunakan topologi linear, dengan ukuran paket berbeda (100, 1,000, 10,000 dan 100,000 byte) dan dengan algoritma routing berbeda (OSPF dan EIGRP).

Membandingkan Gambar 16 a dengan 16 b terlihat bahwa dengan mengubah bandwidth pada port router 1,000 bps menjadi 10,000 bps tidak mengubah nilai :throughput. Hal ini dikarenakan MTU pada jaringan ethernet nilainya akan tetap yaitu 1,500 byte sehingga pemotongan paket akan sama pada bandwidth 1,000 bps maupun 10,000 bps.
1. Diagram menggambarkan sebagian atau seluruh karya tulis. Ini menjadi pengetahuan dan penelitian yang baik. Penggunaan metrik luas telah ditentukan untuk penelitian karya tulis ini. Sumber: Sumber:...

2. Perbandingan throughput pada skenario kelima, menggunakan topologi linear, dapat dilihat pada Gambar 17

3. Gambar 18 Perbandingan Delay pada skenario kelima dengan Bandwidth Port Router 1,000 bps (a) dan 10,000 bps (b)

4. Metrik Performa Sistem Pada Topologi yang Berbeda

 Throughput

 Nilai throughput berdasarkan metrik performa topologi yang berbeda terlihat pada Gambar 19 dan 20.
b. Pengujian tidak menggunakan pengujian yang berlaku untuk seluruh karyawan dalam bentuk laporan.

Gambar 19 Perbandingan Throughput dengan Bandwidth Port Router 1,000 bps pada Skenario Kedua (a) dan pada Skenario Kelima (b)

Pada Gambar 19 terlihat skenario kedua (Gambar 19 a) dan skenario ke empat (Gambar 19 b), yaitu dengan ukuran paket berbeda (100, 1,000, 10,000 dan 100,000 byte), dengan algoritma routing berbeda (OSPF dan EIGRP) dan dengan ukuran bandwidth port yang sama (1,000 bps).

Berdasarkan kedu gambar di atas, terlihat bahwa perbedaan topologi tidak terlalu memberikan perbedaan nilai throughput.

Gambar 20 adalah perbandingan topologi dengan bandwidth port yang sama (10,000 bps)

Pada Gambar 20 terlihat skenario kedua (Gambar 20 a) dan skenario ke empat (Gambar 20 b), yaitu dengan ukuran paket berbeda (100, 1,000, 10,000 dan 100,000 byte), dengan algoritma routing berbeda (OSPF dan EIGRP) dan dengan ukuran bandwidth port yang sama (10,000 bps).

Pada gambar di atas juga tidak terlihat perbedaan dari pengubahan topologi linear menjadi topologi ring.

Delay
Nilai delay berdasarkan metrik performa algoritma routing yang berbeda terlihat pada Gambar 21.

Gambar 21 Perbandingan Delay dengan Bandwidth Port Router 1,000 bps pada Skenario Kedua (a) dan Skenario Kelima (b)

Perbandingan delay pada topologi berbeda, yaitu topologi linear (Gambar 21 a) dan topologi ring (Gambar 21 b) memperlihatkan adanya perbedaan.

Hasil keseluruhan metrik performa berdasarkan perbedaan topologi, tidak...
memerlukan adanya terlihat perbedaan yang signifikan.

KESIMPULAN DAN SARAN

Kesimpulan
Dari analisis terhadap hasil percobaan, dapat disimpulkan beberapa hal yaitu:

3. Ukuran bandwidth port yang digunakan pada percobaan tidak memperlihatkan pengaruh yang nyata pada delay maupun throughput. Pada jaringan yang menggunakan ethernet, penambahan ukuran bandwidth port pada router tidak akan membawa perbedaan, karena MTU akan bernilai tetap, dan fragmentasi akan disesuaikan dengan MTU yang dimiliki jaringan.

4. Hasil percobaan perbandingan topologi linear dengan ring menggunakan pasangan yang identik pada masing-masing topologi, tidak memperlihatkan perbedaan. Selama jarak antar host sama, dengen keteraturan pasangan yang sama (terlihat dengan membandingkan skenario kedua dengan skenario ke 3), maka hasil yang diterima tidak akan jauh berbeda.

