PENGKOLONAN GEN PROTEASE SERUPA SUBTILISIN
DARI Bacillus pumilus Y1 KE DALAM Bacillus subtilis DB104
SEBAGAI USAHA PENINGKATAN PRODUksi ENZIM

Oleh
Sutrisno Koswara
94119/IPN

PROGRAM PASCA SARJANA
INSTITUT PERTANIAN BOGOR
1999
PENGKOLONAN GEN PROTEASE SERUPA SUBTILISIN
DARI Bacillus pumilus Y1 KE DALAM Bacillus subtilis DB104
SEBAGAI USAHA PENINGKATAN PRODUKSI ENZIM

Oleh
Sutrisno Koswara
94119/IPN

Tesis sebagai salah satu syarat untuk memperoleh gelar Magister Sains pada
Program Pasca Sarjana Institut Pertanian Bogor

PROGRAM PASCA SARJANA
INSTITUT PERTANIAN BOGOR
1999
Judul Tesis : PENGKlonan Gen Protease Serupa Subtilisin Dari Bacillus pumilus Y1 Ke Dalam Bacillus subtilis DB104 Sebagai Usaha Peningkatan Produksi Enzim

Nama Mahasiswa : Sutrisno Koswara
NIM : 94119

Menyetujui,

1. Komisi Pembimbing

Prof. Dr. Ir. Maggy T. Suhartono
Ketua

Dr. Ir. Antonius Suwanto, MSc
Anggota

Prof. Dr. Ir. Deddy Muchtadi, MS
Anggota

2. Ketua Program Studi IPN

Prof. Dr. Betty Sri Laksmi Jenie, MS

Tanggal Lulus : 20 Februari 1999
Laboratorium Mikrobiologi dan Biokimia PAU Bioteknologi Institut Pertanian Bogor.
Sebelumnya telah dilakukan penelitian yang mendahului penelitian ini, antara lain: isolasi berbagai bakteri penghasil protease dari Indonesia, karakterisasi enzim protease mikroba, lokalisasi gen serupa subtilisin pada sejumlah isolat lokal bakteri proteolitik, dan pengklonan gen protease serupa subtilisin dari *Bacillus pumilus* Y1 ke dalam *Escherichia coli* DH5α.

Hasil penelitian yang terakhir di atas menunjukkan bahwa gen tersebut telah berhasil diklonkan ke dalam *E. coli* DH5α, tetapi masih mempunyai beberapa masalah yang perlu dipecahkan, terutama rendahnya aktivitas enzim atau ekspresi dalam bakteri rekombinannya sangat kecil, bahkan jauh lebih kecil dibandingkan dengan aktivitas enzim yang dihasilkan *B. pumilus* Y1 sebagai donor gen proteasenya. Pada penelitian ini digunakan *Bacillus subtilis* DB104 sebagai sel inang yang dimaksudkan sebagai salah satu alternatif untuk mengatasi masalah rendahnya ekspresi enzim protease dari *B. pumilus* Y1 dalam *E. coli*.

Penelitian ini diharapkan dapat dimanfaatkan oleh mereka yang berkecimpung dalam bidang protease, terutama yang menyangkut aspek biologi molekularnya. Bakteri rekombinan yang dihasilkan diharapkan dapat digunakan sebagai memproduksi enzim protease dengan aktivitas yang lebih tinggi. Meskipun demikian, penulis menyadari bahwa penulisan tesis ini masih banyak kekurangannya, sehingga adanya kritik yang membangun sangat penulis harapkan.

Bogor, April 1999

Penulis
UCAPAN TERIMA KASIH

Puji syukur penulis panjatkan kehadirat Allah SWT, karena hanya karena rahmat dan karunianya-NYA, penulis mampu menyelesaikan penelitian dan penulisan tesis ini.

Terima kasih kepada Ketua Jurusan Teknologi Pangan dan Gizi, Fakultas Teknologi Pertanian IPB, yang telah memberikan ijin kepada penulis untuk melanjutkan studi jenjang S2 di Program Pasca Sarjana Institut pertanian Bogor. Terima kasih kepada Direktur PAU Bioteknologi IPB yang telah memberikan ijin untuk menggunakan fasilitas Laboratorium Mikrobiologi dan Biokimia untuk melakukan penelitian ini.

Ucapan terima kasih dan penghargaan yang tulus penulis haturkan kepada ibu Prof. Dr. Ir. Maggy T. Suhartono, yang telah berkenan membimbing penulis sejak awal penulisan usulan penelitian, pada saat penelitian dan hingga penulisan tesis ini. Terima kasih atas kesabaran, ketulusan dan kelembutan hati beliau selama penulis melakukan penelitian dan penulisan tesis ini. Terima kasih pula atas perhatian beliau yang besar disaat penulis lengah di dalam melakukan penelitian sehingga kembali memacu semangat penulis untuk menyelesaikan penelitian ini.

Kepada Dr. Ir. Antonius Suwanto, MSc, penulis mengucapkan terima kasih yang sangat besar, atas waktu yang diberikan beliau dalam membimbing penulis. Beliau selalu menyediakan
waktu untuk berdiskusi yang membuka wawasan penulis tentang pentingnya penelitian dasar sebagai landasan yang kuat dalam menjelaskan fenomena alam dan dalam penerapan praktis bioteknologi molekular.

Kepada Prof.Dr.Ir. Deddy Muchtadi, penulis mengucapkan terima kasih yang sebesar-besarnya atas bimbingan yang diberikan, terutama membuka wawasan penulis tentang pentingnya segi praktis atau penerapan dari penelitian ini.

Secara khusus penulis menyampaikan terima kasih kepada istri tercinta Mujiati, beserta anak-anak kami Adiatmawan, Erwin dan Refda yang senantiasa mendukung dan memberi semangat kepada penulis selama menyelesaikan studi di PPS IPB.

Ucapan terima kasih juga penulis sampaikan kepada mereka yang secara tidak langsung telah terlibat dan banyak membantu penulis dalam menyelesaikan studi di Program Pascasarjana, Institut pertanian Bogor.
DAFTAR ISI

Daftar Isi .. iv
Daftar Tabel .. vi
Daftar Gambar .. vii
Daftar Lampiran ... viii
PENDAHULUAN .. 1
LATAR BELAKANG .. 1
TUJUAN PENELITIAN ... 4
TINJAUAN PUSTAKA .. 5

A. ENZIM PROTEASE .. 5
B. PENGKLOKAN GEN PROTEASE 8
C. PLASMID ... 11
D. TRANSFORMASI DAN SELEKSI TRANSFORMAN 14
E. ELEKTROFORESIS GEL .. 16
F. HIBRIDISASI DAN DETEKSI ... 17

METODOLOGI .. 21

A. BAHAN DAN ALAT .. 21
B. METODE ... 21
1. Strategi Pengklonan Gen Protease 21
2. Isolasi DNA Plasmid ... 22
3. Isolasi DNA Kromosom .. 23
4. Digesti DNA Kromosom dan DNA Plasmid dengan EcoRI 24
5. Ligasi DNA Plasmid dan Fragmen DNA Kromosom 25
6. Transformasi DNA Plasmid ke dalam Bacillus subtilis dengan Metode Alkali Kation. 25
7. Transformasi Plasmid dengan Metode Protoplas 26
8. Elektroforesis Agarosa ... 27
9. Pembuatan Pelacak ... 28
 a. Isolasi fragmen DNA dari gel 28
 b. Pemisahan DNA dari gel .. 28
 c. Pelabelan DNA Pelacak .. 29
 d. Pemurnian DNA Pelacak .. 29
DAFTAR TABEL

Tabel 1. Pengujuan beberapa sifat B. subtilis DB104 dan B. pumilus Y1 36
 yang digunakan untuk pengklonan gen.

Tabel 2. Jumlah sel hidup, transforman, calon rekombinan dan frekuansi 41
 transformasi yang diperoleh dengan metode transformasi protoplas.

Tabel 3. Perbandingan sifat-sifat biokimia enzim yang diproduksi oleh 44
 B. pumilus Y1 dan Bacillus subtilis rekombinan.
DAFTAR GAMBAR

Gambar 1. Peta plasmid pUB110 (Sigma) dan pPT30 (Fersht, 1994) .. 13

Gambar 2. Koloni *B. subtilis* DB104 tidak membentuk *halo* dan *B. pumilus* 36
Y1 membentuk *halo* dalam media SMA.

Gambar 3. Proses pengambilan fragmen gen serupa substilisin dari kromosom 37
B. pumilus Y1 yang didigesti dengan *EcoRI*.

Gambar 4. Protoplas dari *Bacillus subtilis* DB104, yang tidak diberi warna 39
(atas) dan diberi warna safranin (bawah).

Gambar 5. Penampakan koloni inang *Bacillus subtilis* DB104, *Bacillus subtilis* 43
rekombinan dan *Bacillus pumilus* Y1 dalam media Skim Milk Agar (SMA) dan SMA + kan.

Gambar 6. Hasil *isoelectric focusing* enzim hasil produksi bakteri rekombinan R1 44
(lajur 3 dan 4) dan *Bacillus pumilus* Y1 (lajur 5). Lajur lainnya adalah sel darah merah tikus.

Gambar 7. Plasmid rekombinan dipotong dengan *EcoRI* ... 46

Gambar 8. Hasil-hasil verifikasi plasmid rekombinan ... 46

Gambar 9. Hasil hibridisasi Southern plasmid-plasmid rekombinan 47
<table>
<thead>
<tr>
<th>Lampiran</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pembuatan larutan stok</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>Pembuatan Larutan untuk Isolasi DNA dan Elektroforesis Gel</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>Pereaksi untuk Transformasi Metode Protoplas</td>
<td>57</td>
</tr>
<tr>
<td>4</td>
<td>Pembuatan larutan stok untuk Southern Blots</td>
<td>58</td>
</tr>
<tr>
<td>5</td>
<td>Pembuatan larutan untuk Hibridisasi dan Deteksi</td>
<td>59</td>
</tr>
</tbody>
</table>
RINGKASAN

Penelitian ini bertujuan untuk melakukan pengklonan gen protease serupa subtilisin dari *Bacillus pumilus* Y1 ke dalam *Bacillus subtilis* DB104 sebagai inang dengan harapan dapat meningkatkan produktivitas enzim Bakteri yang digunakan sebagai inang (*host*) dalam penelitian ini adalah *Bacillus subtilis* DB104. *Bacillus pumilus* Y1 yang digunakan sebagai sumber gen protease merupakan hasil isolasi dari limbah cair tahu dari pabrik tahu di Bogor (Suhartono et al., 1994). Total DNA genom *Bacillus pumilus* Y1 dipotong dengan enzim *EcoRI* secara sempurna (inkubasi 37 °C, semalam), kemudian dilakukan elektroforesis agarose. Fragmen dengan ukuran 3.2 - 3.4 kb diisolasi dari gel tersebut dengan metode Gene Clean (Bio101 Inc., La Jolla California). Selanjutnya fragmen atau potongan yang diduga merupakan gen protease ini diligasikan dengan plasmid pUB110 menggunakan enzim T4-DNA ligase, yang selanjutnya ditransformasikan ke dalam *B. subtilis* DB104.

Hasil pengamatan terhadap sifat-sifat *Bacillus subtilis* DB104 dan *Bacillus pumilus* Y1 menunjukkan bahwa *B. subtilis* DB104 yang digunakan sebagai inang merupakan mutan yang hanya sedikit sekali menghasilkan protease (aktivitas protease 0.003 U/ml), sedangkan *B. pumilus* Y1 mempunyai aktivitas protease yang tinggi (aktivitas protease 0.103 U/ml).

