PENAPISAN GENOTYPE JARAK PAGAR (*Jatropha curcas L.*)
UNTUK TOLERANSI TERHADAP KEKERINGAN

MISNEN

SEKOLAH PASCASARJANA
INSTITUT PERTANIAN BOGOR
BOGOR
2010
PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI

Dengan ini saya menyatakan bahwa tesis Penapisan Genotipe Jarak Pagar (Jatropha curcas L.) untuk Toleransi terhadap Kekeringan adalah karya saya dengan arahan dari komisi pembimbing dan belum diajukan dalam bentuk apa pun kepada perguruan tinggi mana pun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka dibagian akhir tesis ini.

Bogor, Agustus 2010

Misnen

NRP A253074031
ABSTRACT

MISNEN. Screening Genotypes of Physic Nut (Jatropha curcas L.) for Tolerance to Drought. Under supervision of YUDIWANTI WAHYU E.K., ENDAH RETNO PALUPI, and MUHAMAD SYUKUR.

The improvement of Jatropha curcas drought tolerance is one of the key points in cultivating the species extensively due to fast area of available marginal land. The objective of this study was to determine drought tolerance genotypes based on morphological, physiological and biochemical characters. The research was completed in two experiments. The first experiment was aimed at determining the moisture content of the media to generate drought stress and screening genotypes of Jatropha curcas for tolerant to drought. In this experiment, a split-plot design was used with moisture content as the main plot and genotypes as subplot. Four level of moisture content were applied, i.e. 22-23%, 27-28%, 32-33%, and 37-38%. The nine genotypes were Dompu-1, Gunung Tambora, Bima representing dry area of origin; Aceh Besar, IP-2P, Komering representing wet area of origin; and IP-1M, Papua, Yogyakarta representing some what in between. The result showed that 22-23% moisture content of the media is suitable for drought tolerance testing in Jatropha curcas. The first experiment show that Aceh Besar and IP-1M were tolerant to drought; Papua, Gunung Tambora, Dompu-1 dan Bima genotypes were moderately tolerant; IP-2P, Komering, and Yogyakarta genotypes were sensitive to drought. Based on trial in field, the highest potential productivity is Yogyakarta, followed by genotype IP-2P and Dompu-1. The second experiment was screening of genotypes using the appropriate media moisture content as a result from first experiment. Twenty three genotypes were screened for drought tolerance under 22-23% moisture content of the medium. The result show that Dompu-2, Indralaya, and China were tolerant to drought; Sukabumi-1, Sukabumi-2, Pidi, Lahat, Kupang, Lampung-2, Lampung-3, Sumba, IP-2M, and IP-2A genotypes were moderately tolerant; Curup, Bogor-1, Bogor-2, Bogor-3, Pontianak, Pagar Alam, Palembang, Saweli, Jeneponto, and Medan genotypes were sensitive to drought. Variables that can be used for selecting seedling for drought tolerance is height of plant and leaf area.

Keywords: Jatropha curcas, the water content of media, genotype, coefficient of variability, drought sensitivity index, coefficient of correlation
RINGKASAN

MISNEN. Penapisan Genotipe Jarak Pagar (Jatropha curcas L.) untuk Toleransi terhadap Kekecewaan. Dibimbing oleh YUDIWANTI WAHYU E.K., ENDAH RETNopalupi, dan MUHAMAD SYUKUR.

Masalah tersebut dapat ditempuh oleh pemulia melalui perbaikan genetika jarak pagar toleran terhadap kekecewaan dengan produktivitas tinggi. Tujuan akhir penelitian ini adalah mendapatkan calon tetua yang memiliki karakter toleransi terhadap kekecewaan dengan mempelajari respon morfologi, fisiologi, dan biokimia tanaman jarak pagar terhadap kekecewaan, dan mempelajari peubah yang dipengaruhi dari respon morfologi, fisiologi, dan biokimia yang secara langsung berpengaruh terhadap pertumbuhan jarak pagar pada kondisi kekecewaan. Untuk mencapai tujuan tersebut penelitian dilakukan dua tahap, pertama merumuskan dua media seleksi dan penapisan genotipe jarak pagar terhadap toleransi kekecewaan.

Hasil penelitian percobaan pertama menunjukkan bahwa cekaman kekeringan hingga KAM 22-23% nyata menurunkan pertambahan tinggi tanaman, diameter batang dan jumlah daun, jumlah cabang, bobot kering akar, bobot kering tajuk, panjang akar, dan jumlah tanaman hidup pada sembilan genotipe jarak pagar. Antar genotipe memberikan respon berbeda terhadap perlakuan KAM berdasarkan peubah pertambahan jumlah daun, jumlah cabang, bobot kering akar dan tajuk, nisbah bobot kering akar/tajuk, dan jumlah tanaman hidup. Interaksi kadar air media dan genotipe berpengaruh terhadap pertambahan jumlah daun, jumlah cabang, bobot kering akar, bobot kering tajuk, nisbah bobot kering akar/tajuk, bobot kering total, dan jumlah tanaman hidup.

Bibit atau karakter yang dapat digunakan untuk menyeleksi bahan yang toleran terhadap kekeringan dengan biaya yang murah, mudah diamati, cepat dan tidak berisiko destruktif adalah pertambahan tinggi tanaman dan luas daun.

Kata kunci: *Jatropha curcas*, kadar air media, genotipe, koefisien keragaman, indek sensitivitas kekeringan, koefisien kolerasi
PENAPISAN GENOTIPE JARAK PAGAR (*Jatropha curcas* L.)
UNTUK TOLERANSI TERHADAP KEKERINGAN

MISNEN

Tesis
sebagai salah satu syarat untuk memperoleh gelar
Magister Sains pada
Program Mayor Pemuliaan dan Bioteknologi Tanaman

SEKOLAH PASCASARJANA
INSTITUT PERTANIAN BOGOR
BOGOR
2010
Judul Tesis : Penapisan Genotipe Jarak Pagar (*Jatropha curcas* L.) untuk Toleransi terhadap Kekeringan

Nama : Misnen
NRP : A253074031

Disetujui
Komisi Pembimbing

Dr. Ir. Yudiwanti Wahyu E. K., M.S.
Ketua

Dr. Ir. Indah Retno Palupi, M.Sc.
Anggota

Dr. Muhamad Syukur, S.P, M.Si.
Anggota

Diketahui
Ketua Program Studi/Mayor Pemuliaan dan Bioteknologi Tanaman

Dr. Ir. Rikoesoemaningtyas, M.Sc.

Prof. Dr. Ir. Khairil A. Notodiputro, M.S.

Tanggal Ujian: 16 Agustus 2010
Tanggal Lulus: 20 AUG 2010
PRAKATA

Puji dan syukur penulis panjatkan kepada Allah SWT atas segala limpahan karunia-Nya sehingga karya ilmiah ini berhasil diselesaikan. Tema yang dipilih dalam penelitian yang dilaksanakan sejak bulan Februari 2009 ini ialah seleksi untuk toleransi terhadap kekeringan dengan judul Penapisan Genotipe Jarak Pagar (Jatropha curcas L.) untuk Toleransi terhadap Kekeringan.

Terima kasih penulis ucapkan kepada Ibu Dr. Ir. Yudiwanti Wahyu E. K., MS, Dr. Ir. Endah Retno Palupi, MSc dan Dr. Muhamad Syukur, SP. MSi selaku pembimbing yang senantiasa memberikan arahan, perbaikan, saran dan motivasi selama penulisan melalui penelitian hingga menyelesaikan tugaskah. Ucapan terima kasih penulis juga sampaikan kepada Prof. Dr. Ir. Erliza Hambali, MS sebagai kepala Pusat Penelitian Surfaktan dan Bioenergi-LPPM IPB yang telah memberikan motivasi selama penulis melakukan penelitian. Selain itu, penulis ucapkan terima kasih kepada institusi BDF Japan yang menyediakan beasiswa. Ungkapan terima kasih juga disampaikan kepada ayah, ibu, serta seluruh keluarga dan teman-teman atas segala doa dan kasih sayangnya.

Semoga karya ilmiah ini bermanfaat.

Bogor, Agustus 2010

Misnen
RIWAYAT HIDUP

Penulis dilahirkan di Cirebon pada tanggal 11 November 1982 dari ayah Narsija dan ibu Wari.

sama mengikuti perkuliahan, penulis bekerja sebagai staf peneliti bidang bioenergi di Pusat Penelitian Surfaktan dan Bioenergi- LPPM IPB. Penulis aktif melakukan penelitian jarak pagar yang merupakan salah satu tanaman penhasil bioenergi melalui Hibah Intensif Riset dan Teknologi (RISTEK), Hibah Kompetitif Penelitian Sesuai Prioritas Nasional Departemen Pendidikan Tinggi (DIKTI), Kerjasama Kemitraan Penelitian Pertanian dengan Perguruan Tinggi Negeri (KKP3T), dan hibah kerjasama dengan institusi luar negeri Central Research Institute of Electric Power Industry (CRIEPI) Japan. Penulis juga telah menyusun komik jarak pagar bersama tim peneliti SBRC bekerjasama dengan Kementerian RISTEK dan Kementerian Pertanian.
DAFTAR ISI

<table>
<thead>
<tr>
<th>Bab</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Tujuan Penelitian</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Hipotesis</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>Botani dan Morfologi Jarak Pagar</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Syarat Tumbuh Tanaman Jarak Pagar</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Respon Tanaman terhadap Cekaman Kekeringan</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Pemuliaan Tanaman terhadap Cekaman Kekeringan</td>
<td>14</td>
</tr>
<tr>
<td>III</td>
<td>Respon Genotipe Jarak Pagar terhadap Kadar Air Media</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>3.1.1 Waktu dan Temperatur</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>3.1.2 Bahan dan Alat</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>3.1.3 Metode Penelitian</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>3.1.4 Pelaksanaan Penelitian</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>3.1.5 Pengamatan</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>3.2 Penapisan Genotipe Jarak Pagar terhadap Toleransi Kekeringan</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>3.2.1 Waktu dan Temperatur</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>3.2.2 Bahan dan Alat</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>3.2.3 Metode Penelitian</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>3.2.4 Pelaksanaan Percobaan</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>3.2.5 Pengamatan</td>
<td>32</td>
</tr>
<tr>
<td>IV</td>
<td>Keadaan Umum Penelitian</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>2 Respon Genotipe Jarak Pagar terhadap Kadar Air Media</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>4.2.1 Pengaruh Perluasan terhadap Peubah yang Diamati</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>4.2.2 Pengaruh Kadar Air Media terhadap Peubah yang Diamati</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>4.2.3 Pengaruh Genotipe terhadap Peubah yang Diamati</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>4.2.4 Pengaruh Interaksi Kadar Air media dan Genotipe terhadap Peubah yang Diamati</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>4.2.5 Penentuan Kadar Air Media Seleksi</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>4.2.6 Toleransi Genotipe terhadap Cekaman Kekeringan</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>4.2.7 Penentuan Karakter Seleksi Kekeringan</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>3 Pengaruh Kadar Air Media selama Pengujian Kekeringan terhadap Pertumbuhan Vegetatif dan Generatif Sembilan Genotipe Jarak Pagar di Lapang</td>
<td>62</td>
</tr>
</tbody>
</table>
4.4 Penapisan Genotipe Jarak Pagar terhadap Toleransi Kekeringan...
4.4.1 Pengaruh Perlakuan Kadar Air Media 22-23% dan 37-38% pada 23 Genotipe terhadap Peubah yang Diamati 70
4.4.2 Toleransi Genotipe terhadap Cekaman Kekeringan 73
4.4.3 Penentuan Karakter Seleksi Kekeringan 78

SIMPULAN DAN SARAN ... 81

DAFTAR PUSTAKA .. 83

LAMPIRAN ... 90
<table>
<thead>
<tr>
<th>No.</th>
<th>Daftar Tabel</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Genotipe jarak pagar yang digunakan pada penelitian penapisan genotipe jarak pagar (Jatropha curcas L.) untuk toleransi terhadap kekeringan</td>
<td>21</td>
</tr>
<tr>
<td>2.</td>
<td>Nilai rataan tinggi tanaman, jumlah daun, dan diameter batang yang digunakan sebagai bahan penelitian pada percobaan pertama saat tiga bulan setelah semai</td>
<td>33</td>
</tr>
<tr>
<td>3.</td>
<td>Nilai rataan tinggi tanaman, jumlah daun, dan diameter batang yang digunakan sebagai bahan penelitian pada percobaan kedua saat tiga bulan setelah semai</td>
<td>34</td>
</tr>
<tr>
<td>4.</td>
<td>Rangkapulasi sidik ragam respon morfologi, fisiologi dan biokimia genotipe jarak pagar terhadap kadar air media seleksi</td>
<td>35</td>
</tr>
<tr>
<td>5.</td>
<td>Pengaruh kadar air media terhadap pertambahan diameter batang jarak pagar pada 12 MSP</td>
<td>38</td>
</tr>
<tr>
<td>6.</td>
<td>Pengaruh kadar air media terhadap panjang akar jarak pagar pada 12 MSP</td>
<td>40</td>
</tr>
<tr>
<td>7.</td>
<td>Pengaruh kadar air media terhadap kandungan prolin daun jarak pagar pada 4 MSP</td>
<td>41</td>
</tr>
<tr>
<td>8.</td>
<td>Pengaruh genotipe terhadap stomata terbuka jarak pagar pada 12 MSP</td>
<td>42</td>
</tr>
<tr>
<td>9.</td>
<td>Pertambahan jumlah daun sembilan genotipe jarak pagar pada empat level kadar air media</td>
<td>44</td>
</tr>
<tr>
<td>10.</td>
<td>Jumlah cabang pada sembilan genotipe jarak pagar pada empat level kadar air media</td>
<td>46</td>
</tr>
<tr>
<td>11.</td>
<td>Bobot kering akar (g) sembilan genotipe jarak pagar pada empat level kadar air media</td>
<td>48</td>
</tr>
<tr>
<td>12.</td>
<td>Bobot kering tajuk (g) sembilan genotipe jarak pagar pada empat level kadar air media</td>
<td>50</td>
</tr>
<tr>
<td>13.</td>
<td>Bobot bobot kering akar/tajuk sembilan genotipe jarak pagar pada empat level kadar air media</td>
<td>51</td>
</tr>
<tr>
<td>14.</td>
<td>Bobot kering total (g) sembilan genotipe jarak pagar pada empat level kadar air media</td>
<td>52</td>
</tr>
<tr>
<td>15.</td>
<td>Jumlah tanaman hidup (%) sembilan genotipe jarak pagar pada empat level kadar air media</td>
<td>54</td>
</tr>
<tr>
<td>16.</td>
<td>Kecapitulasi koefisien keragaman pada 11 peubah jarak pagar pada air penelitian</td>
<td>55</td>
</tr>
<tr>
<td>17.</td>
<td>Trik tingkat toleransi sembilan genotipe jarak pagar pada 15 peubah percobaan 1</td>
<td>57</td>
</tr>
</tbody>
</table>
18. Rekapitulasi jumlah tingkat sensitivitas pada sembilan genotipe jarak pagar berdasarkan skoring percobaan 1 ... 58
19. Matriks koefisien korelasi antar peubah dengan bobot kering total pada 12 MSP ... 61
20. Rekapitulasi sidik ragam respon pertumbuhan vegetatif dan generatif genotipe jarak pagar saat ditanam di lapangan pada 16 minggu setelah tanam (MST) ... 62
21. Pengaruh genotipe terhadap jumlah cabang total dan cabang produktif jarak pagar .. 63
22. Waktu berbunga sembilan genotipe jarak pagar .. 64
23. Pengaruh genotipe terhadap jumlah bunga betina/malai, pembentukan buah, dan jumlah malai/tanaman jarak pagar .. 66
24. Persebaran mekar bunga sembilan genotipe pada empat level kadar air media .. 69
25. Rekapitulasi sidik ragam respon morfologi dan fisiologi pada 23 genotipe jarak pagar .. 70
26. Matriks tingkat toleransi 23 genotipe jarak pagar pada 14 peubah percobaan 2 .. 75
27. Rekapitulasi jumlah tingkat sensitivitas pada 23 genotipe jarak pagar berdasarkan skoring percobaan 2 .. 77
28. Matriks koefisien korelasi antar peubah dengan bobot kering total jarak pagar pada 8 MSP ... 79
29. Pengaruh langsung dan tak langsung beberapa karakter bobot kering total pada kondisi kekerasan percobaan 2 .. 79
DAFTAR GAMBAR

1. Sistematika penelitian penapisan genotipe jarak pagar (Jatropha curcas L.) untuk toleransi terhadap kekeringan .. 20
2. Pengaruh kadar air media terhadap pertambahan tinggi tanaman jarak pagar pada 12 Minggu Setelah Perlakuan (MSP) .. 37
3. Pengaruh kadar air media terhadap luas daun, stomata terbuka dan kecepatan stomat pada 12 MSP ... 38
4. Kadar disi tanaman jarak pagar genotipe IP-2P pada kadar air media 22-22 65% .. 54
5. Kenaikan tanaman dari setiap genotipe jarak pagar pada empat level kadar air media .. 56
6. Kenaikan tanaman dari setiap genotipe pada kadar air media 22-22 65% .. 58
7. Kenaikan genotipe jarak pagar di lapangan hasil pengujian toleransi kekeringan umur 17 MST ... 66
8. Pemupukan bunga pertama pada jarak pagar pada genotipe IP-2P 64
9. Kenaikan genotipe jarak pagar di lapangan hasil pengujian toleransi kekeringan pada 8 minggu setelah perlakuan ... 74
10. Diagram lintas beberapa kataler dengan bobot kering total.................. 78
<table>
<thead>
<tr>
<th>No.</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sidik ragam pengaruh kadar air media dan genotipe terhadap pertambahan tinggi tanaman pada 12 MSP percobaan 1</td>
<td>91</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>16.</td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>17.</td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>18.</td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>19.</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>20.</td>
<td></td>
<td>96</td>
</tr>
</tbody>
</table>
21. Nilai IS kekerengan jumlah cabang percobaan 1 ... 96
22. Nilai IS kekerengan bobot kering akar percobaan 1 ... 97
23. Nilai IS kekerengan bobot kering tajuk percobaan 1 ... 97
24. Nilai IS kekerengan bobot kering akar/tajuk percobaan 1 97
25. Nilai IS kekerengan panjang akar percobaan 1 ... 98
26. Nilai IS kekerengan bobot kering total percobaan 1 .. 98
27. Nilai IS kekerengan stomata terbuka percobaan 1 ... 98
28. Nilai IS kekerengan kerapatan stomata percobaan 1 ... 99
29. Nilai IS kekerengan kandungan prolin daun percobaan 1 ... 99
30. Nilai IS kekerengan jumlah tanaman tanaman percobaan 1 99
31. Sifat ragam pengaruh kadar air media dan genotipe terhadap tinggi tanaman pada 16 minggu setelah tanam di lapangan ... 100
32. Sifat ragam pengaruh kadar air media dan genotipe terhadap diameter batang pada 16 minggu setelah tanam di lapangan ... 100
33. Sifat ragam pengaruh kadar air media dan genotipe terhadap jumlah cabang total pada 16 minggu setelah tanam di lapangan ... 100
34. Sifat ragam pengaruh kadar air media dan genotipe terhadap jumlah cabang produktif pada 16 minggu setelah tanam di lapangan ... 100
35. Sifat ragam pengaruh kadar air media dan genotipe terhadap jumlah bunga betina/malai pada 16 minggu setelah tanam di lapangan ... 101
36. Sifat ragam pengaruh kadar air media dan genotipe terhadap pembentukan buah ... 101
37. Sifat ragam pengaruh kadar air media dan genotipe terhadap pertambahan tinggi tanaman pada 8 minggu setelah perlakuan (MSP) percobaan 2 ... 101
38. Sifat ragam pengaruh kadar air media dan genotipe terhadap pertambahan diameter batang pada 8 MSP percobaan 2 ... 102
39. Sifat ragam pengaruh kadar air media dan genotipe terhadap pertambahan jumlah daun pada 8 MSP percobaan 2 ... 102
40. Sifat ragam pengaruh kadar air media dan genotipe terhadap luas daun pada 8 MSP percobaan 2 ... 102
41. Sifat ragam pengaruh kadar air media dan genotipe terhadap jumlah daun pada 8 MSP percobaan 2 ... 102
42. Sifat ragam pengaruh kadar air media dan genotipe terhadap jumlah daun pada 8 MSP percobaan 2 ... 103
1. Lataran tanah, salinitas, dan iklim
2. Bahan: Tanaman, air, fertilitas, dan panen
3. Metode penelitian: eksperimen, observasi, dan interpretasi
4. Pengujian keunggulan, baku, dan korelasi
5. Analisis data: statistik, grafik, dan perbandingan

44. Sidik ragam pengaruh kadar air media dan genotipe terhadap bobot kering akar pada 8 MSP percobaan 2 .. 103
45. Sidik ragam pengaruh kadar air media dan genotipe terhadap bobot kering tajuk pada 8 MSP percobaan 2 .. 103
46. Sidik ragam pengaruh kadar air media dan genotipe terhadap bobot kering akar/tajuk pada 8 MSP percobaan 2 .. 103
47. Sidik ragam pengaruh kadar air media dan genotipe terhadap panjang akar pada 8 MSP percobaan 2 .. 104
48. Sidik ragam pengaruh kadar air media dan genotipe terhadap jumlah bobot kering total pada 8 MSP percobaan 2 .. 104
49. Sidik ragam pengaruh kadar air media dan genotipe terhadap stomata terbuka pada 8 MSP percobaan 2 .. 104
50. Sidik ragam pengaruh kadar air media dan genotipe terhadap kecerapan stomata pada 8 MSP percobaan 2 .. 104
51. Sidik ragam pengaruh kadar air media dan genotipe terhadap jumlah tanaman hidup pada 8 MSP percobaan 2 .. 104
52. Rata-rata nilai tengah 23 genotipe pada peubah yang diamati pada pakaian kadar air media 22-23% dan 37-38% .. 105
53. Nilai IS kekeringan pertambahan tinggi tanaman percobaan 2 .. 108
54. Nilai IS kekeringan pertambahan diameter batang percobaan 2 .. 108
55. Nilai IS kekeringan pertambahan jumlah daun percobaan 2 .. 109
56. Nilai IS kekeringan luas daun percobaan 2 .. 110
57. Nilai IS kekeringan kadar air daun percobaan 2 .. 110
58. Nilai IS kekeringan jumlah cabang percobaan 2 .. 111
59. Nilai IS kekeringan bobot kering akar percobaan 2 .. 112
60. Nilai IS kekeringan bobot kering tajuk percobaan 2 .. 112
61. Nilai IS kekeringan bobot kering akar/tajuk percobaan 2 .. 113
62. Nilai IS kekeringan panjang akar percobaan 2 .. 114
63. Nilai IS kekeringan bobot kering total percobaan 2 .. 114
64. Nilai IS kekeringan stomata terbuka percobaan 2 .. 115
65. Nilai IS kekeringan kerapatan stomata percobaan 2 .. 116
66. Nilai IS kekeringan jumlah tanaman hidup percobaan 2 .. 116
1. PENDAHULUAN

1.1 Latar Belakang

Meningkatnya laju pertambahan penduduk dan pertumbuhan ekonomi dunia mengakibatkan konsumsi energi semakin meningkat. Untuk itu perlu antisipasi cadangan energi dengan mengoptimalkan sumber daya alam yang ada di setiap negara dengan ketersediaan energi tetap terpenuhi. Berbagai negara maju seperti Amerika Serikat, Jepang, Rusia, Kanada, Jerman, Perancis, Korea Selatan, China, dan India serta United Kingdom telah mengoptimalkan sumber daya alam yang mereka miliki untuk mensuplai kebutuhan energi. Amerika Serikat, Jepang, Jerman, Kanada, dan Korea Selatan merupakan negara yang menjadikan minyak sebagai sumber energi. Rusia dan Inggris menjadikan gas alam sebagai pemasok energi terbesar. China dan India menjadikan batubara sebagai sumber energi utama sedangkan Perancis menjadikan nuklir sebagai sumber energi selain minyak, gas, dan batubara.

Indonesia termasuk negara yang mengandalkan sumber energi dari fosil dan batubara dengan tingkat konsumsi yang relatif besar. Menurut Yuliarto (2006), tingkat konsumsi energi Indonesia adalah sebesar 1.1% dari total energi dunia. Selanjutnya Capstick (2007) melaporkan bahwa pada tahun 2005 tingkat konsumsi energi nasional diesel fosil mencapai 22 juta kiloliter dan pada tahun 2025 diperkirakan tingkat konsumsi diesel meningkat tajam menjadi 70 juta kiloliter. Akan tetapi, besarnya tingkat konsumsi energi tidak didukung dengan ketersediaan sumber energi seperti pada minyak bumi. Beberapa tahun yang akan datang cadangan minyak bumi akan semakin menipis ditambah lagi kemampuan pemerintah mensubsidi harga minyak semakin berkurang. Menurut Jauhary (2000), cadangan minyak bumi Indonesia adalah sebesar 4 300 juta ton atau hanya sekitar 0.36% dari total cadangan minyak dunia tahun 2006 yang sebesar 1 200 000 juta ton dan dengan tingkat produksi sebesar 390 juta ton per tahun sehingga produksi minyak bumi Indonesia diperkirakan hanya dapat bertahan 11 tahun ke depan. Demikian juga pada batubara, saat ini cadangan Indonesia sebesar 4 960 juta ton atau hanya 0.55% dari total cadangan batubara dunia dan dengan tingkat produksi sebesar 120 juta ton per tahun sehingga produksi batubara Indonesia diperkirakan mampu bertahan 41.43 tahun.
Permasalahan di atas perlu segera diatasi agar dampak krisis energi tidak mempengaruhi stabilitas pangan dan ekonomi. Salah satu upaya pemerintah Indonesia dalam mengantisipasi kelangkaan bahan bakar energi fosil dan batubara yaitu dengan mengembangkan energi alternatif yang bersumber dari bahan bakar nabati (BBN) dan energi yang bersumber dari alam seperti panas bumi, gas alam, matahari, dan air. Keseriusan pemerintah terhadap energi alternatif yang bersumber dari nabati tertuang dalam Perpres no. 5 tahun 2006 dan Inpres no. 1 tahun 2006, sedangkan untuk organisasinya dibentuk Tim Nasional berdasarkan Kepres no. 10 tahun 2006 (Hamdi 2006).

Kandungan biji jarak pagar terdiri dari protein, lemak, dan abu, tetapi lemak merupakan kandungan utama dalam biji jarak. Makkar dan Becker (1997) menyebutkan bahwa kandungan kimia pada kernel terdiri atas 25.6 % protein kasar, 3.4% serat gula, 64.2% karbohidrat, 3.4% lemak, 3.4% mineral dan 57% lipid atau lemak. Hasil penelitian Salimon dan Abdullah (2008) menunjukkan bahwa asam lemak yang terkandung dalam minyak jarak terdiri dari 21.05% asam jenuh dan 78.95% asam lemak tak jenuh, dan dengan kandungan asam lemak tak jenuh yang tinggi cocok untuk memproduksi biodiesel.
Dikaji dari segi agronomi, tanaman ini termasuk tanaman yang dapat tumbuh di berbagai agroklimat dan kondisi lahan. Oleh karena itu, pemerintah merintis program dengan menanam jarak pagar yang difokuskan di lahan kritis atau marginal. Capstitch (2007) mengemukakan bahwa lahan kritis di Indonesia mencapai 2,6 juta hektar dengan kondisi tanah yang tandus dan kering. Meskipun tanaman ini memiliki daya adaptasi yang luas dan relatif tahan terhadap kekeringan, namun belum ada informasi yang jelas sampai kapan tanaman tersebut dapat bertahan dan seberapa besar produktivitas yang dihasilkan.

Oleh karena itu, diperlukan suatu penelitian dalam perbaikan genotipe jarak pagar yang memiliki karakter toleransi terhadap kekeringan melalui program pembenahan tanaman. Genotipe jarak pagar hasil eksplorasi disekleksi berdasarkan kada ir media. Selanjutnya dilakukan penapisan untuk menentukan genotipe jarak pagar yang memiliki toleransi terhadap kekeringan.
1.2 Tujuan

Penelitian ini terdiri atas dua percobaan. Percobaan pertama adalah respon genotipe jarak pagar terhadap kadar air media. Percobaan kedua adalah penapisan genotipe jarak pagar terhadap toleransi kekeringan. Tujuan percobaan pertama adalah:

1. Menentukan kadar air media seleksi dengan mempelajari respon morfologi dan fisiologi tanaman jarak pagar terhadap kekeringan.
2. Menentukan peubah yang secara langsung berpengaruh terhadap pertumbuhan jarak pagar pada kondisi kekeringan.
3. Menentukan genotipe jarak pagar yang toleran terhadap kekeringan.

Tujuan percobaan kedua adalah:

Menerapkan genotipe jarak pagar yang toleran terhadap kekeringan.

1.3 Hipotesis

Hipotesis pada percobaan pertama adalah:

1. Penyekatan kadar air media 22-23% menghasilkan keragaman yang tinggi pada setiap peubah sehingga ditetapkan sebagai kadar air media seleksi pada tanaman jarak pagar.
2. Terdapat interaksi antara kadar air media dengan genotipe jarak pagar yang diuji.
3. Terdapat peubah yang secara langsung berpengaruh terhadap pertumbuhan jarak pagar pada kondisi kekeringan.
4. Genotipe jarak pagar yang berasal dari daerah kering lebih toleran daripada daerah basah.
5. Terdapat genotipe jarak pagar yang mampu bertahan dengan baik di lapangan selalunya melalui pengujian pada beberapa kadar air media.

