LAMPIRAN
Lampiran 1. Keadaan stasiun penelitian

1. Hak Cipta Dilindungi Undang-Undang

2. Penggunaan foto untuk tujuan penelitian, pendidikan, atau keperluan lain dalam bentuk apa pun dan tidak untuk tujuan komersial tanpa izin IPB.

Stasiun I (perairan pantai Lonthoir)

Stasiun II (perairan pantai Walang)

Stasiun III (perairan pantai Tita)
Lampiran 2. Nilai parameter fisika kimia perairan pada stasiun penelitian

<table>
<thead>
<tr>
<th>Stasiun I</th>
<th>Juli</th>
<th>Agst</th>
<th>Sep</th>
<th>Okt</th>
<th>Nov</th>
<th>Des</th>
<th>Rerata</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suhu (°C)</td>
<td>32.0</td>
<td>29.5</td>
<td>30.0</td>
<td>29.0</td>
<td>30.0</td>
<td>30.0</td>
<td>30.08</td>
<td>1.021</td>
</tr>
<tr>
<td>Salinitas (ppt)</td>
<td>31.0</td>
<td>33.0</td>
<td>32.0</td>
<td>32.0</td>
<td>31.2</td>
<td>30.5</td>
<td>31.4</td>
<td>31.52</td>
</tr>
<tr>
<td>DO (mg/l)</td>
<td>6.1</td>
<td>5.4</td>
<td>5.8</td>
<td>6.2</td>
<td>6.0</td>
<td>5.6</td>
<td>5.9</td>
<td>0.308</td>
</tr>
<tr>
<td>Kec. Arus (m/det)</td>
<td>0.09</td>
<td>0.11</td>
<td>0.13</td>
<td>0.09</td>
<td>0.10</td>
<td>0.12</td>
<td>0.11</td>
<td>0.016</td>
</tr>
<tr>
<td>pH</td>
<td>7.5</td>
<td>7.2</td>
<td>8.0</td>
<td>7.3</td>
<td>8.0</td>
<td>7.6</td>
<td>7.60</td>
<td>0.341</td>
</tr>
<tr>
<td>Fosfat (mg/l)</td>
<td>0.011</td>
<td>0.013</td>
<td>0.015</td>
<td>0.015</td>
<td>0.012</td>
<td>0.013</td>
<td>0.012</td>
<td>0.001</td>
</tr>
<tr>
<td>Nitrat (mg/l)</td>
<td>0.014</td>
<td>0.006</td>
<td>0.007</td>
<td>0.007</td>
<td>0.009</td>
<td>0.009</td>
<td>0.004</td>
<td>0.004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stasiun II</th>
<th>Jul</th>
<th>Agst</th>
<th>Sep</th>
<th>Okt</th>
<th>Nov</th>
<th>Des</th>
<th>Rerata</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suhu (°C)</td>
<td>31.5</td>
<td>29.5</td>
<td>30.0</td>
<td>29.5</td>
<td>30.0</td>
<td>30.0</td>
<td>30.0</td>
<td>0.77</td>
</tr>
<tr>
<td>Salinitas (ppt)</td>
<td>32.1</td>
<td>30.0</td>
<td>30.0</td>
<td>32.0</td>
<td>31.0</td>
<td>31.0</td>
<td>31.0</td>
<td>0.92</td>
</tr>
<tr>
<td>DO (mg/l)</td>
<td>6.0</td>
<td>6.3</td>
<td>6.8</td>
<td>6.3</td>
<td>6.2</td>
<td>5.7</td>
<td>6.2</td>
<td>0.37</td>
</tr>
<tr>
<td>Kec. Arus (m/det)</td>
<td>0.10</td>
<td>0.12</td>
<td>0.10</td>
<td>0.10</td>
<td>0.11</td>
<td>0.12</td>
<td>0.11</td>
<td>0.012</td>
</tr>
<tr>
<td>pH</td>
<td>7.5</td>
<td>8</td>
<td>7.5</td>
<td>7.3</td>
<td>7.8</td>
<td>7.9</td>
<td>7.7</td>
<td>0.27</td>
</tr>
<tr>
<td>Fosfat (mg/l)</td>
<td>0.013</td>
<td>0.015</td>
<td>0.012</td>
<td>0.012</td>
<td>0.013</td>
<td>0.013</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>Nitrat (mg/l)</td>
<td>0.002</td>
<td>0.006</td>
<td>0.009</td>
<td>0.009</td>
<td>0.006</td>
<td>0.006</td>
<td>0.004</td>
<td>0.004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stasiun III</th>
<th>Jul</th>
<th>Agst</th>
<th>Sep</th>
<th>Okt</th>
<th>Nov</th>
<th>Des</th>
<th>Rerata</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suhu (°C)</td>
<td>31.0</td>
<td>29.0</td>
<td>31.0</td>
<td>31.5</td>
<td>31.0</td>
<td>32.0</td>
<td>30.9</td>
<td>1.02</td>
</tr>
<tr>
<td>Salinitas (ppt)</td>
<td>34.0</td>
<td>32.0</td>
<td>31.0</td>
<td>32.0</td>
<td>33.0</td>
<td>30.0</td>
<td>32.0</td>
<td>1.41</td>
</tr>
<tr>
<td>DO (mg/l)</td>
<td>5.6</td>
<td>5.9</td>
<td>6.5</td>
<td>6.0</td>
<td>6.1</td>
<td>6.0</td>
<td>6.0</td>
<td>0.29</td>
</tr>
<tr>
<td>Kec. Arus (m/det)</td>
<td>0.09</td>
<td>0.10</td>
<td>0.09</td>
<td>0.12</td>
<td>0.10</td>
<td>0.11</td>
<td>0.10</td>
<td>0.01</td>
</tr>
<tr>
<td>pH</td>
<td>7.4</td>
<td>8</td>
<td>7.5</td>
<td>7.5</td>
<td>7.7</td>
<td>7.8</td>
<td>7.7</td>
<td>0.23</td>
</tr>
<tr>
<td>Fosfat (mg/l)</td>
<td>0.013</td>
<td>0.020</td>
<td>0.011</td>
<td>0.011</td>
<td>0.015</td>
<td>0.015</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>Nitrat (mg/l)</td>
<td>0.013</td>
<td>0.008</td>
<td>0.007</td>
<td>0.007</td>
<td>0.009</td>
<td>0.009</td>
<td>0.003</td>
<td>0.003</td>
</tr>
</tbody>
</table>
Lampiran 4. Hasil perhitungan kepadatan, frekuensi kehadiran dan penutupan jenis lamun di setiap stasiun