Dalam penelitian ini metode transformasi yang digunakan adalah metode protoplast. Protoplas merupakan sel mikroba yang sebagian dinding selnya telah dihilangkan dengan
menggunakan enzim lisozim. Hidrolisis dinding sel *Bacillus subtilis* DB104 dilakukan dengan enzim lisozim pada konsentrasi 2 mg/ml dan diinkubasi selama 90 menit pada 37 °C, 100 rpm dengan menggunakan media isotonik SMMP. Protoplas yang terbentuk ditunjukkan oleh penampakan bakteri yang berbentuk bulat yang disebabkan hilangnya dinding sel pada bakteri tersebut. Proses transformasi dilakukan dengan mencampurkan 200 µl suspensi protoplas dengan 20 µl campuran hasil ligasi gen protease dengan plasmid pUB110.

Hasil transformasi menunjukkan bahwa dari sekitar 1000 koloni transforman terdapat 3 - 4 koloni yang membentuk halo pada media seleksi Vy-R5 Agar + Skim yang mengandung antibiotik kanamisin 25 µg/ml. Frekuensi transformasi yang terhitung dengan metode transformasi protoplas adalah 10³.

Hasil verifikasi menunjukkan bahwa bakteri rekombinan membawa vektor plasmid pUB 110 dengan ukuran 4.5 kb dan insert sekitar 2.8 - 3.2 kb. Plasmid rekombinan hasil isolasi, jika ditransformasikan lagi ke dalam inang *B. subtilis* DB104 ternyata akan menghasilkan 90 - 95 persen koloni yang membentuk halo dan tumbuh pada media Vy-R5 Agar + Skim yang mengandung kanamisin 25 µg/ml. Hasil hibridisasi Southern dengan menggunakan probe gen subtilisin yang diisolasi dari plasmid pPT30 menunjukkan bahwa plasmid pUB110 rekombinan mengandung DNA dari *Bacillus pumilus* Y1 dengan ukuran sekitar 3 kb.
PENDAHULUAN

LATAR BELAKANG

Ditinjau dari segi ekonomi, enzim protease memegang peranan yang menonjol diantara enzim-enzim lainnya. Pangsa pasarnya sudah mencapai 400 juta US$ yang setara dengan 40% total penjualan enzim di dunia. Produksi enzim di Indonesia relatif masih langka, terbukti dengan besarnya jumlah impor enzim Indonesia yang mencapai 43,7 kg senilai $ 77,3 juta (BPS, 1993).

Protease dapat dihasilkan dan diproduksi dari tanaman, hewan dan mikroba. Sebagian besar protease yang ada di pasaran saat ini diproduksi dari mikroba, terutama bakteri dari genus Bacillus. Hal tersebut disebabkan karena pertumbuhan mikroba yang relatif cepat dan mudah diatur sehingga enzim yang dihasilkan lebih seragam. Selain itu, berkembangnya teknologi
rekayasa genetika memungkinkan dihasilkannya mikroba dengan produktivitas protease yang lebih tinggi. Keuntungan lainnya adalah prosedur isolasinya yang relatif mudah (Patel, 1985).

Bacillus pumilus Y1 yang diisolasi dari limbah cair tahu menghasilkan protease dengan berat molekul sekitar 30000 dalton, dengan pH dan suhu optimum masing-masing 9 dan 50 °C. yang bersifat alkali. Enzim tersebut juga digolongkan ke dalam protease serin karena dihambat oleh PMSF. Sifat lainnya adalah enzim tersebut dapat diaktivkan oleh beberapa kation bervalensi satu dan dua, serta tahan pada konsentrasi NaCl dan KCl tinggi (4M) (Suhartono et al., 1997).

Bacillus subtilis mempunyai beberapa sifat yang membuatnya lebih cocok digunakan sebagai sistem ekspresi gen dibandingkan dengan Escherichia coli. B. subtilis merupakan bakteri non patogen dan tidak menghasilkan endotoksin, sehingga pada umumnya tidak membahayakan keschatan. Disamping itu, bakteri ini telah digunakan sejak lama dalam produksi berbagai jenis
produk pangan tradisional, dan telah banyak digunakan dalam industri untuk memproduksi enzim protease, α-amilase, dan enzim-enzim degradatif lainnya dalam jumlah banyak. Pertumbuhan seinya sangat cepat dalam media yang relatif sederhana. Karakteristik pertumbuhan dan fisiologi seinya telah banyak dipelajari. Diantara golongan prokariotik, banyaknya informasi genetika yang telah diketahui pada \textit{Bacillus subtilis} hanya kalah dari \textit{Escherichia coli}. Sifat lain yang sangat penting adalah kemampuan \textit{Bacillus subtilis} memproduksi sejumlah besar protein yang dapat secara langsung disekresikan dalam media pertumbuhannya. Dengan demikian dilihat dari sudut sejarah, fisiologi, genetika dan teknik produksi, \textit{Bacillus subtilis} sangat baik untuk sistem model bagi ekspresi gen-gen asing.

Naibaho (1997) telah melakukanpengklonan gen protease \textit{B. pumilus} Y1 ke dalam inang \textit{E. coli} DH5α. Hasil yang diperoleh menunjukkan bahwa gen tersebut telah berhasil diklonkan ke dalam \textit{E. coli} DH5α, tetapi aktivitas enzim atau ekspresi dalam bakteri rekombinannya sangat kecil, bahkan jauh lebih kecil dibandingkan dengan aktivitas enzim yang dihasilkan \textit{B. pumilus} Y1 sebagai donor gen proteasinya. Pada penelitian ini digunakan \textit{Bacillus subtilis} DB104 sebagai sel inang yang diharapkan dapat mengatasi masalah rendahnya ekspresi enzim protease dari \textit{B. pumilus} Y1 dalam \textit{E. coli}.
TUJUAN PENELITIAN

Penelitian ini bertujuan untuk melakukan pengklonan gen protease serupa substilisin dari *Bacillus pumilus* Y1 ke dalam *Bacillus subtilis* DB104.
TINJAUAN PUSTAKA

A. ENZIM PROTEASE

Berdasarkan petunjuk tata nama enzim yang direkomendasikan oleh Internasional Union of Biochemistry, protease termasuk dalam golongan hidrolase yang bekerja pada ikatan peptida

beberapa protease bakteri. Protease asam (E.C. 3.4. 23) yaitu enzim yang keaktifannya
disebabkan oleh adanya dua gugus karboksil pada sisi aktifnya. Aktifitas enzim ini dihambat oleh
bromofenolsil bromida atau pelarut diazo. Enzim yang termasuk golongan ini adalah pepsin, renin,
dan banyak protease yang aktif pada pH rendah yaitu antara 2 - 4.

Enzim protease serin alkali banyak dihasilkan dari golongan *Bacillus*. Protease serin alkali
yang banyak dikenal adalah subtilisin, yang meliputi subtilisin Carlsberg dan subtilisin BPN.
Subtilisin Carlsberg pertama sekali dikenal dan keseluruhan asam aminonya telah disekuen. Enzim
ini dihasilkan oleh *Bacillus licheniformis* bersifat tahan panas, pH optimumnya kira - kira 10, oleh
sebab itu banyak bermanfaat dalam berbagai industri deterjen dan industri pangan khususnya
pembuatan protein hidrolisat (Anstrup, 1979). Subtilisin Novo atau subtilisin BPN yang
dihasilkan oleh *Bacillus amyloliquefaciens* (Wells et al, 1983), sangat mirip dengan subtilisin
Carlsberg dalam hal stabilitas dan aktivitasnya, kisaran temperatur dan pH dan subtilisin BPN
sedikit lebih sempit untuk subtilisin BPN. Sisi aktif pada subtilisin Carlsberg adalah Ser221,
His64, Asp32, sedangkan subtilisin BPN : Ser221, His54, Asp32. Kedua jenis enzim tersebut
tidak memiliki residu sistein, aktif pada pH 8 - 9 serta dihambat oleh senyawa yang bereaksi
dengan serin, seperti diisopropilfluorofosfat (DFP) dan *phenylmethylsulfonil fluoride* (PMSF).
Subtilisin Carlsberg memiliki berat molekul 27.277 dalton dengan titik isoelektrik 9.4, sedangkan
subtilisin BPN memiliki berat molekul 29.000 dalton dengan titik isoelektrik 9.1 (Ward, 1983).

Bacillus pumilus Y1 yang diisolasi dari limbah cair tahu di Indonesia menghasilkan dua
jenis enzim ekstrasehuler dengan berat molekul masing - masing 19.500 dalton dan 30.000 dalton
dengan pH optimum aktivitasnya adalah 9 dan suhu optimumnya adalah 50 °C (Wijaya, 1995).
Menurut Diana (1996) enzim yang paling aktif adalah yang berat molekulnya adalah 30.000
Protease yang dihasilkan *Bacillus pumilus* Y1 aktivitasnya dapat dipertahankan pada lingkungan garam KCl 4M (Suhartono, 1997).

Hewan, tumbuhan, dan mikroba dapat menghasilkan protease. Meskipun demikian yang paling banyak digunakan saat ini sebagai penghasil protease komersial adalah mikroba karena produktivitasnya yang tinggi sangat efisien dipandang dari sudut waktu dan tempat produksi, kemudahan pengaturan produksi dan tingginya peluang perbaikan produksi melalui teknik optimasi fermentasi, teknik mutasi serta rekayasa genetika (Rehm dan Reed, 1987).

Jenis mikroba yang telah dilaporkan sebagai penghasil protease ekstraseluler adalah berbagai kelompok bakteri, antara lain galur-galur dari *Bacillus*, *Lactobacillus*, *Pyrococcus*, *Termonospora* dan kelompok kapang seperti *Rhizopus*, *Mucor*, *Endothia* dan berbagai galur *Aspergillus* (Yamamoto, 1975; Ward, 1983; Rehm dan Reed, 1987).

B. PENGKLONAN GEN PROTEASE

E. coli merupakan bakteri yang paling banyak digunakan sebagai inang karena beberapa keuntungannya. _E. coli_ merupakan inang yang dapat menerima banyak vektor kloning. Selain _E. coli_, bakteri lain yang sering digunakan sebagai inang untuk ekspresi gen adalah *Bacillus subtilis*. *Bacillus subtilis* mempunyai beberapa sifat yang membuatnya lebih cocok digunakan sebagai sistem ekspresi gen. *B. subtilis* merupakan bakteri non patogen dan tidak menghasilkan endotoksin, sehingga tidak membahayakan kesehatan. Disamping itu, bakteri ini telah digunakan sejak lama dalam produksi berbagai jenis produk pangan tradisional, dan telah banyak digunakan dalam industri untuk memproduksi enzim protease, α-amilase, dan enzim-enzim degradatif lainnya dalam jumlah banyak. Pertumbuhan selnya sangat cepat dalam media yang relatif sederhana.

