II. TINJAUAN PUSTAKA

Gula

1. Terminologi Gula

Monosakarida yang dimaksud antara lain adalah glukosa (C₆H₁₂O₆) yang merupakan jenis gula yang terdapat di dalam plasma darah manusia, dan fruktosa. Sedangkan dalam istilah kuliner, gula merupakan sumber bahan pangan yang memberikan rasa manis.

Berdasarkan struktur molekulnya, gula atau sukrosa merupakan disakarida yang terdiri dari monosakarida glukosa dan fruktosa yang dihubungkan oleh ikatan glikosidik. Ikatan ini terbentuk antara gugus hidroksil dari atom C nomor 1 yang juga disebut karbon anomerik dengan gugus hidroksil dan atom C pada molekul gula yang lain. Ikatan glikosidik biasanya terjadi antara atom C nomor 1 dengan atom C nomor 4 atau dengan melepasskan 1 mol air (Winarno 1992).

Menurut Winarno (1992), glukosa (dekstrosa atau gula anggur) dan fruktosa (levulosa atau gula buah) merupakan jenis monosakarida yang memiliki enam atom C, sehingga golongan monosakarida ini disebut juga heksosa. Gambar 1 menunjukkan struktur molekul sukrosa yang terdiri dari glukosa (kiri) dan fruktosa (kanan).

![Gambar 1 Struktur molekul sukrosa](image-url)
2. Jenis Gula

Ada tiga tipe gula yang umumnya digunakan dalam industri pangan, antara lain: gula putih (white sugar), gula merah (brown sugar), dan gula cair (liquid sugar).

a. Gula putih

<table>
<thead>
<tr>
<th>Batas maksimum pengotor</th>
<th>Sukrosa murni</th>
<th>Air mineral</th>
<th>Granulated</th>
<th>Industrial granulated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invert (%)</td>
<td>0.002</td>
<td>0.010</td>
<td>0.015</td>
<td>0.20</td>
</tr>
<tr>
<td>Abu (%)</td>
<td>0.002</td>
<td>0.005</td>
<td>0.013</td>
<td>0.13</td>
</tr>
<tr>
<td>Warna (IU)</td>
<td>8</td>
<td>8</td>
<td>17</td>
<td>220</td>
</tr>
<tr>
<td>SO₂ (ppm)</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Rata-rata kadar air (%)</td>
<td>0.010</td>
<td>0.012</td>
<td>0.020</td>
<td>0.070</td>
</tr>
<tr>
<td>Rata-rata organik non gula (%)</td>
<td>0.001</td>
<td>0.004</td>
<td>0.012</td>
<td>0.065</td>
</tr>
</tbody>
</table>

Sumber: James (1990)

Karakteristik gula yang umumnya ada dalam spesifikasi gula putih adalah kadar air, warna (yang dinyatakan dalam satuan ICUMSA), derajat polarisasi, gula pereduksi, dan ukuran partikel (Al Khaleel 2007). Ukuran gula putih yang ada di industri, umumnya dibedakan menjadi tiga yaitu gula kristal R3 dengan ukuran partikel >0.8 mm, gula kristal R2 dengan ukuran partikel 0.6-0.8 mm, dan gula
1. Dicari pengganti abadon atau alat pengisian karya tulus di tempat terbuka dan menyebabkan keberagaman yang pada jaringan IPB. Hak Cipta Dilindungi Undang-Undang. Artikel yang ditulis oleh penulis kepentingan pendidikan, penelitian, dan kebutuhan karya ilmiah, seni, dan budaya pada药师. Hak cipta milik IPB (Institut Pertanian Bogor)

Kristal R1 dengan ukuran partikel 0.3-0.6 mm. Beberapa industri pengolahan gula kristal non lokal seperti Al Khaleej (2007), memiliki tipe gula berdasarkan ukuran partikelnnya yaitu extra fine grain (0.3 ± 0.05 mm), fine grain (0.65 ± 0.15 mm), dan coarse grain (1.4 ± 0.2 mm).

Gula pasir yang kita kenal berasal dari hasil ekstraksi tanaman. Dua tanaman gula yang paling penting adalah tebu (Saccharum spp.) dan bit (Beta vulgaris), dengan kadar gula bisa mencapai 12%-20% dari berat kering tanaman (Anonim 2007). Beberapa tanaman gula komersial lainnya termasuk kurma (Phoenix dactylifera), sorgum (Sorghum vulgare), dan maple (Acer saccharum).

Gula pasir ini diperoleh melalui hasil rafinasi. Proses rafinasi yang dilakukan oleh industri gula meliputi proses peleleh (melting) gula mentah, karbonataksi, filtrasi, pemucutan (decolorization), evaporsasi, dan kristalisasi (Al Khaleej 2007).