A. Kepadatan jenis lamun

<table>
<thead>
<tr>
<th>Jenis Lamun</th>
<th>St I</th>
<th>St II</th>
<th>St III</th>
<th>Rerata</th>
<th>SD</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhalus acoroides</td>
<td>2.24</td>
<td>46.18</td>
<td>56.00</td>
<td>34.81</td>
<td>28.63</td>
<td>16.53</td>
</tr>
<tr>
<td>Thalassia hemprichii</td>
<td>46.64</td>
<td>45.24</td>
<td>152.75</td>
<td>81.54</td>
<td>61.67</td>
<td>35.61</td>
</tr>
<tr>
<td>Cymodocea serrulata</td>
<td>108.56</td>
<td>0.00</td>
<td>0.00</td>
<td>36.19</td>
<td>76.76</td>
<td>54.28</td>
</tr>
<tr>
<td>Cymodocea rotundata</td>
<td>369.60</td>
<td>200.24</td>
<td>136.67</td>
<td>235.50</td>
<td>164.71</td>
<td>116.47</td>
</tr>
<tr>
<td>Haliotis uninervis</td>
<td>14.32</td>
<td>6.29</td>
<td>1.83</td>
<td>7.48</td>
<td>6.33</td>
<td>3.65</td>
</tr>
<tr>
<td>Syringodium isetifolium</td>
<td>0.16</td>
<td>69.59</td>
<td>31.50</td>
<td>33.75</td>
<td>34.77</td>
<td>20.07</td>
</tr>
<tr>
<td>Haliotis ovalis</td>
<td>48.80</td>
<td>13.82</td>
<td>27.92</td>
<td>30.18</td>
<td>17.60</td>
<td>10.16</td>
</tr>
</tbody>
</table>

B. Frekuensi kehadiran

<table>
<thead>
<tr>
<th>Jenis Lamun</th>
<th>Stasiun I</th>
<th>Stasiun II</th>
<th>Stasiun III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rerata</td>
<td>SD</td>
<td>Rerata</td>
</tr>
<tr>
<td>Enhalus acoroides</td>
<td>0.014</td>
<td>0.048</td>
<td>0.283</td>
</tr>
<tr>
<td>Thalassia hemprichii</td>
<td>0.179</td>
<td>0.284</td>
<td>0.244</td>
</tr>
<tr>
<td>Cymodocea serrulata</td>
<td>0.193</td>
<td>0.352</td>
<td>0.000</td>
</tr>
<tr>
<td>Cymodocea rotundata</td>
<td>0.666</td>
<td>0.378</td>
<td>0.535</td>
</tr>
<tr>
<td>Haliotis uninervis</td>
<td>0.020</td>
<td>0.072</td>
<td>0.019</td>
</tr>
<tr>
<td>Syringodium isetifolium</td>
<td>0.001</td>
<td>0.004</td>
<td>0.126</td>
</tr>
<tr>
<td>Haliotis ovalis</td>
<td>0.102</td>
<td>0.202</td>
<td>0.039</td>
</tr>
</tbody>
</table>