Beberapa peneliti telah berhasil mendapatkan enzim protease serin alkali yang tahan pada suhu tinggi dan pH alkali melalui proses rekombinan. Masui et al, (1994) berhasil mengklon 1.75 kb gen aprM dari *Bacillus* sp. strain B'18 ke dalam *Bacillus subtilis* serta melakukan mutasi melalui penggantian Thr 203 oleh Pro sehingga diperoleh enzim protease serin alkali yang tahan pada suhu 80 °C selama 30 menit. Takami et al, (1992) telah berhasil mengklon pragmen 1.14 kb gen penyandi protease serin alkali dari *Bacillus* sp. 221 kedalam *E. coli* dan mengekspresikan dalam *Bacillus subtilis*. Analisis sekuen menunjukkan tingkat homologi yang tinggi dengan *Bacillus* alkaliilik, penelitian tersebut disusul oleh Maciver et al, (1994) yang telah berhasil mengklon gen penyandi proteinasi serin dari *Bacillus* termofilik dan mengekspresikannya ke dalam *E.coli*. Protease yang dihasilkan menunjukan kestabilan terhadap panas sampai suhu 90 °C dengan waktu paruh 12.2 menit dan pada suhu 75 °C dengan waktu paruh 40.3 jam pada pH 8.5.

Ekspresi protease dari *Bacillus subtilis* yang diklon ke *Bacillus subtilis* meningkat produktinya sebanyak 10 - 20 kali (Sloma et al, 1990). Peek et al, (1993) melakukan pengklonan gen protease termostabil dari *Bacillus* sp ke dalam *E.coli* dan enzim protease berhasil diekspresikan oleh *E.coli*. Protease di sekresikan dalam bentuk propoteinase, yang harus diaktivasi dengan pemanasan pada suhu 60 °C untuk mendapatkan proteinase yang aktif. Enzim
protease *Bacillus* sp dapat disekresikan oleh *E.coli* karena sekuen asam amino signal dapat dikenali oleh enzim signal peptidase I yang hasilkan oleh *E. coli*.

Ekspresi gen protease dari *Bacillus* sp. pada inang yang bersuhi optimum lain bervariasi tergantung dari jenis enzim. Fuji et al, (1983) mengemukakan bahwa pengklonan gen penyandian protease netral dari *Bacillus steatorthermophilus* (suhu optimum 55 ºC) ke dalam *Bacillus subtilis* (suhu optimum 37 ºC) menaikkan produksi (12 kali lipat) hampir sama dengan pengklonan kedalam *Bacillus steatorthermophilus* (15 kali lipat).

C. PLASMID

Plasmid adalah DNA ekstra kromosom yang pada umumnya tidak diperlukan dalam pertumbuhan sel sehingga pada keadaan tertentu dapat masuk sel tanpa membahayakan sel. Struktur DNA plasmid adalah polinukleotida untai ganda yang berikatan kovalen membentuk molekul lingkar tertutup di dalam sel. Sifat plasmid yang dapat masuk sel tanpa mengganggu pertumbuhan sel membuat plasmid dapat digunakan sebagai vektor (pembawa) dalam pemindahan sifat genetik (Smith, 1985).

Sifat plasmid dapat keluar masuk sel tanpa mengganggu pertumbuhan sel, oleh karena itu plasmid dapat digunakan sebagai vektor dalam pemindahan sifat genetik. Faktor-faktor yang menentukan agar plasmid dapat digunakan sebagai vektor untuk DNA rekombinan antara lain adalah : mempunyai berat molekul rendah, mampu mengekspresikan gen yang dibawanya dari sel asal ke sel inang, memiliki sisi pemotongan tunggal untuk kebanyakan endonuklease restriksi, serta mempunyai dua atau lebih penanda (Old dan Primrose, 1985).

Gambar 1. Peta plasmid pUB110 (Sigma) dan pPT30 (Fersht, 1994)
Selain ukuran dan jumlah plasmid perlu pula diperhatikan stabilitas plasmid. Ketidakstabilan plasmid selama pertumbuhan dan penyimpanan menunjukkan adanya pembagian tugas oleh populasi sehingga ada sel-sel yang tidak membawa plasmid atau ketidakstabilan segregasi serta plasmid-plasmid mengalami pengaturan kembali atau ketidakstabilan struktural (Zaghloul et al., 1994).

Plasmid pUB110 yang memuat gen penyandi resitensi kanamisin banyak digunakan dalam B. subtilis dan ternyata merupakan plasmid yang sangat stabil. Kestabilan tersebut tidak berubah dengan dilakukannya penyisipan 2.3 kb sekuen DNA (SmaI-HindIII) yang menyandikan gen protease aikali (gen aprA). Bahkan plasmid rekombinan tersebut tetap stabil bila ditumbuhkan pada medium tanpa kanamisin sampai pertumbuhan selama 4 hari (Zaghloul et al., 1994).

D. TRANSFORMASI DAN SELEKSI TRANSFORMAN

Untuk memasukkan DNA rekombinan ke dalam sel dikenal beberapa cara seperti transduksi, fusi protoplas, dan transformasi. Untuk sistem E. coli transformasi adalah teknik yang populer karena mudah dilakukan disamping mempunyai frekuensi transformasi yang tinggi, sedang untuk sistem Bacillus fusi protoplas memberikan frekuensi transformasi yang terbaik (Chang dan Cohen, 1979). Prinsip transformasi adalah membuat suatu kondisi yang mempengaruhi sel hidup sehingga dapat menarik dan membiarkan molekul DNA asing masuk ke dalam sel melalui membran sel dari lingkungannya. Sel yang mempunyai perilaku demikian disebut sel kompeten (Smith, 1985).

Sel kompeten dapat dibuat dengan cara menurunkan suhu pertumbuhan sel beberapa lama pada sistem E. coli kejutan panas yang populer dilakukan adalah dengan cara menginkubasi
campuran sel inal dengan DNA donor (plasmid) pada suhu 0 °C selama 30 menit, kemudian menggunakan kejutan panas pada suhu 42 °C selama 2 menit dan menginkubasikan kembali pada suhu 0 °C selama 30 - 60 menit (Leaderberg dan Cohen 1974).

Dengan kejutan panas kemudian DNA asing masuk ke sel menjadi lebih besar bila pada lingkungannya terdapat ion - ion divalen Ca\(^{2+}\) dan Mg\(^{2+}\) yang diberikan dalam bentuk CaCl\(_2\) dan MgCl\(_2\), beberapa prosedur juga menggunakan LiCl\(_2\). Adanya kejutan panas ke-2 (37 °C, 10 menit) juga dapat meningkatkan jumlah transforman dengan faktor 2.2 (0.6 lebih besar), sedangkan penambahan CaCl\(_2\) dan MgCl\(_2\) pada medium tumbuh transforman dapat meningkatkan jumlah transforman dengan faktor 10 kali lebih besar (Bergman et al, 1981). Secara garis besar transformasi DNA asing dalam suatu sel dipengaruhi oleh beberapa faktor lingkungan seperti konsentrasi DNA, suhu transformasi, lama transformasi, adanya ion divalen dalam bentuk CaCl\(_2\), MgCl\(_2\) atau LiCl\(_2\) dan kejutan panas (Bergman et al, 1981).

Transformasi ke dalam sel Bacillus subtilis yang merupakan bakteri gram positif banyak dilakukan dengan metode protoplas. Protoplas dibuat dengan menghilangkan dinding sel bakteri di dalam media yang ditambah dengan stabilizer osmotik seperti sukrosa, suksinat, manitol atau sorbitol. Metode transformasi protoplas yang ada umumnya bervariasi dalam hal enzim yang digunakan untuk mendegradasi dinding sel dan/atau media yang digunakan untuk meregenerasi dinding sel bakteri. Enzim yang digunakan pada umumnya adalah lisozim dan mutanolisin. Inkubasi yang dilakukan untuk menghilangkan dinding sel berkisar antara 30 - 90 menit dengan goyangan pelan. Metode ini pertama kali dikembangkan oleh Chang dan Cohen (1979) yang menggunakan polietilen glikol untuk menginduksi pengambilan (intake) DNA plasmid oleh protoplas, kemudian diikuti dengan regenerasi dinding sel bakteri.
Untuk memperoleh transforman yang diinginkan maka sel hasil transformasi diseleksi melalui media tumbuh yang spesifik. Transforman ditumbuhkan pada media yang sesuai dengan jenis penandanya, misalnya dengan antibiotik untuk plasmid yang mempunyai penanda antibiotik resisten dan bluo-gal/x-gal untuk penanda Lac. Pada media seleksi ini dapat diketahui ekspresinya sekaligus, prosedur ini hanya menggambarkan masuk tidaknya DNA plasmid (rekombinan maupun non rekombinan) ke dalam sel inang. Untuk mengetahui diperolehnya transforman yang diharapkan maka perlu diuji ekspresi gen asing yang dibawa oleh plasmid rekombinan melalui media ekspresi. Misalnya untuk protease digunakan untuk media tumbuh yang mengandung kasein atau susu skim.

E. ELEKTROFORESES GEL

Elektroforesis adalah suatu teknik untuk memisahkan molekul-molekul berdasarkan muatan dan berat molekul. Salah satu jenis elektroforesis adalah elektroforesis gel. Tidak hanya digunakan untuk metode analisis tetapi juga digunakan secara rutin sebagai persiapan untuk permurnian fragmen DNA. Gel dapat tersusun oleh poliakrilamid atau pun agarosa. Secara umum poliakrilamid digunakan untuk memisahkan molekul berukuran kurang dari 1 kb, sedangkan agarosa untuk fragmen berukuran lebih dari 1 kb. Gel agarosa dengan konsentrasi 0.8 - 1.0 % paling baik digunakan untuk memisahkan fragmen DNA berukuran 1 - 20 kb (Old dan Primrose, 1989).

Karena molekul DNA bermuatan negatif maka dalam medan listrik DNA akan bermigrasi ke kutub positif melalui gel. Bila tenaga listriknya steady laju migrasi hanya dipengaruhi oleh
ukuran molekul. Molekul yang kecil akan bergerak lebih mudah dibandingkan dengan molekul yang besar sehingga berat molekul dapat ditentukan dari laju migrasi (Boffey, 1984).

Gel elektroforesis pada analisis DNA digunakan terutama untuk pemisahan DNA, selain juga untuk penentuan sekuen basa. Gel elektroforesisi untuk DNA dapat dibuat dari agarosa, poliakrilamida dan campuran agarosa-poliakrilamida. Agarosa dapat digunakan untuk memisahkan DNA utas ganda dengan ukuran 70 pasang basa (3% agarosa) sampai dengan 800.000 pasang basa (0.1% agarosa). Sedang gel poliakrilamida digunakan untuk pemisahan molekul DNA dengan ukuran yang lebih kecil, antara 6 pasang basa (20% akrilamida) sampai 1000 pasang basa dengan 3% akrilamida (Sealey dan Sutherland, 1988). Konsentrasi gel yang biasa digunakan bervariasi dari 0.25 - 1.5% agarosa. Fragmen-fragmen yang berukuran sekitar 0.5 sampai dengan 10 kilo pasang basa dapat dipisahkan pada agarosa 0.7%, sedang fragmen yang berukuran 0.2 sampai dengan 3 kb dapat dipisahkan dengan agarosa 1.5% (Crosa et al., 1994).

Pita-pita DNA dalam gel dapat diamati setelah merendam gel dalam larutan 0.5 μg/ml ethidium bromida selama 15 menit. Bila gel dipaparkan pada UV transluminator dengan panjang gelombang 280 nm, maka pita DNA akan kelihatan berfluoresensi (Old dan Primrose 1989).