Tahapan proses yang penting dalam pembuatan gula putih rafinasi dari tebu maupun bit adalah karbonataksi (carbonatation). Proses karbonataksi pada proses pengolahan gula dari tebu adalah dengan mengolah gula afinasi yang telah diencerkan dengan menambahkan karbon dioksida (yang berasal dari boiler flue gas) sehingga terbentuk endapan kapur yang mengandung banyak senyawa pengotor. Sedangkan proses karbonataksi pada proses pengolahan gula dari bit kurang lebih sama dengan gula dari tebu, hanya saja ada proses filtrasi dan rekarbonataksi serta refiltrasi kembali (James 1990).

b. Gula merah

Merupakan gula yang berwarna coklat, dan umumnya kadar airnya lebih tinggi dibandingkan gula pasir. Gula ini dibuat dengan menambahkan sedikit molase untuk memberikan cita rasa dan warna (Anonim 2007). Di Indonesia, gula merah ini didapatkan dari kelapa (jenis palma). Di negara non Asia, gula merah ini dirafinasi, sehingga gula merah yang dihasilkan berbentuk partikel. Tabel 2 menunjukkan tipikal komposisi dari tiga tipe gula merah rafinasi.
Tabel 2 Komposisi gula merah rafinasi

<table>
<thead>
<tr>
<th></th>
<th>Light</th>
<th>Medium</th>
<th>Dark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gula total (%)</td>
<td>95.8</td>
<td>95.0</td>
<td>94.2</td>
</tr>
<tr>
<td>Non gula (%)</td>
<td>2.0</td>
<td>2.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Air (%)</td>
<td>2.2</td>
<td>2.5</td>
<td>2.3</td>
</tr>
<tr>
<td>Warna (IU)</td>
<td>3000</td>
<td>7000</td>
<td>21000</td>
</tr>
</tbody>
</table>

Sumber: James (1990)

Parameter non gula dari tebu asli memberikan pengaruh terhadap rasa. Daya lengket (stickiness) merupakan parameter yang diasosiasikan terhadap gula merah, dimana semakin tinggi kandungan molasesnya (antara lain gula invert, air dan non gula) maka semakin lengket gula. Penyimpanan yang dilakukan pada kelembaban relatif (RH) rendah dapat memperlambat proses evaporasi dari air yang terkandung didalam gula merah, sehingga gula yang dihasilkan akan sangat keras. Atribut tersebut akan menyulitkan proses penanganan gula oleh industri hilir. Oleh karenanya, ada dua alternatif yang dapat dilakukan, yaitu menggunakan gula merah dalam bentuk cair atau menggunakan gula merah mikrokristal yang memiliki karakteristik free flowing (James 1990).

c. Gula cair

Tabel 3 Komposisi gula cair

<table>
<thead>
<tr>
<th></th>
<th>No 3</th>
<th>No 4</th>
<th>No 5</th>
<th>No 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invert (%)</td>
<td>0.2</td>
<td>0.7</td>
<td>46</td>
<td>77</td>
</tr>
<tr>
<td>Abu (%)</td>
<td>0.12</td>
<td>0.3</td>
<td>1.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Warna (IU)</td>
<td>50</td>
<td>200</td>
<td>1000</td>
<td>35</td>
</tr>
<tr>
<td>Solids (%)</td>
<td>67</td>
<td>67</td>
<td>83</td>
<td>80</td>
</tr>
</tbody>
</table>

Sumber: James (1990)

Gula cair no 3 merupakan tipe yang paling murni dan cocok untuk dipakai di industri konfeksiyeri. Gula cair no 4 merupakan tipe yang kurang murni dan cocok dipakai untuk industri yang tidak mengutamakan warna. Gula cair no 5 disebut juga golden syrup, dipakai untuk mencegah proses kristalisasi. Gula cair no 6 merupakan salah satu dari tipe gula invert yang memiliki kisaran warna 30 sampai 3000 dan total padatan 67-82% (James 1990).

3. Manfaat Gula

Gula merupakan bahan pangan yang umum digunakan di industri pangan maupun di rumah tangga. Gula memiliki peranan utama sebagai sumber pemanis, sumber energi (karena kandungan nutrisinya), pengawet alami dan juga pembentuk karamel.

Gula merupakan zat gizi makro yang menyediakan energi dalam waktu cepat bagi metabolisme tubuh, yang dapat meningkatkan glukosa
darah. Sebagai sumber energi, gula (sebagai gula granulasi) memiliki nilai kalori 390 kilo kalori per 100 gram, sedangkan gula merah (brown sugar) memiliki nilai kalori 380 kilo kalori per 100 gram (Wikipedia 2007). Konsumsi gula yang berlebihan, dapat menyebabkan gangguan pada kesehatan gigi, dimana bakteri dalam mulut mengubah gula menjadi asam yang dapat merusak enamil gigi. Selain itu, konsumsi gula yang berlebihan dapat menyebabkan penyakit diabetes pada orang yang menderita gangguan metabolisme hyperglycemia (Wikipedia 2007).