5. Berdasarkan skenario yang disusun, saat pasangan master-slave berdekatan yaitu pada skenario 1 dan skenario 4 maka nilai throughput lebih baik dibandingkan pada skenario dengan pasangan master-slave yang melewat 4 router (skenario 2 dan skenario 5). Nilai throughput pada skenario 2 dan 5 lebih buruk karena harus melewati jumlah router yang lebih banyak, sehingga terdapat overhead router yang lebih banyak dari pada overhead router pada skenario 1 dan skenario 4.

Saran
Untuk penelitian selanjutnya, dapat diteliti lebih lanjut performa komunikasi program parallel pada teknologi jaringan yang berbeda (misalkan FDDI) menggunakan ukuran paket yang berbeda sesuai dengan MTU dari jaringan yang dicobakan. Untuk menyelidikan jaringan, pada penelitian selanjutnya dapat ditambah data yang dikirim di sampling data parallel, misalkan data diambil elektronik atau data html, serta menambah jumlah router untuk memperlihatkan topologi.

DAFTAR PUSTAKA

Grama, Ananth et. al. 2003. Introduction to Parallel Computing. USA: Pearson Education

Lampiran 1 Program timing.c

```c
static char rcsid[] =
    "$Id: timing.c,v 1.4 1998/10/01 21:20:55 pvmsrc Exp $";

#ifdef HASSTDLIB
#include <stdlib.h>
#endif

#include <stdio.h>

#ifdef WIN32
#include <sys/time.h>
#endif

#include <time.h>
#include <sys/types.h>
#include <fcntl.h>
#include <math.h>
#include "pvm3.h"

#define SLAVENAME "timing_slave"
#define ENCODING PvmDataRaw

main(argc, argv)
{
    int argc;
    char **argv;
    int mytid; /**< my task id */
    int stdid = 0;
    int reps = 10; /**< number of samples per test */
    struct timeval tv1, tv2; /**< for timing */
    int dr1, dr2; /**< time for one iter */
    int at1, at2; /**< accum. time */
    int numint;
    int n;
    int i;
    int *array = 0;
    int testt; /**< data round trip sementara dibagi 2*/

    Lanjutan Lampiran 1

    if ((mytid = pvm_mytid()) < 0) {
        exit(1);
    }

    printf("i'm t%\n", mytid);

    /* start up slave task */

    if (pvm_spawn(SLAVENAME, (char**)0, 1, argv[1], 1, &stdid) < 0 || stdid < 0) {
        fputs("can't initiate slave\n", stderr);
    }
}``
Lanjutan Lampiran 1

goto bail;
}

/* Wait for slave task to start up */
pvm_setopt(PvmRoute, PvmRouteDirect);
pvm_recv( std, 0 );
printf("slave is task t%x\n", std);

/*@ round-trip timing test */

// puts("Doing Round Trip test, minimal message size\n
t1 = 0;

/* pack buffer */
pvm_initsend(ENCODING);
pvm_pkint(&std, 1, 1);

// puts(" N uSec"); 
for (n = 1; n <= reps; n++) {
    gettimeofday(&tv1, (struct timezone*)0);
    if (pvm_send(std, 1)) {
        fprintf(stderr, "can't send to \%s\n", SLAVENAME);
        goto bail;
    }
    if (pvm_recv(-1, -1) < 0) {
        pvm_errno("recv error");
        goto bail;
    }
    gettimeofday(&tv2, (struct timezone*)0);
    dt1 = (tv2.tv_sec - tv1.tv_sec) * 1000000 + tv2.tv_usec - tv1.tv_usec;

    // printf("%lu\n", n, dt1);
    at1 += dt1;

    printf("Avg uSec =\n", at1 / reps);
    testt = at1 / reps / 2;

    */
    * bandwidth test for different message lengths */

    // puts("\n");
Lanjutan Lampiran I