F. HIBRIDISASI DAN DETEKSI

Istilah hibridisasi DNA dapat diartikan sebagai pembentukan dupleks molekul DNA karena pasangan basa yang spesifik (Dyson, 1991). Hibridisasi Southern dikembangkan oleh Southern untuk mendeteksi homologi antara dua utas DNA. Hibridisasi southern termasuk hibridisasi filter, DNA target diimobilisasikan pada membran filter dan dihibridisasi dengan pelacak yang telah dilabel. Gugus fosfat dan gula dari DNA target akan terikat difilter, sedangkan gugus
basanya tetap bebas sehingga dapat berhibridisasi dengan pelacak (Freifelder, 1987) metode ini sangat sensitif dan dapat mendeteksi DNA dalam jumlah yang sangat sedikit (50 - 250 pg) (Mundy et al, 199).

Laju transfer DNA dari gel ke membran dengan cara kapilaritas tergantung oleh beberapa faktor, antara lain ukuran fragmen DNA dan konsentrasi agarosa. DNA yang berukuran besar (> dari 15 kilo pasang basa) perlu didepurinasi dengan menggunakan larutan asam agar dapat tertransfer dengan sempurna (Sambrook et. al. 1989). Metode kapilaritas memerlukan waktu lebih
panjang daripada metode lainnya, tetapi lebih mudah dilakukan dan aman serta murah. Metode transfer elektroforetik memerlukan waktu lebih singkat dan pragmen DNA berukuran lebih besar dapat tertransfer dengan mudah tanpa perlakuan depurinasi. Metode transfer secara vakum lebih efisien dan lebih cepat dibandingkan metode kapilaritas, tetapi bila vakum melebih 60 cm air raksa, gel menjadi tertekan akibatnya efisiensi transfer berkurang.

Penggunaan membran nilon lebih disukai dibandingkan dengan membran nitrocelulosa karena lebih kuat, tahan lama dan dapat digunakan untuk beberapa kali hibridisasi serta memiliki kapasitas pengikatan yang lebih tinggi. Menurut Reed dan Mann (1985) membran nilon dapat mengikat pragmen DNA yang berukuran 10 pasang basa. Selain itu dapat pula dilakukan transfer dengan konsentrasi garam rendah dan larutan alkali. Setelah proses transfer DNA membran dikeringkan dalam oven 80 °C selama 2 jam untuk fiksasi DNA. Fiksasi juga dapat dilakukan dengan memaparkan membran di bawah lampu UV, akan tetapi dengan metode ini, pragmen DNA yang berukuran kecil akan mengalami cross linking sehingga mengurangi efisiensi hibridisasi (Keller dan Manak, 1989).

Untuk mendeteksi terjadinya hibridisasi, pelacak perlu dilabel. Label yang digunakan dapat bersifat radioaktif atau non radioaktif. Senyawa biotin biasa digunakan sebagai pelabel non radioaktif. Senyawa ini diikatkan pada gugus basa dari suatu nukleotida, biasanya dATP. Untuk mendeteksinya, digunakan streptavidin-alkalin fosfatase yang akan berikatan sangat kuat dengan biotin (konstanta asosiasi 10^{14}M). Penambahan PPD (4-metoksi-4-(3-fosfatfenil)spiro-[1,2-di-oksietan-3,2'-adamantan]) yang berfungsi sebagai substrat bagi fosfatase alkali akan mengakibatkan emisi cahaya yang dapat diidentifikasi pada film X-Ray (Mundy et al., 1991).
Metode deteksi yang lain adalah menggunakan sistem pembentukan warna hasil reaksi substrat 4-chloro-1-naphthol dengan enzim peroksidase horseradish. Membran yang telah dihibridisasi direaksikan dengan enzim peroksidase yang berkonyugasi dengan Extravidin. Substrat 4-chloro-1-naphthol yang direaksikan akan menghasilkan deposit berwarna biru pada membran.
METODOLOGI

A. BAHAN DAN ALAT

Bakteri yang digunakan sebagai sumber gen protease adalah *Bacillus pumilus* Y1 yang berasal dari limbah cair tahu (Suhartono et al., 1994). Bakteri ini merupakan salah satu koleksi Laboratorium Mikrobiologi dan Biokimia, PAU-Bioteknologi, Institut Pertanian Bogor. Sebagai inang digunakan *Bacillus subtilis* DB104 (*his, nprR2 nprE18 ΔaprA3*) (Dr. Honda, Komunikasi pribadi dengan Dr. Maggy T. Suhartono), plasmid yang digunakan sebagai pembawa gen atau vektor adalah pUB110 (Sigma). Plasmid pPT30 digunakan sebagai probe diperoleh dari Fersht (Fersht, 1994, Komunikasi pribadi dengan Dr. Maggy T. Suhartono). Bahan lain yang digunakan adalah enzim restriksi *EcoRI* (Gibco), T4DNA ligase (Gibco), *1 kb-ladder* (Gibco), *Gene Clean Kit* (Gibco), *NEBlot Phototope Kit* (Biolabs) untuk labelling, *ExtrAvidin-Horseradish Peroxidase* (Sigma) dan substrat 4-chloro-1-naphthol.

B. METODE

Metode penelitian yang digunakan bersifat eksploratif, tanpa menggunakan rancangan percobaan.

1. Strategi Pengklonan Gen Protease

Strategi atau lingkup penelitian yang dilakukan untuk pengklonan gen protease dari *Bacillus pumilus* Y1 ke dalam *Bacillus subtilis* DB104 dapat dilihat pada bagan sebagai berikut:
Bacillus pumilus Y1 (sumber gen protease)
- Isolasi DNA Kromosom
- Digesti dengan EcoRI
- Plasmid pUB110 (Vektor)
 - Elektroforesis agarosa
 - Digesti dengan EcoRI
 - Isolasi gen protease (3.2 - 3.4 kb)
 - Ligasi dengan T4 DNA ligase
- Transformasi ke B. subtilis DB104 (metode protoplas)
 - Seleksi transforman (Media Regenerasi + Skim + Kanamisin)
 - Isolasi plasmid rekombinan/kimera
 - Verifikasi plasmid rekombinan
 - Hibridisasi dan deteksi gen protease

2. Isolasi DNA Plasmid

Isolasi DNA plasmid dilakukan dengan menggunakan metode lisis alkali (Birnboim dan Doly, 1979). *Bacillus subtilis* pembawa plasmid ditumbuhkan dalam 25 ml media Luria Bertani (mengandung kanamisin 25 μg/ml) selama semalam. Sebanyak 1.5 ml kultur dipellet dalam tabung eppendorf dengan menggunakan sentrifus mikro selama 1 menit. Perlakuan tersebut dilakukan dua kali. Ke dalam pelet kemudian ditambahkan campuran Tris/EDTA/Glukosa (25 mM Tris-HCl, 50 mM glukosa dan 10 mM Na₂EDTA) sebanyak 120μl dan enzim lisozim sebanyak 5 mg/ml, dicampur dalam ujung tip, kemudian diinkubasi pada suhu 37 °C selama 1 jam.

Agar sel menjadi pecah atau lisis, ke dalam campuran ditambahkan 200 μl NaOH/SDS (0.2 N NaOH, 1% SDS) dan diinkubasi di atas es selama 10 menit. Lisis sel ditandai dengan
terbentuknya cairan yang kental dan jernih. Kemudian ke dalam campuran ditambahkan 150 μl larutan NaAc/Hac, pH 4.8 untuk memisahkan plasmid. Campuran diinkubasi di atas es selama 10 menit, selanjutnya disentrifugasi selama 5 menit. Bagian supernatant dipisahkan ke dalam tabung ependorf lain.

Supernatant tersebut kemudian ditambah 400 μl campuran fenol : kloroform : isoamilalkohol (25 : 24 : 1). Campuran divorteksa selama 10 detik dan kemudian disentrifugasi 5 menit sehingga akan terbentuk dua lapisan. Lapiran atau bagian atas yang mengandung plasmid dipisahkan ke dalam ependorf lain yang steril dan diendapkan dengan penambahan 600 μl etanol absolut. Endapan plasmid yang diperoleh dicuci dengan etanol 70% dengan sentrifugasi selama 2 menit. Pelet yang diperoleh harus sesedikit mungkin mengandung etanol 70%, yang seterusnya dikeringkan dengan pompa vakum. Setelah kering dilarutkan dalam 20 - 40 μl buffer TE (10 mM Tris-HCl dan 1 mM EDTA, pH 8.0) dan disimpan dalam freezer sampai saat digunakan.

3. Isolasi DNA Kromosom

Isolasi DNA kromosom dilakukan dengan prosedur Leach et al, (1994). Satu ose kultur bakteri Bacillus pumilus Y1 ditumbuhkan dalam 25 ml media Luria Bertani selama semalam pada suhu 37 °C, 200 rpm. Kultur kemudian dimasukkan dalam ependorf 1.5 ml dan disentrifugasi selama 2 menit. Perlakuan tersebut dilakukan dua kali. Pelet diresuspensikan ke dalam 250 μl bufer TE dan ditambahkan lisozim 5 mg/ml, kemudian diinkubasi pada 37 °C selama 1 jam. Kedalam campuran ditambahkan 50 μl SDS 10% dan 5 μl proteinase K (Sigma) 10 mg/ml, dan diinkubasi kembali pada suhu 37 °C selama 1 jam. Inkubasi diakhiri setelah campuran menjadi kental dan jernih.

Benang-benang DNA yang terbentuk dikait dengan batang gelas dan dicuci dengan etanol 70% dingin. Pemisahan DNA dengan etanol dilakukan dengan sentrifugasi selama 3 menit dan pada akhir pencucian DNA diusahakan mengandung sedikit mungkin etanol. Endapan DNA kromosom yang diperoleh, dikeringkan dengan pompa vakum, kemudian DNA dilarutkan dalam 40 µl buffer TE. Pelarutan DNA dapat dipercepat dengan pemanasan pada suhu 65 °C atau dengan diinkubasi pada suhu 4 °C semalaman. DNA yang telah larut disimpan dalam freezer sampai saat digunakan.

4. Digesti DNA Kromosom dan DNA Plasmid dengan EcoRI

DNA kromosom dan DNA plasmid didigesti dengan enzim EcoRI. Digesti DNA kromosom dilakukan dengan mencampur 15 µl DNA kromosom, 3 µl buffer React 3, 11 µl akuades steril dan 1 µl EcoRI, kemudian diinkubasi pada 37 °C semalaman. Sedangkan digesti DNA
plasmid dilakukan dengan mencampurkan 10 μl DNA plasmid, 2 μl buffer React. 3, 7 μl akuades steril dan 1 μl EcoRI, dan diinkubasi 37 °C selama.

5. Ligasi DNA Plasmid dan Fragmen DNA Kromosom

Ligasi DNA plasmid dengan Fragmen DNA kromosom dilakukan dengan menggunakan enzim T4 DNA ligase. Ke dalam tabung ependorf dicampurkan berturut-turut: 8 μl DNA fragmen gen protease (sekitar 3 kb) dari kromosom Y1 hasil digesti EcoRI, 4 DNA plasmid hasil digesti EcoRI, 4 μl T4 DNA-ligase buffer 5X, 3 μl akuades steril dan 1 μl T4 DNA ligase. Campuran diinkubasi pada suhu 4 °C selama semalam, dan disimpan difreeze sampai digunakan untuk transformasi.