Sejak jaman dahulu, gula juga dimanfaatkan oleh masyarakat sebagai pengawet alami, contohnya dalam pembuatan selai, jelly, dan manisan. Gula dapat menghambat pertumbuhan mikroorganisme seperti kapang dan khamir dengan mengikat air yang dibutuhkan kapang dan khamir untuk pertumbuhannya (Anonim 2007).

Gula berperan penting dalam pembentukan karamel yang dapat memberikan rasa, aroma, dan warna yang khas pada produk pangan. Pembentukan karamel dapat terjadi apabila gula dipanaskan melampaui titik leburnya (sekitar 160°C), misalnya pada suhu 170 °C (Winarno 1992).

4. Potensi Ekonomi Gula

Gula pasir sebagai produk hasil industri olahan pertanian merupakan salah satu dari sembilan bahan pangan pokok masyarakat Indonesia. Sebagai bahan pangan sumber kalori, kontribusi yang diharapkan dari gula dalam konsumsi kalori penduduk Indonesia menurut Pola Pangan Harapan (PPH) menempati urutan keempat setelah padi-padian, pangan hewani, serta minyak dan lemak dengan pangsa sebesar 6,7 persen. Dari berbagai produk gula yang dihasilkan di Indonesia, gula pasir memiliki kontribusi lebih dari 90 persen dari pemenuhan konsumsi masyarakat disusul gula merah dan bahan pemanis lainnya (Sawit et al. 1999).

Indonesia sudah mulai memproduksi gula pasir secara komersial sejak tahun 1600-an. Sejak itu produksi gula pasir mengalami pasang surut seiring dengan perkembangan ekonomi dunia dan politik dalam negeri Indonesia. Zaman keemasan dalam pengusahaan gula tebu dicapai pada tahun 1930, dengan luas areal tanaman hanya 200.000 hektar mampu memproduksi gula pasir hampir tiga juta ton sehingga
mampu mengekspor gula pasir sebesar dua juta ton. Secara rinci tingkat produksi gula pasir dapat dilihat pada Tabel 4.

Tabel 4 Perkembangan produksi dan produktivitas gula tebu

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Area perkebunan gula tebu (ribu ha)</th>
<th>Produksi gula (ribu ton)</th>
<th>Produktivitas (ton/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>496,9</td>
<td>2,104,7</td>
<td>4,24</td>
</tr>
<tr>
<td>1996</td>
<td>400,0</td>
<td>2,160,1</td>
<td>5,40</td>
</tr>
<tr>
<td>1997</td>
<td>378,1</td>
<td>2,187,2</td>
<td>5,78</td>
</tr>
<tr>
<td>1998</td>
<td>405,4</td>
<td>1,928,7</td>
<td>4,76</td>
</tr>
<tr>
<td>1999</td>
<td>391,1</td>
<td>1,801,4</td>
<td>4,61</td>
</tr>
<tr>
<td>2000</td>
<td>388,5</td>
<td>1,780,1</td>
<td>4,58</td>
</tr>
<tr>
<td>2001</td>
<td>393,9</td>
<td>1,824,6</td>
<td>4,63</td>
</tr>
<tr>
<td>2002</td>
<td>375,2</td>
<td>1,901,3</td>
<td>5,07</td>
</tr>
<tr>
<td>2003</td>
<td>340,3</td>
<td>1,991,6</td>
<td>5,85</td>
</tr>
<tr>
<td>2004</td>
<td>344,8</td>
<td>2,051,6</td>
<td>5,95</td>
</tr>
<tr>
<td>2005</td>
<td>381,8</td>
<td>2,241,7</td>
<td>5,87</td>
</tr>
<tr>
<td>2006</td>
<td>384,0</td>
<td>2,266,8</td>
<td>5,90</td>
</tr>
<tr>
<td>2007*</td>
<td>395,0</td>
<td>2,400,0</td>
<td>6,08</td>
</tr>
</tbody>
</table>

Sumber: Ariffin (2008)
Pada Tabel 4, terlihat bahwa Indonesia memiliki potensi untuk mencuplik konsumsi gula dari perkebunan lokal. Arifin (2008) menyatakan agar Indonesia dapat bertahan untuk mencukupi kebutuhan gula dari perkebunan lokal adalah rekonstruksi basis produksi di sektor perkebunan gula dan peningkatan kemampuan teknis di industri refiner agar menghasilkan produk yang lebih efisien.

Prebiotik Inulin

Prebiotik merupakan bahan pangan yang tidak tercerna yang berfungsi menstimulasi pertumbuhan dan atau aktivitas dari satu atau bakteri tertentu dalam usus besar, yang dapat memperbaiki kesehatan inang. Banyak pangan dengan oligosakarida dan polisakarida (termasuk serat pangan) yang diklaim memiliki aktivitas prebiotik, meskipun tidak semua karbohidrat pangan adalah prebiotik (Roberfroid 2005).