```c
for (numint = 25; numint < 10000; numint *= 10) {
 printf("Message size %d \n", numint * 4);
 at1 = at2 = 0;
 iarray = (int*)malloc(numint * sizeof(int));
 // puts(" N Pack uSec Send uSec");
 for (n = 1; n <= reps; n++) {
 gettimeofday(&tv1, (struct timezone*)0);
 pvm_initsend(ENCODING);
 pvm_pkint(iarray, numint, 1);
 gettimeofday(&tv2, (struct timezone*)0);
 dt1 = (tv2.tv_sec - tv1.tv_sec) * 1000000
 + tv2.tv_usec - tv1.tv_usec;
 gettimeofday(&tv1, (struct timezone*)0);
 if (pvm_send(stdout, 1)) {
 fprintf(stderr, "can't send to stdout", SLAVENAME);
 goto bail;
 }
 if (pvm_recv(-1, -1) < 0) {
 pvm_error(" recv error ");
 goto bail;
 }
 gettimeofday(&tv2, (struct timezone*)0);
 dt2 = (tv2.tv_sec - tv1.tv_sec) * 1000000
 + tv2.tv_usec - tv1.tv_usec;
 // printf("%ld %ld \n", n, dt1, dt2);
 at1 += dt1;
 at2 += dt2;
 }
 if (!(at1 /= reps))
 at1 = 1;
 if (!(at2 /= reps))
 at2 = 1;
 // at2 = at2 - test;
 // puts("Avg uSec");
 // printf(" %ld %ld \n", at1, at2);
 // printf(" %ld %ld uSec \n", at1, (at2 - test)); /*waktu pengepakan, waktu kirim
 (ditambah waktu untuk mengirim kembali)-waktu pengiriman paket dgn besar 1 bit*/
 // puts("Avg Byte/uSec");
 printf(" %8f Byte/Sec \n",
 (numint * 4 *1000000) / ((double)at2 - (double)test)); /*besarnya
 paket dibagi waktu kirim*/
}
```
/* we have to do this because the last message might be taking
  * up all the shared memory pages.
  */
pvm_freebuf(pvm_getsbuf());

//puts("undone");

bail:
    if (stid > 0)
        pvm_kill(stid);
    pvm_exit();
    exit(1);
Lampiran 2  Program timing_slave.c

static char rsclid[] =
   "$id: timing_slave.c,v 1.2 1997/07/09 13:26:19 pvmsrc Exp S$";

#define ENCODING PvmDataRaw

main(argc, argv)
   int argc;
   char **argv;
{
   int mytid;   /* my task id */
   int dtid;    /* driver task */
   int bufid;
   int n = 0;

   /* enroll in pvm */
   mytid = pvm_mytid();

   /* tell parent I am ready */
   pvm_setopt(PvmRoute, PvmRouteDirect);
   pvm_initsend(ENCODING);
   pvm_send(pvm_parent(), 0);

   /* pack mytid in buffer */
   pvm_initsend(ENCODING);
   pvm_pkitid(&mytid, 1, 1);

   /* our job is just to echo back to the sender when we get a message */
   while (1) {
      bufid = pvm_recv(-1, -1);
      pvmbufinfo(bufid, (int*)0, (int*)0, &dtid);
      pvm_freebuf(pvm_getbuf()); /* for shared memory refcount hang */
      pvm_send(dtid, 2);

      /*
      printf("echo %d\n", ++n);
      */
   }
}
Lampiran 3 Data Hasil Percobaan

<table>
<thead>
<tr>
<th>Skenario</th>
<th>Master – slave</th>
<th>Ukuran Paket (byte)</th>
<th>Throughput (bps)</th>
<th>Delay (mikro detik)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eigrp</td>
<td>Eigrp</td>
</tr>
<tr>
<td>Kom2 – Kom1</td>
<td>100</td>
<td>3,394.89</td>
<td>3,394.89</td>
<td>29,456</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>6,313.17</td>
<td>6,313.17</td>
<td>158,399</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>929.04</td>
<td>929.04</td>
<td>1,517,759</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>80.70</td>
<td>80.70</td>
<td>15,064,459</td>
</tr>
<tr>
<td>Pertuana</td>
<td>100</td>
<td>3,391.21</td>
<td>3,391.21</td>
<td>29,488</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>6,313.93</td>
<td>6,313.93</td>
<td>158,380</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>927.66</td>
<td>927.66</td>
<td>1,520,023</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>80.56</td>
<td>80.56</td>
<td>15,091,778</td>
</tr>
<tr>
<td>Kom6 – Kom5</td>
<td>100</td>
<td>3,403.79</td>
<td>3,403.79</td>
<td>29,379</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>6,323.15</td>
<td>6,323.15</td>
<td>158,149</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>927.65</td>
<td>927.65</td>
<td>1,520,045</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>80.69</td>
<td>80.69</td>
<td>15,067,420</td>
</tr>
<tr>
<td>Kom4 – Kom1</td>
<td>100</td>
<td>1,105.07</td>