6. Transformasi DNA Plasmid ke dalam Bacillus subtilis dengan

Metode Alkali Kation (KCl) (Hiraoka, et al., 1992)

Sebanyak 1% kultur B. subtilis DB104 yang telah ditumbuhkan semalam (dalam media Luria Broth/LB) diinokulasikan ke dalam media LB segar dan diinkubasi secara aerobik sampai OD pada 660 nm mencapai 0.7-0.8 dalam pertengahan atau akhir fase logaritmik. Sebanyak 0.33 ml alikuot kultur dipindahkan ke tabung ependorf dan disentrifusi pada 10 000 x g selama 2 menit. Pelet yang dihasilkan diresuspendi dengan 1 ml 410 mM KCl.

Setelah diinkubasi secara statis pada 30 °C selama 30 menit, sebanyak 50 μl suspensi ini kemudian dicampur dengan DNA plasmid (kurang dari 5 μl) dan 50 μl larutan PEG 6000 70%. Setelah dicampur/diaduk dengan pipet beberapa kali (tidak disedot dan dikeluarkan dengan pipet,
cukup diaduk saja), PEG dicuci dengan penambahan 1 ml media LBC (media LB yang disuplementasi dengan 100 mM CaCl₂) dan disentrifugi 10 000 x g selama 2 menit.

Pelet yang diperoleh disuspensikan kembali dalam 0.5 ml media LB dan diinkubasi selama 2 jam pada 37 °C untuk memberi kesempatan terjadinya ekspresi gen resisten antibiotik. Transforman diperoleh dengan cara menyebarkan 50, 100 dan 150 μl kultur di atas dalam media Skim Milk Agar + kan 25 μg/ml (untuk transforman) dan Skim Milk Agar untuk viable cells (sel hidup). Jumlah transforman dan sel hidup (viabel cell) dihitung setelah inkubasi selama semalam pada 37 °C.

7. Metode Pembuatan Protoplas dan Transformasi

Transformasi plasmid dilakukan dengan prosedur yang pertama kali dikembangkan oleh Chang dan Cohen (1979), untuk sel-sel Bacillus subtilis. Sekitar 5 ml kultur ditumbuhkan dalam media kaya (Penassay Broth/PAB, No. 3 Difco) selama semalam. Kultur semalam diencerkan (1 : 50) ke dalam 50 ml media hangat baru, dan diinkubasi pada 30 °C dengan mencapai OD₆₀₀ sekitar 0.4. Sel dipanen dengan sentrifugasi pada 10.000 x g selama 5 menit pada suhu 4 °C dan resuspensikan dalam 5 ml SMMP (dibuat dengan mencampurkan 4x PAB dan 2x SMM pada volume yang sama). Sebanyak 2 mg/ml liozim ditambahkan dan diinkubasi sambil dishaker perlahan-lahan selama 45 sampai 60 menit pada 37 °C. Suspensi protoplast disentrifugi pada 2000 x g, 10 menit pada suhu 4 °C. Pelet dicuci dengan 5 ml SMMP dan resuspensikan dalam SMMP dengan volume yang sama. Protoplas dapat disimpan pada -50 °C tanpa penambahan gliserol.

Sebanyak 200 ml suspensi protoplas dicampur dengan 20 μl campuran hasil ligasi, kemudian segera ditambahkan 400 μl PEG 40% ke dalam campuran. Isi diaduk perlahan dan
diinkubasi selama 3 menit pada 4 °C. Kemudian ditambahkan 2 ml SMMP untuk mengencerkan campuran PEG dan protoplas dipanen dengan sentrifusi (2000 x g selama 10 menit). Supernatan dibuang, sedangkan protoplas diresuspendkan pada 1 ml SMMP dan diinkubasi selama 90 menit pada 37 °C untuk memberi kesempatan terjadinya ekspresi fenotip sifat resistensi terhadap antibiotik. Selanjutnya dibuat suatu seri pengenceran dari SMMP, lalu disebbar ke atas media Vy-R5+Skim (yang mengandung antibiotik kanamisin 5 μg/ml) untuk regenerasi. Disebar juga 1 μl dan 10 μl dari suspensi protoplas asal dalam media TBAB untuk memperkirakan jumlah sel non protoplas, dinyatakan sebagai CFU dari kultur asal. Inkubasi dilakukan selama 16–20 jam pada suhu 37 °C. Koloni yang diduga merupakan transforman adalah koloni yang membentuk halo pada media Vy-R5+Skim yang mengandung kanamisin 25 μg/ml.

Pada pembuatan protoplas tersebut di atas sebelumnya dicoba beberapa waktu dan kecepatan pecocokan (shaking) selama inkubasi setelah penambahan enzim lisozim yaitu pada waktu inkubasi 30 dan 60 menit, serta kecepatan 100, 150 dan 200 rpm. Hal lain yang dilakukan adalah penggunaan media seleksi yang langsung digunakan setelah membeku dan dilakukan proses pembebasan atau pengeringan air yang masih membasahi media dengan cara membiarkan media di suhu kamar selama semalam atau dikeringkan dalam inkubator 37 °C selama 2 jam.

8. Elektroforesis Agarosa

Hasil digesti DNA kromosom dan DNA plasmid dilarikan pada elektroforesis gel agarosa dengan konsentrasi 0.8 - 1 % menggunakan buffer TAE 1X, pH 8.0. Ke dalam hasil digesti DNA dimasukkan 4 μl blue juice (0.25% xylene cyanol, 0.25% bromofenol blue, 15% ficoll, 0.1 EDTA) yang berfungsi sebagai pewarna dan pemberat, sehingga DNA dapat masuk ke dasar
sumur gel dan juga berfungsi sebagai penanda akhir elektroforesis. Elektroforesis diakhiri setelah warna biru dari bromofenol biru mencapai sekitar 1 cm dari tepi gel. Kondisi elektroforesis yang digunakan adalah: 30 - 40 V, 28 - 39 mA. Setiap kali elektroforesis disertai penanda molekul DNA yaitu lambda DNA-BstEII atau 1 Kb ladder untuk mengetahui ukuran DNA yang dielektroforesis.

9. Pembuatan Pelacak

Pembuatan pelacak meliputi tahap: isolasi fragmen DNA dari gel, pemisahan DNA dari gel, pelabelan DNA dan pemurnian DNA pelacak.

a. Isolasi fragmen DNA dari gel.

Hasil elektroforesis plasmid pPT30 yang dipotong dengan enzim EcoRI memberikan dua pita, yaitu 4.5 Kb yang merupakan plasmid pUB110 linier dan 3.0 Kb yang didalamnya terdapat gen substilisin. Pita ukuran 3.0 Kb diisolasi dari gel untuk dibuat pelacak. Gel yang memuat pita 3.0 dipotong dengan skapel steril, kemudian dipotong kecil-kecil dan dimasukkan ke dalam ependorf dan diukur volumenya.

b. Pemisahan DNA dari gel.

Pemisahan DNA dari gel dilakukan dengan teknik gene clean (Gibco-BRL, 1994). Gel yang telah dicacah halus ditambah NaI pekat sebanyak 3 kali volumenya sehingga larut. Pelarutan dapat dipercepat dengan pemanasan pada suhu 40 - 50 °C. Setelah gel larut, ke dalam tabung tersebut ditambahkan 7 μl suspensi glassmilk dan dibiarankan pada suhu ruang sekitar 10 menit. Glassmilk berfungsi untuk mengikat DNA. Campuran disentrifugasi selama 5 detik untuk memisahkan glassmilk dari NaI pekat. DNA dicuci dengan menggunakan New Wash Buffer dan

c. Pelabelan DNA Pelacak.

Pelabelan dilakukan dengan menggunakan metode nick translation menggunakan NEBlot Phototope Labelling System (Biolabs). Ke dalam tabung ependorf dimasukkan berturut-turut 34 μl DNA, 5 μl 10X campuran dNTP, 10 μl labelling mix buffer dan 1 μl enzim klenow. Campuran tersebut kemudian diinkubasi pada suhu 37 °C selama semalam, kemudian ditambah 5 μl buffer penghenti reaksi.

d. Pemurnian DNA Pelacak.

DNA yang sudah dilabel dipisahkan dari monomukleotida lain dengan cara kromatografi kolom (Dyson, 1991). Ke dalam 1 ml siringe dimasukkan siliconized glasswool untuk menutup lubang siring dan ke dalam siring tersebut dimasukkan sephadex G-50 yang telah dikembangkan semalam dalam buffer TE. Pengisian sephadex dilakukan sampai jarak sephadex dengan mulut siring sekitar 1 cm. Pemampaatan sephadex dalam siring dilakukan dengan sentrifugasi 2800 selama 2 menit. Kolom sephadex dieluasi dengan larutan 2XSSC, 0.1% SDS sebanyak dua kali, masing - masing 500 μl. DNA yang telah dilabel dimasukkan ke dalam kolom sephadex dan pada dasar siring diberi ependorf untuk menampung DNA pelacak. Pemurnian DNA pelacak dilakukan dengan sentrifusa 3000 rpm selama 5 menit. Monokleotida akan terikat pada sephadex, dan DNA terlabel akan turun ke ependorf. Pelacak yang sudah murni siap digunakan untuk hibridisasi.
10. Hibridisasi Southern

Hibridisasi Southern meliputi tiga tahap, yaitu: Southern blots untuk imobilisasi DNA pada membran nilon, hibridisasi DNA target dengan DNA pelacak, dan deteksi hasil hibridisasi dengan extravidin-horseradish peroxidase konjugat.

a. Southern blots.

Imobilisasi DNA pada membran nilon dengan teknik Southern blots dilakukan menurut Sambrook et al., (1989). Gel yang memuat DNA dimasukkan ke dalam larutan denaturasi (0.5 M NaOH, 1.5 M NaCl) dan digoyang perlahan pada suhu ruang selama 15 menit, sebanyak dua kali. Kemudian dilanjutkan dengan netralisasi dengan cara merendam gel dalam larutan netralisasi 1X (1 M Tris, 1.5 M NaCl), pH 7.5 selama 30 menit dan digoyang perlahan. Perlakuan tersebut dilakukan sebanyak dua kali.

Gel diletekkan di atas piring blotting yang telah diisi dengan larutan 20X SSC, pH 7.5 setenggi setengah piring. Diatas gel diletekkan membran nilon yang telah dibasahi dengan larutan 2X SSC selama dua menit. Membran nilon harus benar-benar melekat pada gel tanpa gelembung udara diantaranya, karena gelembung udara akan menghalangi transfer DNA ke membran. Di atas membran nilon diletekkan kertas Whatman 3 MM untuk menyerap buffer yang membawanya DNA ke membran. Penyerapan diperkuat dengan kertas merang yang ditumpukkan di atas kertas Whatman. Diatas tumpukkan kertas merang diletekkan kaca (atau benda lain yang datar) dan beban sekitar 0.75 kg. Proses blotting dilakukan selama semalam, sehingga memungkinkan semua DNA ditransfer ke membran dengan gaya kapilaritas.
Membran diangkat dari gel dan dicuci dengan larutan 2X SSC selama 5 menit, kemudian dikeringkan dan difiksasi di dalam oven, suhu 80 °C selama 2 jam. Setelah fiksasi, membran dapat disimpan sampai dilakukan hibridisasi.

b. Hibridisasi.