Definisi prebiotik dipaparkan secara lebih jelas sebagai komponen pangan non-viable yang dapat memberikan manfaat kesehatan terhadap inang yang diasosiasikan dengan modulasi mikrobiota (FAO 2007).

Menurut Roberfroid (2005), hanya ada tiga jenis prebiotik yang memenuhi kriteria sebagai prebiotik, yaitu inulin (tipe fruktan), (trans)-galaktotooligosakarida, dan laktulosa (namun digunakan sebagai obat pencahar). Dimana, inulin dan oligofruktosa secara legal diklasifikasikan sebagai bahan pangan yang diterima dan digunakan tanpa batas, dan dianggap sebagai model prebiotik.
Inulin dan oligofruktosa merupakan prebiotik yang paling banyak dikaji. Inulin merupakan polysakarida (khususnya fructan) yang terdiri dari fruktosa yang dihubungkan oleh ikatan glikosidik beta-(2-1) dan terminal glukosa pada bagian ujungnya, dimana struktur kimianya dapat berbentuk lurus, bercabang atau pun cyclic (Roberfroid 2005). Struktur kimia dari inulin dapat dilihat pada Gambar 2.

Gambar 2 Struktur kimia inulin

Menurut Roberfroid (2005), inulin (tipe fructan) terdapat pada beberapa jenis tanaman, jamur, dan bakteri. Tanaman yang mengandung fructan antara lain artichoke, asparagus, chicory, bawang putih, daun bawang, bawang bombay, dan lain-lain. Jamur yang mengandung fructan ada pada spesies aspergillus, yaitu Aspergillus sydowi dimana fructan-nya memiliki berat molekul lebih besar dibandingkan dengan yang ditemukan pada tanaman. Keluarga bakteri yang mengandung inulin - tipe fructan terdapat pada Gram negatif aerobik (Pseudomonadaceae) dan fakultatif, anaerobik (Enterobacteraceae) batang dan kokus, Gram positif kokus (Streptococcaceae), pembentuk endospora batang dan kokus (Bacillaceae), dan Actinomycetaceae. Diantara kelompok bakteri tersebut, tidak semuanya dapat mensintesa fructan. Sebagai contoh, hanya kurang lebih 10% spesies Pseudomonas dan kurang lebih 40% spesies Bacillus yang memiliki kemampuan untuk mensintesa levan (turunan fructan).

Derajat polimerisasi (DP) inulin dan keberadaan rantai cabang merupakan karakter penting yang mempengaruhi fungsi fungsional inulin. Oleh karena itu, perbedaan yang jelas harus ditetapkan antara inulin dari sumber tanaman dan bakteri. DP maksimum dari inulin tanaman lebih rendah (maksimal DP < 200), akan tetapi DP maksimum dan DP rata-ratanya
bervariasi tergantung kepada spesies tanaman, kondisi cuaca, dan usia fisiologis dari tanaman. Sampai sekarang ini, inulin tanaman dianggap sebagai molekul linier, namun dengan menggunakan analisa permetilasi, menunjukkan bahwa inulin dari *chicory* sekalipun, dengan DP rata-rata 12, memiliki 1-2% struktur bercabang. DP maksimum dari inulin bakteri bervariasi antara 10.000 sampai 100.000 dan memiliki 15% struktur bercabang (Roberfroid 2005).

Dari beberapa sumber inulin asal tanaman, yang paling banyak dikomersialkan adalah inulin dari *chicory* (*Cichorium intybus*). Hal ini dikarenakan *chicory* merupakan tanaman yang memiliki kandungan inulin yang tinggi, sekitar 16-18% (dari bagian akarnya), dan kandungannya konstan dari tahun ke tahun. Hasil yang didapatkan juga paling tinggi dibandingkan tanaman lain, yaitu sekitar 45 ton akar per hektar (Roberfroid 2005). Perbandingan kandungan inulin dan panjang rantai DP secara lebih lengkap dapat dilihat pada Tabel 5.