C. Penutupan jenis lamun

<table>
<thead>
<tr>
<th>Jenis Lamun</th>
<th>Stasiun I</th>
<th>Stasiun II</th>
<th>Stasiun III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rerata</td>
<td>SD</td>
<td>Rerata</td>
</tr>
<tr>
<td>Enhalus acoroides</td>
<td>0.78</td>
<td>1.21</td>
<td>19.66</td>
</tr>
<tr>
<td>Thalassia Hemprichii</td>
<td>18.07</td>
<td>11.12</td>
<td>16.33</td>
</tr>
<tr>
<td>Cymodocea serrulata</td>
<td>16.06</td>
<td>23.07</td>
<td>0.00</td>
</tr>
<tr>
<td>Cymodocea rotundata</td>
<td>60.29</td>
<td>23.24</td>
<td>51.46</td>
</tr>
<tr>
<td>Haliotis uninervis</td>
<td>5.73</td>
<td>10.16</td>
<td>2.88</td>
</tr>
<tr>
<td>Syringodium isetifolium</td>
<td>0.17</td>
<td>0.43</td>
<td>24.20</td>
</tr>
<tr>
<td>Haliotis ovalis</td>
<td>2.15</td>
<td>2.24</td>
<td>1.53</td>
</tr>
</tbody>
</table>
Lampiran 5. Komposisi jenis dan jumlah individu ikan yang tertangkap di Selat Lonthoir.

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis</th>
<th>Familia</th>
<th>Jumlah Individu</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stasiun I</td>
<td>Stasiun II</td>
</tr>
<tr>
<td>1</td>
<td>Acanthurus triostegus</td>
<td>Acanthuridae</td>
<td>7</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>Carangoides chrysophrys</td>
<td>Carangidae</td>
<td>13</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>Caranx sexfasciatus</td>
<td>Carangidae</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Platichthys pinnatus</td>
<td>Ephippidae</td>
<td>28</td>
<td>42</td>
</tr>
<tr>
<td>5</td>
<td>Diapterus auratus</td>
<td>Gerreidae</td>
<td>125</td>
<td>213</td>
</tr>
<tr>
<td>6</td>
<td>Hemiramphus dussumieri</td>
<td>Hemiramphidae</td>
<td>69</td>
<td>170</td>
</tr>
<tr>
<td>7</td>
<td>Lethrinus ornatus</td>
<td>Lethrinidae</td>
<td>181</td>
<td>299</td>
</tr>
<tr>
<td>8</td>
<td>Lethrinus lenjan</td>
<td>Lethrinidae</td>
<td>305</td>
<td>441</td>
</tr>
<tr>
<td>9</td>
<td>Lutjanus fulvus</td>
<td>Lutjanidae</td>
<td>736</td>
<td>157</td>
</tr>
<tr>
<td>10</td>
<td>Lutjanus bouillon</td>
<td>Lutjanidae</td>
<td>139</td>
<td>86</td>
</tr>
<tr>
<td>11</td>
<td>Lutjanus fuscescens</td>
<td>Lutjanidae</td>
<td>42</td>
<td>28</td>
</tr>
<tr>
<td>12</td>
<td>Crenimugil crenilabis</td>
<td>Mugilidae</td>
<td>56</td>
<td>70</td>
</tr>
<tr>
<td>13</td>
<td>Mullloidichthys flavolineatus</td>
<td>Mullidae</td>
<td>901</td>
<td>1251</td>
</tr>
<tr>
<td>14</td>
<td>Parapeneus chrysoleucron</td>
<td>Mullidae</td>
<td>181</td>
<td>57</td>
</tr>
<tr>
<td>15</td>
<td>Parapeneus barberinus</td>
<td>Mullidae</td>
<td>11</td>
<td>483</td>
</tr>
<tr>
<td>16</td>
<td>Upeneus vitatus</td>
<td>Mullidae</td>
<td>13</td>
<td>213</td>
</tr>
<tr>
<td>17</td>
<td>Leptoscorus vaigiensis</td>
<td>Scaridae</td>
<td>97</td>
<td>184</td>
</tr>
<tr>
<td>18</td>
<td>Siganus canaliculatus</td>
<td>Siganidae</td>
<td>929</td>
<td>881</td>
</tr>
<tr>
<td>19</td>
<td>Siganus fuscescens</td>
<td>Siganidae</td>
<td>555</td>
<td>468</td>
</tr>
<tr>
<td>20</td>
<td>Siganus spinus</td>
<td>Siganidae</td>
<td>56</td>
<td>52</td>
</tr>
</tbody>
</table>
Lampiran 6. Jenis Lamun yang ditemukan pada lambung ikan beronang

1. Cymodocea
2. Thalassia
3. Halodule
Lampiran 7. Komposisi ukuran panjang ikan beronang (S. canaliculatus) jantan dan betina pada ketiga stasiun