Hipotesis yang diajukan pada percobaan kedua adalah:

Genotipe jarak pagar yang berasal dari daerah kering lebih toleran daripada dari daerah basah.
2. TINJAUAN PUSTAKA

2.1 Botani dan Morfologi Jarak Pagar

Secara genetik jarak pagar termasuk tanaman diploid dengan jumlah kromosom 2n=2x=22 (Heller 1996), namun terdapat juga tanaman tetraploid 2n=4x=44 seperti spesies J. heterophylla Heyne (Hasnam 2006b). Secara morfologi setiap genotipe memiliki perbedaan baik dalam karakter kualitatif maupun kuantitatif. Beberapa variasi kualitatif ditemukan pada warna buah, bentuk dan warna daun, sedangkan variasi kuantitatif ditemukan pada karakter
ketebalan daun, ukuran daun, panjang tangkai daun, berat buah, ukuran, dan berat biji serta jumlah biji per kapsul (Hasnam 2006b). Perbedaan karakter tersebut dipengaruhi oleh faktor genetik, lingkungan, dan interaksi antara genetik dengan lingkungan. Pengaruh genetik diantaranya potensi tanaman membentuk bunga jantan dan betina, sedangkan pengaruh lingkungan diantaranya ketersediaan air, cahaya, kesuburan tanah, angin dan serangga. Menurut Hartati (2008), tanaman jarak merupakan tanaman yang menyebabkan silang sehingga keturunannya bersifat heterogen heterozigot dan hasil pengamatan di lokasi Pakuwon-Sukabumi terdapat keragaman mulai dari umur berbunga, jumlah tandan per tanaman, jumlah buah per tandan dan per tanaman pada populasi IP-1 dan IP-2.

Hasnain (2006d), jika tumbuh baik dalam satu cabang terdapat 3-4 malai dan tiap malai memiliki 5-7 percabangan.

Pada saat muda buah berwarna hijau dan buahnya sedikit berdaging dengan diameter 2-4 cm dan bentuk buah bulat.

2.2 Syarat Tumbuh Tanaman Jarak Pagar

Untuk mendapatkan produktivitas yang optimal dalam budidaya tanaman diperlukan pemilihan lokasi yang tepat. Meskipun jarak pagar merupakan tanaman yang memiliki daya adaptasi luas yang dapat tumbuh mulai dari daerah beriklim ekstrim kering hingga ekstrim basah (marginal land). Pemilihan lokasi adalah suatu tahapan penting dalam proses produksi. Tujuannya adalah menentukan lokasi usaha tani atau agribisnis yang sesuai dengan karakteristik komoditas tanaman jarak pagar sehingga diperoleh produktivitas yang optimal secara berkelanjutan dengan memperhatikan aspek syarat lokasi atau lahan dan syarat tumbuh atau kesesuaian lahan dari tanaman jarak pagar. Aspek lokasi atau lahan terkait dengan sumber air, ketersediaan bahan baku, akses sarana, dan prasarana. Aspek syarat tumbuh terdiri atas kondisi tanah (media tumbuh), derajat keasaman (pH), curah hujan (CH), suhu, kelembaban udara (RH), ketinggian lahan, kemiringan lahan, kedalaman tanah dan intensitas cahaya.

Tanah yang ideal untuk penanaman jarak pagar adalah yang mengandung bahan organik, gembur, tidak terlalu liat dan mudah diolah dengan drainase dan aerasi yang baik. Tanah yang terlalu liat atau kuran subur perlu ditambah dengan bahan organik seperti pupuk kandang, kompos atau dengan memasukkan cendawan protagonis seperti mikoriza. Selain mikoriza, bakteri penambat nitrogen dapat digunakan untuk memperbaiki struktur, tekstur, sifat fisik, kimia, dan biologi tanah, dan menyediakan unsur hara bagi tanaman. Menurut Wiesenhutter (2005), tanaman jarak pagar dapat tumbuh cepat dan mampu bertahan pada tanah berbaur dan toleran terhadap kekeringan.

Kasus yang tanah (pH) untuk jarak pagar berkisar 5.5-6.5, apabila pH tanah terlalu rendah dapat ditingkatkan dengan pengapuran. Jenis kapur yang dipakai diantaranya kalsit (CaCO₃) dan dolomit (CaMg(CO₃)₂). Kebutuhan kapur untuk menaikkan pH tanah tergantung dari pH tanah awal, berapa besar pH yang akan ditingkatkan dan tekstur tanah. Kebutuhan kapur untuk menaikan pH 4.5 ke 5.5 pada tekstur tanah pasir sebesar 0.6 ton/ha (Kuswandi 2005).

2.3 Response Tanaman terhadap Cekaman Kekeringan

Cekaman kekeringan yaitu kondisi suatu tanaman atau tumbuhan kekurangan air untuk pertumbuhan dan perkembangannya karena ketersediaan air pada media terbatas. Keterbatasan air dapat disebabkan oleh kondisi iklim kering dalam periode tertentu sehingga air tidak tersedia bagi tanaman seperti daerah gurun pasir atau daerah kering lainnya. Selanjutnya air tersedia tapi media yang terkadang tidak mampu menyimpan air dengan baik sehingga tanaman tidak dapat memanfaatkan air tersebut, contohnya media pasir. Menurut Direktorat Perbinaan dan Sarana Produksi (2008), media pasir merupakan media yang luas permukaan kumulatifnya relatif kecil dengan ukuran partikel 50 mikron sehingga kandungan menyimpan air sangat rendah yang mengakibatkan tanah lebih cepat kering.

Hakim et al. (1986) menyatakan bahwa tanah berpasir merupakan butiran tunggal atau artinya tidak terikat satu sama lain sehingga konsistensi tanah, ruang pori tanah dilihat dalam volume yang terisi oleh ruang pori rendah. Dengan demikian, kapasitas menyerap air menjadi rendah. Padahal air merupakan kebutuhan utama bagi tanaman untuk pertumbuhan dan perkembangannya. Gardner (1991) menyatakan bahwa keberadaan air bagi tanaman adalah sebagai pelarut dan media untuk reaksi kimia, media untuk transpor, zat terlarut organik dan anorganik, media
pemberi turgor pada sel tanaman, hidrasi dan netralisasi muatan pada molekul-molekul koloid, bahan baku fotosintesis, proses hidrolisis, dan reaksi-reaksi kimia lainnya dalam tumbuhan serta transpirasi untuk mendinginkan permukaan tanaman.

Setiap tumbuhan memiliki mekanisme yang berbeda dalam menanggapi kondisi lingkungan yang tidak optimal. Untuk mempelajari mekanisme tersebut diperlukan kajian fisiologi lingkungan yang merupakan salah satu bagian dari ekofisiologi yang digunakan untuk mempelajari cara tumbuhan dan hewan dalam menanggapi kondisi lingkungan yang tidak menguntungkan. Menurut Sheriff dan Muchow (1992) terdapat tiga mekanisme yang digunakan oleh tanaman untuk beradaptasi selama periode ketersediaan air rendah yaitu penghinder kekurangan air lingkungan, penghinder kekurangan air jaringan dan tolerator potensial air rendah. Penghinder kekurangan air lingkungan biasanya terjadi pada tanaman semusim dengan ukuran hidup pendek. Tanaman ini akan berkecambah dan tumbuh menjadi tanaman muda dewasa, kemudian menghasilkan biji sebelum potensial air menurun. Kelompok tanaman ini kurang mampu dalam mengurangi kehilangan air sampai laju yang sangat rendah (potensial air rendah) yang berkisar -1.0 sampai -2.0 MPa.

Pada mekanisme kedua yaitu penghinder air jaringan, tanaman akan menutup stomata untuk mengurangi kehilangan air ketika potensial air -1.0 sampai -2.5 MPa, sedangkan pada tolerator potensial air tanaman mampu mempertahankan stomata tetap terbuka sebagian dan melanjutkan fotosintesis meskipun potensial air menurun (-10 sampai -12 MPa).

Tumbuhan dapat tumbuh dan berkembang dengan baik salah satunya ditentukan oleh besarnya potensial air yang diserapnya. Potensial air (Ψ_w) merupakan sistem yang menggambarkan tingkah laku air dan pergerakan air dalam tanah dan tubuh tumbuhan yang didasarkan atas suatu hubungan energi potensial air dengan satuan ukur bar atau pascal/pa. Potensial air tanah berhubungan langsung dengan kapasitas lapangan dan titik layu permanen. Energi potensial air tanah (Ψ_{tanah}) pada kapasitas lapangan yaitu -0.1 sampai -0.3 bar, sedangkan Ψ_{tanah} pada titik layu permanen berkisar -15 sampai -50 bar, tergantung dari tanaman.

Adapun pengertian dari kapasitas lapangan yaitu air yang tetap tersimpan dalam tanah yang tidak dapat mengalir ke bawah karena gaya gravitasi, sedangkan titik
layu permenan yaitu kondisi air tercekat sehingga tanaman akan layu dan tidak akan segar kembali (Gardner et al. 1991). Oleh karena itu, pada potensial air yang lebih negatif atau kekurangan air akan mengganggu aktivitas fisiologis dan morfologis sehingga mengakibatkan terhentinya pertumbuhan (Haryati 2003).

Cekaman kekeringan pada tanaman akan berpengaruh terhadap aktivitas fisiologi, morfologi dan biokimia. Salisbury dan Ross (1995) melaporan bahwa pada kondisi potensial air lebih negatif mengakibatkan pembentukan klorofil terhambat, terjadi penutupan stomata, penurunan aktivitas enzim seperti nitrat reductase, fenilalanin amonialinase, dan beberapa enzim lainnya. Sebaliknya, aktivitas enzim α-amilase dan ribonuklease meningkat dalam perombakan pati dan bahan lain untuk membuat potensial osmotik lebih negatif sehingga tanaman tahan terhadap kekeringan. Selanjutnya, pada cekaman yang lebih tinggi ($\Psi' = -1.0$ sampai -2.0) mengakibatkan respirasi, pengangkutan asimilat dan asimilasi CO$_2$ di dalam sel turun sampai taraf nol sehingga stomata menutup dan proses fotosintesis berjalan lambat.

Penutupan dan pembukaan stomata penting dilakukan oleh tanaman untuk melalui proses fotosintesis. Fotosintesis akan dihasilkan energi yang digunakan untuk pertumbuhan dan kegiatan reaksi-reaksi penting di dalam tanaman. Oleh karena itu, apabila proses fotosintesis terhambat maka tanaman kekurangan sumber energi untuk pertumbuhan dan perkembangan. Hasil penelitian Mohammadhkhan dan Heidari (2008) menunjukkan bahwa penutupan stomata terjadi pada tanaman jagung ketika kondisi stres air dengan induksi PEG 30% (~0.03 MPa), sedangkan pada potensial air -0.15 MPa (10%) dan -0.49 MPa (20%) stomata masih dalam kondisi terbuka. Sheriff dan Muchow (1992) menunjukkan bahwa pembukaan dan penutupan stomata dipengaruhi oleh keseimbangan turgor antara sel penjaga, karbondiksa (CO$_2$), cahaya, suhu, potensial air daun, dan kelembaban. Suatu kenaikan turgor dalam sel penjaga mengindikasikan pembukaan stomata. Pembukaan stomata berkurang bila kadar CO$_2$ yang ada di ruang antar sel bertambah. Selain itu, pengurangan cahaya dan potensial air daun rendah menyebabkan pembukaan stomata berkurang pada kebanyakan tanaman. Sebaliknya stomata akan terbuka lebar apabila suhu meningkat. Mekanisme penutupan stomata tersebut merupakan bentuk

Penyesuaian osmotik diawali dengan peningkatan senyawa osmotik atau perpindahan ion K⁺ sehingga potensial osmotik menurun. Selanjutnya air berdilambat ke dalam sel sehingga potensial turgor meningkat. Potensial turgor sendiri berperan dalam pertumbuhan dan perluasan sel. Hasil penelitian Zlatev dan Sivanov (2005) menunjukkan bahwa stres air pada tiga kultivar kedelai mengalami penurunan kadar air relatif, potensial air, dan potensial osmotik dengan nilai penyesuaian osmotik terendah berasal dari kultivar tahan.

Selain penutupan stomata, kadar air daun juga dapat digunakan sebagai indikator ketahanan kekereringan. Tanaman dengan kandungan air daun tinggi pada kondisi tercekmak menunjukkan karakter ketahanan. Hasil penelitian Valentovic et al. (2005) menunjukkan bahwa kadar air daun pada tanaman jagung menjadi rendah ketika diinduksi dengan sorbitol baik pada kultivar tahan (Nova) maupun kultivar peka (Ankora), tapi kehilangan air paling rendah berasal dari kultivar tahan. Selain itu, induksi cekaman dengan sorbitol 0.3M (-1.4 MPa) dapat mengakibatkan kerusakan membran pada kedua kultivar, tapi kebocoran elektrolit paling besar berasal dari kultivar peka.

Kondisi tercekmak juga mempengaruhi biokimia sel tanaman. Pada kondisi tercekmak (potensial air rendah) konsentrasi ABA pada jaringan daun dan dalam jaringan lain meningkat sehingga terjadi penutupan pada stomata dan transpirasi dapat dicegah. Selain itu, ABA berperan dalam penghambatan pertumbuhan pucuk dan memicu pertumbuhan akar (Wattimena 1988). Dengan demikian, diperlukan penghemat sumber daya sehingga laju transpirasi dapat dicegah, sebaliknya penyerapan air meningkat. Mekanisme kerja ABA digambarkan oleh Gardner et al. (1971) yaitu ABA dibebaskan dari kloroplas ke dalam sel-sel epidermis selama terjadinya kekurangan air, kemudian kinerja pompa proton dihambat yang aktifitasnya tergantung dari ATP (Adenosin tripospat) yang berada di membran plasma sel penjaga. Kinerja dari pompa proton yaitu mengangkat proton keluar dari sel penjaga sehingga menyebar ke sel terjadinya aliran masuk yang sangat cepat.
dan penimbunan ion K+, kemudian terjadi penyerapan air secara osmotik dan terjadi pembukaan stomata.

Respon biokimia lainnya pada kondisi tercekam yaitu meningkatnya kandungan reactive oxygen species (ROS) yang merupakan radikal bebas yang berbahaya bagi makhluk hidup seperti radikal superoksida (O2•−), hidrogen peroksida (H2O2), dan radikal hidroksil (OH•) yang ditemukan di dalam kloroplast dan mitokondria. Dampaknya adalah merusak DNA, protein, lipid dan klorofil serta menjamurnya sel lainnya. Namun, sebagian tanaman akan memproteksi sistem seluler dan substeluler dari bahaya ROS dengan aktivitas enzim antioksidan seperti superoxide dismutase (SOD), peroxidase compound (POX) dan catalase (CAT) sebagai metabolisme yang baik seperti glutation, asam askorbat, tokoferol, dan karotenoid. Hasil penelitian Moussa dan Aziz (2008) bahwa tanaman jagung yang
toleran (Guza 2) mengandung malondialdehyde (MDA) dan hidrogen peroksida (H₂O₂) lebih rendah dan sebaliknya terjadi peningkatan kandungan superoxide dismutase (SOD), peroxidase compound (POX), catalase (CAT), efisiensi fotosintesis, prolin bebas, dan gylcinebetain (GB) yang merupakan indikator toleran kekeringan dengan tanaman jagung yang peka (Trihibid 321).

Selanjutnya, respon fisiologi dan biokimia yang ditimbulkan cekaman kekeringan akan berdampak terhadap karakter atau respon morfologi suatu tanaman. Tapi setiap tanaman memiliki respon yang berbeda-beda. Hasil penelitian Syafi (2008) bahwa cekaman ar pertengah terhadap respon morfologi dan fisiologi jarak pagar pada peubah atau parameter tinggi tanaman, luas daun, ketebalan daun, jumlah stomata terbuka, botob kering pucuk, botob kering akar, panjang akar, volume akar, kadar air daun, kandungan klorofil, dan karbon serta laju assimilasi. Hasil penelitian Lapanjang et al. (2008) bahwa cekaman air hingga 40% dapat mengurangi diameter batang (31.4%), panjang akar (65.49%), dan luas daun (73%) dan menurunkan berat kering tanaman jarak pagar (74.83%). Hasil penelitian Palupi dan Dedywirianto (2008) bahwa cekaman kekeringan dengan perlakuan kadar air media 25% dari kapasitas lapang selama 4 minggu secara nyata menekan pertumbuhan bibit kelapa sawit. Hasil penelitian Widyatmoko (2005) bahwa cekaman kekeringan berpengaruh terhadap pertumbuhan dan karakter vegetatif tanaman tebu yang sedang berada pada fase pertumbuhan aktif yaitu pada umur 8 hingga 16 minggu setelah tanam (MST), sedangkan pada tanaman yang memiliki umur lebih tua 20 hingga 24 MST berpengaruh terhadap kualitas gula dan kandungan prolin bebas meningkat menjadi 324 ppm dan semula 8.33 ppm. Selain itu menurunkan penyerapan N, P, K, Ca dan Mg seiring berlangsungnya cekaman. Apabila sudah mencapai tahap kritis dari cekaman kekeringan maka akan berpengaruh terhadap produktivitas. Zubaer (2007) bahwa peningkatan cekaman air sampai 40% dari kadar air kapasitas lapang tanaman menyebabkan penurunan tinggi tanaman, berat 1.000 butir, hasil bulir, dan intensitas panen pada tanaman padi.

2.3 Pengaruh Tanaman terhadap Cekaman Kekeringan
Pada budidaya pertanian faktor irigasi atau pengairan memiliki peranan penting dalam menentukan keberhasilan produksi tanaman, tetapi tidak semua
lahan terdapat sumber air yang cukup dan tidak semua perusahaan yang bergerak dalam bidang agribisnis membangun fasilitas irigasi dengan baik karena diperlukan biaya yang relatif besar. Oleh karena itu, dibutuhkan peranan dari pemuliaan tanaman dalam memodifikasi bahan genetik suatu tanaman sehingga dihasilkan tanaman yang toleran terhadap kekeringan dengan produktivitas tetap tinggi. Menurut Hamin (1972), pemuliaan tanaman adalah ilmu pengetahuan yang diaplikasikan untuk memperbaiki sifat tanaman, baik secara kualitatif maupun secara quantitatif dengan tujuan untuk mendapatkan tanaman yang berdaya hasil tinggi dan mempunyai sifat-sifat lain yang dikehendaki manusia. Rauf (2008) menyatakan bahwa dengan perbaikan genetik melalui modifikasi dari respons morfologi dan fisiologi tingkat keberhasilan lebih tinggi dibandingkan dengan praktek secara agronomi dan merupakan strategi yang paling murah dalam mengatasi kondisi kekeringan.

Perbaikan lain dalam karakter toleransi terhadap kekeringan, karakter lain yang diperbaiki adalah kesarempakan panen, peningkatan jumlah buah per malai, dan kandungan minyak. Hasil penelitian Rauf (2008) menunjukkan bahwa kekeringan dapat menurunkan produksi minyak pada biji bunga matahari sebesar 2%. Oleh karena itu, perlu upaya perbaikan karakter tanaman yang mengarah ke
budidaya LEISA (Low External Input Sustainable Agriculture). Hambali (2007) menyatakan bahwa kegiatan pemuliaan tanaman jarak pagar diupayakan untuk memperoleh klon jarak pagar yang memiliki daya adaptasi yang baik terhadap budidaya LEISA, tetapi mampu menghasilkan produk yang memiliki kelayakan ekonomis. Dengan demikian, biaya input yang dikeluarkan relatif lebih rendah sebaliknya hasil lebih maksimal dalam produksi tanaman.

Saat ini, terdapat sekitar 270 genotipe tanaman jarak pagar hasil koleksi Pusat Penelitian Surfaktan dan Bioenergi, tetapi baru sebagian genotipe yang ditanam di lapang dan dilakukan karakterisasi. Kegiatan introduksi dan kegiatan lainnya akan terus dilakukan guna mendapatkan keragaman genetik sehingga dapat digunakan sebagai bahan perakitan varietas. Selanjutnya hasil introduksi dapat langsung dikembangkan menjadi varietas baru setelah melalui proses adaptasi lingkungan setempat atau tanaman hasil introduksi dapat menjadi varietas baru setelah melalui proses seleksi dan atau tanaman introduksi dapat digunakan sebagai bahan hibridisasi dengan varietas yang telah beradaptasi.

Untuk mendapatkan tanaman jarak pagar yang toleran terhadap kondisi kekeringan maka pemulia tanaman perlu mempelajari karakter morfologis, fisiologis, dan biokimia pada kondisi tercekat dan salah satu bentuk pengujian ketalahan kekeringan dapat digunakan perlakuan kadar air media seleksi. Kadar
air media seleksi yang digunakan berkisar diantara kadar air kapasitas lapangan dan titik layu permanen (kadar air tersedia). Selanjutnya dilakukan pengamatan berdasarkan karakter primer yaitu hasil per satuan luas atau indeks panen. Selain itu, dapat digunakan karakter sekunder yang terkait dengan produktivitas seperti tinggi tanaman, lebar daun, panjang akar, waktu berbunga, kadar air relatif, kadar air daun, dan potensial air daun. Lafitte (2003) menyatakan bahwa karakter sekunder dapat digunakan dalam program pemulia dengan syarat harus memiliki korelasi genetik dengan hasil per satuan luas pada kondisi stress yang terjadi dalam lingkungan target, tidak dipengaruhi banyak oleh lingkungan (nilai heritability tinggi), harus memiliki keragaman karakter diantara galur, tidak berhubungan dengan hasil rendah dalam lingkungan tidak stress, dan karakter tersebut dapat diukur secara cepat. Diharapkan pengaruh lingkungan pada karakter yang teramat tidak terlalu besar sehingga kegiatan seleksi dapat dilakukan lebih awal. Meskipun pada kenyataannya, pengaruh lingkungan sangat besar pada karakter kuantitatif. Seperti yang dikemukakan oleh Crowder (1986) bahwa fenotipe yang teramat pada karakter kuantitatif dipengaruhi oleh interaksi genetis dan lingkungan, sedangkan karakter kualitatif pengaruh lingkungan sangat kecil.

Tahap selanjutnya adalah karakter dari peubah yang diamati dievaluasi lebih lanjut untuk mengetahui karakter toleran terhadap kekeringan dengan menggunakan indek sensitivitas kekeringan (IS) berdasarkan rumus Fischer dan Mauro (1978). Dari perhitungan IS diperoleh tiga kelompok tanaman yaitu toleran, agak toleran, dan peka. Nilai IS≤0.5 menunjukkan genotipe yang memiliki sifat toleran, 0.5<IS≤1.0 menunjukkan genotipe yang memiliki sifat agak toleran dan IS>1.0 menunjukkan genotipe dengan sifat peka.
3. BAHAN DAN METODE

Hasil akhir penelitian ini adalah dihasilkan genotipe jarak pagar toleran terhadap kekeringan yang dipergunakan sebagai calon tetu dalam perakitan variasi toleran kekeringan dan berproduktivitas tinggi (Gambar 1). Tahapan penelitian dimulai dengan kegiatan koleksi plasmanutfah jarak pagar dari beberapa wilayah. Selanjutnya dilakukan penelitian terhadap toleransi cekaman kekeringan melalui dua percobaan yang berbeda. Percobaan pertama adalah respons genotipe jarak pagar terhadap kadar air media. Hasil penelitian ini akan diperoleh kadar air media (KAM) seleksi yang dapat digunakan untuk percobaan kedua dalam penapisan genotipe jarak pagar terhadap toleransi kekeringan.

Pengujian jarak pagar terhadap kekeringan dapat dilakukan sekaligus dengan memantau tanaman koleksi yang diuji pada berbagai level KAM sehingga dapat mempersingkat penelitian seperti pada percobaan pertama. Pada percobaan pertama, selain diperoleh kadar air media seleksi yang tepat untuk pengujian jarak pagar terhadap kekeringan dan juga genotipe yang digunakan dapat dimanfaatkan untuk pengujian toleransi terhadap kekeringan. Hasil dari pengujian ini akan diperoleh tiga kelas genotipe yaitu toleran, agak toleran dan peka.

Gambar 1 Sistematika penelitian penapisan genotipe jarak pagar (*Jatropha curcas* L.) untuk toleransi terhadap kekeringan
3.1 Percobaan I: Respon Genotipe Jarak Pagar terhadap Kadar Air Media

3.1.1 Waktu dan Tempat

3.1.2 Bahan dan Alat

Alat yang digunakan untuk penanaman bibit ke media pengujian toleransi kekeringan yaitu sekop, timbangan, ayakan tanah berukuran 1 cm dan ayakan pasir berukuran 0.5 cm. Peralatan lain soil moiseter meter DM-18 digunakan untuk pengukur kadar air media, termohigrometer untuk mengukur suhu dan kelembaban di rumah plastik tempat pengujian kekeringan, mikroskop untuk pengamatan stomata, oven untuk mengukur kadar air daun, bobot kering akar, dan bobot kering tajuk. Selanjutnya peralatan untuk analisis prolin yaitu spektrofotometer, sentrifuge, timbangan analitik, gelas ukur, tabung reaksi, corong mortar, dan cawan porselin.
Tabel 1. Genotipe jarak pagar yang digunakan pada penelitian penapisan genotipe jarak pagar (*Jatropha curcas* L.) untuk toleransi terhadap kekeringan

<table>
<thead>
<tr>
<th>No.</th>
<th>Genotipe</th>
<th>No.</th>
<th>Genotipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aceh Besar-DI Aceh</td>
<td>17</td>
<td>Pontianak-Kalbar</td>
</tr>
<tr>
<td>2</td>
<td>IP-2P</td>
<td>18</td>
<td>Pidi-DI Aceh</td>
</tr>
<tr>
<td>3</td>
<td>Komering-Sumsel</td>
<td>19</td>
<td>Lahat-Sumsel</td>
</tr>
<tr>
<td>4</td>
<td>IP-1M-Jateng</td>
<td>20</td>
<td>Pagar Alam-Sumsel</td>
</tr>
<tr>
<td>5</td>
<td>Papua-Irian jaya</td>
<td>21</td>
<td>Indralaya-Sumsel</td>
</tr>
<tr>
<td>6</td>
<td>Yogyakarta-DIY</td>
<td>22</td>
<td>Kupang-NTT</td>
</tr>
<tr>
<td>7</td>
<td>Gunung Tambora-NTB</td>
<td>23</td>
<td>Palembang-Sumsel</td>
</tr>
<tr>
<td>8</td>
<td>Dompu-1-NTB</td>
<td>24</td>
<td>Lampung-2-Bandar Lampung</td>
</tr>
<tr>
<td>9</td>
<td>Bima-NTB</td>
<td>25</td>
<td>Lampung-3-Bandar Lampung</td>
</tr>
<tr>
<td>10</td>
<td>Curup-Bengkulu</td>
<td>26</td>
<td>Saweli-Maluku</td>
</tr>
<tr>
<td>11</td>
<td>Dompu-2-NTB</td>
<td>27</td>
<td>Sumba-NTT</td>
</tr>
<tr>
<td>12</td>
<td>Bogor-1</td>
<td>28</td>
<td>IP-2M-Jateng</td>
</tr>
<tr>
<td>13</td>
<td>Bogor-2</td>
<td>29</td>
<td>IP-2A-Jatim</td>
</tr>
<tr>
<td>14</td>
<td>Bogor-3</td>
<td>30</td>
<td>China</td>
</tr>
<tr>
<td>15</td>
<td>Sukabumi-1</td>
<td>31</td>
<td>Jenepono-Sulsel</td>
</tr>
<tr>
<td>16</td>
<td>Sukabumi-2</td>
<td>32</td>
<td>Medan-Sumut</td>
</tr>
</tbody>
</table>

3.1.3 Metode Penelitian

Rancangan perlakuan yang digunakan dalam percobaan pertama adalah petak split plot dengan dua faktor. Faktor pertama adalah kadar air media sebagai petak utama yang terdiri dari empat taraf:

1. Kadar Air Media 22-23% (KAM 1)
2. Kadar Air Media 27-28% (KAM 2)
3. Kadar Air Media 32-33% (KAM 3)
4. Kadar Air Media 37-38% (KAM 4)

Faktor kedua adalah genotipe jarak pagar sebagai anak petak yang terdiri dari sembilan genotipe yang mewakili tiga daerah yaitu basah, sedang dan kering:

2. Genotipe dari daerah sedang: IP-1M, Papua, Yogyakarta,
3. Genotipe dari daerah kering: Gunung Tambora, Dompu, Bima

Berdasarkan jumlah faktor dan taraf perlakuan maka terdapat 36 kombinasi perlakuan. Setiap kombinasi perlakuan diulang 3 kali dan setiap ulangan terdiri atas 10 tanaman sehingga diperoleh 108 satuan percobaan dengan jumlah 432 tanaman.

Analisis data dilakukan dengan uji F, dengan menggunakan program *Statistical Analysis System* (SAS). Apabila peubah yang diamati berbeda nyata pada
1. Ditelurangi nilai kuantitas yang diperoleh dari uji ANOVA untuk mengidentifikasi perbedaan pengaruh genotipe dan pengaruh media yang signifikan. Pengaruh genotipe dan pengaruh media yang signifikan akan ditelurangi untuk melihat perbedaan pengaruh genotipe dan pengaruh media yang signifikan.

2. Ditelurangi nilai kuantitas yang diperoleh dari uji ANOVA untuk mengidentifikasi perbedaan pengaruh genotipe dan pengaruh media yang signifikan. Pengaruh genotipe dan pengaruh media yang signifikan akan ditelurangi untuk melihat perbedaan pengaruh genotipe dan pengaruh media yang signifikan.

Dengan demikian, dapat dilakukan uji lanjut menggunakan Duncan Multiple Range Test (Duncan's). Selanjutnya data tersebut digunakan untuk menentukan kadar air media seleksi didasarkan pada koefisien keragaman (KK). Tingkat kadar air media yang menghasilkan KK tertinggi pada sebagian besar peubah ditetapkan sebagai kadar air media seleksi.

Model matematis petak terbaki menurut Steel dan Torrie (1989) adalah sebagai berikut:

\[
Y_{ijk} = \mu + \gamma_i + \alpha_j + \delta_{ij} + \beta_k + (\alpha\beta)_{jk} + \epsilon_{ijk}
\]

Keterangan:

- \(Y_{ijk}\): nilai pengamatan pada kelompok ke-i, kadar air media ke-j dan genotipe ke-k
- \(\mu\): nilai rataan umum
- \(\gamma_i\): pengaruh kelompok ke-i.
- \(\alpha_j\): pengaruh kadar air media ke-j.
- \(\delta_{ij}\): pengaruh sisa pada kelompok ke-i dan kadar air media ke-j.
- \(\beta_k\): pengaruh genotipe ke-k.
- \((\alpha\beta)_{jk}\): pengaruh interaksi antara kadar air media ke-j dengan genotipe ke-k.
- \(\epsilon_{ijk}\): pengaruh sisa pada kelompok ke-i, kadar air media ke-j dan genotipe ke-k.