Tabel 5 Kandungan inulin dan panjang rantai DP dari beberapa tanaman

<table>
<thead>
<tr>
<th>Tanaman</th>
<th>Inulin (g/100 g)</th>
<th>Panjang rantai DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globe Artichoke (Cynara scolymus)</td>
<td>2-7</td>
<td>DP ≥5 = 95%</td>
</tr>
<tr>
<td>Pisang (Musa cavendishii)</td>
<td>±1</td>
<td>DP ≥40 = 87%</td>
</tr>
<tr>
<td>Barley (Hordeum vulgare)</td>
<td>0.5-1</td>
<td>DP <5 = 100%</td>
</tr>
<tr>
<td>Chicory (Cichorium intybus)</td>
<td>15-20</td>
<td>DP <40 = 83%</td>
</tr>
<tr>
<td>Daun dandelion (Taraxacum officinale)</td>
<td>12-15</td>
<td>-</td>
</tr>
<tr>
<td>Bawang putih (Allium sativum)</td>
<td>16</td>
<td>DP ≥5 = 75%</td>
</tr>
<tr>
<td>Jerusalem Artichoke (Helianthus tuberosus)</td>
<td>17-20.5</td>
<td>DP <40 = 94%</td>
</tr>
<tr>
<td>Daun bawang (Allium ameloprasum)</td>
<td>3-10</td>
<td>DP 12</td>
</tr>
<tr>
<td>Bawang bombay (Allium cepa)</td>
<td>1-7.5</td>
<td>DP 2-12</td>
</tr>
<tr>
<td>Salsify (Scorzonera hispanica)</td>
<td>±20</td>
<td>DP ≥5 = 75%</td>
</tr>
<tr>
<td>Gandum (Triticum aestivum)</td>
<td>1-4</td>
<td>DP ≤5 = 50%</td>
</tr>
</tbody>
</table>

Sumber: Roberfroid (2005)

Roberfroid (2005) menyatakan bahwa inulin memiliki karakter tidak berasa, tidak berbau, dan berwarna putih. Oleh karena inulin mengandung fruktosa, glukosa, dan sukrosa, maka rasanya agak manis dengan tingkat
kemanisan 10% dari gula. Selain itu, kelarutan inulin dalam air cukup baik (maksimum 10% pada suhu kamar), dan memiliki viskositas yang rendah (kurang dari 2 mPa untuk 5% w/w larutan dalam air). Selain chicory inulin, diketahui juga inulin dengan rantai panjang (inulin HP). Secara lebih spesifik, karakteristik chicory inulin dan inulin HP dapat dilihat pada Tabel 6.

Pada saat inulin dilarutkan dalam air atau cairan lainnya, kristal submikron inulin (khususnya inulin HP) akan membentuk jaringan gel tiga dimensi (tri-dimensional gel network) yang akan menghasilkan struktur putih krem dengan tekstur oles yang pendek sehingga dapat dengan mudah digabung ke dalam pangan untuk menggantikan 100% lemak. Inulin dapat bekerja secara sinergis dengan berbagai jenis gelling agent seperti gelatin, alginat, kappa dan lambda karagenan, gellan gum, dan maltodekstrin. Selain itu inulin mampu memperbaiki stabilitas busa dan emulsi pada produk pangan seperti aerated desserts, es krim, dan saus. Pemakaian inulin sebanyak 1-3% di dalam yogurt buah dapat memperbaiki mouth feel dan memberikan efek yang sinergis pada saat dikombinasikan dengan jenis pemanis seperti aspartame dan acesulfame-K (Roberfroid 2005).

<table>
<thead>
<tr>
<th>Karakteristik</th>
<th>Chicory inulin</th>
<th>Inulin HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Struktur kimia</td>
<td>(G_p F_n \ (DP \ 2-60))</td>
<td>(G_p F_n \ (DP \ 10-60))</td>
</tr>
<tr>
<td>DM ((g/100 g))</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>Kandungan (% berat kering)</td>
<td>92</td>
<td>99.5</td>
</tr>
<tr>
<td>Berat kering (%)</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Gula (% berat kering)</td>
<td>8</td>
<td>< 0.5</td>
</tr>
<tr>
<td>pH (10% dalam H(_2)O)</td>
<td>5-7</td>
<td>5-7</td>
</tr>
<tr>
<td>Abu (% berat kering)</td>
<td>< 0.2</td>
<td>< 0.2</td>
</tr>
<tr>
<td>Logam berat (% berat kering)</td>
<td>< 0.2</td>
<td>< 0.2</td>
</tr>
<tr>
<td>Warna</td>
<td>putih</td>
<td>putih</td>
</tr>
<tr>
<td>Rasa</td>
<td>netral</td>
<td>netral</td>
</tr>
<tr>
<td>Kemanisan vs sukrosa (%)</td>
<td>10%</td>
<td>tidak ada</td>
</tr>
<tr>
<td>Kelarutan dalam air (% pada 25(^\circ)C)</td>
<td>12</td>
<td>2.5</td>
</tr>
<tr>
<td>Kekentalan larutan (5% pada 10(^\circ)C)</td>
<td>1.6 mPa</td>
<td>2.4 mPa</td>
</tr>
<tr>
<td>Aplikasi pangan (spesifik)</td>
<td>Fat replacers</td>
<td>Fat replacers</td>
</tr>
<tr>
<td>Aplikasi pangan (sinergis)</td>
<td>gelling agent</td>
<td>gelling agent</td>
</tr>
</tbody>
</table>

Sumber: Roberfroid (2005)
Berdasarkan karakteristik tersebut, inulin dapat diaplikasikan pada berbagai jenis pangan. Tabel 7 menunjukkan aplikasi pemakaian chicory inulin, oligofruktosa dan turunanunya.