<table>
<thead>
<tr>
<th>Jantan</th>
<th>Jumlah individu</th>
<th>Betina</th>
<th>Jumlah individu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ukuran ikan (mm)</td>
<td>St 1</td>
<td>St 2</td>
<td>St 3</td>
</tr>
<tr>
<td>42.5</td>
<td>-</td>
<td>62.5</td>
<td>84</td>
</tr>
<tr>
<td>62.5</td>
<td>-</td>
<td>82.5</td>
<td>101</td>
</tr>
<tr>
<td>102.5</td>
<td>-</td>
<td>122.5</td>
<td>131</td>
</tr>
<tr>
<td>122.5</td>
<td>-</td>
<td>142.5</td>
<td>90</td>
</tr>
<tr>
<td>142.5</td>
<td>-</td>
<td>162.5</td>
<td>39</td>
</tr>
<tr>
<td>182.5</td>
<td>-</td>
<td>202.5</td>
<td>1</td>
</tr>
<tr>
<td>222.5</td>
<td>-</td>
<td>242.5</td>
<td>2</td>
</tr>
<tr>
<td>242.5</td>
<td>-</td>
<td>262.5</td>
<td>3</td>
</tr>
<tr>
<td>282.5</td>
<td>-</td>
<td>302.5</td>
<td>4</td>
</tr>
<tr>
<td>Jumlah</td>
<td>450</td>
<td>423</td>
<td>442</td>
</tr>
</tbody>
</table>
Lampiran 8. Uji Kruskal-Wallis terhadap kelimpahan ikan beronang jantan dan betina pada ketiga stasiun

Kruskal-Wallis Test: Kelimpahan Jantan versus Stasiun

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>N</th>
<th>Median</th>
<th>Ave Rank</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stasiun1</td>
<td>6</td>
<td>70.50</td>
<td>10.1</td>
<td>0.33</td>
</tr>
<tr>
<td>Stasiun2</td>
<td>6</td>
<td>71.50</td>
<td>8.8</td>
<td>-0.37</td>
</tr>
<tr>
<td>Stasiun3</td>
<td>6</td>
<td>72.50</td>
<td>9.6</td>
<td>0.05</td>
</tr>
<tr>
<td>Overall</td>
<td>18</td>
<td></td>
<td>9.5</td>
<td></td>
</tr>
</tbody>
</table>

H = 17 DF = 2 P = 0.920
H = 17 DF = 2 P = 0.920 (adjusted for ties)

Kruskal-Wallis Test: Kelimpahan Betina versus Stasiun

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>N</th>
<th>Median</th>
<th>Ave Rank</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stasiun1</td>
<td>6</td>
<td>76.00</td>
<td>10.6</td>
<td>0.61</td>
</tr>
<tr>
<td>Stasiun2</td>
<td>6</td>
<td>64.50</td>
<td>7.9</td>
<td>-0.89</td>
</tr>
<tr>
<td>Stasiun3</td>
<td>6</td>
<td>74.50</td>
<td>10.0</td>
<td>0.28</td>
</tr>
<tr>
<td>Overall</td>
<td>18</td>
<td></td>
<td>9.5</td>
<td></td>
</tr>
</tbody>
</table>

H = 0.83 DF = 2 P = 0.661
H = 0.83 DF = 2 P = 0.660 (adjusted for ties)
Lampiran 9. Uji Kruskal-Wallis terhadap kelimpahan ikan beronang jantan dan betina pada setiap bulan

Kruskal-Wallis Test: Kelimpahan Jantan versus BULAN

<table>
<thead>
<tr>
<th>BULAN</th>
<th>N</th>
<th>Median</th>
<th>Ave Rank</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juli</td>
<td>3</td>
<td>90.00</td>
<td>14.8</td>
<td>1.90</td>
</tr>
<tr>
<td>Agustus</td>
<td>3</td>
<td>58.00</td>
<td>3.3</td>
<td>-2.19</td>
</tr>
<tr>
<td>September</td>
<td>3</td>
<td>65.00</td>
<td>6.5</td>
<td>-1.07</td>
</tr>
<tr>
<td>Oktober</td>
<td>3</td>
<td>62.00</td>
<td>5.5</td>
<td>-1.42</td>
</tr>
<tr>
<td>November</td>
<td>3</td>
<td>96.00</td>
<td>14.8</td>
<td>1.90</td>
</tr>
<tr>
<td>Desember</td>
<td>3</td>
<td>83.00</td>
<td>12.0</td>
<td>0.89</td>
</tr>
<tr>
<td>Overall</td>
<td>18</td>
<td></td>
<td>9.5</td>
<td></td>
</tr>
</tbody>
</table>

H = 13.28 DF = 5 P = 0.021
H = 13.31 DF = 5 P = 0.021 (adjusted for ties)