<td>1,133.05</td>
<td>90,492</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>2,019.65</td>
<td>1,986.28</td>
<td>495,135</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>328.67</td>
<td>340.91</td>
<td>4,290,193</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>27.13</td>
<td>27.28</td>
<td>44,805,431</td>
</tr>
<tr>
<td>Kom5 – Kom2</td>
<td>100</td>
<td>695.93</td>
<td>1,138.74</td>
<td>143,693</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>1,951.66</td>
<td>1,987.46</td>
<td>512,384</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>320.14</td>
<td>312.50</td>
<td>4,404,465</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>27.08</td>
<td>27.19</td>
<td>44,898,526</td>
</tr>
<tr>
<td>Kom6 – Kom3</td>
<td>100</td>
<td>1,029.43</td>
<td>593.51</td>
<td>97,141</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>1,877.74</td>
<td>1,649.38</td>
<td>532,554</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>295.61</td>
<td>305.12</td>
<td>4,770,009</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>27.11</td>
<td>27.18</td>
<td>44,852,554</td>
</tr>
<tr>
<td>Ketiga</td>
<td>100</td>
<td>3,416.12</td>
<td>2,851.85</td>
<td>29,273</td>
</tr>
<tr>
<td>Kom2 – Kom3</td>
<td>1,000</td>
<td>6,291.52</td>
<td>6,955.74</td>
<td>158,944</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>923.41</td>
<td>924.24</td>
<td>1,527,012</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>80.66</td>
<td>80.34</td>
<td>15,184,761</td>
</tr>
<tr>
<td>Kom5 – Kom4</td>
<td>100</td>
<td>3,467.65</td>
<td>2,935.91</td>
<td>28,838</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>6,267.03</td>
<td>6,014.49</td>
<td>157,059</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>901.44</td>
<td>912.62</td>
<td>1,564,229</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>60.67</td>
<td>71.42</td>
<td>20,038,234</td>
</tr>
</tbody>
</table>
Lampiran 3 Data Hasil Percobaan

<table>
<thead>
<tr>
<th></th>
<th>100</th>
<th>1,000</th>
<th>10,000</th>
<th>100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kom6 - Kom1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>87.42</td>
<td>35.24</td>
<td>1,143.915</td>
<td>2,837.785</td>
</tr>
<tr>
<td>1,000</td>
<td>223.94</td>
<td>219.56</td>
<td>4,465.518</td>
<td>4,546.382</td>
</tr>
<tr>
<td>10,000</td>
<td>161.85</td>
<td>183.22</td>
<td>8,712.392</td>
<td>7,695.994</td>
</tr>
<tr>
<td>100,000</td>
<td>62.43</td>
<td>77.10</td>
<td>19,474.363</td>
<td>15,768.101</td>
</tr>
<tr>
<td>Kom2 - Kom1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>3,398.36</td>
<td>3,359.20</td>
<td>29,426</td>
<td>29,769</td>
</tr>
<tr>
<td>1,000</td>
<td>6,319.39</td>
<td>6,312.69</td>
<td>158,243</td>
<td>158,411</td>
</tr>
<tr>
<td>10,000</td>
<td>929.71</td>
<td>928.80</td>
<td>1,516,669</td>
<td>1,518,164</td>
</tr>
<tr>
<td>100,000</td>
<td>80.71</td>
<td>80.80</td>
<td>15,064,062</td>
<td>15,047,052</td>
</tr>
<tr>
<td>Keempat Kom4 - Kom3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>3,397.89</td>
<td>3,411.22</td>
<td>29,430</td>
<td>29,315</td>
</tr>
<tr>
<td>1,000</td>
<td>6,315.84</td>
<td>6,323.51</td>
<td>158,332</td>
<td>158,140</td>
</tr>
<tr>
<td>10,000</td>
<td>927.77</td>
<td>927.02</td>
<td>1,510,836</td>
<td>1,521,066</td>
</tr>
<tr>
<td>100,000</td>
<td>80.73</td>
<td>80.82</td>
<td>15,060,179</td>
<td>15,043,310</td>
</tr>
<tr>
<td>Kom5 - Kom6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>3,392.02</td>
<td>3,410.06</td>
<td>29,481</td>
<td>29,325</td>
</tr>
<tr>
<td>1,000</td>
<td>6,321.59</td>
<td>6,328.67</td>
<td>158,188</td>
<td>158,011</td>
</tr>
<tr>
<td>10,000</td>
<td>927.67</td>
<td>927.16</td>
<td>1,520,014</td>
<td>1,520,847</td>
</tr>
<tr>
<td>100,000</td>
<td>80.75</td>
<td>80.78</td>
<td>15,056,231</td>
<td>15,049,933</td>
</tr>
<tr>
<td>Kom4 - Kom1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>689.66</td>