<table>
<thead>
<tr>
<th>Produk Pangan</th>
<th>Aplikasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy products</td>
<td>body dan mouth feel, stabilitas busa, pengganti gula dan lemak, sinergis dengan pemanis</td>
</tr>
<tr>
<td>Frozen desserts</td>
<td>pengganti gula dan lemak, sinergis dengan pemanis, tekstur dan melting</td>
</tr>
<tr>
<td>Table spreads</td>
<td>pengganti lemak, tekstur dan daya oles, stabilitas emulsi</td>
</tr>
<tr>
<td>Baked goods and breads</td>
<td>pengganti gula, moisture retention</td>
</tr>
<tr>
<td>Breakfast cereals</td>
<td>kerenyahan dan expansion</td>
</tr>
<tr>
<td>Fruit preparations</td>
<td>pengganti gula, sinergis dengan pemanis, body dan mouth feel</td>
</tr>
<tr>
<td>Meat products</td>
<td>pengganti lemak, tekstur dan stabilitas</td>
</tr>
<tr>
<td>Chocolate</td>
<td>pengganti gula, tahan panas</td>
</tr>
</tbody>
</table>

Sumber: Roberfroid (2005)

Seperti yang telah dijelaskannya sebelumnya, inulin merupakan prebiotik. Inulin mampu melewati saluran pencernaan atas dan mencapai usus besar, sehingga dianggap juga sebagai *colonic foods* bagi mikroflora usus. *Bifidobacteria* dan *Lactobacilli* merupakan mikroflora yang berperan dalam kesehatan saluran cerna, dan dari hasil penelitian *in vitro* dan *in vivo*, menunjukkan bahwa inulin dapat meningkatkan pertumbuhan dan aktivitas kedua mikroflora tersebut (Roberfroid 2005).

Selain sebagai prebiotik, inulin juga dapat dianggap sebagai serat pangan. Serat pangan merupakan bagian yang dapat dimakan dari tanaman atau karbohidrat analog yang tahan terhadap proses pencernaan dan penyerapan di dalam usus kecil manusia melalui fermentasi penuh atau sebagian di usus besar (Roberfroid 2005).

Hasil fermentasi inulin di usus besar adalah asam lemak rantai pendek yang terdiri dari asetat, propionat, dan butirat. Khususnya butirat, asam lemak rantai pendek tersebut berperan dalam mempertahankan mukosa usus...
melalui metabolisme, proliferasi, dan melakukan pembedaan dari tipe sel epitel yang berbeda (Robertfroid 2005).

Menurut Robertfroid (2005), inulin merupakan tanaman karbohidrat yang dapat bertahan di saluran pencernaan atas, untuk kemudian difermentasi di usus besar. Dengan meningkatkan biomass fekal dan kandungan air dalam defeses, inulin mampu memperbaiki "bowl habits". Juga dengan karaktermnya dalam melindungi dan memperbaiki mukosa usus, inulin dapat mengurangi resiko penyakit saluran cerna di usus. Berdasarkan hal tersebut, inulin seharusnya tidak diragukan lagi apabila disebut sebagai serat pangan.

Pada saat ini, beberapa negara sudah mengkonfirmasi bahwa inulin dapat digolongkan sebagai "dietary fiber atau serat pangan" melalui regulasi pangan yang ada di negara mereka masing-masing. Namun, karena sifat larutnya di dalam etanol atau pun air, maka metode klasik untuk menganalisa serat pangan tidak dapat menganalisa oligofructosa, dan hanya sebagian inulin saja yang teranalisa, karena inulin terdegradasi sebagian saat proses hidrolisis dengan asam. Saat ini, berdasarkan hasil kolaborasi, AOAC International telah mengadopsi metode 997,08, yaitu fructan method yang dapat menentukan secara akurat jumlah (kuantitatif) inulin dan oligofructosa dalam pangan. Metode ini menggunakan enzim amylglucosidase dan inulinase, yang dilanjutkan dengan penentuan gula yang release dengan menggunakan alat high pressure anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD).

C. Teknik Pelapisan

Fluid bed coating merupakan salah satu proses yang dapat dilakukan untuk enkapsulasi dan pelapisan bahan pangan atau bahan tambahan pangan seperti ekstrusi, ekstraksi pelarut, spray drying, pencampuran, dan lain-lain. Teknologi fluid bed dikembangkan pada tahun 1950an dan diaplikasikan di industri kimia, yang kemudian merambah ke industri farmasi, kosmetik, agrokimia, pangan dan pakan (Teunou dan Poncelet 2005).