Kruskal-Wallis Test: Kelimpahan Betina versus Bulan

<table>
<thead>
<tr>
<th>Bulan</th>
<th>N</th>
<th>Median</th>
<th>Ave Rank</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juli</td>
<td>3</td>
<td>80.00</td>
<td>12.2</td>
<td>0.95</td>
</tr>
<tr>
<td>Agustus</td>
<td>3</td>
<td>57.00</td>
<td>3.3</td>
<td>-2.19</td>
</tr>
<tr>
<td>September</td>
<td>3</td>
<td>62.00</td>
<td>5.3</td>
<td>-1.48</td>
</tr>
<tr>
<td>Oktober</td>
<td>3</td>
<td>70.00</td>
<td>7.0</td>
<td>-0.89</td>
</tr>
<tr>
<td>November</td>
<td>3</td>
<td>95.00</td>
<td>15.8</td>
<td>2.25</td>
</tr>
<tr>
<td>Desember</td>
<td>3</td>
<td>91.00</td>
<td>13.3</td>
<td>1.36</td>
</tr>
<tr>
<td>Overall</td>
<td>18</td>
<td></td>
<td>9.5</td>
<td></td>
</tr>
</tbody>
</table>

H = 13.01 DF = 5 P = 0.023
H = 13.07 DF = 5 P = 0.023 (adjusted for ties)
Lampiran 10. Hubungan panjang berat dan pola pertumbuhan ikan beronang di Selat Lonthoir

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>Jenis Kelamin</th>
<th>Jumlah sampel (n)</th>
<th>Model hubungan (W=a.L^b)</th>
<th>Koefisien korelasi (r)</th>
<th>Pola Pertumbuhan</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>♂</td>
<td>450</td>
<td>W = 0.030 L^{1.36}</td>
<td>0.90</td>
<td>Allometrik negatif</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>479</td>
<td>W = 0.022 L^{1.43}</td>
<td>0.91</td>
<td>Allometrik negatif</td>
</tr>
<tr>
<td>II</td>
<td>♂</td>
<td>423</td>
<td>W = 0.030 L^{1.35}</td>
<td>0.84</td>
<td>Allometrik negatif</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>458</td>
<td>W = 0.042 L^{1.28}</td>
<td>0.85</td>
<td>Allometrik negatif</td>
</tr>
<tr>
<td>III</td>
<td>♂</td>
<td>442</td>
<td>W = 0.008 L^{1.66}</td>
<td>0.89</td>
<td>Allometrik negatif</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>459</td>
<td>W = 0.005 L^{1.77}</td>
<td>0.91</td>
<td>Allometrik negatif</td>
</tr>
<tr>
<td>Tahun</td>
<td>♂</td>
<td>1315</td>
<td>W = 0.017 L^{1.49}</td>
<td>0.88</td>
<td>Allometrik negatif</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>1396</td>
<td>W = 0.012 L^{1.56}</td>
<td>0.89</td>
<td>Allometrik negatif</td>
</tr>
<tr>
<td></td>
<td>♂+♀</td>
<td>2711</td>
<td>W = 0.015 L^{1.52}</td>
<td>0.88</td>
<td>Allometrik negatif</td>
</tr>
</tbody>
</table>
Lampiran II. Grafik sebaran frekuensi panjang ikan beronang bulan Juli-Desember 2009.

Juli

Agustus

September

Oktober

November

Desember

<table>
<thead>
<tr>
<th>Bulan</th>
<th>Panjang rata-rata (mm)</th>
<th>Standar deviasi</th>
<th>Jumlah populasi (ind.)</th>
<th>Indeks Separasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juli</td>
<td>58.14</td>
<td>6.90</td>
<td>521</td>
<td>n.a</td>
</tr>
<tr>
<td>Agustus</td>
<td>77.80</td>
<td>7.40</td>
<td>348</td>
<td>n.a</td>
</tr>
<tr>
<td>September</td>
<td>83.37</td>
<td>7.90</td>
<td>378</td>
<td>n.a</td>
</tr>
<tr>
<td>Oktober</td>
<td>98.22</td>
<td>12.30</td>
<td>341</td>
<td>n.a</td>
</tr>
<tr>
<td>November</td>
<td>247.50</td>
<td>26.40</td>
<td>37</td>
<td>4.0</td>
</tr>
<tr>
<td>Desember</td>
<td>103.57</td>
<td>9.50</td>
<td>573</td>
<td>n.a</td>
</tr>
</tbody>
</table>

Bab. Diskripsi dan Perikanan:
1. Peningkatan populasi terhadap umur beronang tujuh bulan terjadi pada bulan Desember.
2. Peningkatan laju pertumbuhan terjadi pada bulan Desember.
3. Peningkatan laju pertumbuhan terjadi pada bulan Desember.
Lampiran 13. Parameter pertumbuhan ikan beronang di Selat Lonthoir.