Sebelum dilakukan hibridisasi DNA target dengan DNA pelacak, dilakukan prehibridisasi untuk memblok daerah-daerah yang tidak berikatan secara spesifik dengan DNA pelacak. Prehibridisasi dilakukan dengan memasukkan membran nilon ke dalam tabung hibridisasi yang berisi larutan : 10 ml formamid 50%, 5 ml SDS 5%, 4 ml NaCl 1 M, 1 ml salmon sperm DNA (250 μg/ml) dan 1,2 gram polietilen glikol 6000. Prehibridisasi dilakukan selama 2 jam. Kemudian dilanjutkan dengan hibridisasi dengan cara memasukkan pelacak yang telah didenaturasi ke dalam larutan prehibridisasi dan hibridisasi dilakukan semalam. Denaturasi DNA pelacak dilakukan dengan cara pemanasan pada suhu 95 °C selama 10 menit. Prehibridisasi dan hibridisasi dilakukan pada suhu 42 °C.

Setelah hibridisasi, membran dicuci dengan menggunakan larutan 2X SSPE, 0.1% SDS selama 5 menit, sebanyak dua kali. Pencucian dilanjutkan dengan menggunakan larutan pencuci 0.1X SSPE, 0.1% SDS selama 15 menit, sebanyak dua kali, suhu ruang. Pencucian dimaksudkan untuk menghilangkan sisa-sisa pelacak yang masih tertinggal pada membran yang tidak sesuai berkomplementer secara spesifik.
c. Deteksi.

Deteksi hibridisasi dilakukan dengan sistem pembentukan warna hasil reaksi substrat 4-chloro-1-naphthol dengan enzim peroksidase horseradish. Membran yang telah dihibridisasi direaksikan dengan enzim peroksidase yang berkonyugasi dengan ekstravidin. Substrat 4-chloro-1-naphthol yang direaksikan akan menghasilkan deposit berwarna biru pada membran.

Setelah pencucian membran selesai, membran direndam dalam larutan blocking (PBS mengandung 2% tween) selama 10 - 20 menit. Larutan blocking selanjutnya dibuang dan ditambah buffer konyugasi (larutan PBS) dan dibiarkan selama 10 menit dalam larutan buffer konyugasi. Selanjutnya buffer konyugasi dibuang dan ditambahkan larutan ekstravidin yang berkonyugasi dengan HRP (*horse radish peroxidase*) (telah diencerkan 1000 kali dengan PBS) selama 30 menit. Kelebihan ekstravidin-HRP dicuci dengan PBS selama 5 menit. Selanjutnya ditambahkan substrat 4-chloro-1-naphthol (campuran 4 ml 3 mg/ml 4-chloro-1-naphthol dalam metanol, 20 ml 0.05 M Tris-HCl pH 7.4 dan 10 μl hidrogen peroksida 30 %) selama 15 menit dan diamati terbentuknya signal berwarna kebiruan di daerah yang terhibridisasi.

11. Analisis Aktivitas Protease

Pengujuan aktivitas protease dilakukan menurut prosedur Bergmeyer et al., (1983). Sebagai substrat digunakan kasein 2 % yang akan dihidrolisis oleh enzim protease menjadi peptida dan asam amino. Protein yang tidak terhidrolisis diendapkan dengan 0.1 M asam trikloroasetat (TCA), kemudian dipisahkan dengan sentrifugasi. Asam amino hasil pemecahan substrat oleh enzim terdapat dalam supernatant. Asam amino tersebut direaksikan dengan reagen Folin Ciocalteau (1 : 2) membentuk larutan berwarna yang diukur pada anjang gelombang 580 nm
menggunakan spektrofotometer. Satu unit aktivitas enzim setara dengan jumlah enzim yang dapat menghasilkan satu mikromol tirosin per menit. Urutan kerja dari uji protease tersebut dapat dilihat pada bagan berikut:

<table>
<thead>
<tr>
<th>Urutan Penambahan Bahan</th>
<th>Blanko (ml)</th>
<th>Standar (ml)</th>
<th>Sampel (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer borat, pH 8.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Substrat kasein 2 %</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Larutan enzim</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>Tirosin standar (5 mM)</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Akuades</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Inkubasi pada suhu 37 °C tepat 10 menit

Asam trikloroasetat (TCA)	2.0	2.0	2.0
Akuades	-	-	0.2
Larutan enzim	0.2	2.0	-

Inkubasi pada 37 °C selama 10 menit, lalu disentrifusa pada 3500 rpm selama 10 menit

Filtrat	1.5	1.5	1.5
Na₂CO₃, 0.4 M	5.0	5.0	5.0
Folin Cocalteau	1.0	1.0	1.0

Inkubasi 37 °C, 20 menit dan absorbansi diukur pada λ = 580 nm

Unit aktivitas enzim dapat dihitung sebagai berikut:

\[
U = \frac{A_w - A_{bl}}{A_w - A_{bl}} \times p \times \frac{1}{T}
\]

Keterangan:
- \(U\) = unit aktivitas protease (Unit/ml)
- \(A_w\) = nilai absorbansi sampel
- \(A_{sp}\) = nilai absorbansi standar
- \(A_{bl}\) = nilai absorbansi blanko
- \(p\) = faktor pengenceran
- \(T\) = waktu inkubasi (menit)
HASIL DAN PEMBAHASAN

A. Pengujian Inang/Host dan Donor

Bakteri yang digunakan sebagai inang (host) dalam penelitian ini adalah *Bacillus subtilis* DB104. Sifat yang dikehendaki agar bakteri tersebut dapat digunakan sebagai inang antara lain gram positif berbentuk batang, protease negatif dan sensitif terhadap kanamisin. Sebelum dapat digunakan sebagai inang, sifat-sifat di atas harus diuji terlebih dahulu. Pengujian dengan mikroskop dan pewarnaan gram menunjukkan bahwa bakteri tersebut berbentuk batang dan mempunyai sifat gram positif. Pengujian sifat protease negatif dilakukan dengan menumbuhkan bakteri tersebut pada media Skim Milk Agar (SMA) dan diinkubasi pada 37 °C selama semalam. Hasil analisis menunjukkan bahwa bakteri tersebut tidak membentuk atau sedikit sekali menghasilkan halo (areal bening disekitar koloni). Hal ini menunjukkan bahwa *B. subtilis* DB104 yang digunakan sebagai inang tidak atau sedikit sekali menghasilkan enzim protease yang dapat menghidrolisis kasein dalam media SMA. Dari hasil pengukuran aktivitas enzim dengan metode Bergmeyer at al., (1983), juga diperoleh hasil bahwa bakteri tersebut hanya menghasilkan aktivitas enzim protease yang sangat sedikit, yaitu rata-rata 0,003 U/ml.

Pengujian sensitivitas terhadap kanamisin dilakukan dengan menumbuhkan bakteri tersebut pada media Luria Broth yang ditambah antibiotik kanamisin (25 μg/ml), kemudian diinkubasi pada 37 °C, 200 rpm selama semalam. Cara lain yang dilakukan adalah dengan menggores koloni *B. subtilis* DB104 pada media Luria Agar yang mengandung antibiotik kanamisin, juga diinkubasi 37 °C semalam. Hasil pengujian menunjukkan bahwa *B. subtilis* DB104 tidak tumbuh dalam media LA atau LB yang diberi kanamisin 25 μg/ml. Hal ini menunjukkan
bahwa bakteri tersebut bersifat sensitif terhadap antibiotik kanamisin. Kanamisin digunakan sebagai marker antibiotik dalam penelitian ini karena plasmid pUB110 yang digunakan membawa gen resisten terhadap kanamisin.

Bacillus pumilus Y1 yang digunakan adalah hasil isolasi dari limbah cair tahu dari pabrik tahu di Bogor (Suhartono et al., 1994). Bakteri tersebut dalam penelitian ini digunakan sebagai sumber gen protease. Gen protease yang terdapat dalam kromosom bakteri ini akan diligasikan dengan plasmid pUB110, yang selanjutnya ditransformasikan ke dalam *B. subtilis* DB104. Hasil pengujian terhadap *B. pumilus* Y1 menunjukkan bahwa bakteri ini membentuk halo atau areal bening yang luas disekitar koloni jika ditumbuhkan dalam media SMA, 37 °C selama. Pengujian aktivitas protease dilakukan dengan media Luria broth yang ditambah skim 0.5 %, menghasilkan aktivitas rata-rata sebesar 0.103 U/ml. Hasil pengujian juga menunjukkan bahwa *B. pumilus* Y1 tidak dapat tumbuh dalam media LA atau LB yang diberi antibiotik kanamisin 25 μg/ml. Tabel 1 dan Gambar 2 menunjukkan data hasil pengujian di atas.

Dari hasil pengujian-pengujian di atas dapat disimpulkan bahwa *B. subtilis* DB104 yang digunakan sebagai inang mempunyai sifat tidak atau sedikit sekali menghasilkan protease dan sensitif terhadap kanamisin. Sedangkan *B. pumilus* Y1 mempunyai aktivitas protease yang tinggi dan sensitif kanamisin.
Tabel 1. Penguji beberapa sifat *B. subtilis* DB104 dan *B. pumilus* Y1 yang digunakan untuk pengklonan gen.

<table>
<thead>
<tr>
<th>Jenis pengujuan</th>
<th>B. subtilis DB104</th>
<th>B. pumilus Y1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembentukan halo</td>
<td>tidak/sangat sedikit halo</td>
<td>membentuk halo</td>
</tr>
<tr>
<td>Aktivitas enzim protease</td>
<td>0.003 U/ml</td>
<td>0.103 U/ml</td>
</tr>
<tr>
<td>Sensitivitas terhadap kanamisin</td>
<td>sensitif</td>
<td>sensitif</td>
</tr>
<tr>
<td>Sel mikroba</td>
<td>batang, gram positif</td>
<td>batang, gram positif</td>
</tr>
</tbody>
</table>

Gambar 2. Koloni *B. subtilis* DB104 tidak membentuk *halo* dan *B. pumilus* Y1 membentuk *halo* dalam media SMA.

B. Pengklonan Gen Protease

Hasil penelitian Ristiarini (1996) menunjukkan bahwa DNA kromosom *B. pumilus* Y1 yang dipotong dengan *EcoRI*, kemudian dihibridisasi dengan menggunakan pelacak gen substilisin, akan menghasilkan tiga lokasi dengan intensitas yang kuat yaitu 5.6 kb, 4.62 kb dan 3.24 kb. Intensitas terkuat diperoleh pada ukuran 3.24 kb. Sedangkan jika DNA kromosom tersebut dipotong dengan *HindIII*, hasil pelacakan dengan gen substilisin menunjukkan empat lokasi yang terhibridisasi kuat, yaitu pada ukuran 5.68 kb, 3.22 kb, 2.02 kb dan 1.68 kb. Intensitas terkuat
nampak pada 3.22 kb. Hasil penelitian tersebut menunjukkan bahwa potongan atau fragmen DNA kromosom *B. pumilus* Y1 dengan ukuran 3.24 kb hasil pemotongan dengan *EcoRI* kemungkinan besar mengandung gen protease serupa substilisin.

Dalam penelitian ini DNA kromosom *B. subtilis* Y1 didigesti secara lengkap dengan enzim *EcoRI* (37 °C, semalam) dan kemudian potongan atau fragmen DNA dengan ukuran sekitar 3.2 - 3.4 kb diambil dan dimurnikan dengan metode *Gene Clean*. Pengambilan fragmen DNA yang diperkirakan mengandung gen protease serupa substilisin dapat dilihat pada Gambar 3.

![Gambar 3. Proses pengambilan fragmen gen serupa substilisin dari kromosom *B. pumilus* Y1 yang didigesti dengan *EcoRI*.