3.1.4 Pelaksanaan Penelitian

Tahapan penelitian meliputi pembibitan dan penanaman bibit ke media pengujian kekeritingan.

A. Pembibitan

Bahan yang digunakan dalam pengujian kekeritingan adalah bibit jarak pagar yang berumur 3 bulan. Tahapan kegiatan pembibitan adalah sebagai berikut:

1. Persiapan Bahan Tanam dan Media Pembibitan

Bahan yang digunakan dalam persemaian berasal dari biji, hasil panen pada bulan Juni-Juli 2008 dari kebun koleksi SBRC-IPB. Media tanam berupa campuran tanah+media siap pakai dengan perbandingan 1:1 berdasarkan volume (v/v). Selanjutnya, media tersebut dimasukkan ke dalam polibag berukuran 15x20 cm. Bibit media pembibitan ± 700 gram per polibag.

2. Penanaman

Selain ditanam benih direndam selama ± 30 menit dengan larutan fungisida Dithane dengan konsentrasi 1 gram/liter untuk mencegah serangan cendawan. Selanjutnya, benih ditanam dengan kedalaman lubang ± 5 cm. Untuk mencegah serangan hama, di dalam lubang tanam diberi Furadan 3G dengan dosis
10-20 butir per lubang. Kemudian polibag yang sudah ditanam benih ditempatkan pada kondisi termaungi (tidak terkena sinar matahari langsung).

3. Pemeliharaan

B. Penanaman Bibit ke Media Perlakuan

Bibit yang digunakan dalam percobaan ini adalah bibit yang berumur 3 bulan. Selanjutnya bibit dipindahkan ke media perlakuan. Tahapan penanaman bibit ke media perlakuan adalah sebagai berikut:

1. Seleksi Bibit

Pertumbuhan bibit jarak pagar antar genotipe dan dalam genotipe tidak seragam, meskipun penanamannya dilakukan pada waktu yang sama. Dengan demikian, diperlukan seleksi dan pengamatan awal dengan mengamati penampilan (karakter fenotipik) tiap genotipe yang mencakup tinggi tanaman, diameter batang dan jumlah daun. Bibit yang digunakan adalah batang sudah sedikit keruk, ditandai dengan warna epidermis (kulit bagian luar) hijau keabu-abuan, tinggi tanaman ≥ 20 cm, diameter batang ± 2 cm dan bebas hama penyakit.

2. Persiapan Media untuk Penguji Toleransi Kekeringan

Media yang digunakan adalah campuran top soil+pasir dengan perbandingan 3:1 (v/v). Media tersebut disaring dengan ayakan berdiameter 1 cm untuk benih dan 0.5 cm untuk pasir agar dihasilkan butiran halus, seragam dan bebas dari kotoran kayu, daun dan lain sebagainya. Selanjutnya media pasir dan top soil dicampur, kemudian dimasukkan ke dalam polibag berukuran 30x35 cm dengan bobot media 5 kg per polibag.
3. Penetapan Kadar Air Kapasitas Lapangan dan Titik Layu Permanen

Tujuan dilakukan penetapan kadar air kapasitas lapangan dan titik layu permanen adalah untuk menetapkan level kadar air media perlakuan. Alat yang digunakan untuk menetapkan kadar air kapasitas lapangan adalah *Pressure Plate Apparatus* pF 2.54, sedangkan untuk titik layu permanen *Pressure Plate Apparatus* pF 4.20. Contoh yang diuji adalah media kering udara dengan cara kerja sebagai berikut:

- Contoh media uji diletakkan di atas piringan *Pressure Plate Apparatus*, kemudian disiram dengan air sampai berlebih dan dibiarakan selama 48 jam.

- Contoh media uji diberi tekanan. Untuk kadar air pada kapasitas lapangan diberi tekanan 1/3 bar menggunakan pF 2.54 dan kadar air pada titik layu permanen diberi tekanan 1.5 bar menggunakan pF 4.20.

- Selanjutnya diperoleh kadar air kapasitas lapangan dan titik layu permanen.

- Kadar air hasil pengujian dilaboratorium selanjutnya digunakan untuk menetapkan kadar air media perlakuan.

Hasil pengujian laboratorium tanah diperoleh kadar air kapasitas lapangan sebesar 37% dan kadar air titik layu permanen sebesar 22% sehingga kadar air media perlakuan yang digunakan adalah 22-23%, 27-28%, 32-33% dan 37-38%.

4. Penanaman Bibit

Bibit yang terseleksi ditanam pada media perlakuan dengan melepaskan polibag dan diusahakan tidak sampai merusak akar. Media yang menempel pada bibit diutamakan dengan ketinggian 8 cm dari polibag (+ 250 gram), kemudian dimasukkan ke dalam polibag berukuran 30x35 cm. Selanjutnya bibit tersebut dikondisikan atau dipelihara secara optimum selama empat minggu berupa penyemprotan dengan interval 2 hari sekali, dosis 240 ml/l air dan pemupukan. Metode pemupukan dan dosis yang diterapkan sama dengan pemeliharaan pada fase bulat. Selanjutnya bibit dipindahkan ke rumah plastik dan dikondisikan dalam keadaan sub-optimum yaitu tanpa pemberian air sampai mencapai kadar air media perlakuan yang dikehendaki dengan mengukur kadar air media menggunakan *soil moisture meter* DM-18.
5. Pemeliharaan

6. Cara Perhitungan Air yang Harus Ditambahkan Ketika Terjadi Penurunan Kadar Air pada Media Perlakuan Kekeringan

Pengukuran kadar air media perlakuan dilakukan setiap lima hari. Perhitungan banyaknya air yang harus ditambahkan ketika terjadi penurunan kadar air media yaitu dengan cara menghitung bobot media disetiap kadar air media perlakuan. Bobot media pada masing-masing perlakuan digunakan sebagai faktor perkalian. Hasil pengamatan diperoleh bobot media setiap perlakuan adalah sebagai berikut:

- Bobot media pada kadar air 37% adalah 5.0 kg + 250 gram
- Bobot media pada kadar air 32% adalah 4.7 kg + 250 gram
- Bobot media pada kadar air 27% adalah 4.4 kg + 250 gram
- Bobot media pada kadar air 22% adalah 4.1 kg + 250 gram

*) = berat media yang menempel pada bibit saat bibit dipindahkan ke media perlakuan.

Selanjutnya untuk menghitung dosis air yang ditambahkan adalah sebagai berikut:

\[
\text{Dosis air yang ditambahkan} = \frac{\text{KAM} - \text{KAM1}}{100} \times \text{bobot media perlakuan}
\]

Keterangan:
\[
\begin{align*}
\text{KAM} & : \text{Kadar air media pada awal perlakuan} \\
\text{KAM1} & : \text{Kadar air media pada saat pengukuran}
\end{align*}
\]

Hasil penelitian percobaan pertama akan diperoleh kadar air media seleksi yang digunakan untuk penapisan genotipe jarak pagar terhadap kekeringan pada percobaan kedua. Waktu yang diperlukan dalam menentukan kadar air media seleksi yaitu 12 minggu setelah perlakuan.

3.1.5 Pengamatan

Pengamatan dimulai pada awal percobaan atau 0 minggu setelah perlakuan (0 M). Selanjutnya pengamatan dilakukan secara periodik sesuai dengan peubah
yang diamati. Kadar air media dipertahankan sesuai perlakuannya sampai akhir penelitian, diukur dengan menggunakan soil moister meter DM-18. Pengamatan dilakukan terhadap karakter morfologi, fisiologi dan biokimia. Peubah yang diamati dalam menentukan kadar air media seleksi adalah pertambahan tinggi tanaman, diameter dan jumlah daun, luas daun, kadar air daun, jumlah cabang, bobot kering akar dan tajuk, nisbah bobot kering akar/tajuk, panjang akar, dan jumlah Tanaman hidup. Hasil percobaan pertama juga akan digunakan untuk mengukur tingkat toleransi kekereringan dari setiap genotipe dengan melakukan pengamatan pada peubah lainnya seperti bobot kering total tanaman, kerapatan stomata, jumlah stomata terbuka, dan kandungan prolin. Selanjutnya bibit yang telah tumbuh pada berbagai level KAM ditanami di lapangan untuk mengetahui respons pertumbuhan vegetatif dan generatif lebih lanjut akibat dari perlakuan KAM. Peubah yang diamati saat bibit ditanam di lapangan adalah tinggi tanaman, diameter batang, jumlah cabang total dan cabang produktif, waktu berbunga pertama, jumlah malai, pembentukan buah, dan pola bunga mekar.

Peubah morfologi yang diamati adalah:

1. Pertambahan tinggi tanaman (cm)
 Pengamatan dilakukan pada awal percobaan (0 MSP) dan selanjutnya setiap dua minggu sekali dengan mengukur dari bagian pangkal batang (batas leher akar) sampai titik tumbuh.

2. Pertambahan diameter batang (mm)
 Pengamatan dilakukan pada awal percobaan (0 MSP) dan selanjutnya setiap dua minggu sekali dengan cara mengukur dari bagian pangkal batang 5 cm di permukaan tanah.

3. Pertambahan jumlah daun
 Dapat dilihat dari pengamatan sama dengan peubah pertambahan tinggi tanaman.

4. Luas daun (cm²)
 Pengamatan dilakukan pada awal percobaan (0 MSP) dan selanjutnya setiap dua minggu sekali dengan mengukur sampel daun yang tidak mengalami kerusakan luas yang terletak pada buku ke 4-8 dari atas pada cabang utama. Pengukuran luas daun berdasarkan panjang dan lebar daun, kemudian
1. Dimasukkan ke dalam persamaan regresi yang dilakukan perhitungan sebelumnya.

5. Jumlah cabang

Pengamatan dilakukan pada akhir penelitian dengan cara menghitung jumlah cabang per tanaman.

6. Bobot kering akar (g)

Pengamatan dilakukan pada akhir penelitian dengan cara menimbang bobot kering akar setelah dioven pada suhu 80 °C selama 72 jam.

7. Bobot kering tajuk (g)

Pengamatan dilakukan pada akhir penelitian dengan cara menimbang bobot kering tajuk setelah dioven pada suhu 80 °C selama 72 jam.

8. Nisbah bobot kering akar/pucuk (R/S)

Pengamatan dilakukan diakhir penelitian setelah diperoleh bobot kering akar dan tajuk.

9. Panjang akar (cm)

Pengamatan ini dilakukan pada akhir penelitian dengan cara mengukur akar dari pangkal batang sampai ujung akar terpanjang.

10. Bobot kering total (g)

Pengamatan dilakukan pada akhir penelitian dengan cara menimbang bobot kering tajuk dan akar setelah dioven pada suhu 80 °C selama 72 jam.

11. Jumlah tanaman hidup (%)

Pengamatan dilakukan pada akhir penelitian dengan menghitung jumlah tanaman yang hidup dari setiap perlakuan.

Pembahasan fisiologi yang diamati adalah:

1. Kadar air daun (%)

Pengamatan dilakukan pada awal percobaan (0 MSP) dan selanjutnya dilakukan setiap empat minggu dengan cara menimbang bobot segar daun yang terletak dibawah buku daun dari pengamatan luas daun dan stomata, kemudian dikeringkan dengan oven pada suhu 80 °C selama 48 jam. Perhitungan bobot kering daun adalah sebagai berikut:

\[\text{Kadar air daun} = \frac{\text{bobot basah daun} - \text{bobot kering daun}}{\text{bobot basah daun}} \times 100\% \]
2. Jumlah stomata terbuka (%) dan kerapatan stomata per mm²

Pengamatan stomata dilakukan pada awal percobaan (0 MSP), selanjutnya dilakukan setiap 4 minggu dengan cara melapisi bagian bawah daun dengan cutex. Sampel daun yang diambil adalah daun yang tidak mengalami pertambahan luas yang terletak pada buku ke 4-8 pada cabang utama. Selanjutnya diibarkan sekitar 2 menit, kemudian diselotip. Selanjutnya solatip dipans dan ditempelkan pada gelas objek dan diamati di bawah mikroskop dengan pembesaran 40 kali, kemudian dihitung besarnya kerapatan stomata dan stomata terbuka.

Peubah fisikimia yang diamati adalah:

1. Kandungan prolin (mg/g)

Analisis kandungan prolin dilakukan pada awal percobaan (0 MSP) dan selanjutnya setiap empat minggu sekali dengan menggunakan metode Bates et al. (1973). Tahapan kerjanya sebagai berikut: sebagian daun yang terletak di bawah buku daun dari pengamatan luas daun dan stomata digunting sebanyak 0.5 g. Selanjutnya daun dihaluskan dengan mortar dengan menambahkan 5 ml asam sulfosalisilat 3% sambil diaduk sampai homogen, kemudian ditera hingga 10 ml dan disaring dengan kertas whatman. Filtrat dipetet sebanyak 2 ml, kemudian ditera hingga 10 ml lalu masukkan ke dalam tabung reaksi dan ditambahkan 2 ml asam ninhidrin dan 2 ml asam asetat glasial, kocok sampai tercampur sempurna. Selanjutnya direaksikan dalam penugasan air pada suhu 100 °C selama 60 menit, kemudian reaksi dihentikan dalam ice bath dan ditambahkan 4 ml toluen sambil diaduk dengan menggunakan vortek selama 10-15 detik. Lapisan chomophore yang terbentuk dipetet sebanyak 3 ml kemudian dimasukkan ke dalam tabung reaksi. Selanjutnya diukur absorbansinya pada panjang gelombang 520 nm dengan toluen sebagai blanko. Konsentrasi prolin ditentukan dari kurva standard dan dihitung berdasarkan berat segar dengan rumus sebagai berikut:

\[
\text{Prolin (mg/g) = } \frac{\text{w \times \text{volumen toluene}}}{\text{berat segar \times \text{volumen cairan}}}
\]

gram contoh

\[
\text{\(\mu g\) prolin/g bobot segar}
\]
Peubah yang diamati saat di lapangan adalah:

1. Tinggi tanaman (cm)
 Pengamatan dilakukan pada 16 minggu setelah tanam (MST) di lapangan dengan mengukur dari bagian pangkal batang sampai titik tumbuh.

2. Diameter batang (cm)
 Pengamatan dilakukan pada 16 MST di lapangan dengan cara mengukur dari bagian pangkal batang 5 cm dari permukaan tanah.

3. Jumlah cabang total dan produktif
 Pengamatan dilakukan pada 16 MST di lapangan.
 Pengamatan dilakukan saat terbentuknya inisiasi tunas bunga pertama.

4. Waktu berbunga pertama
 Pengamatan dilakukan saat terbentuknya kuncup bunga pertama muncul

5. Jumlah malai per tanaman
 Pengamatan dilakukan pada 16 MST di lapangan.

6. Jumlah bunga betina per malai
 Pengamatan dilakukan ketika bunga betina mulai mekar.

7. Persentase buah (%)
 Pengamatan dilakukan dengan cara menghitung jumlah buah per malai, kemudian dibagi dengan jumlah bunga betina per malai.

8. Pola bunga mekar
 Pengamatan dilakukan dengan cara mengamati jenis bunga mekar apakah termasuk protogini (bunga jantan mekar lebih awal) atau protandri (bunga betina mekar lebih awal).

3.2.2coba II. Penapisan Genotipe Jarak Pagar terhadap Toleransi Keeringan

3.2.2.1 Waktu dan Tempat
3.2.2 Bahan dan Alat

Percobaan ini menggunakan benih dari 23 genotipe jarak pagar yang berasal dari beberapa daerah Indonesia (Tabel 1, no. 10-32). Bahan lain dan alat yang digunakan pada percobaan kedua sama dengan percobaan pertama.

3.2.3 Metode Penelitian

Percobaan ini dilakukan berdasarkan hasil percobaan pertama setelah diperoleh kadar air media seleksi untuk pengujian toleransi kekereringan pada tanaman jarak pagar. Rancangan perlakuan yang digunakan adalah Rancangan Kelompok Lengkap Teracak (RKLT) faktorial yaitu genotipe jarak pagar dan kadar air media. Genotipe jarak pagar yang digunakan dalam penapisan toleransi kekereringan terdiri atas 23 genotipe (Tabel 1, no. 10-32). Kadar air media yang digunakan terdiri atas 22-23% dan 37-38%. Tujuan menggunakan dua level kadar air adalah untuk mengukur indeks sensitivitas kekereringan dari setiap genotipe dengan membandingkan respon genotipe berdasarkan peubah yang diamati pada KAM kecekam dengan KAM tidak tercekam. Setiap perlakuan diulang 3 kali dan terduplikat 2 tanaman per ulangan sehingga terdapat 138 satuan percobaan dengan 276 tanaman. Selanjutnya dilakukan pengamatan pada setiap peubah dan data yang diperoleh dianalisis dengan uji F dengan menggunakan program Statistical Analysis System (SAS). Apabila peubah yang diamati berbeda nyata pada taraf α 5% maka dilanjutkan dengan uji lanjut menggunakan Duncan Multiple Range Test (DMRT'S).

Model matematis RKLT menurut Steel dan Torrie (1989) yaitu:

\[Y_{ijk} = \mu + A_i + B_j + C_k + AB_{(jk)} + \epsilon_{ijk} \]

Keterangan:
- \(Y_{ijk} \) = nilai pengamatan pada kelompok ke-\(i \), genotipe ke-\(j \) dan kadar air media ke-\(k \).
- \(\mu \) = nilai rataan umum
- \(A_i \) = pengaruh kelompok ke-\(i \)
- \(B_j \) = pengaruh genotipe ke-\(j \)
- \(C_k \) = pengaruh kadar air media ke-\(k \)
- \(AB_{(jk)} \) = pengaruh genotipe ke-\(j \) dan kadar air media ke-\(k \)
- \(\epsilon_{ijk} \) = pengaruh sisa pada kelompok ke-\(i \), genotipe ke-\(j \) dan kadar air media ke-\(k \).

Selanjutnya dilakukan perhitungan Indeks Sensitivitas Kekeringan (IS) yang bertujuan untuk menentukan genotipe jarak pagar ke dalam kelas toleran atau
tahan kekerasan berdasarkan peubah yang diamati. Indeks sensitivitas dihitung
berdasarkan rumus Fischer dan Maurer (1978) adalah sebagai berikut:

\[
IS = \frac{(1 - \frac{Y}{Y_P})}{(1 - \frac{X}{X_P})}
\]

Keterangan:
IS = indeks sensitivitas kekerasan.
Y sub Y = nilai respon genotipe pada kondisi stres kekerasan.
X sub X = nilai respon genotipe pada kondisi non stres kekerasan.
Y_P sub Y_P = nilai respon rata-rata dari genotipe pada kondisi stres kekerasan.
X_P sub X_P = nilai respon rata-rata dari genotipe pada kondisi non stres kekerasan.

Setelah diperoleh nilai IS dari tiap genotipe pada masing-masing peubah, selanjutnya diklasifikasikan ke dalam tiga kelas berdasarkan peubah yang diamati
dengan cara sebagai berikut:

\[
\begin{align*}
IS \leq 0.5 & \quad \text{peubah yang memiliki sifat toleran.} \\
0.5 < IS \leq 0.6 & \quad \text{peubah yang memiliki sifat agak toleran.} \\
IS > 0.6 & \quad \text{peubah dengan sifat peka.}
\end{align*}
\]

Untuk mempermudah evaluasi lebih lanjut dilakukan skoring dengan cara
gabungkan nilai toleransi pada kelas toleran, agak toleran dan peka pada setiap peubah. Kelas
toleran diboboti dengan nilai 2, agak toleran 1 dan peka 0. Selanjutnya untuk
menentukan genotipe yang toleran terhadap kekerasan dikelaskan berdasarkan
total skoring sebagai berikut:

1. Pada percobaan pertama terdapat 15 peubah yang diamati sehingga total
skor tertinggi adalah 30. Berdasarkan total skoring tertinggi maka genotipe
yang memiliki skor > 15 dikategorikan toleran (mampu mempertahankan
100-100% pertumbuhan pada kondisi kekerasan), 8-15 dikategorikan agak
toleran (mampu mempertahankan 26-50% pertumbuhan pada kondisi
kerasan), dan < 8 dikategorikan peka (mampu mempertahankan 0-25%
pertumbuhan pada kondisi kekerasan).

2. Pada percobaan kedua terdapat 14 peubah yang diamati sehingga total skor
tertinggi adalah 28. Berdasarkan total skoring tertinggi genotipe yang
memiliki skor > 14 dikategorikan toleran (mampu mempertahankan 51-
100% pertumbuhan pada kondisi kekerasan), 7-14 dikategorikan agak
toleran (mampu mempertahankan 26-50% pertumbuhan pada kondisi
Dalam menyeleksi bibit terhadap toleransi kekeringan perlu dipilih karakter-karakter atau peubah yang berkorelasai dengan sejumlah karakter lain terhadap pertumbuhan jarak pagar pada kondisi kekeringan atau karakter yang berpengaruh langsung terhadap hasil. Karakter tersebut harus mudah diamati, cepat, murah, dan tujuannya bersifat destruktif. Untuk memilih karakter tersebut dapat digunakan matrik koefisiens korelasi antar peubah dan, atau menggunakan analisis lintas.

Pada percobaan pertama untuk menentukan karakter yang berpengaruh terhadap pertumbuhan jarak pagar pada kodisi tercemar kekeringan digunakan koefisien korelasi. Peubah yang memiliki banyak korelasi positif dan besar yang akan digunakan sebagai kriteria seleksi. Pada percobaan kedua untuk menentukan karakter seleksi menggunakan analisis lintas (Singh dan Chaudhary 1979). Karakter yang dipilih adalah karakter yang berpengaruh langsung terhadap bobot kering total. Bobot kering total merupakan peubah yang ditetapkan sebagai tujuan atau hasil akhir dari pengujian toleransi kekeringan fase bibit. Semakin besar bobot kering total menunjukkan genotipe tersebut semakin toleran terhadap kekeringan karena dapat mempertahankan pertumbuhan pada kondisi kekeringan.

3.2.4 Pelaksanaan Penelitian

Pelaksanaan penelitian percobaan kedua sama dengan percobaan pertama.

3.2.5 Pengamatan

Peubah yang diamati terdiri dari karakter morfologi dan fisiologi seperti pada percobaan pertama, pengujian penapisan toleransi terhadap kekeringan dilakukan selama 2 bulan.
4. HASIL DAN PEMBAHASAN

4.1 Kedaulatan Umum Penelitian

Kondisi pertumbuhan bibit jarak pagar pada umur 3 bulan setelah semai baik pada percobaan pertama maupun kedua cukup beragam. Hal ini dapat diketahui dari rataan tinggi tanaman, jumlah daun dan diameter batang (Tabel 2).

Rataan tinggi tanaman, jumlah daun dan diameter batang dari sembilan genotipe jarak pagar berturut-turut adalah 34.4±4.9 cm, 9.4±1.6, 1.2±0.1 cm. Selanjutnya untuk mencapai kadar air media (KAM) sesuai perlakuan (sampai KAM terendah 22-23%) memerlukan waktu tiga minggu dari KAM awal 37-38%. Suhu rumah plastik tempat pengujian toleransi kekeringan pada pagi (jam 8.00), siang (jam 12.00) dan sore hari (16.00) berturut-turut adalah 30 °C, 39 °C dan 35 °C.

Berdasarkan rataan kedua percobaan, berdasarkan rataan tinggi tanaman, jumlah daun dan diameter batang dari 23 genotipe jarak pagar berturut-turut adalah 45.3±5.7 cm, 10.7±2.8, 1.4±0.1 cm (Tabel 2). Berbeda dengan percobaan pertama, pada percobaan kedua pencapaian KAM perlakuan dari KAM 37-38% ke KAM 22-23% memerlukan waktu lima minggu dan suhu rumah plastik tempat pengujian toleransi kekeringan pada pagi, siang dan sore hari berturut-turut adalah 26 °C, 42 °C, 26 °C. Hama yang menyerang jarak pagar saat pengujian yaitu tungau dan kutu puih. Tungau merupakan hama yang paling dominan yang menyerang bagian bawah daun sehingga daun nampak menebal dan keriting. Hama tersebut dapat dikendalikan secara manual dengan membuang telur dan instar dari daun.

Tabel 2: Nilai rataan tinggi tanaman, jumlah daun dan diameter batang bibit jarak pagar yang digunakan sebagai bahan penelitian pada percobaan pertama saat 3 bulan setelah semai

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Tinggi tanaman (cm)</th>
<th>Jumlah daun</th>
<th>Diameter batang (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>42±7</td>
<td>11±3</td>
<td>1.4±0.2</td>
</tr>
<tr>
<td>Kombing</td>
<td>40±7</td>
<td>11±2</td>
<td>1.3±0.2</td>
</tr>
<tr>
<td>IP-2</td>
<td>37±8</td>
<td>10±3</td>
<td>1.2±0.2</td>
</tr>
<tr>
<td>Papuan</td>
<td>36±7</td>
<td>11±4</td>
<td>1.3±0.2</td>
</tr>
<tr>
<td>IP-1</td>
<td>36±7</td>
<td>10±3</td>
<td>1.0±0.2</td>
</tr>
<tr>
<td>Bima</td>
<td>31±7</td>
<td>8±3</td>
<td>1.2±0.2</td>
</tr>
<tr>
<td>Yogyaarta</td>
<td>30±7</td>
<td>10±2</td>
<td>1.1±0.1</td>
</tr>
<tr>
<td>Dompu-1</td>
<td>30±8</td>
<td>7±2</td>
<td>1.2±0.2</td>
</tr>
<tr>
<td>Gn. Tambora</td>
<td>28±7</td>
<td>7±3</td>
<td>1.3±0.2</td>
</tr>
<tr>
<td>Rataan</td>
<td>34.4±4.9</td>
<td>9.4±1.6</td>
<td>1.2±0.1</td>
</tr>
</tbody>
</table>
Tabel 3 Nilai rataan tinggi tanaman, jumlah daun dan diameter batang bibit jarak pagar yang digunakan sebagai bahan penelitian pada percobaan kedua saat 3 bulan setelah semai

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Tinggi tanaman (cm)</th>
<th>Jumlah daun</th>
<th>Diameter batang (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dompu-2</td>
<td>33±6</td>
<td>12±2</td>
<td>1.3±0.2</td>
</tr>
<tr>
<td>Curup</td>
<td>53±10</td>
<td>10±2</td>
<td>1.4±0.2</td>
</tr>
<tr>
<td>Bogor-1</td>
<td>43±7</td>
<td>13±3</td>
<td>1.4±0.1</td>
</tr>
<tr>
<td>Bogor-2</td>
<td>45±9</td>
<td>13±3</td>
<td>1.4±0.1</td>
</tr>
<tr>
<td>Bogor-3</td>
<td>42±8</td>
<td>13±3</td>
<td>1.5±0.2</td>
</tr>
<tr>
<td>Sukabumi-1</td>
<td>53±13</td>
<td>11±3</td>
<td>1.3±0.2</td>
</tr>
<tr>
<td>Sukabumi-2</td>
<td>49±11</td>
<td>10±3</td>
<td>1.4±0.2</td>
</tr>
<tr>
<td>Pontianak</td>
<td>48±9</td>
<td>10±3</td>
<td>1.4±0.2</td>
</tr>
<tr>
<td>Pidi</td>
<td>50±13</td>
<td>10±3</td>
<td>1.5±0.2</td>
</tr>
<tr>
<td>Lahat</td>
<td>53±16</td>
<td>12±4</td>
<td>1.5±0.3</td>
</tr>
<tr>
<td>Pagar Alam</td>
<td>42±10</td>
<td>10±2</td>
<td>1.3±0.1</td>
</tr>
<tr>
<td>Indralaya</td>
<td>46±16</td>
<td>11±3</td>
<td>1.4±0.3</td>
</tr>
<tr>
<td>Kupang</td>
<td>43±10</td>
<td>12±3</td>
<td>1.7±0.2</td>
</tr>
<tr>
<td>Palang Tanga</td>
<td>54±14</td>
<td>12±3</td>
<td>1.5±0.2</td>
</tr>
<tr>
<td>Lampung-2</td>
<td>45±11</td>
<td>11±3</td>
<td>1.3±0.2</td>
</tr>
<tr>
<td>Lampung-3</td>
<td>48±13</td>
<td>10±3</td>
<td>1.3±0.2</td>
</tr>
<tr>
<td>Saweh</td>
<td>45±11</td>
<td>13±2</td>
<td>1.4±0.1</td>
</tr>
<tr>
<td>Sumbawa</td>
<td>38±13</td>
<td>9±4</td>
<td>1.6±0.3</td>
</tr>
<tr>
<td>IP-2M</td>
<td>52±16</td>
<td>11±4</td>
<td>1.5±0.3</td>
</tr>
<tr>
<td>IP-2A</td>
<td>41±12</td>
<td>9±4</td>
<td>1.3±0.2</td>
</tr>
<tr>
<td>Cina</td>
<td>39±15</td>
<td>10±5</td>
<td>1.7±0.3</td>
</tr>
<tr>
<td>Jeneponto</td>
<td>43±19</td>
<td>12±2</td>
<td>1.3±0.2</td>
</tr>
<tr>
<td>Medan</td>
<td>37±12</td>
<td>9±4</td>
<td>1.3±0.2</td>
</tr>
<tr>
<td>Rataan</td>
<td>45.3±5.7</td>
<td>10.7±1.4</td>
<td>1.4±0.1</td>
</tr>
</tbody>
</table>