<td>747.56</td>
<td>145,000</td>
<td>133,768</td>
</tr>
<tr>
<td>1,000</td>
<td>1,497.07</td>
<td>1,978.52</td>
<td>667,972</td>
<td>505,428</td>
</tr>
<tr>
<td>10,000</td>
<td>380.94</td>
<td>454.67</td>
<td>3,701,497</td>
<td>3,101,266</td>
</tr>
<tr>
<td>100,000</td>
<td>28.38</td>
<td>39.94</td>
<td>42,844,204</td>
<td>30,436,239</td>
</tr>
<tr>
<td>Kom5 - Kom2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1,094.80</td>
<td>839.99</td>
<td>91,341</td>
<td>119,049</td>
</tr>
<tr>
<td>1,000</td>
<td>1,644.69</td>
<td>1,975.90</td>
<td>608,019</td>
<td>533,078</td>
</tr>
<tr>
<td>10,000</td>
<td>435.30</td>
<td>612.72</td>
<td>3,239,261</td>
<td>2,301,311</td>
</tr>
<tr>
<td>100,000</td>
<td>28.30</td>
<td>75.13</td>
<td>42,957,471</td>
<td>16,181,109</td>
</tr>
<tr>
<td>Kelima Kom3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>834.21</td>
<td>1,115.10</td>
<td>119,874</td>
<td>89,678</td>
</tr>
<tr>
<td>1,000</td>
<td>1,573.44</td>
<td>2,085.79</td>
<td>635,551</td>
<td>479,435</td>
</tr>
<tr>
<td>10,000</td>
<td>562.07</td>
<td>463.86</td>
<td>2,508,684</td>
<td>3,039,725</td>
</tr>
<tr>
<td>100,000</td>
<td>29.51</td>
<td>40.10</td>
<td>41,201,751</td>
<td>30,319,955</td>
</tr>
</tbody>
</table>
Lanjutan Lampiran 3

Tabel Hasil Percobaan dengan Bandwidth 10,000

<table>
<thead>
<tr>
<th>Skenario</th>
<th>Master – slave</th>
<th>Ukuran Paket (byte)</th>
<th>Throughput (bps)</th>
<th>Delay (micro detik)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eggp</td>
<td>Eggp</td>
</tr>
<tr>
<td>Kom2 – Kom1</td>
<td>100</td>
<td>3,389.60</td>
<td>3,392.48</td>
<td>29,502</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>6,313.89</td>
<td>6,315.16</td>
<td>158,381</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>928.25</td>
<td>929.51</td>
<td>1,519,063</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>80.72</td>
<td>80.68</td>
<td>15,061,803</td>
</tr>
<tr>
<td>Pertama</td>
<td></td>
<td></td>
<td></td>
<td>15,058,189</td>
</tr>
<tr>
<td>Kom4 – Kom3</td>
<td>100</td>
<td>3,378.49</td>
<td>3,454.35</td>
<td>29,999</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>6,313.21</td>
<td>6,349.37</td>
<td>158,398</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>926.18</td>
<td>929.28</td>
<td>1,522,456</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>80.63</td>
<td>80.66</td>
<td>15,079,961</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15,072,209</td>
</tr>
<tr>
<td>Kedua</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kom5 – Kom2</td>
<td>100</td>
<td>3,401.94</td>
<td>3,395.24</td>
<td>29,995</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>6,322.15</td>
<td>6,321.11</td>
<td>158,174</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>927.67</td>
<td>928.65</td>
<td>1,520,010</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>80.64</td>
<td>80.80</td>
<td>15,074,792</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15,046,918</td>
</tr>
<tr>
<td>Ketiga</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kom2 – Kom3</td>
<td>100</td>
<td>3,091.67</td>
<td>3,498.46</td>
<td>32,345</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>6,200.64</td>
<td>6,407.18</td>
<td>158,714</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>926.64</td>
<td>928.37</td>
<td>1,521,704</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>80.12</td>
<td>80.60</td>
<td>15,173,662</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15,083,579</td>
</tr>
<tr>
<td>Kom5 – Kom4</td>
<td>100</td>
<td>3,566.21</td>
<td>2,415.46</td>
<td>28,041</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>6,448.53</td>
<td>6,021.59</td>
<td>155,074</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>921.57</td>
<td>923.68</td>
<td>1,530,065</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>71.73</td>
<td>79.15</td>
<td>16,948,263</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15,360,652</td>