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>Jenis Kelamin</th>
<th>Jumlah sampel (n)</th>
<th>Panjang teoritis (L∞)</th>
<th>Berat teoritis (W∞)</th>
<th>Koefisien Pertumbuhan (K)</th>
<th>Kondisi Awal (to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>♂</td>
<td>450</td>
<td>307.13</td>
<td>72.56</td>
<td>0.49</td>
<td>-0.176</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>479</td>
<td>307.13</td>
<td>79.21</td>
<td>0.45</td>
<td>-0.192</td>
</tr>
<tr>
<td>II</td>
<td>♂</td>
<td>423</td>
<td>307.13</td>
<td>69.82</td>
<td>0.49</td>
<td>-0.176</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>458</td>
<td>307.13</td>
<td>62.89</td>
<td>0.45</td>
<td>-0.192</td>
</tr>
<tr>
<td>III</td>
<td>♂</td>
<td>442</td>
<td>307.13</td>
<td>107.35</td>
<td>0.45</td>
<td>-0.192</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>459</td>
<td>307.13</td>
<td>123.81</td>
<td>0.52</td>
<td>-0.165</td>
</tr>
<tr>
<td>Total</td>
<td>♂</td>
<td>1315</td>
<td>307.13</td>
<td>84.74</td>
<td>0.50</td>
<td>-0.172</td>
</tr>
<tr>
<td></td>
<td>♀</td>
<td>1396</td>
<td>307.13</td>
<td>92.40</td>
<td>0.52</td>
<td>-0.165</td>
</tr>
<tr>
<td></td>
<td>♂ + ♀</td>
<td>2711</td>
<td>307.13</td>
<td>88.78</td>
<td>0.50</td>
<td>-0.172</td>
</tr>
</tbody>
</table>
Lampiran 14. Produksi dan Stok Biomassa pada masing-masing stasiun penelitian

Produksi dan stok biomass ikan di stasiun I

<table>
<thead>
<tr>
<th>Bulan</th>
<th>Rataan berat</th>
<th>Ln berat</th>
<th>Kec. Tumbuh</th>
<th>Jumlah stok</th>
<th>Stok biomass</th>
<th>Rataan biomass</th>
<th>Produksi (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juli</td>
<td>8.63</td>
<td>2.16</td>
<td>0.07</td>
<td>181</td>
<td>1562.03</td>
<td>1603.86</td>
<td>95.00</td>
</tr>
<tr>
<td>Agustus</td>
<td>9.27</td>
<td>2.23</td>
<td>0.16</td>
<td>118</td>
<td>1093.86</td>
<td>1327.95</td>
<td>195.08</td>
</tr>
<tr>
<td>September</td>
<td>10.89</td>
<td>2.39</td>
<td>0.16</td>
<td>122</td>
<td>1328.58</td>
<td>1211.22</td>
<td>233.59</td>
</tr>
<tr>
<td>Oktober</td>
<td>12.72</td>
<td>2.54</td>
<td>0.23</td>
<td>132</td>
<td>1679.04</td>
<td>1503.81</td>
<td>496.00</td>
</tr>
<tr>
<td>November</td>
<td>16.04</td>
<td>2.78</td>
<td>0.43</td>
<td>162</td>
<td>2598.48</td>
<td>2138.76</td>
<td>1614.11</td>
</tr>
<tr>
<td>Desember</td>
<td>24.66</td>
<td>3.21</td>
<td></td>
<td>199</td>
<td>4907.34</td>
<td>3752.91</td>
<td></td>
</tr>
</tbody>
</table>

Produksi per bulan 438.96

Produksi biomass ikan di stasiun II

<table>
<thead>
<tr>
<th>Bulan</th>
<th>Rataan berat</th>
<th>Ln berat</th>
<th>Kec. Tumbuh</th>
<th>Jumlah stok</th>
<th>Stok biomass</th>
<th>Rataan biomass</th>
<th>Produksi (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juli</td>
<td>8.63</td>
<td>2.16</td>
<td>0.23</td>
<td>164</td>
<td>1143.45</td>
<td>1279.39</td>
<td>297.59</td>
</tr>
<tr>
<td>Agustus</td>
<td>10.89</td>
<td>2.39</td>
<td>-0.05</td>
<td>105</td>
<td>1156.96</td>
<td>1150.21</td>
<td>-60.72</td>
</tr>
<tr>
<td>September</td>
<td>10.33</td>
<td>2.34</td>
<td>0.18</td>
<td>124</td>
<td>1535.12</td>
<td>1346.04</td>
<td>243.67</td>
</tr>
<tr>
<td>Oktober</td>
<td>12.38</td>
<td>2.52</td>
<td>0.34</td>
<td>224</td>
<td>3877.44</td>
<td>2706.28</td>
<td>907.15</td>
</tr>
<tr>
<td>November</td>
<td>17.31</td>
<td>2.85</td>
<td>0.19</td>
<td>152</td>
<td>3190.48</td>
<td>3533.96</td>
<td>681.21</td>
</tr>
<tr>
<td>Desember</td>
<td>20.99</td>
<td>3.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Produksi per bulan 344.82