4.2 Percobaan 1: Respon Genotipe Jarak Pagar terhadap Kadar Air Media

4.2.1 Pengaruh Perlakuan terhadap Peubah yang Diamati

Hasil penelitian menunjukkan bahwa kadar air media (KAM) pada 12 MSP berpengaruh sangat nyata terhadap peubah pertambahan tinggi tanaman, diameter batang, jumlah daun, jumlah cabang, bobot kering tajuk dan akar, panjang akar, dan jumlah tanaman hidup (Tabel 4 disarikan dari Tabel Lampiran 1-15). Genotipe pengaruh nyata terhadap peubah pertambahan jumlah daun, jumlah cabang, bobot kering tajuk dan akar, nisbah bobot kering akar/tajuk, stomaata terbuka dan jumlah tanaman hidup. Selanjutnya beberapa peubah seperti pertambahan jumlah daun, jumlah cabang, bobot kering akar, bobot kering tajuk, nisbah bobot kering akar/tajuk, bobot kering total, dan jumlah tanaman hidup dipengaruhi oleh interaksi antara KAM dan genotipe.
<table>
<thead>
<tr>
<th>Peubah</th>
<th>KAM</th>
<th>G</th>
<th>KAM*G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pertambahan tinggi tanaman (cm)</td>
<td>**</td>
<td>**</td>
<td>tn</td>
</tr>
<tr>
<td>2 MSP</td>
<td>**</td>
<td>*</td>
<td>tn</td>
</tr>
<tr>
<td>4 MSP</td>
<td>**</td>
<td>*</td>
<td>tn</td>
</tr>
<tr>
<td>6 MSP</td>
<td>**</td>
<td>tn</td>
<td>tn</td>
</tr>
<tr>
<td>8 MSP</td>
<td>**</td>
<td>tn</td>
<td>tn</td>
</tr>
<tr>
<td>10 MSP</td>
<td>**</td>
<td>tn</td>
<td>tn</td>
</tr>
<tr>
<td>12 MSP</td>
<td>**</td>
<td>tn</td>
<td>tn</td>
</tr>
<tr>
<td>Pertambahan diameter batang (cm)</td>
<td>*</td>
<td>tn</td>
<td>tn</td>
</tr>
<tr>
<td>2 MSP</td>
<td>*</td>
<td>tn</td>
<td>tn</td>
</tr>
<tr>
<td>4 MSP</td>
<td>*</td>
<td>tn</td>
<td>tn</td>
</tr>
<tr>
<td>6 MSP</td>
<td>*</td>
<td>tn</td>
<td>tn</td>
</tr>
<tr>
<td>8 MSP</td>
<td>*</td>
<td>tn</td>
<td>tn</td>
</tr>
<tr>
<td>10 MSP</td>
<td>*</td>
<td>tn</td>
<td>tn</td>
</tr>
<tr>
<td>12 MSP</td>
<td>*</td>
<td>tn</td>
<td>tn</td>
</tr>
<tr>
<td>Pertambahan jumlah daun</td>
<td>**</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>2 MSP</td>
<td>**</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>4 MSP</td>
<td>**</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>6 MSP</td>
<td>**</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>8 MSP</td>
<td>**</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>10 MSP</td>
<td>**</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>12 MSP</td>
<td>**</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Luas daun (cm²)</td>
<td>tn</td>
<td>tn</td>
<td>tn</td>
</tr>
<tr>
<td>0 MSP</td>
<td>tn</td>
<td>tn</td>
<td>tn</td>
</tr>
<tr>
<td>4 MSP</td>
<td>tn</td>
<td>tn</td>
<td>tn</td>
</tr>
<tr>
<td>8 MSP</td>
<td>tn</td>
<td>tn</td>
<td>tn</td>
</tr>
<tr>
<td>12 MSP</td>
<td>tn</td>
<td>tn</td>
<td>tn</td>
</tr>
<tr>
<td>Kadar air daun (%)</td>
<td>**</td>
<td>**</td>
<td>tn</td>
</tr>
<tr>
<td>0 MSP</td>
<td>*</td>
<td>*</td>
<td>tn</td>
</tr>
<tr>
<td>4 MSP</td>
<td>*</td>
<td>*</td>
<td>tn</td>
</tr>
<tr>
<td>8 MSP</td>
<td>*</td>
<td>*</td>
<td>tn</td>
</tr>
<tr>
<td>12 MSP</td>
<td>tn</td>
<td>tn</td>
<td>**</td>
</tr>
<tr>
<td>Jumlah cabang 12 MSP</td>
<td>**</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Bobot kering akar (g) 12 MSP</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Bobot kering tajuk (g) 12 MSP</td>
<td>**</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Nisbat bobot kering akar/tajuk 12 MSP</td>
<td>**</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Panjang akar (cm) 12 MSP</td>
<td>**</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Bobot kering total (g) 12 MSP</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Stomata terbuka (%) 12 MSP</td>
<td>**</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Kerapatan stomata per mm² 12 MSP</td>
<td>**</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Prolin (g g prolin/g bobot segar) 4 MSP</td>
<td>**</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Jumlah tanaman hidup (%) 12 MSP</td>
<td>**</td>
<td>*</td>
<td>**</td>
</tr>
</tbody>
</table>

Keterangan: KAM= kadar air media, G= genotipe, **= berbeda nyata pada α 0.01, *= berbeda nyata pada α 0.05, tn= tidak berbeda nyata, MSP= minggu selanjut perluagan.
4.2.2 Pengaruh Kadar Air Media terhadap Peubah yang Diamati

Respon morfologi dan fisiologi yang digunakan dalam penentuan KAM seleksi adalah pertambahan tinggi tanaman, pertambahan diameter batang, pertambahan jumlah daun, jumlah cabang, kadar air daun, luas daun, bobot kering tajuk dan akar, nisbah bobot kering akar/tajuk, panjang akar dan jumlah tanaman hidup.

1. Pertambahan Tinggi Tanaman

Hasil penelitian menunjukkan bahwa pertambahan tinggi tanaman semakin terhambat dengan semakin rendahnya KAM, sebagaimana terlihat dari nilai tengah pertambahan tinggi tanaman yang rendah. KAM 37-38% menghasilkan nilai tinggi pertambahan tinggi tanaman paling besar dibandingkan dengan perlakuan KAM lainnya yaitu 4.3 cm, diikuti oleh KAM 32-33% (1.8 cm), KAM 27-28% (1.2 cm), dan KAM 22-23% (0.7 cm) (Gambar 2). Penurunan pertambahan tinggi tanaman sudah terjadi ketika KAM diturunkan dari 37-38% menjadi 32-33% dengan selisih penurunan 2.5 cm. Penurunan akan lebih besar, jika KAM diturunkan menjadi 22-23% dengan selisih penurunan 3.6 cm.

Pada tumbuh dan berkembangnya tanaman, sel akan mengalami siklus pembelahan atau siklus sel. Pada saat berlangsungnya siklus sel terdapat material terperinci yang mengontrol sehingga proses siklus sel berjalan normal yaitu enzim, protein, dan hormon. Akan tetapi, pada kondisi kekeringan aktivitas hormon sitokin, yang berfungsi dalam pembelahan sel dan menjaga turgor sel menjadi terhambat (Livne 1972). Selain menghambat hormon sitokin, kondisi kekeringan dapat menghambat aktivitas hormon auksin yang berperan dalam mendorong pembelahan sel batang, daun, dan akar yang diproduksi di meristem
Menurut Horgan (1990), hormon yang berperan dalam pembelahan, pembesaran dan diferensiasi sel serta menunda penuaan adalah sitokin. Oleh sebab itu, pertumbuhan tanaman akan terhambat jika ketersediaan air kurang. Sebaliknya dengan ketersediaan air yang cukup dapat memacu pertumbuhan tunas dengan cepat.

Gamb. 2 Pengaruh kadar air media terhadap pertambahan tinggi tanaman jarak pagar pada 12 MSP. Huruf yang berbeda menunjukkan berbeda nyata berdasarkan uji lanjut DMRT pada α 0.05

2. Pertambahan Diameter Batang

Tabel 5 menunjukkan bahwa semakin rendah KAM maka pertumbuhan batang semakin terhambat bahkan terjadi penyusutan pada bagian batang, ditunjukkan dengan nilai tengah pertambahan diameter batang yang rendah. Penyusutan diameter batang sudah terjadi ketika KAM diturunkan dari 37-38% menjadi 27-28% dengan besar penyusutan -0.22 cm (115%). Selanjutnya penyusutan diameter batang akan lebih besar jika KAM diturunkan menjadi 22-23% dengan besar penyusutan -0.28 cm (120%). Diduga KAM hingga 22-23% merupakan KAM yang sangat mencekam sehingga hanya genotipe tertentu saja yang dapat bertahan untuk tumbuh dan berkembang. Penyusutan diameter batang disebabkan suplai air dari akar ke bagian tajuk terhadap yang mengakibatkan sel kehilangan turgor. Menurut Lakitan (2007), air dapat mengalir dengan mudah dalam jaringan tumbuhan apabila adanya perbedaan potensi air antara tanah dan udara, adanya tenaga hidrasi dinding...
pembuluh xilem yang mampu mempertahankan molekul air terhadap gaya gravitasi, dan adanya gaya kohesi antara molekul air yang menjaga keutuhan kolom air di dalam pembuluh xilem. Berdasarkan penjelasan tersebut, diduga potensi air tanah pada KAM 22-23% dan 27-28% sangat rendah sehingga akar tidak memiliki kemampuan dalam menyerap air, akibatnya sel pada jaringan tajuk kehilangan turgor yang berakhir pada penyusutan diameter batang.

Tabel 6 Pengaruh kadar air media terhadap pertambahan diameter batang jarak pagar pada 12 MSP

<table>
<thead>
<tr>
<th>Kadar Air Media</th>
<th>Pertambahan diameter batang (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAM 2-23%</td>
<td>-0.28 b</td>
</tr>
<tr>
<td>KAM 7-28%</td>
<td>-0.22 b</td>
</tr>
<tr>
<td>KAM 2-33%</td>
<td>0.04 a</td>
</tr>
<tr>
<td>KAM 7-38%</td>
<td>0.14 a</td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang diikuti huruf yang berbeda menunjukkan berbeda nyata berdasarkan uji lanjut DMRT pada α 0.05.

3. Luas Daun, Stomata Terbuka dan Kerapatan Stomata

Hasil penelitian menunjukkan bahwa semakin rendah KAM, luas daun menjadi semakin sempit dan persentase stomata terbuka semakin rendah. Sebaliknya, kerapatan stomata menjadi lebih rapat, meskipun secara statistik tidak berbeda nyata (Gambar 3).

![GAMBAR 3](attachment:image.png)

Gambar 3 Pengaruh kadar air media terhadap luas daun, stomata terbuka dan kerapatan stomata jarak pagar pada 12 MSP

Penurunan luas daun mulai terjadi pada KAM 32-33% dengan selisih penurunan 5.42 cm² (10.7%) dari KAM 37-38%. Jika KAM diturunkan sampai
level 22-23%, selisih penurunan luas daun menjadi lebih besar yaitu 7.3 cm² (14.5%). Hasil penelitian Syafi (2008) menunjukkan bahwa penurunan KAM hingga 32% dari KAM 40% mengakibatkan penurunan luas daun sebesar 12.62 cm² (62%) pada jarak pagar. Penurunan luas daun merupakan bentuk penyesuaian tanaman pada kondisi kekeringan. Pada kadar air media yang rendah suplai air dari jaringan akar ke daun terhambat sehingga setiap tanaman akan melakukan penyimpanan dengan mengurangi laju pertumbuhan daun untuk mempertahankan air dalam jaringan. Salisbury dan Ross (1995) menyatakan bahwa penyempitan luas daun disebabkan ukuran sel daun yang kecil akibat kekeringan.

Pada umumnya semakin rendah KAM, stomata menjadi lebih rapat karena ukuran daun menjadi lebih sempit. KAM 37-38% memiliki kerapatan stomata yang yaitu sebesar 78.0 per mm², kemudian meningkat menjadi 92.2 per mm² ketika KAM diturunkan menjadi 22-23%. Hal ini karena terjadi penyempitan luas daun akibat cekaman kekeringan sehingga ukuran stomata lebih kecil dan lebih rapat. Menurut Gardner et al. (1991), jumlah stomata merupakan salah satu faktor yang mempengaruhi transpirasi tanaman, tetapi pengaruhnya lebih kecil dibandingkan dengan pembukaan dan penutupan stomata.

4. Panjang Akar

Tabel 6 menunjukkan bahwa pertumbuhan akar semakin terhambat dengan semakin rendahnya KAM. Perlakuan KAM hingga 27-28% belum terjadi penurunan panjang akar yang signifikan, tetapi jika KAM diturunkan menjadi 22-23% terjadi penurunan yang signifikan dengan selisih penurunan sebesar 1.51 cm (8.8%) dari KAM 37-38%. Penelitian ini memperkuat simpulan Lapanjang et al. (2008), kadar air media 40% dari kapasitas lapangan dapat menurunkan panjang akar sebesar 65.49%. Akar merupakan organ penting bagi tanaman karena berperan dalam penyerapan air yang kemudian ditranslokasi ke bagian tajuk melalui pembuluh xilem. Rendahnya KAM menghambat pembelahan sel pada bagian akar sehingga perkembangan akar terhambat.

<table>
<thead>
<tr>
<th>Kadar Air Media</th>
<th>Panjang akar (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAM 2-23%</td>
<td>15.50 b</td>
</tr>
<tr>
<td>KAM 7-28%</td>
<td>16.25 ab</td>
</tr>
<tr>
<td>KAM 2-33%</td>
<td>16.78 a</td>
</tr>
<tr>
<td>KAM 7-38%</td>
<td>17.01 a</td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang diikuti huruf yang berbeda menunjukkan berbeda nyata berdasarkan uji lanjut DMRT pada α 0.05.

4. Prolin

Hasil penelitian menunjukkan bahwa pada 4 MSP kadar air media tidak memberikan pengaruh yang nyata terhadap kandungan prolin. Diduga level KAM yang digunakan dalam penelitian ini masih kurang besar sehingga respon terhadap kandungan prolin tidak signifikan. Penelitian ini memperkuat simpulan Syafii (2008) menunjukkan bahwa perlakuan tiga level KAM 32%, 36% dan 40% tidak berpengaruh terhadap kandungan prolin. Akan tetapi, semakin rendah KAM kandungan prolin cenderung semakin tinggi. Hal ini memberikan indikasi bahwa induk prolin pada tanaman jarak pagar memerlukan kondisi yang sangat tercukupi. Menurut Kishor et al. (2005), kandungan prolin tergantung dari fase pertumbuhan tanaman dan tipe organ tanaman.

Meskipun tidak menunjukkan perbedaan yang nyata, pada penelitian ini memberikan respon yang negatif yaitu KAM 22-23% dan 27-28% memiliki kandungan prolin yang lebih rendah dibandingkan dengan KAM 32-33% dan

Kendahyana kandungan prolin pada KAM 22-23\% dan 27-28\% diduga karena terjadi perombakan prolin untuk mensubstitusi kebutuhan energi yang tidak terpenuhi akibat rendahnya fotosintat yang dihasilkan pada kondisi tercekkam kekeringan. Respon yang sama terjadi pada kelapa sawit, hasil penelitian Palupi dan Denywiryanto (2008) yang menunjukkan bahwa kandungan prolin pada kelapa sawit pada kondisi tercekkam kekeringan (25\% KL) lebih rendah dibandingkan dengan perlakuan KAM 50\%, 75\% dan 100\% KL.

Tabel 4. Pengaruh kadar air media terhadap kandungan prolin daun jarak pagar pada 4 MSP

<table>
<thead>
<tr>
<th>Kadar Air Media</th>
<th>Kandungan prolin daun (μg prolin/g bobot segar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAM 22-23%</td>
<td>1.63</td>
</tr>
<tr>
<td>KAM 27-28%</td>
<td>1.42</td>
</tr>
<tr>
<td>KAM 32-33%</td>
<td>2.62</td>
</tr>
<tr>
<td>KAM 37-38%</td>
<td>2.17</td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang diikuti huruf yang berbeda menunjukkan berbeda nyata berdasarkan uji lanjut DMRT pada α 0.05.

4.2.3 Pengaruh Genotipe terhadap Peubah yang Diamati

Stomenta Terbuka

Tabel 8 menunjukkan bahwa genotipe Aceh Besar menghasilkan persentase stomentum terbuka paling besar dibandingkan dengan genotipe lainnya yaitu 48.8\%, diikuti oleh Dompu-1, Gunung Tambora dan IP-2M masing-masing adalah 35.0\%, 31.9\%, 31.5\%. Sebaliknya genotipe Bima menghasilkan persentase stomentum terbuka paling rendah yaitu 23.1\%.

Pembukaan dan penutupan stomata berkaitan dengan proses fotosintesis. Menurut Salisbury dan Ross (1995), faktor yang mempengaruhi fotosintesis

Tabel 9. Pengaruh genotipe terhadap stomata terbuka jarak pagar pada 12 MSP

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Stomata terbuka (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>48.83 a</td>
</tr>
<tr>
<td>IP-2P</td>
<td>28.34 bc</td>
</tr>
<tr>
<td>Komering</td>
<td>28.87 bc</td>
</tr>
<tr>
<td>IP-1 M</td>
<td>31.54 bc</td>
</tr>
<tr>
<td>Papua</td>
<td>27.44 bc</td>
</tr>
<tr>
<td>Yogyakarta</td>
<td>30.23 bc</td>
</tr>
<tr>
<td>G. Tambora</td>
<td>31.90 bc</td>
</tr>
<tr>
<td>Dompu-1</td>
<td>34.99 b</td>
</tr>
<tr>
<td>Bima</td>
<td>23.14 c</td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang diikuti huruf yang berbeda menunjukkan berbeda nyata berdasarkan uji lanjut DMRT pada α 0.05.

4.2.4 Pengaruh Interaksi Kadar Air Media dan Genotipe terhadap Peubah Gang Diamati

1. Penambahan Jumlah Daun

Spon pertambahan jumlah daun dipengaruhi oleh interaksi antara KAM dengan genotipe. Tabel 9 menunjukkan bahwa semakin rendah KAM, pertambahan tanaman semakin terhambat, sebagaimana terlihat dari nilai rataan tiap spon lakukan KAM. Berdasarkan rataan dari tiap genotipe jarak pagar, penumbuhan pertambahan jumlah daun mulai terjadi ketika KAM diturunkan dari
37-38% menjadi 32-33% dengan selisih penurunan sebesar 2.8 dan penurunan lebih besar ketika KAM diturunkan menjadi 22-23% dengan selisih penurunan sebesar 3.3.

Pada umumnya semakin rendah KAM, pertambahan jumlah daun semakin menurun pada setiap genotipe jarak pagar yang diuji. Meskipun demikian, terdapat tiga genotipe yang mampu mempertahankan pertambahan jumlah daun pada empat level KAM yaitu Papua, Gunung Tambora, dan Bima. Genotipe tersebut berasal dari daerah kering, kecuali Papua dari daerah sedang. Pada umumnya genotipe yang berasal dari daerah basah dan sedang sudah mengalami penurunan pada KAM 32-33% hingga 22-23%, seperti pada genotipe Aceh Besar, IP-2P, dan Komering perlakuan KAM 32-33% sudah menurunkan pertambahan jumlah daun. Untuk genotipe IP-1M dan Dompu-1 penurunan pertambahan jumlah daun mulai terjadi ketika KAM diturunkan menjadi 27-28%, sedangkan genotipe Yogyakarta penurunan mulai terjadi ketika KAM diturunkan menjadi 22-23%.

Sementara genotipe yang diuji, genotipe Yogyakarta merupakan genotipe yang mengalami penurunan pertambahan jumlah daun paling banyak yaitu besar 6.7 ketika KAM diturunkan menjadi 22-23% dari KAM 37-38%. Selanjutnya diikuti oleh genotipe IP-2P dengan besarnya penurunan 5.5, Komering (5.3), Dompu-1 (5), Aceh Besar (3.4), IP-1M (2.8), Gunung Tambora
(2.5), dan Papua (2.1). Sebaliknya genotipe Bima mengalami pertambahan sebesar 0.2. Berdasarkan nilai rataan dari empat level KAM, pertambahan jumlah daun yang paling banyak dihasilkan dari genotipe Aceh Besar yaitu 5.6 dan paling rendah genotipe Yogyakarta yaitu 2.7.

Tabel 9 Pertambahan jumlah daun sembilan genotipe jarak pagar pada empat level kadar air media

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Kadar air media</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22-23%</td>
</tr>
<tr>
<td>Aceh Besar</td>
<td>4.8 a (B)</td>
</tr>
<tr>
<td>IP-2P</td>
<td>3.5 ab (B)</td>
</tr>
<tr>
<td>Komang</td>
<td>2.0 bc (B)</td>
</tr>
<tr>
<td>IP-1M</td>
<td>3.0 ab (B)</td>
</tr>
<tr>
<td>Papua</td>
<td>2.3 b (A)</td>
</tr>
<tr>
<td>Yogyakarta</td>
<td>0.0 c (B)</td>
</tr>
<tr>
<td>G. Tabibora</td>
<td>3.4 ab (A)</td>
</tr>
<tr>
<td>Dompa-1</td>
<td>2.9 ab (B)</td>
</tr>
<tr>
<td>Bima</td>
<td>4.3 ab (A)</td>
</tr>
</tbody>
</table>

Rataan 3.3 B 3.5 B 3.8 B 6.6 B

Keterangan: Angka-angka yang diikuti huruf kecil yang berbeda pada kolom yang sama dan huruf kapital yang berbeda pada baris yang sama menunjukkan berbeda nyata berdasarkan uji lanjut DMRT pada α 0.05.

2. Jumlah Cabang

Hasil penelitian menunjukkan bahwa jumlah cabang dipengaruh oleh interaksi KAM dengan genotipe. Pada umumnya pembentukan cabang akan terhambat dengan semakin rendahnya KAM. Hal ini dapat diketahui dari nilai rataan dari sembilan genotipe pada setiap level KAM (Tabel 10). Berdasarkan rataan setiap genotipe jarak pagar maka penurunan jumlah cabang mulai terjadi ketika KAM diturunkan dari KAM 37-38% ke KAM 32-33% dengan selisih penurunan sebesar 1.4 dan penurunan lebih besar ketika berada pada KAM 22-23% dengan selisih penurunan sebesar 2.2.

Berdasarkan perlaku KAM, setiap genotipe menunjukkan respon yang berbeda. Genotipe yang berasal dari daerah kering yaitu Papua, Gunung Tambora, Dompu-1 dan Bima mampu mempertahankan jumlah cabang pada empat level KAM. Genotipe tersebut menghasilkan jumlah cabang yang sedikit bahkan tidak membentuk cabang hingga KAM 32-33%, kecuali Papua. Sebaliknya genotipe yang berasal dari daerah basah (Aceh Besar, IP-2P, Komering) dan sedang (IP-1M) Yogyakarta kurang mampu mempertahankan jumlah cabang karena terjadi penurunan jumlah cabang ketika KAM diturunkan menjadi 32-33%.

Berdasarkan nilai rataan empat level KAM, genotipe yang menghasilkan jumlah cabang terbanyak adalah IP-1M dan Papua, sedangkan genotipe lainnya hampir tidak membentuk cabang. Akan tetapi, dari sembilan genotipe yang diuji, IP-1M dan Papua mengalami penurunan jumlah cabang yang paling besar yaitu sebesar 5.4 dan 5.6 ketika KAM diturunkan dari KAM 37-38% menjadi 22-23%.

Tabel 8. Jumlah cabang sembilan genotipe jarak pagar pada empat level kadar air media

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Kadar air media</th>
<th>Rataan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22-23%</td>
<td>27-28%</td>
</tr>
<tr>
<td>Aceh Besar</td>
<td>0.0 b (B)</td>
<td>0.1 b(B)</td>
</tr>
<tr>
<td>IP-2P</td>
<td>0.0 b (C)</td>
<td>0.0 b(C)</td>
</tr>
<tr>
<td>Komering</td>
<td>0.0 b (B)</td>
<td>0.3 b(B)</td>
</tr>
<tr>
<td>IP-1M</td>
<td>0.4 ab(A)</td>
<td>0.3 b(B)</td>
</tr>
<tr>
<td>Papua</td>
<td>0.2 ab(A)</td>
<td>0.7 a(A)</td>
</tr>
<tr>
<td>Yogyakarta</td>
<td>0.0 b (B)</td>
<td>0.0 b(B)</td>
</tr>
<tr>
<td>G. Tambora</td>
<td>0.0 b (A)</td>
<td>0.0 b(A)</td>
</tr>
<tr>
<td>Dompu-1</td>
<td>0.0 b (A)</td>
<td>0.0 b(A)</td>
</tr>
<tr>
<td>Bima</td>
<td>0.0 b (A)</td>
<td>0.0 b(A)</td>
</tr>
</tbody>
</table>

Rataan | 0.1 C | 0.2 C | 0.9 B | 2.3 A |

Keterangan: Angka-angka yang diikuti huruf kecil yang berbeda pada kolom yang sama dan huruf kapital yang berbeda pada baris yang sama menunjukkan berbeda nyata berdasarkan uji lanjut DMRT pada α 0.05.

3. Bobot Kering Akar

Bobot bobot kering akar dipengaruhi oleh interaksi KAM dengan genotipe dan satu genotipe yang diuji pada setiap level KAM memberikan pengaruh yang berbeda. Hasil penelitian menunjukkan bahwa bobot kering akar semakin menurun dengan semakin rendahnya KAM sebagaimana terlihat dari nilai rataan tiap rataan KAM. Berdasarkan rataan tiap genotipe jarak pagar
maka penuruan bobot kering akar mulai terjadi ketika KAM diturunkan menjadi 22-23% yaitu sebesar 2.1 g. Penelitian ini memperkuat simpulan Syafi (2008) yang menunjukkan bahwa bobot kering akar menurun sebesar 0.20 g ketika KAM diturunkan dari 40% ke 32%.

Aceh Besar merupakan genotipe yang menghasilkan bobot kering akar yang paling tinggi hampir disetiap level KAM. Sebaliknya Yogyakarta merupakan genotipe yang menghasilkan bobot kering akar yang paling rendah disetiap level KAM. Nilai tengah bobot kering tajuk dari genotipe Aceh Besar pada KAM 22-23%, 27-28%, 32-33% dan 37-38% berturut-turut adalah 6.3 g, 6.5 g, 6.1 g, dan 5.9 g. Nilai bobot kering tajuk dari genotipe Yogyakarta pada KAM 22-23%, 27-28%, 32-33% dan 37-38% berturut-turut adalah 1.1 g, 1.0 g, 4.3 g, 5.3 g.

Dari KAM 22-23%, 27-28% dan 37-38% setiap genotipe masih memberikan respon yang berbeda terhadap bobot kering akar, tetapi pada KAM 32-33% tidak ada perbedaan yang nyata. Berdasarkan empat level KAM, genotipe yang berasal dari daerah kering yaitu Gunung Tambora dan Dompu-1 dan satu genotipe yang berasal dari daerah Basah (Aceh Besar) dan satu dari daerah sedang (Papua) menunjukkan pertumbuhan yang baik, sebagaimana terlihat dari nilai rataan bobot kering akar yang tidak berbeda nyata. Genotipe Yogyakarta pada KAM 32-33% sudah dapat menurunkan bobot kering akar dan genotipe IP-2P, Komering, dan Bima penurunan mulai terjadi ketika KAM diturunkan menjadi 22-23%.

Dari Sembilan genotipe yang diuji, genotipe IP-2P dan Yogyakarta merupakan genotipe yang mengalami penurunan bobot kering akar paling besar yaitu sebesar 4.2 g ketika KAM diturunkan menjadi 22-23% dari KAM 37-38%. Selanjutnya diikuti oleh genotipe Komering, Papua, Bima, Dompu-1, Gunung Tambora dan sebaliknya genotipe Aceh Besar terjadi peningkatan bobot kering akar sebesar 0.4 g. Berdasarkan rataan dari empat level KAM, genotipe yang mempunyai bobot kering akar paling besar adalah Aceh Besar yaitu 6.2 g dan yang terendah adalah Yogyakarta sebesar 2.9 g.

Endahnya bobot kering akar pada KAM 22-23% disebabkan bagian ujung akar yang bereparasi dalam zona pemanjangan tidak tumbuh dengan baik, begitu juga dengan rambut-rambut akar yang berperan dalam penyerapan air. Oleh karena itu, hanya genotipe tertentu saja yang mampu mempertahankan bobot
kering akar pada kadar air rendah dan ini mengindikasikan genotipe tersebut mampu bertahan pada kondisi kekeringan.

Tabel 11. Bobot kering akar (g) sembilan genotipe jarak pagar pada empat level kadar air media

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Kadar air media</th>
<th>Rataan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22-23%</td>
<td>27-28%</td>
</tr>
<tr>
<td>Aceh Besar</td>
<td>6.3 a (A)</td>
<td>6.5 a (A)</td>
</tr>
<tr>
<td>IP-2P</td>
<td>1.7 c (B)</td>
<td>5.3 b (A)</td>
</tr>
<tr>
<td>Komering</td>
<td>2.6 bc(B)</td>
<td>4.9 b (A)</td>
</tr>
<tr>
<td>IP-1M</td>
<td>5.7 a (AB)</td>
<td>5.1 b (B)</td>
</tr>
<tr>
<td>Papua</td>
<td>2.7 bc(A)</td>
<td>5.7 ab(A)</td>
</tr>
<tr>
<td>Yogyakarta</td>
<td>1.1 c (B)</td>
<td>1.0 c (B)</td>
</tr>
<tr>
<td>G. Taboro</td>
<td>5.1 a(B)</td>
<td>5.7 a(B)</td>
</tr>
<tr>
<td>Dompu-1</td>
<td>4.7 a(B)</td>
<td>5.6 a(B)</td>
</tr>
<tr>
<td>Bima</td>
<td>2.8 bc(B)</td>
<td>5.7 a(B)</td>
</tr>
<tr>
<td>Rataan</td>
<td>3.6 B</td>
<td>5.1 a</td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang diikuti huruf kecil yang berbeda pada kolom yang sama dan huruf kapital yang berbeda pada baris yang sama menunjukkan berbeda nyata berdasarkan uji lanjut DMRT pada α 0.05.

4. Bobot Kering Tajuk

Ukuran kekeringan juga akan mempengaruhi bobot kering tajuk. Pada umumnya semakin rendah KAM maka bobot kering tajuk yang dihasilkan semakin rendah, sebagaimana terlihat dari nilai rataan tiap perlakuan KAM (Tabel 12). Berdasarkan bobot kering tajuk, setiap genotipe memberikan respon yang berbeda hingga KAM 37-38%. Berdasarkan rataan dari tiap genotipe jarak pagar maka penurunan bobot kering tajuk mulai terjadi ketika KAM diturunkan menjadi 32-33% dengan selisih penurunan sebesar 1.9 g dan penurunan lebih besar ketika berada pada KAM 22-23% dengan selisih penurunan sebesar 4.5 g. Penelitian ini menunjukkan simpulan Syafi (2008) yang menunjukkan bahwa KAM 32% mampu menurunkan bobot kering tajuk sebesar 0.20 g. Hasil penelitian Palupi dan Deddy Prayanto (2008), penurunan KAM dari 100% kapasitas lapangan (KL) menjadi 25%KL dapat menurunkan bobot kering tajuk kelapa sawit sebesar 11.8 g (40.9%).