Keterangan:
A. Hasil digesti sempurna DNA kromosom Y1 dengan *EcoRI*
C. Pemotongan fragmen sekitar 3.2 - 3.4 kb dari hasil digesti DNA kromosom Y1 dengan *EcoRI*, yang selanjutnya diisolasi untuk keperluan ligasi dengan plasmid pUB110 linier (dipotong dengan *EcoRI*).
Fragmen dengan ukuran sekitar 3.24 kb hasil isolasi dari kromosom Y1-EcoRI (yang diperkirakan mengandung gen serupa substilisin) selanjutnya diligasi dengan plasmid pUB110 (yang juga telah dipotong dengan enzim EcoRI) dengan menggunakan enzim T4 DNA ligase pada suhu 4 °C selama semalam. Ligasi dilakukan pada suhu relatif rendah karena pada suhu tersebut DNA dalam keadaan stabil. Suhu optimum untuk ligasi ujung kohesif adalah 4 - 15 °C (Old dan Primrose, 1989). Perbandingan antara DNA kromosom dan plasmid dalam reaksi ligasi tersebut yang dicoba adalah 2: 1; 5: 1 dan 10 : 1, yang dimaksudkan untuk mengoptimalkan proses rekombinasi. Hasil ligasi tersebut kemudian ditransformasikan ke dalam sel inang dengan menggunakan metode protoplast. Koloni yang diduga merupakan bakteri rekombinan (bakteri yang membawa plasmid rekombinan) adalah koloni yang tumbuh dan membentuk halo pada media Vy-R5 Agar + Skim yang mengandung antibiotik kanamisin 25 μg/ml.

Gambar 4. Protoplas dari *Bacillus subtilis* DB104, yang tidak diberi warna (atas) dan diberi warna safranin (bawah).
Pembentukan protoplas sel *Bacillus subtilis* DB104 dipengaruhi oleh lama waktu hidrolisis dinding sel dan kecepatan shaker. Dari hasil penelitian diketahui bahwa waktu hidrolisis 30 dan 60 menit belum cukup untuk merubah semua sel bakteri menjadi protoplas, karena dari pengamatan di bawah mikroskop masih terdapat sel-sel bakteri yang masih berbentuk batang atau masih belum terhidrolisis dinding selnya. Sedangkan kecepatan shaker yang diperoleh adalah 100 rpm, karena kecepatan di atas 100 rpm (telah dicoba 150 dan 200 rpm) menyebabkan adanya protoplas yang pecah.

Dari hasil penelitian pendahuluan yang telah dicoba diketahui bahwa keberhasilan proses transformasi dengan metode protoplas ternyata dipengaruhi oleh hal-hal sebagai berikut:

a. Media regenerasi yaitu Vy-R5+kan+skim harus dibuat dalam keadaan kering dalam arti tidak ada "genangan" air di atas media atau kumpulan air di tutup cawan petri. Pada percobaan penyebaran yang dilakukan pada media masih basah, proses transformasi gagal, bahkan tidak terlihat adanya pertumbuhan koloni. Hal ini disebabkan protoplas yang terekspose media berair akan pecah, sehingga tidak tumbuh. Media regenerasi yang kering tersebut dapat diperoleh dengan cara menyimpan media di dalam inkubator 37 °C selama 2 jam atau membiarkan pada suhu kamar selama semalam. Pada media yang telah "kering" ini proses transformasi menunjukkan hasil yang baik.

b. Plasmid hasil isolasi dengan metode lisis alkali, sebelum dikeringkan secara vakum, dicuci dengan etanol 70 % sebanyak 3 atau 4 kali, tidak satu kali seperti dalam prosedur standarnya. Kemudian baru dilakukan ligasi. Hal yang sama juga dilakukan pada tahap akhir isolasi DNA kromosom *Bacillus pumilus* Y1. Perlakuan ini dimaksudkan untuk menghilangkan sisa-sisa SDS yang kemungkinan masih melekat pada DNA. Campuran ligasi yang DNA-nya
kemungkinan masih mengandung SDS dapat menyebabkan kegagalan proses transformasi. Hal ini diduga karena protoplas sangat sensitif terhadap deterjen.

Koloni *B. subtilis* DB104 yang tumbuh dalam media Vy-R5 Agar + Skim yang mengandung antibiotik kanamisin disebut koloni transforman. Istilah transforman menunjukkan bahwa sel-sel bakteri dalam koloni tersebut telah menerima DNA plasmid dari luar melalui proses transformasi. Koloni transforman yang tumbuh terdiri atas dua jenis yaitu transforman yang tidak membentuk *halo* dan transforman yang membentuk *halo*. Transforman yang membentuk *halo* merupakan calon koloni bakteri rekombinan. Hasil transformasi dapat dilihat pada Tabel 2. Tabel 2 tersebut menunjukkan bahwa dari sekitar 1000 terdapat 3 - 4 koloni yang membentuk *halo*. Frekuensi transformasi yang terhitung dengan metode transformasi protoplas adalah 10^3. Perbandingan antara plasmid pUB110 dengan fragmen DNA kromosom pada Tabel 2. dinyatakan dalam perbandingan volume, karena perbandingan dalam berat (μg DNA) tidak dapat dilakukan mengingat ketiadaan alat untuk mengukur konsentrasi DNA.
Gambar 5. Penampakan koloni inang Bacillus subtilis DB104, Bacillus subtilis rekombinan dan Bacillus pumilus Y1 dalam media Skim Milk Agar (SMA) dan SMA + kan.

Tabel 3. Perbandingan sifat-sifat biokimia enzim yang diproduksi oleh *B. pumilus* Y1 dan *Bacillus subtilis* rekombinan.

<table>
<thead>
<tr>
<th>Parameter Biokimia</th>
<th>Enzim Bacillus pumilus Y1</th>
<th>Enzim Bacillus subtilis rekombinan**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aktivitas enzim (+ am. sulfat)</td>
<td>0.52 UI/mg*</td>
<td>3.34 UI/mg</td>
</tr>
<tr>
<td>Suhu optimum</td>
<td>55 °C</td>
<td>60 °C (95.5% pada 55 °C)</td>
</tr>
<tr>
<td>pH optimum</td>
<td>8</td>
<td>6.5 - 9.0</td>
</tr>
<tr>
<td>Berat molekul</td>
<td>± 29000 Da</td>
<td>± 29000 Da</td>
</tr>
<tr>
<td>Penambahan:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- PMSF</td>
<td>- dihambat (5 mM)</td>
<td>- dihambat (1 mM)</td>
</tr>
<tr>
<td>- Triton X</td>
<td>- aktivitas meningkat</td>
<td>- aktivitas stabil</td>
</tr>
<tr>
<td>- EDTA</td>
<td>- dihambat (5 mM)</td>
<td>- sedikit dihambat</td>
</tr>
</tbody>
</table>

Gambar 6. Hasil *isoelectric focusing* enzim hasil produksi bakteri rekombinan R1(lajur 3 dan 4) dan *Bacillus pumilus* Y1 (lajur 5). Lajur lainnya adalah sel darah merah tikus.
Tabel 2. Jumlah sel hidup, transforman, calon rekombinan dan frekuansi transformasi yang diperoleh dengan metode transformasi protoplast.

<table>
<thead>
<tr>
<th>Perbandingan pUB110 dengan DNA kromosom</th>
<th>Sel hidup (viable cells)</th>
<th>Transforman tidak ber-halo</th>
<th>Calon Rekombinan</th>
<th>Frekuensi Transformasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 : 2</td>
<td>2.4 x 10⁸</td>
<td>1.6 x 10³</td>
<td>tidak ada</td>
<td>6.7 x 10⁴</td>
</tr>
<tr>
<td>1 : 5</td>
<td>1.5 x 10⁸</td>
<td>1.7 x 10³</td>
<td>3</td>
<td>1.13 x 10⁵</td>
</tr>
<tr>
<td>1 : 10</td>
<td>1.2 x 10⁸</td>
<td>1.5 x 10³</td>
<td>4</td>
<td>1.25 x 10⁵</td>
</tr>
</tbody>
</table>

Koloni transforman yang tidak membentuk halo diduga terjadi karena dua hal. Pertama, transforman tersebut merupakan *B. subtilis* DB104 yang telah menerima plasmid pUB110 yang utuh tanpa adanya gen asing atau insert di dalamnya. Plasmid utuh ini dapat terbentuk pada saat ligasi terjadi penyambungan kembali plasmid pUB yang sebelumnya telah dipotong oleh enzim *EcoRI*. Sebab kedua, diduga merupakan koloni *B. subtilis* DB104 yang menerima plasmid plasmid besar hasil penggabungan dua atau lebih plasmid pUB110 linier. Kemungkinan lainnya adalah merupakan rekombinan yang membawa DNA insert, tetapi DNA ini bukan gen protease. Kedua jenis koloni transforman tidak berhalo tersebut dapat tumbuh dalam media yang mengandung antibiotik kanamisin disebabkan karena plasmid pUB 110 yang masuk ke dalam masing-masing sel bakteri mengandung gen yang menyandikan sifat resistensi terhadap kanamisin.

Koloni yang membentuk *halo* pada media regenerasi (VY-R5) yang mengandung skim dan kanamisin 25 μg/ml selanjutnya diambil dengan ujung tusuk gigi steril dan digoreskan pada media SMA yang mengandung kanamisin 25 μg/ml, dan diinkubasi pada 37 °C selama 12 jam (semalam). Koloni tersebut ternyata dapat tumbuh dengan cepat dan membentuk *halo* yang besar. Penampakan koloni transforman ber-halo (bakteri rekombinan) dibandingkan dengan koloni *Bacillus subtilis* DB104 dan koloni *Bacillus pumilus* Y1 dalam media SMA dan SMA+kan dapat dilihat pada Gambar 5. Index proteolitik rata-rata yang diperoleh untuk *Bacillus pumilus* Y1 dan bakteri rekombinan R1 masing-masing adalah 1.70 dan 2.35.
C. Verifikasi Plasmid Rekombinan

Dari seluruh rangkaian percobaan ligasi fragmen DNA dengan plasmid pUB110 linier, yang diikuti dengan proses transformasi ke dalam sel inang, berhasil diperoleh beberapa koloni yang diperkirakan merupakan koloni rekombinan. Perkiraan ini didasarkan atas kemampuan koloni tersebut tumbuh dan membentuk halo pada media seleksi (media mengandung antibiotik kanamisin 25 μg/ml).

Keterangan:
A. Lajur 1. 1kb, 2. pUB110*-EcoRI*, 3. pPT30*-EcoRI*, 4. R3*-EcoRI*
B. Lajur 1. pPT30*-EcoRI*, 2. R4*-EcoRI*, 3. R5*-EcoRI*
C. Lajur 1. 1 kb, 2. pPT30*-EcoRI*, 3 dan 4. R2*-EcoRI*, 5. R1*-EcoRI*

D. Hibridisasi Southern

Lajur 1. Kontrol positif (gen substilisin, pPT30- EcoRI);
2. Plasmid rekombinan R1-EcoRI; 3. Plasmid rekombinan R2-EcoRI
KESIMPULAN DAN SARAN

A. KESIMPULAN

Gen protease serupa substilisin dari *Bacillus pumilus* Y1 telah dapat diklonkan ke dalam *Bacillus subtilis* DB 104 dengan plasmid pUB110. Insert yang dibawa sekitar 2.8 - 3.0 kb dan 3.2 kb, dengan frekuensi transformasi 10^3. Metode transformasi yang baik untuk digunakan dalam mentransfer DNA plasmid (pUB110 yang membawa insert) dan inang berupa *Bacillus subtilis DB104* adalah metode protoplast. Hal-hal yang mempengaruhi keberhasilan proses transformasi adalah (1). Media seleksi yaitu Vy-R5 + skim + kan harus dalam keadaan kering atau tidak ada air yang berlebih di atas media, dan (2). Perlu dilakukan pencucian 2 - 3 kali dengan etanol 70 % terhadap plasmid dan fragmen DNA hasil isolasi menggunakan metode lisis alkali.