Produksi biomass ikan di stasiun III

<table>
<thead>
<tr>
<th>Bulan</th>
<th>Rataan berat</th>
<th>Ln berat</th>
<th>Kec. Tumbuh</th>
<th>Jumlah stok</th>
<th>Stok biomass</th>
<th>Rataan biomass</th>
<th>Produksi (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juli</td>
<td>8.69</td>
<td>2.16</td>
<td>0.16</td>
<td>169</td>
<td>1468.61</td>
<td>1357.12</td>
<td>218.76</td>
</tr>
<tr>
<td>Agustus</td>
<td>10.21</td>
<td>2.32</td>
<td>0.08</td>
<td>122</td>
<td>1245.62</td>
<td>1340.19</td>
<td>-114.37</td>
</tr>
<tr>
<td>September</td>
<td>11.06</td>
<td>2.40</td>
<td>1.73</td>
<td>124</td>
<td>1614.76</td>
<td>1466.88</td>
<td>8063.55</td>
</tr>
<tr>
<td>Oktober</td>
<td>62.25</td>
<td>4.13</td>
<td>-1.35</td>
<td>193</td>
<td>3113.09</td>
<td>5416.05</td>
<td>-7314.25</td>
</tr>
<tr>
<td>November</td>
<td>16.13</td>
<td>2.78</td>
<td>0.27</td>
<td>162</td>
<td>3411.72</td>
<td>3262.41</td>
<td>870.07</td>
</tr>
<tr>
<td>Desember</td>
<td>21.06</td>
<td>3.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Produksi per bulan 325.42
Lampiran 15. Hasil Analisis Faktorial Koresponden (CA) kelimpahan ikan pada berbagai kelompok ukuran dengan kerapatan lamun