Aceh Besar merupakan genotipe yang menghasilkan bobot kering tajuk yang paling tinggi hampir di setiap level KAM. Sebaliknya Yogyakarta merupakan genotipe yang menghasilkan bobot kering paling rendah disetiap level
KAM. Nilai tengah bobot kering tajuk dari genotipe Aceh Besar pada KAM 22-23%, 27-28%, 32-33% dan 37-38% berturut-turut adalah 10.3 g, 12.3 g, 11.3 g, 11.2 g. Nilai bobot kering tajuk dari genotipe Yogyakarta pada KAM 22-23%, 27-28%, 32-33% dan 37-38% berturut-turut adalah 2.8 g, 2.8 g, 7.3 g, dan 9.4 g.

Berdasarkan empat level KAM, setiap genotipe menunjukkan respon yang berbeda. Gunung Tambora (daerah kering) dan Papua (daerah sedang) merupakan genotipe yang memiliki kemampuan dalam mempertahankan bobot kering tajuk pada empat level KAM. Genotipe lain yang berasal dari daerah kering (Dompu-1 dan Bima) menunjukkan bahwa KAM 22-23% merupakan KAM yang dapat menghambat pertumbuhan tajuk, sedangkan bagi genotipe IP-2P dan IP-1M KAM 32-33% merupakan KAM yang dapat menghambat pertumbuhan tajuk. Selanjutnya terdapat genotipe yang dari daerah basah yaitu Aceh Besar dan Komering yang mampu mempertahankan bobot kering tajuk hingga KAM 27-28% kemudian bobot kering tajuk menurun setelah KAM diturunkan menjadi 22-23%

Berdasarkan rataan dari empat KAM, Aceh Besar merupakan genotipe yang menghasilkan nilai rataan paling tinggi yaitu 11.3 g dan genotipe Yogyakarta menghasilkan nilai rataan paling rendah yaitu 5.6 g. Dari Sembilan genotipe yang diuji, genotipe IP-2P merupakan genotipe yang mengalami penurunan bobot kering tajuk paling besar yaitu sebesar 7.4 g ketika KAM diturunkan menjadi 22-23% dari KAM 37-38%. Selanjutnya diikuti oleh genotipe Yogyakarta (6.6 g), Komering (6.5 g), Papua (5.3 g), IP-1M (4.2 g), Gunung Tambora (3.7 g), Bima (3.4 g), Dompu-1 (3.1g) dan Aceh Besar (0.9 g).

Tabel 12 Bobot kering tajuk (g) sembilan genotipe jarak pagar pada empat level kadar air media

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>22-23%</th>
<th>27-28%</th>
<th>32-33%</th>
<th>37-38%</th>
<th>Rataan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>10.3 a (B)</td>
<td>12.3 a(A)</td>
<td>11.3 a (AB)</td>
<td>11.2 a-c(AB)</td>
<td>11.3a</td>
</tr>
<tr>
<td>IP-2P</td>
<td>4.1 bc(C)</td>
<td>7.3 b(B)</td>
<td>8.3 ab(B)</td>
<td>11.5 ab (A)</td>
<td>7.8c</td>
</tr>
<tr>
<td>Komering</td>
<td>4.7 bc(B)</td>
<td>8.2 b(A)</td>
<td>8.9 ab(A)</td>
<td>11.2 a-c(A)</td>
<td>8.3c</td>
</tr>
<tr>
<td>IP-1M</td>
<td>9.0 a (B)</td>
<td>8.1 b(B)</td>
<td>8.3 ab(A)</td>
<td>13.2 a (A)</td>
<td>9.7b</td>
</tr>
<tr>
<td>Papua</td>
<td>5.4 bc(A)</td>
<td>8.6 b(A)</td>
<td>8.3 ab(A)</td>
<td>10.7 a-c(A)</td>
<td>8.3c</td>
</tr>
<tr>
<td>Yogyakarta</td>
<td>2.8 c (B)</td>
<td>2.8 c(B)</td>
<td>7.3 b (A)</td>
<td>9.4 bc (A)</td>
<td>5.6d</td>
</tr>
<tr>
<td>G. Tambera</td>
<td>7.0 ab(A)</td>
<td>8.4 b(A)</td>
<td>9.0 ab(A)</td>
<td>10.7 a-c(A)</td>
<td>8.8bc</td>
</tr>
<tr>
<td>Dompu 1</td>
<td>6.7 ab(B)</td>
<td>7.9 b(AB)</td>
<td>8.1 b (AB)</td>
<td>9.8 bc (A)</td>
<td>8.1c</td>
</tr>
<tr>
<td>Bima</td>
<td>5.1 bc(B)</td>
<td>8.1 b(AB)</td>
<td>9.7 ab (A)</td>
<td>8.5 c (AB)</td>
<td>7.9c</td>
</tr>
</tbody>
</table>

| Rataan | 6.2 C | 7.9 B | 8.8 B | 10.7 A |

Keterangan: Angka-angka yang diikuti huruf kecil yang berbeda pada kolom yang sama dan huruf kapital yang berbeda pada baris yang sama menunjukkan perbedaan nyata berdasarkan uji lanjut DMRT pada α 0.05.

5. Nisbah Akar/Tajuk

Respon nisbah bobot kering akar/tajuk dipengaruhi oleh interaksi KAM dengan genotipe. Setiap genotipe menunjukkan pengaruh yang berbeda pada empat level KAM, tetapi berdasarkan nilai rataan nisbah akar/tajuk dari empat level KAM tidak menunjukkan perbedaan yang nyata (Tabel 13).

Pada umumnya sembilan genotipe yang diuji memiliki respon yang sama terhadap nisbah bobot kering akar/tajuk pada KAM 37-38% dan 32-33%, selanjutnya semakin rendah KAM setiap genotipe menunjukkan respon yang berbeda. Pada KAM 37-38%, setiap genotipe memiliki nisbah bobot kering akar/tajuk yang sama yaitu 0.5. Nisbah bobot kering akar/tajuk 0.5 menunjukkan akar-tajuk memanfaatkan air dan unsur hara ke bagian tajuk dengan baik sehingga bagian tajuk dapat melakukan fotosintesis dan pertumbuhan akar dan tajuk lebih seimbang. Selanjutnya ketika KAM diturunkan menjadi 32-33%, setiap genotipe berulang memperluas perakaran daripada pertumbuhan tajuk, sebagaimana terlihat dari nilai tengah yang lebih tinggi dari KAM 37-38%. Selanjutnya jika KAM diturunkan hingga 22-23% terlihat setiap genotipe menunjukkan respon yang berbeda. Umumnya genotipe yang berasal dari daerah kering (Gunung Tambora, Dompu-1 dan Bima) dan satu genotipe dari daerah basah (Aceh Besar) memiliki nisbah bobot kering akar/tajuk yang tinggi yaitu ≥ 0.6. Menurut Syafi
(2008), nisbah akar/pucuk cenderung meningkat dengan semakin rendahnya KAM. Nisbah akar/tajuk yang tinggi menunjukkan tanaman lebih cenderung memperluas perakaran daripada pertumbuhan tajuk sehingga peluang akar dalam penyerapan air jauh lebih besar.

Tabel 13 Nisbah bobot kering akar/tajuk sembilan genotipe jarak pagar pada empat level kadar air media

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>22-23%</th>
<th>27-28%</th>
<th>32-33%</th>
<th>37-38%</th>
<th>Rataan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>0.6 ab(A)</td>
<td>0.5 b (A)</td>
<td>0.5 a(A)</td>
<td>0.5 ab(A)</td>
<td>0.5 c</td>
</tr>
<tr>
<td>IP-2 Pen</td>
<td>0.4 c (C)</td>
<td>0.7 ab(A)</td>
<td>0.7 a(A)</td>
<td>0.5 ab(B)</td>
<td>0.6 bc</td>
</tr>
<tr>
<td>Kometang</td>
<td>0.5 bc(A)</td>
<td>0.6 ab(A)</td>
<td>0.7 a(A)</td>
<td>0.5 ab(A)</td>
<td>0.6 c</td>
</tr>
<tr>
<td>IP-1M</td>
<td>0.6 ab(A)</td>
<td>0.6 ab(A)</td>
<td>0.6 a(A)</td>
<td>0.5 (B)</td>
<td>0.6 ab</td>
</tr>
<tr>
<td>Papua</td>
<td>0.4 c (B)</td>
<td>0.7 ab(A)</td>
<td>0.7 a(A)</td>
<td>0.5 ab(AB)</td>
<td>0.6 bc</td>
</tr>
<tr>
<td>Yogyakarta</td>
<td>0.4 c (A)</td>
<td>0.3 c (A)</td>
<td>0.6 a(A)</td>
<td>0.5 ab(A)</td>
<td>0.5 d</td>
</tr>
<tr>
<td>G. Tabora</td>
<td>0.7 a (B)</td>
<td>0.6 ab(B)</td>
<td>0.7 a(AB)</td>
<td>0.5 ab(B)</td>
<td>0.6 a</td>
</tr>
<tr>
<td>Dompa</td>
<td>0.6 ab(AB)</td>
<td>0.6 ab(A)</td>
<td>0.7 a(AB)</td>
<td>0.5 ab(B)</td>
<td>0.6 a</td>
</tr>
<tr>
<td>Bima</td>
<td>0.5 bc(B)</td>
<td>0.7 a (A)</td>
<td>0.6 ab(AB)</td>
<td>0.6 a(AB)</td>
<td>0.6 ab</td>
</tr>
</tbody>
</table>

Rataan 0.5 A 0.6 A 0.6 A 0.5 A

Keterangan: Angka-angka yang diikuti huruf kecil yang berbeda pada kolom yang sama dan huruf kapital yang berbeda pada baris yang sama menunjukkan berbeda nyata berdasarkan uji lanjut DMRT pada α 0.05.

6. Bobot Kering Total

Hasil penelitian menunjukkan bahwa bobot kering total tanaman dipengaruhi oleh interaksi KAM dengan genotipe. Pada umumnya semakin rendah KAM, bobot kering total semakin menurun. Hal ini dapat diketahui dari nilai rataan dari sembilan genotipe pada setiap level KAM (Tabel 14).

Berdasarkan rataan dari tiap genotipe jarak pagar, penurunan bobot kering total mulai terjadi pada KAM 32-33% yaitu sebesar 14.3 g atau dengan selisih penurunan sebesar 2 g dari KAM 37-38%. Penurunan lebih besar ketika KAM diturunkan menjadi 22-23% dengan selisih penurunan sebesar 6.6 g.

Bagian genotipe jarak pagar terhadap bobot kering total pada perlakuan KAM berbeda nyata. Aceh Besar merupakan genotipe yang menghasilkan bobot kering total yang paling besar disetiap level KAM. Sebaliknya Yogyakarta merupakan genotipe yang menghasilkan bobot kering total yang paling rendah, kecuali pada KAM 37-28%. Nilai tengah bobot kering total dari genotipe Aceh Besar pada KAM 22-23%, 27-28%, 32-33% dan 37-38% berturut-turut adalah 16.9, 19.5 g, 17.6 g, 17.7 g. Nilai bobot kering total dari genotipe Yogyakarta
pada KAM 22-23%, 27-28%, 32-33% dan 37-38% berturut-turut adalah 3.8 g, 4.0 g, 14.0 g, 15.3 g.

Lampir Sembilan genotipe yang diuji, genotipe IP-2P dan Yogyakarta merupakan genotipe yang mengalami penurunan bobot kering total paling besar yaitu sebesar 11.5 g dan 11.4 g ketika KAM diturunkan dari 37-38% menjadi 22-23%, sementara penurunan yang paling rendah adalah genotipe Aceh Besar sebesar 0.9 g.

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Kadar air media</th>
<th>Rataan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22-23%</td>
<td>27-28%</td>
</tr>
<tr>
<td>Aceh Besar</td>
<td>16.9a (A)</td>
<td>19.5 a(A)</td>
</tr>
<tr>
<td>IP-2P</td>
<td>5.8de (C)</td>
<td>12.8 b(B)</td>
</tr>
<tr>
<td>Komering</td>
<td>8.0c-e(C)</td>
<td>13.2 b(B)</td>
</tr>
<tr>
<td>IP-1M</td>
<td>13.7ab (B)</td>
<td>13.7 b(B)</td>
</tr>
<tr>
<td>Papua</td>
<td>10.3b-d(A)</td>
<td>12.3 b(A)</td>
</tr>
<tr>
<td>Yogyakarta</td>
<td>3.8e (B)</td>
<td>4.0 c(B)</td>
</tr>
<tr>
<td>G. Tambora</td>
<td>11.9a-c(B)</td>
<td>14.3b(AB)</td>
</tr>
<tr>
<td>Dompu-1</td>
<td>12.2a-c(C)</td>
<td>13.3b(BC)</td>
</tr>
<tr>
<td>Bima</td>
<td>9.4b-d(A)</td>
<td>13.6 b(A)</td>
</tr>
<tr>
<td>Rataan</td>
<td>9.7 C</td>
<td>13.0 bB</td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang diikuti huruf kecil yang berbeda pada kolom yang sama dan huruf kapital yang berbeda pada baris yang sama menunjukkan berbeda nyata berdasarkan uji lanjut DMRT pada α 0.05.

Bobot kering total merupakan salah satu indikator pertumbuhan yang baik digunakan dalam pengujian toleransi kekeringan. Semakin besar bobot kering total menunjukkan bahwa pertumbuhan jarak pagar semakin baik. Sebaliknya
rendahnya bobot kering total pada kondisi kekeringan menunjukkan pertumbuhan jarak pagar terhambat karena asimilat yang dihasilkan dari fotosintesis rendah.

6. Jumlah Tanaman Hidup

Cekaman kekeringan akan mempengaruhi daya hidup suatu tanaman. Tanaman yang mampu menyesuaikan pada kondisi kadar air rendah akan memiliki kemampuan hidup yang baik, sebaliknya tanaman yang tidak mampu menyesuaikan akan mengalami kematian. Hasil penelitian menunjukkan bahwa jumlah tanaman hidup semakin berkurang dengan semakin rendahnya KAM sebagai contoh dapat terlihat dari nilai rataan tiap perlakuan KAM (Tabel 15). KAM hingga 27-28% masih berpengaruh terhadap jumlah tanaman hidup.

Genotipe yang berasal dari daerah kering (Aceh Besar, IP-1M, Gunung Tambora dan Dompu-1) lebih tahan terhadap KAM 22-23% daripada genotipe daerah basah dan sedang dengan persentase tanaman hidup 92-100%. Selanjutnya jika KAM ditingkatkan menjadi 27-28%, kematian tanaman dapat dikesan, tetapi dari sembilan genotipe yang diuji terdapat lima genotipe yang mampu mempertahankan pertumbuhan tanpa mengalami kematian yaitu Aceh Besar, IP-1M, Gunung Tambora, Dompu-1 dan Bima.

Berdasarkan perlakuan KAM, genotipe yang berasal dari daerah kering (Gunung Tambora, Dompu-1), satu genotipe dari daerah sedang (Papau) dan satu genotipe dari daerah basah (Aceh Besar) mampu bertahan hidup pada empat level KAM, sedangkan genotipe IP-2P, Komering, Yogyakarta, dan Bima merupakan genotipe yang kurang mampu bertahan pada KAM rendah karena pada KAM 27-28% dan KAM 22-23% sudah mengalami penurunan jumlah tanaman hidup.

Genotipe yang mampu mempertahankan jumlah tanaman hidup sampai akhir penelitian (12 MSP) diduga memiliki toleransi terhadap kekeringan. Genotipe tersebut adalah genotipe Aceh Besar, IP-1M, Gunung Tambora dan Dompu-1. Sebaliknya genotipe IP-2P, Komering, Papua, Yogyakarta dan Bima merupakan genotipe yang banyak mengalami kematian pada KAM 22-23% (Gambar 4). Diduga KAM 22-23% merupakan KAM yang mencekam atau defisit bagi daun tanaman jarak pagar karena dapat mengakibatkan kematian bagi sebagian genotipe. Menurut Todd (1972), kadar air defisit mengakibatkan kerusakan langsung pada enzim metabolism yang diperlukan untuk tumbuh dan berkembang
Decoteau (2005) menyatakan bahwa kadar air defisit atau kekeringan dapat menurunkan turgor sel sehingga mengakibatkan penurunan pada ukuran sel, menghambat pembelahan sel dan fotosintesis kemudian berakhir pada kematian.

<table>
<thead>
<tr>
<th>Tabel 15</th>
<th>Jumlah tanaman hidup (%) genotipe jarak pagar pada beberapa level kadar air media pada 12 MSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotipe</td>
<td>Kadar air media</td>
</tr>
<tr>
<td></td>
<td>22-23%</td>
</tr>
<tr>
<td>Aceh</td>
<td>100 a(A)</td>
</tr>
<tr>
<td>IP-2P</td>
<td>33 de(B)</td>
</tr>
<tr>
<td>Komang</td>
<td>33 de(B)</td>
</tr>
<tr>
<td>IP-1M</td>
<td>100 a(A)</td>
</tr>
<tr>
<td>Papua</td>
<td>67 bc(A)</td>
</tr>
<tr>
<td>Yogyakarta</td>
<td>8 e(C)</td>
</tr>
<tr>
<td>G. Tabara</td>
<td>100 a(A)</td>
</tr>
<tr>
<td>Dompu-1</td>
<td>92 ab(A)</td>
</tr>
<tr>
<td>Bima</td>
<td>50 cd(B)</td>
</tr>
<tr>
<td>Rataan</td>
<td>65 C</td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang diikuti huruf kecil yang berbeda pada kolom yang sama dan huruf kapital yang berbeda pada baris yang sama menunjukkan berbeda nyata berdasarkan uji lanjut DMRT pada α 0.05.

![Gambar 4 Kondisi tanaman jarak pagar genotipe IP-2P pada KAM 22-23%. Daun layu dan kering](image)

4.2. Menentukan Kadar Air Media Seleksi

Menentukan kadar air media seleksi dihitung berdasarkan nilai koefisien korelasi kuat (KK), dengan rumus pembagian antara simpangan baku dengan nilai tengah rataan dari hasil pengamatan pada berbagai peubah dikali 100%.

| Tabel 16 | Menunjukkan bahwa KAM 22-23% menghasilkan peubah yang... |
memiliki keragaman paling tinggi paling banyak yaitu 8 peubah dari 11 peubah yang diamati. KAM 27-28% hanya 2 peubah yang memiliki keragaman paling tinggi yaitu pertambahan daun dan panjang akar, sedangkan KAM 32-33% hanya 1 peubah yaitu kadar air daun. Besarnya nilai KK pada setiap level KAM menunjukkan terdapat keragaman antar genotipe yang diuji terhadap peubah yang diamati akibat dari perlakuan KAM. Oleh karena itu, KAM 22-23% dapat digunakan sebagai KAM seleksi untuk penapisan toleransi kekereringan pada tanaman jarak pagar.

<table>
<thead>
<tr>
<th>KAM</th>
<th>TT</th>
<th>DB</th>
<th>JD</th>
<th>JC</th>
<th>LS</th>
<th>KAD</th>
<th>BKA</th>
<th>BKT</th>
<th>BKA/BKT</th>
<th>PA</th>
<th>JTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>22-23</td>
<td>93</td>
<td>7</td>
<td>39</td>
<td>295</td>
<td>19</td>
<td>3</td>
<td>61</td>
<td>47</td>
<td>29</td>
<td>22</td>
<td>56</td>
</tr>
<tr>
<td>27-28</td>
<td>75</td>
<td>7</td>
<td>40</td>
<td>177</td>
<td>15</td>
<td>3</td>
<td>31</td>
<td>32</td>
<td>21</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>32-33</td>
<td>62</td>
<td>16</td>
<td>29</td>
<td>168</td>
<td>12</td>
<td>5</td>
<td>17</td>
<td>20</td>
<td>13</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>37-38</td>
<td>48</td>
<td>22</td>
<td>38</td>
<td>122</td>
<td>15</td>
<td>2</td>
<td>8</td>
<td>18</td>
<td>13</td>
<td>14</td>
<td>5</td>
</tr>
</tbody>
</table>

Keterangan: KAM = kadar air media, TT = pertambahan tinggi tanaman, DB = pertambahan diameter batang, JD = pertambahan jumlah daun, JC = jumlah cabang, LD = luas daun, KAD = kadar air daun, BKA = bobot kering akar, BKT = bobot kering tajuk, BKA/BKT = nisbah BKA/BKT, PA = panjang akar, JTH = jumlah tanaman hidup.

4.2.6 Toleransi Genotipe terhadap Cekaman Kekeringan
Tanaman yang menunjukkan toleran terhadap kekereringan memiliki nilai IS kekereringan yang lebih rendah dibandingkan dengan yang peka, dengan kategori sebagai berikut: toleran IS ≤ 0.5, agak toleran 0.5 < IS ≤ 1.0 dan peka IS > 1.0. Nilai IS diperoleh dengan cara membandingkan respon sembilan genotipe terhadap tiga peubah yang diamati antara KAM tercekan dan KAM tidak tercekan. KAM tercekan diperoleh dari besarnya koefisien keragaman dari berbagai peubah yang diamati. Semakin banyak peubah yang menghasilkan koefisien keragaman pada KAM tercekan menunjukkan bahwa KAM tersebut dapat digunakan sebagai seleksi terhadap kekereringan. Berdasarkan penentuan level KAM seleksi maka KAM 22-23% dapat ditetapkan sebagai KAM seleksi karena dari 11 peubah yang diamati terdapat 8 peubah yang menghasilkan koefisien keragaman paling tinggi, sedangkan pada KAM 27-28% dan 32-33% hanya 1 peubah yang menghasilkan koefisien keragaman paling tinggi (Tabel 16).

untuk memudahkan pengelompokan lebih lanjut ke dalam kelas toleran atau peka, maka setiap peubah yang diamati pada sembilan genotipe maka dibuat matrix tingkat toleransi berdasarkan IS kekereringan. Berdasarkan IS kekereringan
menunjukkan bahwa setiap genotipe memiliki perbedaan toleransi kekeringan terhadap 14 peubah yang diamati (Tabel 17 disarikan dari Tabel Lampiran 15-28). Selanjutnya untuk mempermudah evaluasi dilakukan skoring dengan cara memboboti pada kelas toleran dengan nilai 2, agak toleran 1 dan peka 0 seperti yang dilakukan Syafi (2008).

Berdasarkan total skoring, Aceh Besar merupakan genotipe yang memiliki total skoring paling tinggi diantara genotipe yang lain yaitu 22, diikuti oleh genotipe IP-1M (18), Gunung Tambora (13), Dompu-1 (12), Bima (10), Papua (9), Komering (5), Yogyakarta (4), dan IP-2P (3) (Tabel 19). Pada percobaan pertama terdapat 15 peubah yang diamati sehingga total skor tertinggi adalah 30. Berdasarkan total skoring tertinggi maka genotipe yang memiliki skor > 15 dikategorikan toleran (mampu mempertahankan 51-100% pertumbuhan pada kondisi kekeringan) yaitu Aceh Besar dan IP-1M; 8-15 dikategorikan agak toleran (mampu mempertahankan 26-50% pertumbuhan pada kondisi kekeringan) yaitu Papua, Gunung Tambora, Dompu-1 dan Bima; dan < 8 dikategorikan peka (mampu mempertahankan 0-25% pertumbuhan pada kondisi kekeringan) yaitu IP-2P, Komering, dan Yogyakarta (Gambar 5).

Gambar 5. Keragaman tanaman dari setiap genotipe jarak pagar pada empat level kadar air media. Dari kiri ke kanan KAM: 37-38%, 32-33%, 27-28% dan 22-23%
<table>
<thead>
<tr>
<th>Genotipe</th>
<th>TT</th>
<th>DB</th>
<th>JD</th>
<th>LD</th>
<th>KAD</th>
<th>JC</th>
<th>BKA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>1.0</td>
<td>AT</td>
<td>0.5</td>
<td>T</td>
<td>0.8</td>
<td>AT</td>
<td>0.3</td>
</tr>
<tr>
<td>IP-2P</td>
<td>1.0</td>
<td>AT</td>
<td>1.2</td>
<td>P</td>
<td>1.2</td>
<td>P</td>
<td>3.2</td>
</tr>
<tr>
<td>Komering</td>
<td>1.0</td>
<td>AT</td>
<td>1.3</td>
<td>P</td>
<td>1.4</td>
<td>P</td>
<td>.</td>
</tr>
<tr>
<td>IP-1N</td>
<td>1.1</td>
<td>P</td>
<td>1.1</td>
<td>P</td>
<td>1.0</td>
<td>AT</td>
<td>0.9</td>
</tr>
<tr>
<td>Papua</td>
<td>1.0</td>
<td>AT</td>
<td>1.0</td>
<td>AT</td>
<td>0.9</td>
<td>AT</td>
<td>0.5</td>
</tr>
<tr>
<td>Yogyakarta</td>
<td>1.2</td>
<td>P</td>
<td>1.5</td>
<td>P</td>
<td>1.4</td>
<td>P</td>
<td>.</td>
</tr>
<tr>
<td>G. Tambora</td>
<td>1.0</td>
<td>AT</td>
<td>1.2</td>
<td>P</td>
<td>0.8</td>
<td>AT</td>
<td>0.1</td>
</tr>
<tr>
<td>Domea-1</td>
<td>1.0</td>
<td>AT</td>
<td>0.8</td>
<td>AT</td>
<td>1.2</td>
<td>P</td>
<td>1.3</td>
</tr>
<tr>
<td>Bima</td>
<td>0.9</td>
<td>AT</td>
<td>0.9</td>
<td>AT</td>
<td>-0.1</td>
<td>T</td>
<td>-0.3</td>
</tr>
</tbody>
</table>

Keterangan: TT = pertumbuhan tinggi tanaman, DB = pertumbuhan diameter batang, JD = pertumbuhan jumlah daun, LD = luas daun, KAD = kadar air daun, JC = jumlah cabang, BKA = bobot kering akar, IS = indeks sensitivitas, K = kelas, T = toleran, AT = agak toleran dan A = peka, titik (.) = pertumbuhan daun belum maksimal.

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>BKT</th>
<th>BKA/BKT</th>
<th>PA</th>
<th>BKTt</th>
<th>ST</th>
<th>KS</th>
<th>Pr</th>
<th>JTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>0.2</td>
<td>T -85</td>
<td>T</td>
<td>-1.4</td>
<td>T</td>
<td>0.1</td>
<td>T</td>
<td>0.6</td>
</tr>
<tr>
<td>IP-2P</td>
<td>1.5</td>
<td>P 116</td>
<td>P</td>
<td>1.7</td>
<td>P</td>
<td>1.7</td>
<td>P</td>
<td>0.7</td>
</tr>
<tr>
<td>Komering</td>
<td>1.4</td>
<td>P 41.1</td>
<td>P</td>
<td>2.2</td>
<td>P</td>
<td>1.4</td>
<td>P</td>
<td>.</td>
</tr>
<tr>
<td>IP-1N</td>
<td>0.8</td>
<td>AT -197</td>
<td>T</td>
<td>-1.6</td>
<td>T</td>
<td>0.8</td>
<td>AT</td>
<td>0.9</td>
</tr>
<tr>
<td>Papua</td>
<td>1.2</td>
<td>P 98.6</td>
<td>P</td>
<td>2.9</td>
<td>P</td>
<td>1.1</td>
<td>P</td>
<td>0.7</td>
</tr>
<tr>
<td>Yogyakarta</td>
<td>1.7</td>
<td>P 174</td>
<td>P</td>
<td>0.0</td>
<td>T</td>
<td>2.0</td>
<td>P</td>
<td>.</td>
</tr>
<tr>
<td>G. Tambora</td>
<td>0.8</td>
<td>AT -197</td>
<td>T</td>
<td>2.0</td>
<td>P</td>
<td>0.8</td>
<td>AT</td>
<td>1.2</td>
</tr>
<tr>
<td>Domea-1</td>
<td>0.7</td>
<td>AT -134</td>
<td>T</td>
<td>1.3</td>
<td>P</td>
<td>0.6</td>
<td>AT</td>
<td>1.7</td>
</tr>
<tr>
<td>Bima</td>
<td>0.9</td>
<td>AT 132</td>
<td>P</td>
<td>1.6</td>
<td>P</td>
<td>0.8</td>
<td>AT</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Keterangan: BKA = bobot kering tajuk, BKA/BKT = nilai BKA/BKT, PA = panjang akar, BKTt = bobot kering total, ST = stomata terbuka, KS = kerapatan stomata, Pr = prolin, JTH = jumlah tanaman hidup, IS = indeks sensitivitas, K = kelas, T = toleran, AT = agak toleran dan A = peka, titik (.) = pertumbuhan daun belum maksimal.
<table>
<thead>
<tr>
<th>Genotipe</th>
<th>TT</th>
<th>DB</th>
<th>JD</th>
<th>LD</th>
<th>KAD</th>
<th>JC</th>
<th>BKA</th>
<th>BKT</th>
<th>BKA/BKT</th>
<th>PA</th>
<th>BKTt</th>
<th>ST</th>
<th>TS</th>
<th>Pr</th>
<th>JTH</th>
<th>Total skor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acacia Besar</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>IP-2E</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Kombing</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>IP-1W</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Papuan</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Jogyakarta</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>G. Tambora</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Dompak</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Bima</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>12</td>
<td>10</td>
</tr>
</tbody>
</table>

Keterangan: TT = pertambahan tinggi tanaman, DB = pertambahan diameter batang, JD = pertambahan jumlah daun, LD = luas daun, KAD = kadar air daun, JC = jumlah cabang, BKA = bobot kering akar, BKT = bobot kering tajuk, BKA/BKT = nisbah BKA/BKT, PA = panjang akar, BKTt = bobot kering total, ST = stomata terbuka, KS = kerapatan stomata, Pr = prolin, dan JTH = jumlah tanaman hidup.

lain dipengaruhi oleh faktor lingkungan, karakter toleransi kekeringan dikendalikan juga oleh faktor genetik dari setiap genotipe tanaman. Hal ini didukung oleh penelitian Arisanti (2010) yang menunjukkan bahwa genotipe IP-
2P memiliki hubungan kekerabatan yang berbeda dengan genotipe IP-1M berdasarkan analisis isozim pada tingkat kemiripan 0.86. Hasil penelitian Syafi (2008), genotipe jarak pagar asal Karanganyar, NTB dan IP-1M menghasilkan total skoring yang tinggi dibandingkan dengan genotipe Sukabumi dan IP-1P.