Prinsip fluidisasi adalah mempertahankan partikel-partikel di dalam suspensi pada area tertutup dengan mengaliri udara ke atas melalui pelat gas berpori agar didapatkan homogenitas. Sedangkan prinsip pelapisan dengan sistem fluid bed adalah partikel yang akan dilapis (inti) dikondisikan pada suhu dan flow rate tertentu dan difluidisasikan dengan udara,
1. Diduga mengikuti cabang atau selubung karya tulis dalam penelitian dan menyebabkan penurunan kualitas dan penurunan kenyamanan. Prosedur kritik atau lainnya sudah mulai.

Sementara bahan pelapisnya (binder) dialirkan melalui nozzle untuk disemprotkan pada material inti yang akan membentuk lapisan (Teunou & Poncelet 2005).

Ada tiga fase material yang berperan dalam proses pelapisan, yaitu fase padat (partikel), fase cair (bahan pelapis) dan fase gas (udara fluidisasi). Ketiganya saling terkait dalam tahapan proses penyemprotan, dimana fase cair sebagai droplet harus diatur sedemikian rupa, karena sifatnya yang mudah kering akibat sistem wetting-drying. Sedangkan fase gas dan fase padat mempengaruhi kemampuan alir dari partikel saat proses penyemprotan, agar didapatkan partikel yang terlapisi secara merata (Teunou dan Poncelet 2005).

Menurut Teunou dan Poncelet (2005), ada tiga tipe fluid bed coater berdasarkan sistem semprotnya yaitu top spray, bottom spray, dan rotor (tangential) spray. Top spray merupakan proses pelapisan dimana bahan pelapis disemprotkan dari atas kontainer produk, sistem ini lebih tepat untuk agglomerasi dan granulasi. Bottom spray merupakan proses pelapisan dimana bahan pelapis disemprotkan dari bagian bawah kontainer produk. Sedangkan, rotor spray merupakan proses pelapisan dimana bahan pelapis disemprotkan dari bagian bawah kontainer produk yang dikombinasikan dengan sistem rotasi.

![Top spray, Bottom spray, Tangential spray](image)

Gambar 3 Mesin fluid bed coater

Menurut Summers dan Aulton (2003), parameter yang mempengaruhi kualitas produk yang dihasilkan dari sistem fluid bed terbagi atas parameter
Paramater mesin yang mempengaruhi kualitas produk adalah posisi nozzle, penal distribusi udara, bentuk dan scale-up, dan tekanan positif negatif dari proses operasi. Parameter proses yang mempengaruhi kualitas produk adalah suhu fluiddasi, atomisasi, bahan pelapis, kecepatan udara fluiddasi, kecepatan aliran udara fluiddasi, dan jumlah larutan binder. Kecepatan semprot (spray rate) adalah parameter yang mempengaruhi kualitas produk secara langsung. Kecepatan semprot (spray rate) dan jumlah larutan binder diperlukan untuk mengatur kecepatan proses pelapisan, masing-masing memiliki pengaruh terhadap ukuran partikel. Parameter lain yang mempengaruhi adalah spray angle, dan tipe nozzle. Sedangkan parameter produk yang mempengaruhi kualitas produk adalah tingkat kelembaban, atomisasi, dan kecepatan air. Pada tahap ini, parameter proses, dan parameter produk yang kritis karena pada tahap ini yang menentukan kualitas produk yang digunakan untuk pengendalian proses pertukaran pada suhu kering yang disesuaikan dengan ketersediaan material agar memiliki kemampuan lain (flowability) yang baik. Pengendalian produk dengan sistem fluid bed umumnya melalui empes, pengeringan (drying), dan pengoptis (condensation) penyemprotan (spraying). Pada tahap conditioning, tanaman digunakan hidrokoloid yang memiliki sifat keelastis yang baik. Hidrokoloid tanaman yang banyak digunakan untuk industri pangan adalah jenis selulosa, xanthan gum, gelatin, dan lain-lain. Pelatihan bahan pelapis (binding agent, coating agent) umumnya diikuti dengan dihidroksipiritis (edible), tersedia (available) dan pelatihan yang berbeda (low price). Air pun lebih mudah dibuang dibandingkan pelatihan lain. Tekanan larutan binder adalah larutan yang terdiri dari pelat dan bahan pelapis (binding agent; coating agent). Pelat organik digunakan untuk menentukan kecepatan semprot (spray rate) yang diperlukan untuk mengatur kecepatan proses pelapisan. Pelat larutan binder adalah larutan yang lebih spesifik, namun air sebagai pelat larutan yang pelapis digunakan oleh industri pangan, untuk tiga atau empat air dapat diperoleh dari industri pangan.
dihasilkan, dimana terjadi pelekat antara bahan pelapis dengan material inti. Parameter yang kritis pada tahap ini adalah atomisasi bahan pelapis yang dikombinasikan dengan kualitas aliran udara. Sedangkan pada tahap pengerengan (drying) dan pendinginan (cooling), merupakan tahap akhir dimana material inti yang sudah bergabung dengan bahan pelapis dikondisikan kembali dengan pemberian udara kering pada suhu tertentu (Huttlin 2007).