Dengan proses tersebut telah dapat ditingkatkan produktivitas enzimnya dari 0.52 UI/mg pada *B. pumilus* Y1 menjadi 3.34 UI/mg pada *B. subtilis* DB104 rekombinan atau ditingkatkan sekitar 6 kali. Sifat biokimiawi enzim rekombinan mirip dengan sifat enzim dari bakteri donor gen proteasenya.

B. SARAN

Perlu dilakukan subkloning atau *nested deletion* terhadap insert gen protease yang telah terklon, sehingga diperoleh ukuran terkecil yang masih menunjukkan adanya aktivitas protease yang tinggi. Ukuran gen yang kecil ini dapat memudahkan dan menurunkan biaya jika gen protease tersebut akan disekuencen.
Penelitian lain yang dapat dilakukan adalah analisis kestabilan plasmid rekombinan dan aplikasi dari bakteri rekombinan yang dihasilkan dalam menghasilkan enzim protease industrial.
DAFTAR PUSTAKA

LAMPIRAN
Lampiran 1. Pembuatan Larutan Stok

1. 50 x Denhardt's, untuk membuat 100 ml: ke dalam 100 ml dH₂O dilarutkan 1 g Ficoll, 1 g polivinil pyrrolidon, 1 g BSA (fraksi V). Larutan disterilkan dengan filter dan disimpan -20 °C.

2. 10 mg/ml ethidium bromida, untuk membuat 10 ml: ke dalam 10 ml dH₂O dilarutkan 0.1 gram EtBr. Larutan ditempatkan dalam botol gelap atau botol yang dibungkus alumunium foil dan disimpan pada suhu ruang. Pembuatan larutan harus dengan menggunakan sarung tangan dan masker, mengingat EtBr bersifat mutagen dan toksik.

3. 0.5 M glukosa, untuk membuat 100 ml: ke dalam 100 ml dH₂O dilarutkan 9.909 gram glukosa monohidrat.

4. 0.5 M Na₂EDTA (pH 8.0), untuk membuat 1 liter: ke dalam 800 ml H₂O dilarutkan 186.1 gram Na₂EDTA.2H₂O, pH diatur sampai 8.0 dengan 10 N NaOH, larutan ditera sampai 1 liter dan disterilkan dengan otoklaf.

5. 10 N NaOH, untuk membuat 100 ml: ke dalam 80 ml H₂O dilarutkan 40 gram NaOH, larutan ditera hingga 100 ml.

6. 10% Sodium Dodesil Sulfate (SDS): ke dalam 900 ml dH₂O dilarutkan 100 gram SDS. Untuk mempercepat larutan dilakukan pemanasan pada suhu 68 °C. Volume ditera sampai 1 liter.

7. 20X SSC (3 M NaCl, 0.3 M Na-sitrat, pH 7.0): ke dalam 800 ml dH₂O dilarutkan 175.3 gram NaCl dan 88.2 gram Na-sitrat. pH larutan dibuat 7.0 dengan beberapa tetes 10 N NaOH. Volume larutan ditepatkan sampai 1 liter. Larutan disterilkan dengan otoklaf.

8. 50X Tris-asetat EDTA (TAE), untuk membuat 1 liter: ke dalam 1 liter dH₂O dilarutkan 242 gram basa Tris, 37.2 gram Na₂EDTA, dan 57.1 ml asam asetat glasial.

9. 2 M Tris-HCl (pH 8.0), untuk membuat 100 ml: ke dalam 85 ml dH₂O dilarutkan 24.22 gram basa Tris dan pH diatur 8.0 dengan menggunakan HCl pekat. Volume larutan ditera hingga 100 ml.

10. 20 X SSPE, untuk membuat 1 liter: ke dalam 800 ml dH₂O dilarutkan 174 gram NaCl, 27.6 gram NaH₂PO₄.H₂O, 7.4 gram Na₂EDTA dan pH diatur hingga 7.4 dengan penambahan NaOH. Volume ditera sampai 1 liter.
Lampiran 2. Pembuatan Larutan untuk Isolasi DNA dan Elektroforesis Gel

1. Tris/EDTA/glukosa (25 mM Tris-HCl, 10 mM Na₂EDTA, 50 mM glukosa) : ke dalam 43.375 ml dH₂O ditambahkan 5 ml 0.5 M glukosa, 1 ml 0.5 M Na₂EDTA dan 0.625 ml 2 M Tris-HCl.

2. 10 mg/ml lisozim : ke dalam 1 ml larutan di atas, dilarutkan 10 mg lisozim. Larutan lisozim dibuat segar apabila akan digunakan.

3. NaOH/SDS (0.2 M NaOH, 1% SDS) : ke dalam 1.056 µl dH₂O ditambahkan 24 µl 10 N NaOH, 120 µl 10% SDS. Larutan dibuat segar dalam jumlah secukupnya untuk setiap kali isolasi.

4. 3 M Na-asetat. Sebanyak 40.8 gram CH₃COONa.3H₂O dilarutkan ke dalam dH₂O dalam volume minimal. pH diatur menjadi 4.8 dengan asam asetat glasial. Kemudian ditambahkan dH₂O menjadi 100 ml. Larutan disterilkan dengan otoklaf.

5. Fenol/kloroform/isoamilalkohol (25 : 24 : 1), untuk membuat 50 ml : fenol dicairkan terlebih dahulu dengan pemanasan, suhu 40 °C, kemudian diekuilibrasi dengan 0.35 volume 0.171 M basa Tris, pH 8.0 selama semalaman. Fase bawah (fenol) diambil sebanyak 25 ml, dicampur dengan 24 ml kloroform dan 1 ml isoamilalkohol. Larutan ditempatkan dalam wadah gelap dan disimpan 4 °C. Pada saat ekuilibrasi fenol harus menggunakan sarung tangan, karena fenol bersifat sangat korosif dan dapat menyebabkan kulit seperti terbakar.

6. Tris-HCl EDTA (TE), untuk membuat 100 ml : ke dalam 99.3 ml dH₂O ditambahkan 0.5 ml 2 M Tris, 20 µl 0.5 M Na₂EDTA. pH akhir diterap sampai 8.

7. 20 mg/ml proteinase K : ke dalam 1 ml dH₂O dilarutkan 20 mg proteinase K. Larutan disimpan dalam freezer (-20 °C).

8. 5 M NaCl, untuk membuat 100 ml : ke dalam 80 ml dH₂O dilarutkan 29.22 gram NaCl kemudian diterap hingga 100 ml. Larutan disterilisasi dengan otoklaf.

9. 10% N'-Cetyl-N,N,N'-Trimethylammoniumbromide (CTAB), untuk membuat 100 ml : larutan 10 g CTAB dalam 100 ml 0.7 M NaCl.

11. 1 X TAE, untuk membuat 1 liter : 20 ml 50 x TAE diencerkan menjadi 1 liter dengan dH₂O.

12. Blue juice : dicampurkan sejumlah 0.25 % bromphenol blue, 0.25 % xylene cyanol FF dan 15 % Ficoll dalam akuades. Blue juice dapat disimpan dalam suhu ruang.
Lampiran 3. Percaksi untuk Transformasi Metode Protoplas

1. SMM 2 X : ditimbang sukrosa 171 g, Na-maleat 2.3 g, MgCl\(_2\)(6H\(_2\)O) 4 g, atur pH dengan NaOH sampai 6.5, tepatkan volume menjadi 1 liter dengan akuades.

2. PEG 40% : ditimbang polietilen glikol 8000 400 g, 2 X SMM 500 ml, tepatkan volume menjadi 1 liter dengan akuades.

3. Media Vy-R5 : ditimbang sukrosa 103 g, K\(_2\)SO\(_4\) 0.25 g, MgCl\(_2\)(6H\(_2\)O) 10 g, glukosa 10 g, MOPS 6.5 g, NaOH 0.66 g, prolin 6 g, casamino acid 0.2 g, yeast ekstrak 10 g, KH\(_2\)PO\(_4\) 0.05 g, CaCl\(_2\) 2.2 g, dilarutkan dalam akuades sampai 1 liter.

4. Larutan KCl 410 mM : ditimbang 3.0570 gram KCl, larutkan dalam 100 ml akuades.

5. CaCl\(_2\) 1 M : ditimbang 14.7 gram CaCl\(_2\) kemudian dilarutkan sampai volume 100 ml.
Lampiran 4. Pembuatan larutan stok untuk Southern Blots

1. 20 x SSC (3M NaCl, 0.3 M Na-sitrat, pH 7.0) : ke dalam 800 ml dH₂O dilarutkan 1753 gram NaCl dan 88.2 gram Na-sitrat. pH larutan dibuat 7.0 dengan beberapa tetes 10 N NaOH. Volume larutan ditepatkan sampai 1 liter. Larutan disterilkan dengan otoklaf.

2. Larutan denaturasi (1.5 M NaCl, 0.5 M NaOH) : 20 gram NaOH, 88 gram NaCl, dilarutkan dalam akuades dan volume ditera sampai 1 liter.

3. Larutan netralisasi (1 M Tris, 1.5 M NaCl) : 121 gram basa Tris dan 88 gram NaCl, dilarutkan dalam 1 liter akuades, pH diatur 7.5 dengan HCl pekat.
Lampiran 5. Pembuatan larutan untuk Hibridisasi dan Deteksi

1. Larutan hibridisasi, untuk 10 ml larutan: dicampurkan 5.0 ml formamid, 1.0 ml 50X Denhardts, 2.5 ml 20 X SSPE, 0.1 ml 10% SDS, 0.1 ml DNA sperma salmon dan 1.3 ml dH₂O.

2. Larutan pencuci I (1 x SSPE, 0.1 % SDS), untuk membuat 1 liter: ke dalam 940 ml dH₂O dicampurkan 50 ml 20 x SSPE dan 10 % SDS.

3. Larutan pencuci II (0.1 x SSPE, 0.1 % SDS), untuk membuat 1 liter: ke dalam 985 ml dH₂O dicampurkan 5 ml 20 x SSPE dan 10 % SDS.

4. Larutan blocking (5 % SDS, 17 mM Na₂HPO₄, 8 mM NaH₂PO₄): dilarutkan 7.3 gram NaCl, 2.41 gram Na₂HPO₄ dan 0.96 gram NaH₂PO₄ serta 49.89 gram SDS dalam 800 ml akuades. Volume ditera sampai 1 liter.

5. Larutan pencuci I (0.5 % SDS, 1.7 mM Na₂HPO₄, 0.8 mM NaH₂PO₄): dicampurkan satu bagian larutan blocking dangan 9 bagian air.

6. Larutan pencuci II (100 mM Tris-HCl, 100 mM NaCl, 10 mM MgCl₂, pH 9.5): Dilarutkan 12.1 gram Tris, 5.85 gram NaCl, 2.03 gram MgCl₂ dalam 800 ml air, pH ditera sampai 9.5 dengan HCl. Volume ditera sampai 1 liter.