4.2.7 Penentuan Karakter Seleksi Kekeringan

Program pemuliaan tanaman bertujuan untuk mendapatkan varietas tanaman yang memiliki keunggulan baik terhadap produktivitas maupun ketahanan terhadap cekaman abiotik dan biotik. Tentunya untuk mendapatkan semua itu memerlukan waktu penelitian yang lama dan biaya besar. Oleh karena itu, dalam menentukan individu atau populasi tanaman baik dalam produktivitas maupun ketahanan cekaman perlu dilakukan seleksi terhadap karakter yang secara langsung berpengaruh terhadap produktivitas dan ketahanan cekaman atau karakter yang memiliki korelasi dengan karakter lain yang berpengaruh terhadap ketahanan cekaman. Dengan demikian, dapat menghemat waktu dan biaya penelitian.

Karakter seleksi yang digunakan oleh peneliti bisa berbeda, tergantung jenis tanaman, waktu dan tujuan penelitian. Palupi dan Dedywiriyanto (2008) menyatakan bahwa karakter fisiologi dari peubah kadar air daun dapat digunakan sebagai karakter seleksi secara dini dalam pengujuan toleransi kekeringan pada fase bibit kelapa sawit.

Berdasarkan koefisien korelasi peubah yang memiliki hubungan paling erat dengan peubah lain pada kondisi kekeringan adalah bobot kering tajuk berkorelasi dengan 10 peubah lain. Selanjutnya pertambahan tinggi tanaman berkorelasi dengan 9 peubah lain, pertambahan jumlah daun dan bobot kering akar (8), dan luas daun berkorelasi dengan 7 peubah lain, sedangkan peubah yang lain jumlah korelasinya rendah yaitu < 7 (Tabel 19).

Berdasarkan koefisien korelasi antar peubah dan berdasarkan indikator peubah yang mudah diamati, cepat dan tidak bersifat destruktif maka peubah pertambahan tinggi tanaman, pertambahan jumlah daun, dan luas daun dapat digunakan sebagai karakter seleksi dalam pengujuan toleransi kekeringan pada tanaman jarak pagar fase bibit.
<table>
<thead>
<tr>
<th>Peubah</th>
<th>TT</th>
<th>DB</th>
<th>JD</th>
<th>JC</th>
<th>KAD</th>
<th>LD</th>
<th>BKT</th>
<th>BKA</th>
<th>BKA/BKT</th>
<th>PA</th>
<th>JTH</th>
<th>ST</th>
<th>KS</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB</td>
<td>0.69**</td>
<td></td>
</tr>
<tr>
<td>JD</td>
<td>0.79**</td>
<td>0.57**</td>
<td></td>
</tr>
<tr>
<td>JC</td>
<td>0.38*</td>
<td>0.26</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>KAD</td>
<td>-0.3</td>
<td>-0.19</td>
<td>-0.27</td>
<td>-0.08</td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>0.59**</td>
<td>0.34</td>
<td>0.64**</td>
<td>0.31</td>
<td>-0.38*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKT</td>
<td>0.64**</td>
<td>0.36*</td>
<td>0.64**</td>
<td>0.34</td>
<td>-0.17</td>
<td>0.62**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKA</td>
<td>0.29</td>
<td>0.2</td>
<td>0.38*</td>
<td>0.19</td>
<td>0.08</td>
<td>0.52**</td>
<td>0.81**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKA/BKT</td>
<td>-0.46**</td>
<td>-0.18</td>
<td>-0.34</td>
<td>-0.15</td>
<td>0.46**</td>
<td>-0.09</td>
<td>-0.2</td>
<td>0.38*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>0.24</td>
<td>0.04</td>
<td>0.27</td>
<td>-0.12</td>
<td>0.02</td>
<td>0.2</td>
<td>0.45*</td>
<td>0.44*</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JTH</td>
<td>0.25</td>
<td>0.24</td>
<td>0.28</td>
<td>0.19</td>
<td>0.09</td>
<td>0.53**</td>
<td>0.64**</td>
<td>0.92**</td>
<td>0.54**</td>
<td>0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>0.47**</td>
<td>0.44*</td>
<td>0.48**</td>
<td>0.04</td>
<td>-0.15</td>
<td>0.3</td>
<td>0.59**</td>
<td>0.39*</td>
<td>-0.028</td>
<td>0.26</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KS</td>
<td>-0.51**</td>
<td>-0.37*</td>
<td>-0.45*</td>
<td>-0.02</td>
<td>-0.06</td>
<td>-0.2</td>
<td>-0.39*</td>
<td>-0.27</td>
<td>0.1</td>
<td>-0.33</td>
<td>-0.21</td>
<td>-0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>0.17</td>
<td>0.42*</td>
<td>0.11</td>
<td>0.15</td>
<td>-0.23</td>
<td>0.22</td>
<td>0.11</td>
<td>0.08</td>
<td>-0.06</td>
<td>0.034</td>
<td>0.14</td>
<td>0.08</td>
<td>-0.07</td>
<td></td>
</tr>
<tr>
<td>BKTt</td>
<td>0.55**</td>
<td>0.32</td>
<td>0.58**</td>
<td>0.3</td>
<td>-0.09</td>
<td>0.61**</td>
<td>0.98**</td>
<td>0.91**</td>
<td>-0.01</td>
<td>0.46**</td>
<td>0.76**</td>
<td>0.55**</td>
<td>-0.37*</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Keterangan: TT= pertumbuhan tinggi tanaman, DB= pertumbuhan diameter batang, JD= pertumbuhan daun, JC= jumlah cabang, KAD= kadar air daun, LD= luas daun, BKT= bobot kering akar, BKA= bobot kering tajuk, BKA/BKT= nisbah BKA/BKT, PA= panjang akar, JTH= jumlah tanaman hidup, ST= stomata terbuka, KS= kerapatan stomata. Pr= prolin, BKTt= bobot kering total.
4.3 Pengaruh Kadar Air Media selama Pengujian Toleransi Kekeringan terhadap Pertumbuhan Vegetatif dan Generatif Sembilan Genotipe Jarak Pagar di Lapang

Hasil penelitian menunjukkan bahwa KAM media setelah pengujian toleransi kekerengan tidak berpengaruh terhadap semua peubah yang diamati. Genotip menunjukkan pengaruh sangat nyata terhadap semua peubah yang diamati, kecuali tinggi tanaman dan diameter batang. Interaksi antara KAM awal dengan genotipe tidak berpengaruh terhadap peubah yang diamati (Tabel 20 disarikan dari Tabel Lampiran 31-37).

KAM setelah pengujian toleransi kekerengan berpengaruh terhadap semua peubah yang diamati menunjukkan bahwa tanaman jarak pagar memiliki daya pemulihan atau adaptasi yang sangat baik setelah dipindahkan ke lapangan. Akan tetapi, sembilan genotipe yang diaji menunjukkan respon yang berbeda terhadap semua peubah yang diamati, kecuali tinggi tanaman dan diameter batang. Padahal genotipe tersebut ditanam pada tempat yang sama. Hal ini mengindikasikan bahwa genotipe dipengaruhi oleh faktor lingkungan, faktor genetik memiliki pengaruh yang besar.

Tabel 20 Rekapitulasi sidik ragam respon pertumbuhan vegetatif dan generatif genotipe jarak pagar saat ditanam di lapangan pada 16 MST

<table>
<thead>
<tr>
<th>Peubah</th>
<th>KAM</th>
<th>G</th>
<th>KAM*G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tinggi Tanaman (cm)</td>
<td>tn</td>
<td>tn</td>
<td>tn</td>
</tr>
<tr>
<td>Diameter Batang (cm)</td>
<td>tn</td>
<td>tn</td>
<td>tn</td>
</tr>
<tr>
<td>Jumlah Cabang Total</td>
<td>tn</td>
<td>**</td>
<td>tn</td>
</tr>
<tr>
<td>Jumlah Cabang Produktif</td>
<td>tn</td>
<td>**</td>
<td>tn</td>
</tr>
<tr>
<td>Jumlah Malai/Tanaman</td>
<td>tn</td>
<td>**</td>
<td>tn</td>
</tr>
<tr>
<td>Jumlah Bunga Betina/Malai</td>
<td>tn</td>
<td>**</td>
<td>tn</td>
</tr>
<tr>
<td>Persentase Buah (%)</td>
<td>tn</td>
<td>**</td>
<td>tn</td>
</tr>
</tbody>
</table>

Keterangan: KAM = kadar air media, G = genotipe ** berbeda nyata pada α 0.01, tn = tidak berbeda nyata.
1. Jumlah Cabang Total dan Cabang Produktif

Hasil penelitian menunjukkan bahwa genotipe dari daerah basah (IP-1M dan Papua) menghasilkan jumlah cabang total paling banyak yaitu 11.0 (99.6%) dan 13.0 (95.5%). Banyaknya jumlah cabang total bukan berarti jumlah cabang produktif yang terbentuk banyak. Hampir semua genotipe menghasilkan jumlah cabang produktif yang rendah karena hanya genotipe IP-2P, Yogyakarta, dan Dompu yang menghasilkan jumlah cabang produktif yang banyak, itupun 2 cabang produktif (Tabel 21).

Rendahnya jumlah cabang produktif pada sebagian genotipe diduga karena waktu pengujian toleransi kekereringan yang cukup lama (3 bulan) sehingga menghambat fase generatif. Pada kondisi kekereringan khususnya tanaman yang toleran akan lebih cenderung memproduksi senyawa yang diperlukan untuk ketahanan terhadap kekereringan agar sel tidak rusak. Menurut Moussa dan Aziz (2008), tanaman jagung yang toleran mengandung lebih banyak senyawa antioksidan seperti superoxide dismutase (SOD), peroxidase compound (POX), catalase (CAT), prolin, dan glycinebetain (GB) daripada tanaman yang peka.

Tabel 2. Pengaruh genotipe terhadap jumlah cabang total dan cabang produktif jarak pagar

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Jumlah cabang total</th>
<th>Jumlah cabang produktif</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>7.0 b (97.3%)</td>
<td>0.0 cd (2.7%)</td>
</tr>
<tr>
<td>IP-2P</td>
<td>8.0 b (80.4%)</td>
<td>2.0 ab (19.6%)</td>
</tr>
<tr>
<td>Komering</td>
<td>7.0 b (83.9%)</td>
<td>1.0 a-c (16.1%)</td>
</tr>
<tr>
<td>IP-1M</td>
<td>11.0 a (99.6%)</td>
<td>0.0 d (0.4%)</td>
</tr>
<tr>
<td>Papua</td>
<td>13.0 a (95.5%)</td>
<td>1.0 b-d (4.5%)</td>
</tr>
<tr>
<td>Yogyakarta</td>
<td>8.0 b (77.3%)</td>
<td>2.0 a (22.7%)</td>
</tr>
<tr>
<td>G. Tambora</td>
<td>8.0 b (85.9%)</td>
<td>1.0 a-c (14.1%)</td>
</tr>
<tr>
<td>Dompu-1</td>
<td>7.0 b (78.4%)</td>
<td>2.0 ab (21.6%)</td>
</tr>
<tr>
<td>Bima</td>
<td>7.0 b (85.4%)</td>
<td>1.0 a-d (14.6%)</td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang diikuti huruf yang berbeda menunjukkan berbeda nyata berdasarkan uji lanjut DMR a 0.01. Hasil transformasi ln (x+10).

2. Waktu Berbunga Pertama

Keterlambatan kekereringan selama 3 bulan pada umumnya dapat menghambat pertumbuhan jarak pagar ketika bibit pengujian kekereringan di tanam di lapangan (Tabel 22). Aceh Besar, IP-1M dan Papua mulai berbunga pada 16 MST di lapangan atau 8 bulan dari perlakuan kekereringan di rumah plastik, lebih lambat dibandingkan genotipe IP-2P, Komering, Yogyakarta, Gunung Tambora, Dompu-

Tabel 2. Waktu berbunga sembilan genotipe jarak pagar

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Waktu berbunga (MST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>16</td>
</tr>
<tr>
<td>IP-2P</td>
<td>12</td>
</tr>
<tr>
<td>Kombing</td>
<td>12</td>
</tr>
<tr>
<td>IP-1M</td>
<td>16</td>
</tr>
<tr>
<td>Papua</td>
<td>16</td>
</tr>
<tr>
<td>Yogyakarta</td>
<td>12</td>
</tr>
<tr>
<td>G. Tambora</td>
<td>12</td>
</tr>
<tr>
<td>Dompu-1</td>
<td>12</td>
</tr>
<tr>
<td>Bima</td>
<td>12</td>
</tr>
</tbody>
</table>

Keterangan: MST= minggu setelah tanam

Gambar 6 Kuncup bunga pertama jarak pagar pada genotipe IP-2P
3. Jumlah Malai/Tanaman, Jumlah Bunga Betina/Malai, dan Persentase Pembentukan Buah

Peralihan KAM awal tidak berpengaruh terhadap jumlah malai/tanaman, jumlah bunga betina/malai, dan persentase pembentukan buah setelah bibit dipindahkan ke lapangan, tetapi genotipe memiliki pengaruh yang sangat nyata. Dari sembilan genotipe yang diuji Yogyakarta merupakan genotipe yang menghasilkan jumlah malai/tanaman paling banyak yaitu 3.3 dibandingkan dengan genotipe lainnya, diikuti oleh genotipe IP-2P, Dompu-1, dan Komering. Berdasarkan jumlah bunga betina/malai, tujuh genotipe tidak menunjukkan perbedaan yang nyata dengan jumlah 4.2-6.7 yaitu IP-2P, Komering, Yogyakarta, Gunung Tambora, Dompu-1, dan Bima, dengan jumlah bunga betina/malai tertinggi dihasilkan dari genotipe Yogyakarta. Tiga genotipe yaitu Aceh Besar, IP-1M dan Papua berbeda nyata dengan tujuh genotipe di atas dengan jumlah bunga betina/malai 0.5-0.9 (Tabel 23).

Gambar 7 Keragaman genotipe jarak pagar di lapangan hasil pengujian toleransi kekeringan umur 17 MST. Dari atas ke bawah menunjukkan genotipe yang sama dan menunjukkan KAM selama pengujian kekeringan fase bibit 22-23%, 27-28%, 32-33% dan 37-38%
Hal ini didukung oleh penelitian Arisanti (2010) yang menunjukkan bahwa genotipe IP-2P memiliki hubungan kekerabatan yang berbeda dengan genotipe IP-1M berdasarkan analisis isozim pada tingkat kemiripan 0,86. Hasil penelitian Susantidiana et al. (2009) menunjukkan bahwa genotipe Komering, Aceh Besar dan Yogyakarta memiliki kelompok yang berbeda berdasarkan analisis morfolologi dengan tingkat kemiripan 72%.

Yogyakarta dan Komering marupakan aksesi lokal yang sedang dilakukan penelitian dalam berbagai studi, sedangkan IP-2P merupakan genotipe yang dirilis oleh PPII itbanggun yang dikhuskuskan untuk daerah beriklim basah hasil seleksi dari daerah Jawa Barat, Banten dan Lampung (Pranowo 2006).

<table>
<thead>
<tr>
<th>Tabel 2</th>
<th>Pengaruh genotipe terhadap jumlah bunga betina/malai, pembentukan buah dan jumlah malai/tanaman jarak pagar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotipe</td>
<td>Jumlah malai/tanaman</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Aceh Besar</td>
<td>0.2 d</td>
</tr>
<tr>
<td>IP-2P</td>
<td>2.8 ab</td>
</tr>
<tr>
<td>Komering</td>
<td>1.6 a-c</td>
</tr>
<tr>
<td>IP-1 M</td>
<td>0.3 d</td>
</tr>
<tr>
<td>Papua</td>
<td>0.8 cd</td>
</tr>
<tr>
<td>Yogyakarta</td>
<td>3.3 a</td>
</tr>
<tr>
<td>G. Tambora</td>
<td>1.6 b-d</td>
</tr>
<tr>
<td>Dompu-1</td>
<td>2.2 a-c</td>
</tr>
<tr>
<td>Bima</td>
<td>1.7 b-d</td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang diikuti huruf yang berbeda menunjukkan berbeda nyata berdasarkan uji lanjut DMRT α 0,01. Hasil transformasi In (x+10) dari rata-rata 2 malai.

4. Pola Bunga Mekar

Perbedaan bunga mekar antara bunga jantan dan betina selain dipengaruhi faktor genetik juga dipengaruhi oleh fase pertumbuhan dan kondisi iklim saat pembuahan. Hasnam (2006c, 2007b) melaporkan bahwa jarak pagar IP-2A
1. Diterangkan bahwa pembungaan jarak pagar pada kebun Pakuwon sangat bervariasi tergantung genotipe dan kondisi lingkungan. Diduga jarak pagar yang dikategorikan protogini akan memiliki sistem penyerbukan silang karena bunga betina mekar lebih awal. Sebaliknya pada protandri memiliki peluang yang besar dalam penyerbukan sendiri karena jumlah bunga jantan sangat banyak dibandingkan bunga betina, mekarnya bunga jantan tidak serempak dan selalu ada yang miskin meskipun bunga betina sudah berkembang menjadi bauh (Gambar 8).

Gambar 8 Pembungaan jarak pagar. Bunga betina yang telah terserbuki ditandai dengan keringnya mahkota bunga (Lingkaran merah), bunga jantan yang sudah dan belum mekar (lingkaran kuning menunjukkan)
<table>
<thead>
<tr>
<th>Genotipe</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>(4 tanaman) 50% protogini,</td>
<td>(4 tanaman) 25% protogini,</td>
<td>(3 tanaman) 33% protogini,</td>
<td>(2 tanaman) 100% protandri</td>
</tr>
<tr>
<td></td>
<td>50% protandri</td>
<td>75% protandri</td>
<td>75% protandri</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3 tanaman) 67% protogini,</td>
<td>(6 tanaman), 100% protogini</td>
<td>(6 tanaman) 50% protogini,</td>
<td>(4 tanaman) 100% protogini</td>
</tr>
<tr>
<td></td>
<td>33% protandri</td>
<td>60% protandri</td>
<td>50% protandri</td>
<td></td>
</tr>
<tr>
<td>Komering</td>
<td>- (mati)</td>
<td>(3 tanaman) 33% protogini,</td>
<td>(5 tanaman) 40% protogini,</td>
<td>(4 tanaman) 100% protandri</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67% protandri</td>
<td>60% protandri</td>
<td></td>
</tr>
<tr>
<td>IP-1 M</td>
<td>(2 tanaman) 100% protandri</td>
<td>(2 tanaman) 50% protogini,</td>
<td>0 (belum berbunga)</td>
<td>0 (belum berbunga)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% protandri</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papua</td>
<td>(2 tanaman) 50% protogini,</td>
<td>0 (belum berbunga)</td>
<td>(2 tanaman) 100% protandri</td>
<td>(1 tanaman) 100% protandri</td>
</tr>
<tr>
<td></td>
<td>50% protandri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yogyakarta</td>
<td>(1 tanaman) 100% protogini</td>
<td>(4 tanaman) 25% protogini,</td>
<td>(6 tanaman) 67% protogini,</td>
<td>(5 tanaman) 100% protandri</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75% protandri</td>
<td>33% protandri</td>
<td></td>
</tr>
<tr>
<td>G.Tambora</td>
<td>(6 tanaman) 67% protogini,</td>
<td>(3 tanaman) 67% protogini,</td>
<td>(1 tanaman) 100% protandri</td>
<td>(6 tanaman) 33% protogini,</td>
</tr>
<tr>
<td></td>
<td>33% protandri</td>
<td>33% protandri</td>
<td></td>
<td>67% protandri</td>
</tr>
<tr>
<td>Dompu-1</td>
<td>(3 tanaman) 100% protandri</td>
<td>(4 tanaman) 100% protogini</td>
<td>(3 tanaman) 33% protogini,</td>
<td>(4 tanaman) 25% protogini,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>67% protandri</td>
<td>75% protandri</td>
</tr>
<tr>
<td>Bingkisan</td>
<td>(2 tanaman) 100% protandri</td>
<td>(2 tanaman) 100% protandri</td>
<td>0 (belum berbunga)</td>
<td>(1 tanaman) 100% protandri</td>
</tr>
</tbody>
</table>

Keterangan: A = bibit yang diberi perlakuan KAM 22-23% pada fase bitit, B = bibit yang diberi perlakuan KAM 27-28% pada fase bitit, C = bibit yang diberi perlakuan KAM 32-33% pada fase bitit, D = bibit yang diberi perlakuan KAM 37-38% pada fase bitit.
4.4 Percobaan II: Penapisan Genotipe Jarak Pagar terhadap Toleransi Kekeringan

4.4.1 Pengaruh Perlakuan Kadar Air Media 22-23% dan 37-38% pada 23 Genotipe terhadap Peubah yang Diamati

Hasil penelitian menunjukkan bahwa genotipe berpengaruh nyata pada peubah pertambahan tinggi tanaman, diameter batang, dan jumlah daun, kadar air daun, bobot kering tajuk dan akar, dan jumlah tanaman hidup. Kadar air media berpengaruh nyata pada peubah yang diamati kecuali panjang akar dan stomata terbuka. Interaksi antara genotipe dan kadar air media berpengaruh nyata pada peubah kadar air daun, bobot kering total, stomata terbuka, kerapatan stomata, dan jumlah tanaman hidup (Tabel 25 disairikan dari Tabel Lampiran 38-51).

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>TT</th>
<th>DB</th>
<th>JD</th>
<th>LD</th>
<th>KAD</th>
<th>JC</th>
<th>BKA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulangan</td>
<td>2.05*</td>
<td>2.08*</td>
<td>1.24*</td>
<td>0.79*</td>
<td>0.85*</td>
<td>0.08*</td>
<td>0.16*</td>
</tr>
<tr>
<td>G</td>
<td>4.18**</td>
<td>1.86*</td>
<td>2.07*</td>
<td>1.72**</td>
<td>2.38**</td>
<td>0.86*</td>
<td>3.20**</td>
</tr>
<tr>
<td>KAM</td>
<td>227.59**</td>
<td>84.79**</td>
<td>8.80**</td>
<td>57.83**</td>
<td>37.47**</td>
<td>11.85**</td>
<td>15.67**</td>
</tr>
<tr>
<td>G*KAM</td>
<td>0.00*</td>
<td>0.00*</td>
<td>1.35*</td>
<td>0.68*</td>
<td>4.47**</td>
<td>0.39*</td>
<td>0.85*</td>
</tr>
</tbody>
</table>

Keterangan:
- G= genotipe, KAM= kadar air media, TT= pertambahan tinggi tanaman, DB= pertambahan diameter batang, JD= pertambahan jumlah daun, LD= luas daun, KAD= kadar air daun, JC= jumlah cabang, BKT= bobot kering tajuk, * = nyata pada α 0.01, *= nyata pada α 0.05, tn= tidak nyata.

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>BKT</th>
<th>BKA/BKT</th>
<th>PA</th>
<th>BKTTE</th>
<th>ST</th>
<th>KS</th>
<th>JTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulangan</td>
<td>1.10*</td>
<td>0.91*</td>
<td>0.21*</td>
<td>0.88*</td>
<td>30.64**</td>
<td>0.30*</td>
<td>0.98*</td>
</tr>
<tr>
<td>G</td>
<td>3.92**</td>
<td>2.03*</td>
<td>1.56*</td>
<td>4.03**</td>
<td>1.35*</td>
<td>1.40*</td>
<td>3.44**</td>
</tr>
<tr>
<td>KAM</td>
<td>92.22**</td>
<td>47.12**</td>
<td>0.99*</td>
<td>83.06**</td>
<td>0.02*</td>
<td>16.92**</td>
<td>173.67**</td>
</tr>
<tr>
<td>G*KAM</td>
<td>1.28*</td>
<td>1.12*</td>
<td>0.64*</td>
<td>1.25*</td>
<td>2.07*</td>
<td>1.86*</td>
<td>3.23**</td>
</tr>
</tbody>
</table>

Keterangan:
- G= genotipe, KAM= kadar air media, BKA= bobot kering tajuk, BKA/BKT= nisbah BKA/BKT, PA= panjang akar, BKTTE= bobot kering total tanaman, ST= jumlah tanaman hidup, ST= stomata terbuka, KS= kerapatan stomata, *= nyata pada α 0.01, *= nyata pada α 0.05, tn= tidak nyata.

Dari umumnya KAM seleksi atau KAM 22-23% merupakan kadar air yang dapat menghambat pertumbuhan tanaman jarak pagar, sebagaimana ditunjukkan nilai ganda yang rendah hampir disetiap peubah yang diamati pada 23 genotipe yang diteliti (Tabel Lampiran 52). Bahkan terdapat 6 genotipe yang mengalami kematian di setiap ulangan yaitu Curup, Bogor-3, Pontianak, Palembang, Jeneponto, dan Medan.
Berdasarkan nilai tengah pada KAM seleksi, diperoleh 2 genotipe yang menghasilkan nilai tengah yang tinggi. Genotipe tersebut adalah Indralaya dan China. Indralaya merupakan genotipe yang menunjukkan hasil terbaik karena terdapat 4 peubah dari 14 peubah yang diamati menghasilkan nilai tengah yang tinggi. Peubah tersebut adalah peubah pertambahan tinggi tanaman, pertambahan diameter batang, pertambahan jumlah daun dan jumlah cabang, sedangkan genotipe China peubah yang memiliki nilai tengah tinggi adalah bobot kering biji, bobot kering tanaman, dan jumlah tanaman hidup.

Pertambahan tinggi tanaman pada KAM seleksi berkisar antara 0.1-1.8 cm lebih rendah dari KAM 37-38% yang berkisar 2.3-5.9 cm. Dompu, Indralaya, Kupang, dan China merupakan genotipe yang menghasilkan nilai tengah ≥ 1 cm pada KAM seleksi, sedangkan genotipe yang lain < 1 cm. Pertambahan diameter batang pada KAM seleksi bernilai negatif pada 20 genotipe jarak pagar berkisar (-0.02 cm)-0.1 cm). Hal ini karena terjadi penyusutan pada bagian batang.

Diduga KAM tersebut merupakan KAM terceber bagi tanaman jarak pagar sehingga tanaman tidak mampu mempertahankan pertumbuhannya. Akan tetapi, ada tiga genotipe yang mampu mempertahankan diameter batang tanpa terjadi penyusutan yaitu genotipe Sukabumi-2, Indralaya dan Lampung-3.

Pada umumnya KAM 22-23% mengakibatkan daun menjadi layu, kemudian rontok. Pertambahan jumlah daun pada KAM seleksi berkisar 0.0-6.5. Indralaya merupakan genotipe yang menghasilkan pertambahan jumlah daun yang banyak dibanding genotipe lainnya yaitu 6.5, tidak berbeda nyata dengan genotipe Dompu-2, Sukabumi-2 dan China.

Pon morfologi lainnya akibat perlakuan KAM seleksi adalah penyusutan luas daun, sebagaimana terlihat nilai tengah luas daun yang rendah pada genotipe jarak pagar yaitu berkisar 22.70-61.50 cm², kecuali genotipe Sukabumi-1-2. Nilai tengah tersebut lebih rendah jika dibandingkan dengan KAM 37-38% KAM seleksi berpengaruh terhadap kadar air daun pada genotipe jarak pagar dengan kisaran 47.9-81.6. Tanaman yang mampu bertahan pada kondisi kadar air rendah akan berusaha mempertahankan kadar air daun agar tetap tinggi, sebaliknya tanaman yang kurang mampu akan kehilangan air daun. Dompu, Sukabumi-1 dan 2, Lahat, Indralaya, Kupang, Lampung-2, dan China merupakan
genotipe yang menghasilkan kadar air daun yang lebih tinggi dibandingkan genotipe lainnya pada KAM seleksi.

Selain mempengaruhi morfologi dan fisiologi tanaman, dampak dari kekereringan adalah kematian tanaman. KAM seleksi mengakibatkan kematian pada sebagian genotipe jarak pagar dan sebaliknya terdapat tanaman yang mampu bertahan hidup sampai akhir penelitian. Genotipe tersebut adalah Dompu-2, Kupang, IP-2M dan China dengan persentase tanaman hidup 100%.

4.4.2 Transisi Genotipe terhadap Cekaman Kekeringan
Pemilihan IS terhadap kekereringan berdasarkan Fischer dan Maurer (1978) yaitu IS = 0.5 (tahan), 0.5 < IS ≤ 1.0 (agak tahan) dan IS > 1.0 (peka). Berdasarkan IS kekereringan setiap peubah memiliki kelas yang berbeda pada 23 genotipe jarak pagar (Tabel 26 disarikan dari Tabel Lampiran 52-66). Berdasarkan total skoring genotipe yang menghasilkan skor tertinggi adalah Dompu-2 dengan total skor 19 dan yang terendah genotipe Curup dan Medan total skor 2 (Tabel 27 dan Gambar 9).

Hasil pengujian toleransi kekereringan di atas menunjukkan bahwa genotipe yang berasal dari daerah kering memiliki toleransi yang lebih baik terhadap kekereringan dibandingkan dari daerah basah seperti Dompu-2, Kupang, Sumba, IP-2M, dan IP-2A. Akan tetapi, terdapat beberapa genotipe yang berasal dari daerah basah yang memiliki kemampuan respon yang baik terhadap kondisi terceksam kekereringan seperti Indralaya, Sukabumi-1, Sukabumi-2, Lampung-2, dan Lampung-3.

Dompu-2 merupakan genotipe yang toleran terhadap kekereringan. Hal ini dapat dikatakan berdasarkan daerah pengembangan atau daerah asal tempat tumbuh yaitu Nusa Tenggara Barat dengan kondisi iklim yang kering sehingga mampu beradaptasi

Dipdasarkan hasil pengujian toleransi kekeringan, genotipe Indralaya termasuk toleran. Padahal genotipe tersebut berasal dari daerah basah. Diduga biji yang digunakan merupakan hasil persilangan dari genotipe lain yang diduga toleran pada saat di lapangan (kebun koleksi). Hal ini dapat terjadi karena jarak pagar termasuk berumah satu (letak antara bunga jantan dan betina terpisah dalam satu tanaman yang sama). Dengan demikian, tanaman jarak pagar memiliki peluang besar dalam melalui penyerbukan silang.