<table>
<thead>
<tr>
<th>Akar ciri (Eigenvalue)</th>
<th>Sumbu Faktorial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sumbu 1</td>
</tr>
<tr>
<td>Nilai</td>
<td>0.1231</td>
</tr>
<tr>
<td>Ragam (%)</td>
<td>74.2176</td>
</tr>
<tr>
<td>Kumulatif Ragam (%)</td>
<td>74.2176</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Kode</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kepada E. acoroides</td>
<td>Ea</td>
<td>-0.7230</td>
<td>0.9974</td>
<td>0.1084</td>
<td>-0.0370</td>
<td>0.0026</td>
<td>0.0008</td>
</tr>
<tr>
<td>Kepada T. hemprichii</td>
<td>Th</td>
<td>-0.4541</td>
<td>0.4968</td>
<td>0.1002</td>
<td>0.4570</td>
<td>0.5032</td>
<td>0.2922</td>
</tr>
<tr>
<td>Kepada C. serrulata</td>
<td>Cs</td>
<td>1.2908</td>
<td>0.9696</td>
<td>0.3594</td>
<td>0.2285</td>
<td>0.0304</td>
<td>0.0324</td>
</tr>
<tr>
<td>Kepada C. rotundata</td>
<td>Cr</td>
<td>0.3392</td>
<td>0.9601</td>
<td>0.1616</td>
<td>-0.0691</td>
<td>0.0399</td>
<td>0.0193</td>
</tr>
<tr>
<td>Kepada H. uninervis</td>
<td>Hu</td>
<td>0.5969</td>
<td>0.9337</td>
<td>0.0159</td>
<td>-0.1590</td>
<td>0.0663</td>
<td>0.0032</td>
</tr>
<tr>
<td>Kepada S. isotetifolium</td>
<td>Si</td>
<td>-0.6603</td>
<td>0.5256</td>
<td>0.0877</td>
<td>-0.6273</td>
<td>0.4744</td>
<td>0.2279</td>
</tr>
<tr>
<td>Kepada H. ovalis</td>
<td>Ho</td>
<td>0.3176</td>
<td>0.6340</td>
<td>0.0182</td>
<td>0.2414</td>
<td>0.3660</td>
<td>0.0302</td>
</tr>
<tr>
<td>S. canaliculatus 42.5-62.5 mm</td>
<td>Sc-A</td>
<td>-0.0407</td>
<td>0.9978</td>
<td>0.0015</td>
<td>-0.0019</td>
<td>0.0022</td>
<td>0.0000</td>
</tr>
<tr>
<td>S. canaliculatus 62.5-82.5 mm</td>
<td>Sc-B</td>
<td>0.0028</td>
<td>0.0022</td>
<td>0.0000</td>
<td>0.0589</td>
<td>0.9978</td>
<td>0.0115</td>
</tr>
<tr>
<td>S. canaliculatus 82.5-102.5 mm</td>
<td>Sc-C</td>
<td>-0.0845</td>
<td>0.2275</td>
<td>0.0119</td>
<td>-0.1557</td>
<td>0.7725</td>
<td>0.1163</td>
</tr>
<tr>
<td>S. canaliculatus 102.5-122.5 mm</td>
<td>Sc-D</td>
<td>-0.1559</td>
<td>0.9998</td>
<td>0.0304</td>
<td>-0.0020</td>
<td>0.0002</td>
<td>0.0000</td>
</tr>
<tr>
<td>S. canaliculatus 122.5-142.5 mm</td>
<td>Sc-E</td>
<td>0.3503</td>
<td>0.7838</td>
<td>0.0368</td>
<td>0.1840</td>
<td>0.2162</td>
<td>0.0292</td>
</tr>
<tr>
<td>S. canaliculatus 142.5-162.5 mm</td>
<td>Sc-F</td>
<td>0.3820</td>
<td>0.2982</td>
<td>0.0012</td>
<td>-0.5861</td>
<td>0.7018</td>
<td>0.0079</td>
</tr>
<tr>
<td>S. canaliculatus 162.5-182.5 mm</td>
<td>Sc-G</td>
<td>-0.3706</td>
<td>0.5981</td>
<td>0.0016</td>
<td>-0.3033</td>
<td>0.4019</td>
<td>0.0032</td>
</tr>
<tr>
<td>S. canaliculatus 182.5-202.5 mm</td>
<td>Sc-H</td>
<td>-0.7460</td>
<td>0.9550</td>
<td>0.0022</td>
<td>-0.1619</td>
<td>0.0450</td>
<td>0.0003</td>
</tr>
<tr>
<td>S. canaliculatus 202.5-222.5 mm</td>
<td>Sc-I</td>
<td>-0.9654</td>
<td>0.4455</td>
<td>0.0111</td>
<td>1.0769</td>
<td>0.5545</td>
<td>0.3938</td>
</tr>
<tr>
<td>S. canaliculatus 222.5-242.5 mm</td>
<td>Sc-J</td>
<td>-0.9654</td>
<td>0.4455</td>
<td>0.0148</td>
<td>1.0769</td>
<td>0.5545</td>
<td>0.3938</td>
</tr>
<tr>
<td>S. canaliculatus 242.5-262.5 mm</td>
<td>Sc-K</td>
<td>-0.9654</td>
<td>0.4455</td>
<td>0.0148</td>
<td>1.0769</td>
<td>0.5545</td>
<td>0.3938</td>
</tr>
<tr>
<td>S. canaliculatus 262.5-282.5 mm</td>
<td>Sc-L</td>
<td>-0.9654</td>
<td>0.4455</td>
<td>0.0130</td>
<td>1.0769</td>
<td>0.5545</td>
<td>0.4064</td>
</tr>
<tr>
<td>S. canaliculatus 282.5-302.5 mm</td>
<td>Sc-M</td>
<td>-0.9654</td>
<td>0.4455</td>
<td>0.0093</td>
<td>1.0769</td>
<td>0.5545</td>
<td>0.0332</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stasiun Pengamatan</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stasiun I</td>
<td>0.4528</td>
<td>0.9892</td>
<td>0.6129</td>
<td>0.0473</td>
<td>0.0108</td>
<td>0.0192</td>
</tr>
<tr>
<td>Stasiun II</td>
<td>-0.1848</td>
<td>0.2893</td>
<td>0.0856</td>
<td>-0.2896</td>
<td>0.7107</td>
<td>0.6057</td>
</tr>
<tr>
<td>Stasiun III</td>
<td>-0.3387</td>
<td>0.6982</td>
<td>0.3014</td>
<td>0.2227</td>
<td>0.3018</td>
<td>0.3751</td>
</tr>
</tbody>
</table>

Keterangan :
- a = kordinat
- b = kosinus kuadrat (kualitas representasi)
- c = kontribusi relatif ragam terhadap sumbu faktorial
Lampiran 16. Hasil Analisis Kelompok dengan MVSP v.3.1

CLUSTER ANALYSIS USING MULTIVARIATE STATISTICAL PACKAGE (MVSP) version 3.1

Analysing 20 variables x 3 cases

Near neighbour

Chi-Squared

Distance matrix

<table>
<thead>
<tr>
<th></th>
<th>Stasiun I</th>
<th>Stasiun II</th>
<th>Stasiun III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stasiun I</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stasiun II</td>
<td>16.293</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Stasiun II</td>
<td>18.223</td>
<td>10.896</td>
<td>0</td>
</tr>
</tbody>
</table>

Node

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Dissimil.</th>
<th>Objects in group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stasiun II</td>
<td>Stasiun III</td>
<td>10.896</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Stasiun I</td>
<td>Node 1</td>
<td>16.293</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>