</tr>
</tbody>
</table>
## Lampiran 3 Data Hasil Percobaan

<table>
<thead>
<tr>
<th>Kom6 - Kom1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>41.96</td>
<td>23.42</td>
<td>2,383,189</td>
<td>4,269,307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td>207.90</td>
<td>109.91</td>
<td>4,809,937</td>
<td>9,098,667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>160.78</td>
<td>400.83</td>
<td>8,770,133</td>
<td>3,517,907</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100,000</td>
<td>76.59</td>
<td>78.17</td>
<td>15,873,609</td>
<td>15,552,989</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kom2 - Kom1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>3,380.55</td>
<td>3,387.19</td>
<td>30,268</td>
<td>29,441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td>6,311.70</td>
<td>6,287.41</td>
<td>158,369</td>
<td>158,014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>929.23</td>
<td>929.26</td>
<td>1,518,617</td>
<td>1,517,956</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100,000</td>
<td>80.72</td>
<td>80.76</td>
<td>15,053,424</td>
<td>15,052,035</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kom4 - Kom3</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>3,303.82</td>
<td>3,396.62</td>
<td>29,437</td>
<td>29,302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td>6,314.37</td>
<td>6,328.55</td>
<td>158,143</td>
<td>157,984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>928.52</td>
<td>928.92</td>
<td>1,522,944</td>
<td>1,517,938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100,000</td>
<td>80.76</td>
<td>80.77</td>
<td>15,063,811</td>
<td>15,046,935</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kom6 - Kom5</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>3,397.09</td>
<td>3,412.74</td>
<td>29,581</td>
<td>29,523</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td>6,323.39</td>
<td>6,329.75</td>
<td>158,436</td>
<td>159,048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>925.88</td>
<td>928.92</td>
<td>1,517,454</td>
<td>1,517,414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100,000</td>
<td>80.71</td>
<td>80.80</td>
<td>15,060,724</td>
<td>15,054,408</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kom4 - Kom1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>785.00</td>
<td>1,122.83</td>
<td>127,189</td>
<td>89,061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td>1,920.09</td>
<td>1,715.73</td>
<td>520,809</td>
<td>582,843</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>443.24</td>
<td>325.68</td>
<td>3,181,255</td>
<td>4,329,648</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100,000</td>
<td>39.67</td>
<td>27.10</td>
<td>30,648,464</td>
<td>44,867,392</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kom5 - Kom2</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1,119.08</td>
<td>866.84</td>
<td>89,359</td>
<td>115,361</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td>2,082.50</td>
<td>1,773.14</td>
<td>480,191</td>
<td>563,972</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>455.27</td>
<td>320.37</td>
<td>3,097,217</td>
<td>4,401,411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100,000</td>
<td>39.38</td>
<td>26.88</td>
<td>30,876,052</td>
<td>45,230,069</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kom6 - Kom3</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1,059.57</td>
<td>1,115.90</td>
<td>94,378</td>
<td>89,614</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td>1,925.82</td>
<td>1,758.38</td>
<td>519,259</td>
<td>568,706</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>575.85</td>
<td>301.21</td>
<td>2,448,686</td>
<td>4,681,375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100,000</td>
<td>75.21</td>
<td>27.13</td>
<td>16,164,393</td>
<td>44,805,065</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>