Gambar 9: Keragaan jarak pagar yang toleran kekeringan pada 8 MSP. Tanaman sebelah kiri pertumbuhan pada KAM 37-38%, sebelah kanan pertumbuhan pada KAM 22-23%, insert: kondisi pucuk tanaman pada KAM 22-23%
<table>
<thead>
<tr>
<th>Genotipe</th>
<th>TT</th>
<th>DB</th>
<th>JD</th>
<th>LD</th>
<th>KAD</th>
<th>JC</th>
<th>BKA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IS</td>
<td>K</td>
<td>IS</td>
<td>IS</td>
<td>K</td>
<td>IS</td>
<td>K</td>
</tr>
<tr>
<td>Dompu-2</td>
<td>1.0</td>
<td>AT</td>
<td>0.4</td>
<td>1.4</td>
<td>P</td>
<td>T</td>
<td>0.7</td>
</tr>
<tr>
<td>Bogor-1</td>
<td>0.8</td>
<td>AT</td>
<td>1.3</td>
<td>.</td>
<td>P</td>
<td>P</td>
<td>0.5</td>
</tr>
<tr>
<td>Bogor-2</td>
<td>1.1</td>
<td>P</td>
<td>0.3</td>
<td>.</td>
<td>P</td>
<td>T</td>
<td>2.5</td>
</tr>
<tr>
<td>Sukamahi-1</td>
<td>1.2</td>
<td>P</td>
<td>1.0</td>
<td>.</td>
<td>P</td>
<td>AT</td>
<td>2.2</td>
</tr>
<tr>
<td>Sukamahi-2</td>
<td>0.9</td>
<td>AT</td>
<td>-0.4</td>
<td>0.3</td>
<td>T</td>
<td>T</td>
<td>-0.6</td>
</tr>
<tr>
<td>Pontiak</td>
<td>.</td>
<td>P</td>
<td>.</td>
<td>.</td>
<td>P</td>
<td>P</td>
<td>.</td>
</tr>
<tr>
<td>Pidi</td>
<td>1.1</td>
<td>P</td>
<td>1.0</td>
<td>.</td>
<td>P</td>
<td>AT</td>
<td>3.8</td>
</tr>
<tr>
<td>Lahat</td>
<td>1.1</td>
<td>P</td>
<td>2.3</td>
<td>1.2</td>
<td>P</td>
<td>P</td>
<td>0.8</td>
</tr>
<tr>
<td>Pagara Alam</td>
<td>1.0</td>
<td>AT</td>
<td>1.3</td>
<td>.</td>
<td>P</td>
<td>P</td>
<td>2.7</td>
</tr>
<tr>
<td>Indramayu</td>
<td>0.6</td>
<td>AT</td>
<td>0.6</td>
<td>1.2</td>
<td>P</td>
<td>AT</td>
<td>-5.5</td>
</tr>
<tr>
<td>Kupang</td>
<td>0.7</td>
<td>AT</td>
<td>1.7</td>
<td>0.7</td>
<td>AT</td>
<td>P</td>
<td>-0.4</td>
</tr>
<tr>
<td>Lampung-2</td>
<td>1.0</td>
<td>AT</td>
<td>1.0</td>
<td>.</td>
<td>P</td>
<td>AT</td>
<td>0.9</td>
</tr>
<tr>
<td>Lampung-3</td>
<td>1.1</td>
<td>P</td>
<td>0.3</td>
<td>.</td>
<td>P</td>
<td>T</td>
<td>1.0</td>
</tr>
<tr>
<td>Saweti</td>
<td>1.1</td>
<td>P</td>
<td>1.0</td>
<td>.</td>
<td>P</td>
<td>AT</td>
<td>0.0</td>
</tr>
<tr>
<td>Sumba</td>
<td>1.1</td>
<td>P</td>
<td>1.3</td>
<td>1.0</td>
<td>AT</td>
<td>P</td>
<td>1.7</td>
</tr>
<tr>
<td>IP-2M</td>
<td>1.1</td>
<td>P</td>
<td>1.5</td>
<td>.</td>
<td>P</td>
<td>P</td>
<td>3.2</td>
</tr>
<tr>
<td>IP-2A</td>
<td>1.1</td>
<td>P</td>
<td>1.3</td>
<td>0.9</td>
<td>AT</td>
<td>P</td>
<td>3.8</td>
</tr>
<tr>
<td>Chin N-1</td>
<td>0.9</td>
<td>AT</td>
<td>1.3</td>
<td>1.0</td>
<td>AT</td>
<td>P</td>
<td>-2.3</td>
</tr>
</tbody>
</table>

Keterangan: TT = pertambahan tinggi tanaman, DB = pertambahan diameter batang, JD = pertambahan jumlah daun, LD = luas daun, KAD = kadar air daun, JC = jumlah cabang, BKA = bobot kering akar, K = kelas, T = toleran, AT = agak toleran dan A = peka, titik (,) tanaman mati/pertumbuhan daun belum maksimal.
<table>
<thead>
<tr>
<th>Genotipe</th>
<th>BKA</th>
<th>BKA/BKT</th>
<th>PA</th>
<th>BKTt</th>
<th>ST</th>
<th>KS</th>
<th>JTH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IS</td>
<td>K</td>
<td>IS</td>
<td>K</td>
<td>IS</td>
<td>K</td>
<td>IS</td>
</tr>
<tr>
<td>Domp-2</td>
<td>1.0</td>
<td>P</td>
<td>-0.6</td>
<td>T</td>
<td>-10.3</td>
<td>T</td>
<td>0.3</td>
</tr>
<tr>
<td>Curup</td>
<td>1.7</td>
<td>P</td>
<td>2.4</td>
<td>P</td>
<td>10.0</td>
<td>P</td>
<td>1.4</td>
</tr>
<tr>
<td>Bogor-1</td>
<td>1.4</td>
<td>P</td>
<td>1.2</td>
<td>P</td>
<td>-0.9</td>
<td>T</td>
<td>1.1</td>
</tr>
<tr>
<td>Bogor-2</td>
<td>1.8</td>
<td>P</td>
<td>1.7</td>
<td>P</td>
<td>8.0</td>
<td>P</td>
<td>1.3</td>
</tr>
<tr>
<td>Bogor-3</td>
<td>1.0</td>
<td>AT</td>
<td>1.2</td>
<td>P</td>
<td>7.0</td>
<td>P</td>
<td>0.8</td>
</tr>
<tr>
<td>Sukajadi-1</td>
<td>-0.7</td>
<td>T</td>
<td>2.2</td>
<td>P</td>
<td>0.6</td>
<td>AT</td>
<td>0.7</td>
</tr>
<tr>
<td>Sukajadi-2</td>
<td>2.1</td>
<td>P</td>
<td>1.3</td>
<td>P</td>
<td>-0.1</td>
<td>T</td>
<td>1.3</td>
</tr>
<tr>
<td>Pontianak</td>
<td>0.9</td>
<td>AT</td>
<td>3.1</td>
<td>P</td>
<td>-3.8</td>
<td>T</td>
<td>1.2</td>
</tr>
<tr>
<td>Pidi</td>
<td>1.7</td>
<td>P</td>
<td>0.3</td>
<td>T</td>
<td>3.7</td>
<td>P</td>
<td>0.9</td>
</tr>
<tr>
<td>Lahat</td>
<td>1.3</td>
<td>P</td>
<td>0.7</td>
<td>AT</td>
<td>-5.5</td>
<td>T</td>
<td>0.8</td>
</tr>
<tr>
<td>Pagar Alam</td>
<td>0.0</td>
<td>T</td>
<td>1.8</td>
<td>P</td>
<td>2.5</td>
<td>P</td>
<td>0.6</td>
</tr>
<tr>
<td>Indralaya</td>
<td>-1.3</td>
<td>T</td>
<td>2.1</td>
<td>P</td>
<td>-3.0</td>
<td>T</td>
<td>1.0</td>
</tr>
<tr>
<td>Kupang</td>
<td>1.1</td>
<td>P</td>
<td>1.4</td>
<td>P</td>
<td>-4.7</td>
<td>T</td>
<td>1.1</td>
</tr>
<tr>
<td>Palangka</td>
<td>1.6</td>
<td>P</td>
<td>1.3</td>
<td>P</td>
<td>3.4</td>
<td>P</td>
<td>1.0</td>
</tr>
<tr>
<td>Lampung-2</td>
<td>-0.8</td>
<td>T</td>
<td>1.2</td>
<td>P</td>
<td>4.9</td>
<td>P</td>
<td>0.0</td>
</tr>
<tr>
<td>Lampung-3</td>
<td>2.4</td>
<td>P</td>
<td>-0.2</td>
<td>T</td>
<td>1.3</td>
<td>P</td>
<td>1.3</td>
</tr>
<tr>
<td>Saweli</td>
<td>1.1</td>
<td>P</td>
<td>1.6</td>
<td>P</td>
<td>-6.7</td>
<td>T</td>
<td>1.1</td>
</tr>
<tr>
<td>Sumba</td>
<td>2.4</td>
<td>P</td>
<td>1.0</td>
<td>AT</td>
<td>-1.3</td>
<td>T</td>
<td>1.5</td>
</tr>
<tr>
<td>IP-2M</td>
<td>-0.8</td>
<td>T</td>
<td>-2.0</td>
<td>T</td>
<td>3.1</td>
<td>P</td>
<td>0.7</td>
</tr>
<tr>
<td>IP-2A</td>
<td>2.2</td>
<td>P</td>
<td>0.0</td>
<td>T</td>
<td>10.3</td>
<td>P</td>
<td>1.1</td>
</tr>
<tr>
<td>Chinaonto</td>
<td>-1.0</td>
<td>T</td>
<td>2.6</td>
<td>P</td>
<td>1.5</td>
<td>P</td>
<td>0.4</td>
</tr>
<tr>
<td>Jenerto</td>
<td>2.0</td>
<td>P</td>
<td>1.2</td>
<td>P</td>
<td>1.0</td>
<td>AT</td>
<td>1.3</td>
</tr>
<tr>
<td>Medan</td>
<td>2.3</td>
<td>P</td>
<td>2.2</td>
<td>P</td>
<td>-12.2</td>
<td>T</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Keterangan: BKT = bobot kering tajuk, BKA/BKT = nisbah BKA/BKT, PA = panjang akar, BKTt = bobot kering total, ST = stomata terbuka, KS = kerapatan stomata, JTH = jumlah tanaman hidup, K = kelas, T = toleran, AT = agak toleran dan A = peka, titik (.) = pertumbuhan daun belum maksimal
<table>
<thead>
<tr>
<th>Genotipe</th>
<th>TT</th>
<th>DB</th>
<th>JD</th>
<th>LD</th>
<th>KAD</th>
<th>JC</th>
<th>BKT</th>
<th>BKA</th>
<th>BKA/BKT</th>
<th>PA</th>
<th>BKTt</th>
<th>ST</th>
<th>KS</th>
<th>JTH</th>
<th>Total Skor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dompu-2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>Curup</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Bogor-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Bogor-2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Bogor-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Sukabumi-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Sukabumi-2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Pontianak</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Pidie</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Lahat</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Pagu Alam</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Indragaya</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>Kupang</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Palembang</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Lampung-2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Lampung-3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Saweli</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Sumba</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>IP-2M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>IP-2A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>China</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Jenggonto</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Medan</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Keterangan: TT= pertambahan tinggi tanaman, DB= pertambahan diameter batang, JD= pertambahan jumlah daun, LD= luas daun, KAD= kadar air daun, JC= jumlah cabang, BKA= bobot kering askar, BKT= bobot kering tajuk, BKA/BKT= nisbah BKA/BKT, PA= panjang askar, BKTt= bobot kering total, ST= stomata terbuka, KS= kerapatan stomata, JTH= jumlah tanaman hidup.
4.4.3 Pemilihan Karakter Seleksi Kekeringan

Metode yang digunakan untuk memilih karakter seleksi pada percobaan kedua yaitu dengan analisis lintas. Akan tetapi, untuk mengetahui pengaruh langsung dan tidak langsung sebelumnya digunakan koefisien korelasi. Berdasarkan koefisien korelasi, peubah bobot kering total berkorelasi nyata positif dengan pertambahan tinggi tanaman, kadar air daun, luas daun, bobot kering tajuk, bobot kering akar dan jumlah tanaman hidup, sedangkan untuk nisbah bobot kering akar/tajuk berkorelasi nyata negatif (Tabel 28). Oleh karena itu, peubah tersebut digunakan untuk mempelajari pengaruh langsung dan tidak langsung terhadap hasil (bobot kering total). Berdasarkan pengamatan, langkah dan tidak langsung dihasilkan residu atau sisa sebesar 0.05 (Tabel 29 dalam Gambar 10). Hal ini menunjukkan tujuan peubah yang berkorelasi dengan hasil mampu menjelaskan ragam bobot kering tanaman sebesar 99.5%, sedangkan pengaruh dari karakter lain yang tidak dimasukkan dalam sidik lintas (pengaruh sisa) sebesar 0.5%.

![Diagram](image-url)

Gambar 10: Diagram lintas beberapa karakter dengan bobot kering total
<table>
<thead>
<tr>
<th>Peubah</th>
<th>TT</th>
<th>DB</th>
<th>JD</th>
<th>JC</th>
<th>KAD</th>
<th>LD</th>
<th>BKT</th>
<th>BKA</th>
<th>BKA/BKT</th>
<th>PA</th>
<th>JTH</th>
<th>ST</th>
<th>KS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB</td>
<td>0.61**</td>
<td>-0.03</td>
<td>0.40*</td>
<td>-0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JD</td>
<td></td>
<td>0.44*</td>
<td>0.42*</td>
<td></td>
<td>-0.19</td>
<td>0.41*</td>
<td>0.40*</td>
<td>0.41*</td>
<td>0.41**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JC</td>
<td>0.56**</td>
<td></td>
<td></td>
<td>0.25</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KAD</td>
<td>0.68**</td>
<td>0.14</td>
<td>0.32</td>
<td>0.48**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>0.84**</td>
<td>0.14</td>
<td>0.32</td>
<td>0.48**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKT</td>
<td>0.28</td>
<td>-0.19</td>
<td>0.28</td>
<td>0.40*</td>
<td>0.13</td>
<td>0.06</td>
<td>0.69**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKA</td>
<td>0.12</td>
<td>-0.07</td>
<td>-0.19</td>
<td>-0.01</td>
<td>0.13</td>
<td>0.06</td>
<td>0.69**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKA/BKT</td>
<td>-0.56**</td>
<td>-0.53**</td>
<td>0.14</td>
<td>-0.41*</td>
<td>-0.27</td>
<td>-0.61**</td>
<td>-0.46**</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>-0.00</td>
<td>-0.03</td>
<td>-0.08</td>
<td>0.08</td>
<td>0.02</td>
<td>-0.15</td>
<td>0.26</td>
<td>0.29</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JTH</td>
<td>0.49**</td>
<td>0.06</td>
<td>-0.60</td>
<td>0.33</td>
<td>0.12</td>
<td>0.43*</td>
<td>0.39*</td>
<td>0.13</td>
<td>-0.49**</td>
<td>-0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>0.02</td>
<td>0.46**</td>
<td>0.20</td>
<td>0.22</td>
<td>0.24</td>
<td>0.20</td>
<td>0.04</td>
<td>-0.23</td>
<td>-0.24</td>
<td>0.04</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KS</td>
<td>-0.19</td>
<td>0.12</td>
<td>0.19</td>
<td>0.23</td>
<td>0.00</td>
<td>-0.31</td>
<td>-0.27</td>
<td>-0.21</td>
<td>0.34</td>
<td>0.08</td>
<td>-0.24</td>
<td>0.46**</td>
<td></td>
</tr>
<tr>
<td>BKTt</td>
<td>0.45*</td>
<td>0.25</td>
<td>-0.18</td>
<td>0.26</td>
<td>0.40*</td>
<td>0.38*</td>
<td>0.99**</td>
<td>0.75**</td>
<td>-0.39*</td>
<td>0.29</td>
<td>0.37*</td>
<td>0.01</td>
<td>-0.26</td>
</tr>
</tbody>
</table>

Keterangan: TT= pertambahan tinggi tanaman, DB= pertambahan diameter batang, JD= pertambahan jumlah daun, JC=jumlah cabang, KAD= kadar air daun, LD= luas daun, BKT= bobot kering tajuk, BKA= bobot kering akar, BKA/BKT= nisbah BKA/BKT, PA= panjang akar, JTH= jumlah tanaman hidup, ST= stomata terbuka, KS= kerapatan stomat, BKTt= bobot kering total.

<table>
<thead>
<tr>
<th>Peubah yang diteliti</th>
<th>Pengaruh langsung</th>
<th>TT</th>
<th>KAD</th>
<th>LD</th>
<th>BKT</th>
<th>BKA</th>
<th>BKA/BKT</th>
<th>JTH</th>
<th>Pengaruh total</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.008</td>
<td>0.004</td>
</tr>
<tr>
<td>KAD</td>
<td>0.020</td>
<td>0.011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>LD</td>
<td>-0.003</td>
<td>-0.003</td>
<td>-0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.006</td>
<td>0.009</td>
</tr>
<tr>
<td>BKT</td>
<td>0.940</td>
<td>0.448</td>
<td>0.377</td>
<td>0.388</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.795</td>
<td>0.855</td>
</tr>
<tr>
<td>BKA</td>
<td>0.088</td>
<td>0.011</td>
<td>0.012</td>
<td>0.006</td>
<td>0.652</td>
<td>0.440</td>
<td>0.370</td>
<td>0.013</td>
<td>0.114</td>
<td>0.026</td>
</tr>
<tr>
<td>BKA/BKT</td>
<td>0.038</td>
<td>-0.022</td>
<td>-0.010</td>
<td>-0.024</td>
<td>-0.018</td>
<td>0.005</td>
<td>-0.019</td>
<td>-0.087</td>
<td>-0.125</td>
<td></td>
</tr>
<tr>
<td>JTH</td>
<td>0.006</td>
<td>0.003</td>
<td>0.001</td>
<td>0.003</td>
<td>0.002</td>
<td>0.001</td>
<td>-0.003</td>
<td>0.007</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Sisa</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: TT= pertambahan tinggi tanaman, KAD= kadar air daun, LD= luas daun, BKT= bobot kering tajuk, BKA= bobot kering akar, BKA/BKT= nisbah BKA/BKT, JTH= jumlah tanaman hidup, X= selisih dengan pengaruh total dengan pengaruh langsung.
Berdasarkan pengaruh langsung dan tidak langsung terdapat satu peubah yang berpengaruh langsung positif dan besar terhadap hasil yaitu bobot kering tajuk. Jika dibandingkan dengan peubah lain, maka bobot kering tajuk memiliki pengaruh langsung yang paling tinggi yaitu sebesar 0.94. Akan tetapi, besarnya pengaruh langsung pada bobot kering tajuk cenderung dipengaruhi oleh pengaruh tidak langsung karena selisih antara pengaruh tidak langsung (pengaruh total) dengan pengaruh langsung cukup tinggi yaitu 0.85. Pengaruh tidak langsung yang mempengaruhi bobot kering tajuk adalah pertambahan tinggi tanaman, kadar air daun, luas daun, dan jumlah tanaman hidup. Peubah tersebut berkorelasi nyata positif dengan bobot kering tajuk (Gambar 10). Oleh karena itu, selain digunakan bobot kering untuk sebagai karakter seleksi bibit terhadap kondisi tercekom kekerengan perlu dipertimbangkan juga karakter-karakter tidak langsung yang berpengaruh terhadap karakter langsung (bobot kering total) yaitu pertambahan tinggi tanaman, kadar air daun, luas daun, dan jumlah tanaman hidup.

Berdasarkan percobaan pertama dan kedua terdapat peubah yang sama sebagai karakter seleksi yaitu bobot kering tajuk, pertambahan tinggi tanaman, dan luas daun. Oleh karena itu, karakter tersebut dapat digunakan sebagai karakter seleksi bibit terhadap kondisi tercekom kekerengan. Akan tetapi, sebaiknya digunakan karakter yang tidak bersifat destruktif yaitu pertambahan tinggi tanaman, dan luas daun.
5. SIMPULAN DAN SARAN

5.1 Simpulan

Cekaman kekerasan hingga kadar air media 22-23% nyata menurunkan pertambahan tinggi tanaman, diameter batang dan jumlah daun, jumlah cabang, bobot kering akar, bobot kering tajuk, panjang akar, bobot kering total, dan jumlah tanaman hidup pada sembilan genotipe jarak pagar. Antar genotipe memberikan respon berbeda terhadap perlakuan KAM berdasarkan peubah pertambahan jumlah daun, jumlah cabang, bobot kering akar dan tajuk, nisbah bobot kering akar/tajuk, bobot kering total, stomata terbuka, dan jumlah tanaman hidup. Interaksi kadar air media dan genotipe berpengaruh terhadap pertambahan jumlah daun, jumlah cabang, bobot kering akar, bobot kering tajuk, nisbah bobot kering akar/tajuk, bobot kering total, dan jumlah tanaman hidup.

Bebah yang dapat digunakan untuk menyeleksi bibit terhadap toleransi kekerasan dengan biaya yang murah, mudah diamati, cepat dan tidak bersifat destructive adalah pertambahan tinggi tanaman dan luas daun.
5.2 Saran

Seleksi pada jarak pagar untuk mendapatkan calon tetua toleran kekeringan dilakukan secara individu bukan populasi terkait dari sifat tanaman jarak yang menyerbu silang dan belum adanya galur-galur yang secara genetik homozigot dan homogen. Genotipe yang toleran terhadap kekeringan yang diuji pada fase bibit perlu dilakukan pengujian lebih lanjut di lapangan dengan melakukan penanaman pada daerah beriklim kering pada genotipe terseleksi. Selain itu, perlu pengamatan terhadap produktivitas minimal selama 1 tahun.
DAFTAR PUSTAKA

Hob Goko Dindamu Undang-Undang

2. Dalangang mengunggum dan mempertombong subujian atau subuhan baya tula ini di dados bentuk campun tanpo lain PB.

Wiesenbutter J. 2003. Use of Physic nut (Jatropha curcas L.) to Combat Desertification and Reduce Poverty. Jerman: GTZ.

Lampiran 1 Sidik ragam pengaruh kadar air media dan genotipe terhadap pertambahan tinggi tanaman pada 12 MSP percobaan 1

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>df</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>0.169</td>
<td>0.0848</td>
<td>6.65**</td>
<td>0.0300</td>
<td>3.74</td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>1.2397</td>
<td>0.4132</td>
<td>47.96**</td>
<td>0.0004</td>
<td></td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>0.1180</td>
<td>0.0147</td>
<td>1.71tn</td>
<td>0.1139</td>
<td></td>
</tr>
<tr>
<td>Kadar Air</td>
<td>24</td>
<td>0.0951</td>
<td>0.0039</td>
<td>0.46tn</td>
<td>0.9809</td>
<td></td>
</tr>
<tr>
<td>Media*Genotipe</td>
<td>60</td>
<td>0.5170</td>
<td>0.0086</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>103</td>
<td>2.2163</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ket: df = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman, ** = nyata pada α 0.01, * = nyata pada α 0.05, tn = tidak nyata. Hasil transformasi ln (x+10).

Lampiran 2 Sidik ragam pengaruh kadar air media dan genotipe terhadap pertambahan diameter batang pada 12 MSP percobaan 1

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>df</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>0.0019</td>
<td>0.0098</td>
<td>1.93tn</td>
<td>0.2256</td>
<td>0.66</td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>0.0307</td>
<td>0.0102</td>
<td>20.13**</td>
<td>0.0016</td>
<td></td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>0.0007</td>
<td>0.0001</td>
<td>0.38tn</td>
<td>0.9258</td>
<td></td>
</tr>
<tr>
<td>Kadar Air</td>
<td>24</td>
<td>0.0075</td>
<td>0.0003</td>
<td>1.34</td>
<td>0.1770</td>
<td></td>
</tr>
<tr>
<td>Media*Genotipe</td>
<td>60</td>
<td>0.0139</td>
<td>0.0003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>103</td>
<td>0.0579</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ket: df = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman, ** = nyata pada α 0.01, tn = tidak nyata. Hasil transformasi ln (x+10).

Lampiran 3 Sidik ragam pengaruh kadar air media dan genotipe terhadap pertambahan jumlah daun pada 12 MSP percobaan 1

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>df</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>32.3015</td>
<td>16.1507</td>
<td>10.96**</td>
<td>0.0001</td>
<td>28.44</td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>198.7900</td>
<td>66.2633</td>
<td>12.13**</td>
<td>0.0059</td>
<td></td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>51.8718</td>
<td>6.4839</td>
<td>4.40**</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>Kadar Air</td>
<td>24</td>
<td>86.8643</td>
<td>3.6193</td>
<td>2.46**</td>
<td>0.0025</td>
<td></td>
</tr>
<tr>
<td>Media*Genotipe</td>
<td>61</td>
<td>89.8732</td>
<td>1.4733</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>104</td>
<td>492.4683</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ket: df = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman, ** = nyata pada α 0.01.

Lampiran 4 Sidik ragam pengaruh kadar air media dan genotipe terhadap luas daun pada 12 MSP percobaan 1

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>df</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>190.2140</td>
<td>95.1070</td>
<td>3.04tn</td>
<td>0.0575</td>
<td>12.30</td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>761.9777</td>
<td>253.9925</td>
<td>2.29tn</td>
<td>0.1953</td>
<td></td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>414.2151</td>
<td>51.7768</td>
<td>1.66tn</td>
<td>0.1354</td>
<td></td>
</tr>
<tr>
<td>Kadar Air</td>
<td>22</td>
<td>1147.6199</td>
<td>52.1645</td>
<td>1.67tn</td>
<td>0.0716</td>
<td></td>
</tr>
<tr>
<td>Media*Genotipe</td>
<td>46</td>
<td>1438.4337</td>
<td>31.2702</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>86</td>
<td>4506.0692</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ket: df = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman, * = nyata pada α 0.05, ** = nyata pada α 0.01.
Lampiran 5 Sidik ragam pengaruh kadar air media dan genotipe terhadap kadar air daun pada 10 MSP percobaan 1

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>49.4280</td>
<td>24.7140</td>
<td>3.01 *</td>
<td>0.0605</td>
<td>3.84</td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>22.3082</td>
<td>7.4360</td>
<td>0.90 *</td>
<td>0.4471</td>
<td></td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>29.9151</td>
<td>3.7393</td>
<td>0.45 *</td>
<td>0.8802</td>
<td></td>
</tr>
<tr>
<td>Kadar Air</td>
<td>20</td>
<td>90.2266</td>
<td>4.5113</td>
<td>0.55 *</td>
<td>0.9247</td>
<td></td>
</tr>
<tr>
<td>Media*Genotipe</td>
<td>41</td>
<td>336.9971</td>
<td>8.2194</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>79</td>
<td>551.9500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 6 Sidik ragam pengaruh kadar air media dan genotipe terhadap jumlah cabang pada 12 MST percobaan 1

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>0.0140</td>
<td>0.0070</td>
<td>1.02 **</td>
<td>0.3663</td>
<td>3.49</td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>0.5380</td>
<td>0.1793</td>
<td>44.02 **</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>0.5429</td>
<td>0.0678</td>
<td>9.84 **</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Kadar Air</td>
<td>24</td>
<td>0.3911</td>
<td>0.0162</td>
<td>2.36 **</td>
<td>0.0033</td>
<td></td>
</tr>
<tr>
<td>Media*Genotipe</td>
<td>64</td>
<td>0.4414</td>
<td>0.0068</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>107</td>
<td>1.9521</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ket: db = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman, ** = nyata pada α 0.01, * = tidak nyata.

Lampiran 7 Sidik ragam pengaruh kadar air media dan genotipe terhadap bobot kering akar pada 12 MSP percobaan 1

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>8.227546</td>
<td>4.1137</td>
<td>5.11 **</td>
<td>0.0087</td>
<td>18.15</td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>68.6271</td>
<td>22.8757</td>
<td>13.02 **</td>
<td>0.0049</td>
<td></td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>78.3471</td>
<td>9.7938</td>
<td>12.17 **</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Kadar Air</td>
<td>24</td>
<td>73.6962</td>
<td>3.0706</td>
<td>3.81 **</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Media*Genotipe</td>
<td>64</td>
<td>51.5176</td>
<td>0.8049</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>107</td>
<td>290.9604</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ket: db = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman, ** = nyata pada α 0.01.

Lampiran 8 Sidik ragam pengaruh kadar air media dan genotipe terhadap bobot kering tajuk pada 12 MSP percobaan 1

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>17.9520</td>
<td>8.9760</td>
<td>3.51</td>
<td>0.0359</td>
<td>19.06</td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>288.8820</td>
<td>96.2940</td>
<td>37.61 **</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>226.6290</td>
<td>28.3286</td>
<td>11.06 **</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Kadar Air</td>
<td>24</td>
<td>128.0170</td>
<td>5.3340</td>
<td>2.08 *</td>
<td>0.0105</td>
<td></td>
</tr>
<tr>
<td>Media*Genotipe</td>
<td>64</td>
<td>163.8801</td>
<td>2.5606</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>107</td>
<td>840.8558</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ket: db = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman, * = nyata pada α 0.01, ** = nyata pada α 0.05.
Lampiran 9 Sidik ragam pengaruh kadar air media dan genotipe terhadap nisbah bobot kering akar/tajuk pada 12 MSP percobaan 1

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>Db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>0.0343</td>
<td>0.0171</td>
<td>2.80<sup>th</sup></td>
<td>0.0684</td>
<td>13.47</td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>0.1825</td>
<td>0.0608</td>
<td>3.85<sup>th</sup></td>
<td>0.0753</td>
<td></td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>0.2888</td>
<td>0.0361</td>
<td>5.88<sup>**</sup></td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Kadar Air</td>
<td>24</td>
<td>0.5824</td>
<td>0.0242</td>
<td>3.96<sup>**</sup></td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Media*Genotipe</td>
<td>64</td>
<td>0.3926</td>
<td>0.0061</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galat Anak Petak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>107</td>
<td>1.5756</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ket: db = derajat bebas, JK= jumlah kuadrat, KT= kuadrat tengah, P= peluang, KK= koefisien keragaman, ⁿ = nyata pada α 0.01, ^{**} = tidak nyata.