Berikut adalah penjelasan dari tiap tahapan proses pelapisan dengan fluid bed coater (coating by granulation):

1. Pengkondisian (conditioning)

 Conditioning merupakan tahapan paling awal dalam proses coating dengan fluid bed coater. Material inti yang akan dilapis ditempatkan di dalam kontainer. Kemudian udara proses yang masuk ditarik sehingga mengenai produk dan terjadi golakan (flow). Suhu udara proses yang terlalu rendah dapat menyebabkan terjadinya penggumpalan (blocking) material inti, sedangkan suhu udara proses yang terlalu tinggi akan menyebabkan case hardening (bagian permukaan material inti menjadi kering, sedangkan bagian dalam basah). Tujuan dari proses conditioning adalah mengkondisikan bahan baku melalui suhu udara proses, sehingga mudah digolakkan (Huttlin 2007).

2. Penyempromtan (spraying)

 Setelah terbentuk golakan yang seragam, maka larutan binder disempromtan melalui nozzle pada posisi tertentu. Dengan pengaturan tekanan udara semprom (spray air pressure), maka diharapkan larutan binder ter-atomisasi dengan sempurna, agar kemampuan membasahi material inti lebih baik, sehingga didapatkan partikel yang terlapis. Parameter penting pada tahapan ini adalah kecepatan semprom (spray rate), jumlah larutan binder yang disempromtan, spray air pressure, interval time dan shaking time (Huttlin 2007).

 Untuk didapatkan lapisan yang baik, maka pada tahapan ini ada proses basah-kering (wetting-drying) yang dilakukan berulang (Teunou dan Poncelet 2005). Proses “basah” adalah pada saat larutan binder disempromtan melalui nozzle dengan pengaturan spray rate dan spray air pressure yang dilakukan selama interval time. Sedangkan proses “kering”
adalah proses pada saat larutan *binder* tidak disempatkan yang dilakukan selama *shaking time*, dimana material inti diberi kesempatan untuk memperkuat pembentukan jembatan padat (*solid bridges*) yang akan melekatkan material inti dengan bahan pelapis yang telah disempatkan melalui penyempatkan larutan *binder*.

3. **Pengeringan (drying)**

 Setelah semua larutan *binder* disempatkan, maka dilakukan tahap pengeringan. Udara proses yang masuk mempunyai suhu yang lebih tinggi, sehingga diharapkan mampu mengerikan produk dengan lebih sempurna. Tujuan dari proses pengeringan adalah menguapkan air yang terkandung pada partikel, sehingga partikel dapat lebih kering dan dapat memiliki kemampuan alir yang baik atau *free flow* (Huttlin 2007).

4. **Pendekatan (cooling)**

 Setelah proses drying, maka suhu inlet diturunkan, sehingga udara proses yang dihembuskan adalah udara dingin agar suhu produk turun (Huttlin 2007).

![Gambar 4 Mekanisme pelapisan dengan fluid bed coater](image)

Pada tahap spraying, larutan *binder* yang membawa material pelapis (*coating agent*) dalam pelarut air akan membasa material/partikel inti. Proses pembasahan ini akan menghasilkan jembatan cair (*liquid bridges*) yang menghubungkan partikel inti dengan material pelapis melalui ikatan adhesives. Konfigurasi yang terbentuk dari pelekat dengan jembatan cair ini...

Larutan binder yang mengandung inulin dan air dapat melekat pada partikel inti (sukrosa) melalui ikatan kimia yaitu ikatan hidrogen. Inulin yang terdiri dari fruktosa-fruktosa dan glukosa pada bagian terminal mengandung gugus OH bebas, yang selanjutnya berikatan dengan atom H dan O dari air (H₂O), sehingga inulin bersifat larut dalam air membentuk larutan binder.

Untuk kemudian larutan binder ini melekat pada partikel inti (gula yang mengandung glukosa dan fruktosa) melalui mekanisme ikatan yang sama, yaitu ikatan hidrogen antara atom O dan H dari glukosa atau fruktosa dengan atom H dan O dari air (H₂O). Gambar 5 menunjukkan ikatan hidrogen antara glukosa dan fruktosa dengan air.

Gambar 5 Ikatan hidrogen antara glukosa dan fruktosa dengan air
Kelarutan inulin dalam air juga bergantung dengan Derajat Polimerisasi (DP) atau panjang monomer penyusunnya. Semakin besar nilai DP, maka akan semakin sulit larut (Robertofoed 2005), hal ini dikarenakan kandungan beta-glikosidik yang menghambat fruktosa-fruktosa dalam inulin yang larut dalam air, dan dibutuhkan enzim inulinase (fructozym) untuk menghidrolisis inulin (Prosky dan Hoebregs 2009).