Lampiran 10 Sidik ragam pengaruh kadar air media dan genotipe terhadap panjang akar pada 12 MSP percobaan 1

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>Db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>55.4828</td>
<td>27.7414</td>
<td>3.42</td>
<td>0.0389</td>
<td>17.38</td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>36.8232</td>
<td>12.2744</td>
<td>4.71<sup>th</sup></td>
<td>0.0510</td>
<td></td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>110.5568</td>
<td>13.8196</td>
<td>1.70<sup>th</sup></td>
<td>0.1149</td>
<td></td>
</tr>
<tr>
<td>Kadar Air</td>
<td>24</td>
<td>210.2640</td>
<td>8.7610</td>
<td>1.08<sup>th</sup></td>
<td>0.3908</td>
<td></td>
</tr>
<tr>
<td>Media*Genotipe</td>
<td>64</td>
<td>519.4101</td>
<td>8.1157</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galat Anak Petak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>107</td>
<td>948.1791</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ket: db = derajat bebas, JK= jumlah kuadrat, KT= kuadrat tengah, P= peluang, KK= koefisien keragaman, ⁿ = nyata pada α 0.05, ^{**} = tidak nyata.

Lampiran 11 Sidik ragam pengaruh kadar air media dan genotipe terhadap bobot kering total pada 12 MSP percobaan 1

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>Db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>49.2910</td>
<td>24.6455</td>
<td>3.24<sup>th</sup></td>
<td>0.1112</td>
<td>17.99</td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>616.8518</td>
<td>205.6172</td>
<td>27.01<sup>**</sup></td>
<td>0.0007</td>
<td></td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>557.2264</td>
<td>69.6533</td>
<td>12.05<sup>**</sup></td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Kadar Air</td>
<td>24</td>
<td>365.7413</td>
<td>15.2392</td>
<td>2.65<sup>**</sup></td>
<td>0.0010</td>
<td></td>
</tr>
<tr>
<td>Media*Genotipe</td>
<td>64</td>
<td>368.5794</td>
<td>5.7590</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galat Anak Petak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>107</td>
<td>2003.3615</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ket: db = derajat bebas, JK= jumlah kuadrat, KT= kuadrat tengah, P= peluang, KK= koefisien keragaman, ⁿ = nyata pada α 0.01, ^{**} = tidak nyata.

Lampiran 12 Sidik ragam pengaruh kadar air media dan genotipe terhadap stomata terbuka pada 12 MSP percobaan 1

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>Db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>1</td>
<td>1649.9038</td>
<td>1649.9038</td>
<td>21.50<sup>th</sup></td>
<td>0.0001</td>
<td>27.39</td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>2915.4634</td>
<td>971.8211</td>
<td>3.81<sup>th</sup></td>
<td>0.1505</td>
<td></td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>3282.1407</td>
<td>410.2675</td>
<td>5.35<sup>**</sup></td>
<td>0.0004</td>
<td></td>
</tr>
<tr>
<td>Kadar Air</td>
<td>22</td>
<td>2413.8706</td>
<td>109.7213</td>
<td>1.43<sup>th</sup></td>
<td>0.0844</td>
<td></td>
</tr>
<tr>
<td>Media*Genotipe</td>
<td>27</td>
<td>2071.6081</td>
<td>76.7262</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galat Anak Petak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>64</td>
<td>13098.3152</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ket: db = derajat bebas, JK= jumlah kuadrat, KT= kuadrat tengah, P= peluang, KK= koefisien keragaman, ⁿ = nyata pada α 0.01, ^{**} = tidak nyata.
Lampiran 13 Sidik ragam pengaruh kadar air media dan genotipe terhadap kerapatan stomata pada 12 MSP percobaan 1

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>1</td>
<td>49.2848</td>
<td>49.2848</td>
<td>15.46</td>
<td>0.0005</td>
<td>10.75</td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>60.9879</td>
<td>20.3293</td>
<td>4.61</td>
<td>0.1208</td>
<td></td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>31.7801</td>
<td>3.9725</td>
<td>1.25**</td>
<td>0.3114</td>
<td></td>
</tr>
<tr>
<td>Kadar Air</td>
<td>22</td>
<td>95.2847</td>
<td>4.3311</td>
<td>1.36**</td>
<td>0.2225</td>
<td></td>
</tr>
<tr>
<td>Media*Genotipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galat Angak Petak</td>
<td>27</td>
<td>86.0543</td>
<td>3.1871</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>64</td>
<td>336.6303</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ket: *berjat bebas, JK= jumlah kuadrat, KT= kuadrat tengah, P= peluang, KK= koefisien keragaman, nyata pada α 0.01, ** tidak nyata.

Lampiran 14 Sidik ragam pengaruh kadar air media dan genotipe terhadap kandungan prolin daun pada 4 MSP percobaan 1

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>1</td>
<td>2.1241</td>
<td>2.1214</td>
<td>0.81**</td>
<td>0.4343</td>
<td>36.93</td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>15.6649</td>
<td>5.2216</td>
<td>1.99</td>
<td>0.2928</td>
<td></td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>4.5118</td>
<td>0.5639</td>
<td>1.07**</td>
<td>0.4116</td>
<td></td>
</tr>
<tr>
<td>Kadar Air</td>
<td>24</td>
<td>7.6628</td>
<td>0.3192</td>
<td>0.60**</td>
<td>0.8972</td>
<td></td>
</tr>
<tr>
<td>Media*Genotipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galat Angak Petak</td>
<td>31</td>
<td>16.4072</td>
<td>0.9698</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td>54.2319</td>
<td>0.5292</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ket: *berjat bebas, JK= jumlah kuadrat, KT= kuadrat tengah, P= peluang, KK= koefisien keragaman, nyata pada α 0.05, ** tidak nyata

Lampiran 15 Sidik ragam pengaruh kadar air media dan genotipe terhadap jumlah tanaman hidup pada 12 MSP percobaan 1

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>312.5000</td>
<td>156.2500</td>
<td>1.44**</td>
<td>0.2445</td>
<td>11.81</td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>21267.311</td>
<td>7089.1203</td>
<td>64.47**</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>18020.833</td>
<td>2252.6041</td>
<td>20.76**</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Kadar Air</td>
<td>24</td>
<td>19618.055</td>
<td>817.4189</td>
<td>7.53**</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Media*Genotipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galat Angak Petak</td>
<td>64</td>
<td>6944.4444</td>
<td>108.5069</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>107</td>
<td>66822.9166</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ket: *berjat bebas, JK= jumlah kuadrat, KT= kuadrat tengah, P= peluang, KK= koefisien keragaman, nyata pada α, ** tidak nyata.
Lampiran 16 Nilai IS kekereringan pertambahan tinggi tanaman percobaan 1

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>0.4</td>
<td>0.6</td>
<td>2.4</td>
<td>4.3</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>IP-2P</td>
<td>0.6</td>
<td>0.6</td>
<td>4.1</td>
<td>4.3</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>Komering</td>
<td>1.7</td>
<td>0.6</td>
<td>5.1</td>
<td>4.3</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>IP-1M</td>
<td>0.5</td>
<td>0.6</td>
<td>5.3</td>
<td>4.3</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Papua</td>
<td>0.6</td>
<td>0.6</td>
<td>3.8</td>
<td>4.3</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>Jogjakarta</td>
<td>0.0</td>
<td>0.6</td>
<td>4.2</td>
<td>4.3</td>
<td>1.2</td>
<td>P</td>
</tr>
<tr>
<td>G. Tanahbora</td>
<td>0.5</td>
<td>0.6</td>
<td>4.6</td>
<td>4.3</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>Dompu</td>
<td>0.6</td>
<td>0.6</td>
<td>4.9</td>
<td>4.3</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>Bima</td>
<td>0.9</td>
<td>0.6</td>
<td>4.3</td>
<td>4.3</td>
<td>0.9</td>
<td>AT</td>
</tr>
</tbody>
</table>

Ket: Y= nilai respon genotipe pada kondisi stres kekereringan, X= nilai respon rata-rata dari genotipe pada kondisi stres kekereringan, Yp= nilai respon genotipe pada kondisi non stres kekereringan, Xp= nilai respon rata-rata dari genotipe pada kondisi non stres kekereringan, IS= indeks sensitivitas kekereringan, AT= agak toleran, P= peka.

Lampiran 17 Nilai IS kekereringan pertambahan diameter batang percobaan 1

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>-0.5</td>
<td>-0.3</td>
<td>0.6</td>
<td>0.1</td>
<td>0.5</td>
<td>T</td>
</tr>
<tr>
<td>IP-2P</td>
<td>-0.2</td>
<td>-0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>1.2</td>
<td>P</td>
</tr>
<tr>
<td>Komering</td>
<td>-0.3</td>
<td>-0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>1.3</td>
<td>P</td>
</tr>
<tr>
<td>IP-1M</td>
<td>-0.3</td>
<td>-0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Papua</td>
<td>-0.3</td>
<td>-0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>1.0</td>
<td>P</td>
</tr>
<tr>
<td>Jogjakarta</td>
<td>-0.3</td>
<td>-0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>1.5</td>
<td>P</td>
</tr>
<tr>
<td>G. Tanahbora</td>
<td>-0.2</td>
<td>-0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>1.2</td>
<td>P</td>
</tr>
<tr>
<td>Dompu</td>
<td>-0.2</td>
<td>-0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.8</td>
<td>P</td>
</tr>
<tr>
<td>Bima</td>
<td>-0.3</td>
<td>-0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.9</td>
<td>P</td>
</tr>
</tbody>
</table>

Ket: Y= nilai respon genotipe pada kondisi stres kekereringan, X= nilai respon rata-rata dari genotipe pada kondisi stres kekereringan, Yp= nilai respon genotipe pada kondisi non stres kekereringan, Xp= nilai respon rata-rata dari genotipe pada kondisi non stres kekereringan, IS= indeks sensitivitas kekereringan, T= toleran, P= peka, AT= agak toleran.

Lampiran 18 Nilai IS kekereringan pertambahan jumlah daun percobaan 1

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>4.7</td>
<td>3.2</td>
<td>8.1</td>
<td>6.5</td>
<td>0.8</td>
<td>AT</td>
</tr>
<tr>
<td>IP-2P</td>
<td>3.5</td>
<td>3.2</td>
<td>8.9</td>
<td>6.5</td>
<td>1.2</td>
<td>P</td>
</tr>
<tr>
<td>Komering</td>
<td>2.0</td>
<td>3.2</td>
<td>7.2</td>
<td>6.5</td>
<td>1.4</td>
<td>P</td>
</tr>
<tr>
<td>IP-1M</td>
<td>3.0</td>
<td>3.2</td>
<td>5.8</td>
<td>6.5</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>Papua</td>
<td>2.3</td>
<td>3.2</td>
<td>4.3</td>
<td>6.5</td>
<td>0.9</td>
<td>AT</td>
</tr>
<tr>
<td>Jogjakarta</td>
<td>1.6</td>
<td>3.2</td>
<td>6.6</td>
<td>6.5</td>
<td>1.4</td>
<td>P</td>
</tr>
<tr>
<td>G. Tanahbora</td>
<td>3.4</td>
<td>3.2</td>
<td>5.9</td>
<td>6.5</td>
<td>0.8</td>
<td>AT</td>
</tr>
<tr>
<td>Dompu</td>
<td>2.9</td>
<td>3.2</td>
<td>7.9</td>
<td>6.5</td>
<td>1.2</td>
<td>P</td>
</tr>
<tr>
<td>Bima</td>
<td>4.2</td>
<td>3.2</td>
<td>4.0</td>
<td>6.5</td>
<td>-0.1</td>
<td>T</td>
</tr>
</tbody>
</table>

Ket: Y= nilai respon genotipe pada kondisi stres kekereringan, X= nilai respon rata-rata dari genotipe pada kondisi stres kekereringan, Yp= nilai respon genotipe pada kondisi non stres kekereringan, Xp= nilai respon rata-rata dari genotipe pada kondisi non stres kekereringan, IS= indeks sensitivitas kekereringan, AT= agak toleran, P= peka, T= toleran.
Lampiran 19 Nilai IS kekeringan luas daun percobaan 1

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>47.2</td>
<td>41.5</td>
<td>49.9</td>
<td>49.8</td>
<td>0.3</td>
<td>T</td>
</tr>
<tr>
<td>IP-2P</td>
<td>29.3</td>
<td>41.5</td>
<td>63.8</td>
<td>49.8</td>
<td>3.2</td>
<td>P</td>
</tr>
<tr>
<td>Komering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>IP-1M</td>
<td>41.2</td>
<td>41.5</td>
<td>48.2</td>
<td>49.8</td>
<td>0.9</td>
<td>AT</td>
</tr>
<tr>
<td>Papua</td>
<td>42.7</td>
<td>41.5</td>
<td>46.9</td>
<td>49.8</td>
<td>0.5</td>
<td>T</td>
</tr>
<tr>
<td>Jogjakarta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>G. Tidur bora</td>
<td>45.8</td>
<td>41.5</td>
<td>46.5</td>
<td>49.8</td>
<td>0.1</td>
<td>T</td>
</tr>
<tr>
<td>Dompu</td>
<td>40.4</td>
<td>41.5</td>
<td>51.2</td>
<td>49.8</td>
<td>1.3</td>
<td>P</td>
</tr>
<tr>
<td>Bima</td>
<td>44.2</td>
<td>41.5</td>
<td>42.1</td>
<td>49.8</td>
<td>-0.3</td>
<td>T</td>
</tr>
</tbody>
</table>

Keterangan:
- Y = nilai respon genotipe pada kondisi stres kekeringan.
- X = nilai respon rata-rata dari genotipe pada kondisi stres kekeringan.
- Yp = nilai respon genotipe pada kondisi non stres kekeringan.
- Xp = nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan.
- IS = indeks sensitivitas kekeringan.
- T = toleran.
- P = peka.
- AT = agak toleran.

Lampiran 20 Nilai IS kekeringan kadar air daun percobaan 1

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>95.0</td>
<td>79.8</td>
<td>80.0</td>
<td>75.5</td>
<td>3.3</td>
<td>P</td>
</tr>
<tr>
<td>IP-2P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Komering</td>
<td>68.0</td>
<td>79.8</td>
<td>75.3</td>
<td>75.5</td>
<td>-1.7</td>
<td>T</td>
</tr>
<tr>
<td>IP-1M</td>
<td>75.0</td>
<td>79.8</td>
<td>77.6</td>
<td>75.5</td>
<td>-0.6</td>
<td>T</td>
</tr>
<tr>
<td>Papua</td>
<td>79.0</td>
<td>79.8</td>
<td>73.3</td>
<td>75.5</td>
<td>1.4</td>
<td>P</td>
</tr>
<tr>
<td>Jogjakarta</td>
<td>75.0</td>
<td>79.8</td>
<td>75.0</td>
<td>75.5</td>
<td>0.0</td>
<td>T</td>
</tr>
<tr>
<td>G. Tidur bora</td>
<td>86.0</td>
<td>79.8</td>
<td>75.0</td>
<td>75.5</td>
<td>2.6</td>
<td>P</td>
</tr>
<tr>
<td>Dompu</td>
<td>81.0</td>
<td>79.8</td>
<td>72.0</td>
<td>75.5</td>
<td>2.2</td>
<td>P</td>
</tr>
<tr>
<td>Bima</td>
<td>80.0</td>
<td>79.8</td>
<td>76.0</td>
<td>75.5</td>
<td>0.9</td>
<td>AT</td>
</tr>
</tbody>
</table>

Keterangan:
- Y = nilai respon genotipe pada kondisi stres kekeringan.
- X = nilai respon rata-rata dari genotipe pada kondisi stres kekeringan.
- Yp = nilai respon genotipe pada kondisi non stres kekeringan.
- Xp = nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan.
- IS = indeks sensitivitas kekeringan.
- P = peka.
- T = toleran.
- AT = agak toleran.

Lampiran 21 Nilai IS kekeringan jumlah cabang percobaan 1

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>0.0</td>
<td>0.1</td>
<td>0.6</td>
<td>2.0</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>IP-2P</td>
<td>0.0</td>
<td>0.1</td>
<td>2.0</td>
<td>2.0</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Komering</td>
<td>0.0</td>
<td>0.1</td>
<td>1.7</td>
<td>2.0</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>IP-1M</td>
<td>0.4</td>
<td>0.1</td>
<td>5.7</td>
<td>2.0</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>Papua</td>
<td>0.2</td>
<td>0.1</td>
<td>5.8</td>
<td>2.0</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>Jogjakarta</td>
<td>0.0</td>
<td>0.1</td>
<td>3.0</td>
<td>2.0</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>G. Tidur bora</td>
<td>0.0</td>
<td>0.1</td>
<td>0.3</td>
<td>2.0</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Dompu</td>
<td>0.0</td>
<td>0.1</td>
<td>0.6</td>
<td>2.0</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Bima</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>2.0</td>
<td>1.1</td>
<td>P</td>
</tr>
</tbody>
</table>

Keterangan:
- Y = nilai respon genotipe pada kondisi stres kekeringan.
- X = nilai respon rata-rata dari genotipe pada kondisi stres kekeringan.
- Yp = nilai respon genotipe pada kondisi non stres kekeringan.
- Xp = nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan.
- IS = indeks sensitivitas kekeringan.
- P = peka.
- AT = agak toleran.
Lampiran 22 Nilai IS kekerasan bobot akar percobaan 1

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>6.3</td>
<td>3.6</td>
<td>5.9</td>
<td>5.7</td>
<td>-0.2</td>
<td>T</td>
</tr>
<tr>
<td>IP-2P</td>
<td>1.7</td>
<td>3.6</td>
<td>5.9</td>
<td>5.7</td>
<td>2.0</td>
<td>P</td>
</tr>
<tr>
<td>Komering</td>
<td>2.6</td>
<td>3.6</td>
<td>5.9</td>
<td>5.7</td>
<td>1.6</td>
<td>P</td>
</tr>
<tr>
<td>IP-1M</td>
<td>5.7</td>
<td>3.6</td>
<td>6.2</td>
<td>5.7</td>
<td>0.2</td>
<td>T</td>
</tr>
<tr>
<td>Papua</td>
<td>2.7</td>
<td>3.6</td>
<td>5.5</td>
<td>5.7</td>
<td>1.4</td>
<td>P</td>
</tr>
<tr>
<td>Jogjakarta</td>
<td>1.1</td>
<td>3.6</td>
<td>5.3</td>
<td>5.7</td>
<td>2.2</td>
<td>P</td>
</tr>
<tr>
<td>G. Tamboara</td>
<td>5.1</td>
<td>3.6</td>
<td>5.5</td>
<td>5.7</td>
<td>0.2</td>
<td>T</td>
</tr>
<tr>
<td>Dompu</td>
<td>4.7</td>
<td>3.6</td>
<td>5.3</td>
<td>5.7</td>
<td>0.3</td>
<td>T</td>
</tr>
<tr>
<td>Bima</td>
<td>2.8</td>
<td>3.6</td>
<td>5.3</td>
<td>5.7</td>
<td>1.3</td>
<td>P</td>
</tr>
</tbody>
</table>

Ket: Y= nilai respon genotipe pada kondisi stres kekerasan, X= nilai respon rata-rata dari genotipe pada kondisi stres kekerasan, Yp= nilai respon genotipe pada kondisi non stres kekerasan, Xp= nilai respon rata-rata dari genotipe pada kondisi non stres kekerasan, IS= indeks sensitivitas kekerasan, T= toleran, P= peka.

Lampiran 23 Nilai IS kekerasan bobot tajuk percobaan 1

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>10.3</td>
<td>6.1</td>
<td>11.2</td>
<td>10.7</td>
<td>0.2</td>
<td>T</td>
</tr>
<tr>
<td>IP-2P</td>
<td>4.1</td>
<td>6.1</td>
<td>11.5</td>
<td>10.7</td>
<td>1.5</td>
<td>P</td>
</tr>
<tr>
<td>Komering</td>
<td>4.7</td>
<td>6.1</td>
<td>11.2</td>
<td>10.7</td>
<td>1.4</td>
<td>P</td>
</tr>
<tr>
<td>IP-1M</td>
<td>9.0</td>
<td>6.1</td>
<td>13.2</td>
<td>10.7</td>
<td>0.8</td>
<td>AT</td>
</tr>
<tr>
<td>Papua</td>
<td>5.4</td>
<td>6.1</td>
<td>10.7</td>
<td>10.7</td>
<td>1.2</td>
<td>P</td>
</tr>
<tr>
<td>Jogjakarta</td>
<td>2.8</td>
<td>6.1</td>
<td>9.4</td>
<td>10.7</td>
<td>1.7</td>
<td>P</td>
</tr>
<tr>
<td>G. Tamboara</td>
<td>7.0</td>
<td>6.1</td>
<td>10.6</td>
<td>10.7</td>
<td>0.8</td>
<td>AT</td>
</tr>
<tr>
<td>Dompu</td>
<td>6.7</td>
<td>6.1</td>
<td>9.8</td>
<td>10.7</td>
<td>0.7</td>
<td>AT</td>
</tr>
<tr>
<td>Bima</td>
<td>5.1</td>
<td>6.1</td>
<td>8.5</td>
<td>10.7</td>
<td>0.9</td>
<td>AT</td>
</tr>
</tbody>
</table>

Ket: Y= nilai respon genotipe pada kondisi stres kekerasan, X= nilai respon rata-rata dari genotipe pada kondisi stres kekerasan, Yp= nilai respon genotipe pada kondisi non stres kekerasan, Xp= nilai respon rata-rata dari genotipe pada kondisi non stres kekerasan, IS= indeks sensitivitas kekerasan, T= toleran, P= peka, AT= agak toleran.

Lampiran 24 Nilai IS kekerasan bobot akar/tajuk percobaan 1

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>-84.6</td>
<td>T</td>
</tr>
<tr>
<td>IP-2P</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>115.8</td>
<td>P</td>
</tr>
<tr>
<td>Komering</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>41.1</td>
<td>P</td>
</tr>
<tr>
<td>IP-1M</td>
<td>0.6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>-197.0</td>
<td>T</td>
</tr>
<tr>
<td>Papua</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>98.6</td>
<td>P</td>
</tr>
<tr>
<td>Jogjakarta</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
<td>174.4</td>
<td>P</td>
</tr>
<tr>
<td>G. Tamboara</td>
<td>0.7</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>-196.6</td>
<td>T</td>
</tr>
<tr>
<td>Dompu</td>
<td>0.7</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
<td>-133.5</td>
<td>T</td>
</tr>
<tr>
<td>Bima</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
<td>131.9</td>
<td>P</td>
</tr>
</tbody>
</table>

Ket: Y= nilai respon genotipe pada kondisi stres kekerasan, X= nilai respon rata-rata dari genotipe pada kondisi stres kekerasan, Yp= nilai respon genotipe pada kondisi non stres kekerasan, Xp= nilai respon rata-rata dari genotipe pada kondisi non stres kekerasan, IS= indeks sensitivitas kekerasan, T= toleran, P= peka.
Lampiran 25 Nilai IS kekeringan panjang akar percobaan 1

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>19.3</td>
<td>15.5</td>
<td>17.2</td>
<td>17.0</td>
<td>-1.4</td>
<td>T</td>
</tr>
<tr>
<td>IP-2P</td>
<td>16.0</td>
<td>15.5</td>
<td>18.8</td>
<td>17.0</td>
<td>1.7</td>
<td>P</td>
</tr>
<tr>
<td>Komering</td>
<td>14.0</td>
<td>15.5</td>
<td>17.5</td>
<td>17.0</td>
<td>2.2</td>
<td>P</td>
</tr>
<tr>
<td>IP-1M</td>
<td>18.9</td>
<td>15.5</td>
<td>16.5</td>
<td>17.0</td>
<td>-1.6</td>
<td>T</td>
</tr>
<tr>
<td>Papua</td>
<td>12.2</td>
<td>15.5</td>
<td>16.4</td>
<td>17.0</td>
<td>2.9</td>
<td>P</td>
</tr>
<tr>
<td>Jogjakarta</td>
<td>14.6</td>
<td>15.5</td>
<td>14.6</td>
<td>17.0</td>
<td>0.0</td>
<td>T</td>
</tr>
<tr>
<td>G. Tegobora</td>
<td>15.0</td>
<td>15.5</td>
<td>18.3</td>
<td>17.0</td>
<td>2.0</td>
<td>P</td>
</tr>
<tr>
<td>Dompu-2</td>
<td>14.7</td>
<td>15.5</td>
<td>16.7</td>
<td>17.0</td>
<td>1.3</td>
<td>P</td>
</tr>
<tr>
<td>Bima</td>
<td>14.9</td>
<td>15.5</td>
<td>17.3</td>
<td>17.0</td>
<td>1.6</td>
<td>P</td>
</tr>
</tbody>
</table>

Ket: \(Y\) = nilai respon genotipe pada kondisi stres kekeringan, \(X\) = nilai respon rata-rata dari genotipe pada kondisi stres kekeringan, \(Y_p\) = nilai respon genotipe pada kondisi non stres kekeringan, \(X_p\) = nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan, \(IS\) = indeks sensitivitas kekeringan, \(T\) = toleran, \(P\) = peka.

Lampiran 26 Nilai IS kekeringan bobot kering total percobaan 1

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>16.9</td>
<td>10.1</td>
<td>17.7</td>
<td>16.3</td>
<td>0.1</td>
<td>T</td>
</tr>
<tr>
<td>IP-2P</td>
<td>5.8</td>
<td>10.1</td>
<td>17.2</td>
<td>16.3</td>
<td>1.7</td>
<td>P</td>
</tr>
<tr>
<td>Komering</td>
<td>8</td>
<td>10.1</td>
<td>17.5</td>
<td>16.3</td>
<td>1.4</td>
<td>P</td>
</tr>
<tr>
<td>IP-1M</td>
<td>13.8</td>
<td>10.1</td>
<td>19.3</td>
<td>16.3</td>
<td>0.8</td>
<td>AT</td>
</tr>
<tr>
<td>Papua</td>
<td>9.2</td>
<td>10.1</td>
<td>15.7</td>
<td>16.3</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Jogjakarta</td>
<td>3.8</td>
<td>10.1</td>
<td>15.3</td>
<td>16.3</td>
<td>2.0</td>
<td>P</td>
</tr>
<tr>
<td>G. Tegobora</td>
<td>11.9</td>
<td>10.1</td>
<td>17.3</td>
<td>16.3</td>
<td>0.8</td>
<td>AT</td>
</tr>
<tr>
<td>Dompu-1</td>
<td>12.2</td>
<td>10.1</td>
<td>15.9</td>
<td>16.3</td>
<td>0.6</td>
<td>AT</td>
</tr>
<tr>
<td>Bima</td>
<td>9.4</td>
<td>10.1</td>
<td>13.8</td>
<td>16.3</td>
<td>0.8</td>
<td>AT</td>
</tr>
</tbody>
</table>

Ket: \(Y\) = nilai respon genotipe pada kondisi stres kekeringan, \(X\) = nilai respon rata-rata dari genotipe pada kondisi stres kekeringan, \(Y_p\) = nilai respon genotipe pada kondisi non stres kekeringan, \(X_p\) = nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan, \(IS\) = indeks sensitivitas kekeringan, \(T\) = toleran, \(P\) = peka, \(AT\) = agak toleran.

Lampiran 27 Nilai IS kekeringan stomata terbuka percobaan 1

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>38.1</td>
<td>19.8</td>
<td>53.7</td>
<td>39.6</td>
<td>0.6</td>
<td>AT</td>
</tr>
<tr>
<td>IP-2P</td>
<td>21.5</td>
<td>19.8</td>
<td>32.7</td>
<td>39.6</td>
<td>0.7</td>
<td>AT</td>
</tr>
<tr>
<td>Komering</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>IP-1M</td>
<td>19.0</td>
<td>19.8</td>
<td>34.8</td>
<td>39.6</td>
<td>0.9</td>
<td>AT</td>
</tr>
<tr>
<td>Papua</td>
<td>22.2</td>
<td>19.8</td>
<td>33.5</td>
<td>39.6</td>
<td>0.7</td>
<td>AT</td>
</tr>
<tr>
<td>Jogjakarta</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>G. Tegobora</td>
<td>14.7</td>
<td>19.8</td>
<td>38.0</td>
<td>39.6</td>
<td>1.2</td>
<td>P</td>
</tr>
<tr>
<td>Dompu-1</td>
<td>7.0</td>
<td>19.8</td>
<td>52.6</td>
<td>39.6</td>
<td>1.7</td>
<td>P</td>
</tr>
<tr>
<td>Bima</td>
<td>16.4</td>
<td>19.8</td>
<td>32.0</td>
<td>39.6</td>
<td>1.0</td>
<td>AT</td>
</tr>
</tbody>
</table>

Ket: \(Y\) = nilai respon genotipe pada kondisi stres kekeringan, \(X\) = nilai respon rata-rata dari genotipe pada kondisi stres kekeringan, \(Y_p\) = nilai respon genotipe pada kondisi non stres kekeringan, \(X_p\) = nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan, \(IS\) = indeks sensitivitas kekeringan, \(AT\) = agak toleran, \(P\) = peka, titik (.) = pertumbuhan daun belum maksimal.
Lampiran 28 Nilai IS kekeringan kerapatan stomata percobaan 1

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>18.1</td>
<td>18.3</td>
<td>16.1</td>
<td>15.4</td>
<td>0.7</td>
<td>AT</td>
</tr>
<tr>
<td>IP-2P</td>
<td>17.5</td>
<td>18.3</td>
<td>15.3</td>
<td>15.4</td>
<td>0.8</td>
<td>AT</td>
</tr>
<tr>
<td>Komering</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>IP-1M</td>
<td>16.6</td>
<td>18.3</td>
<td>16.4</td>
<td>15.4</td>
<td>0.1</td>
<td>T</td>
</tr>
<tr>
<td>Papua</td>
<td>20.8</td>
<td>18.3</td>
<td>15.3</td>
<td>15.4</td>
<td>2.0</td>
<td>P</td>
</tr>
<tr>
<td>Jogyakarta</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>G. Tambora</td>
<td>18.2</td>
<td>18.3</td>
<td>15.2</td>
<td>15.4</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Dompu-1</td>
<td>17.9</td>
<td>18.3</td>
<td>15.3</td>
<td>15.4</td>
<td>0.9</td>
<td>AT</td>
</tr>
<tr>
<td>Bima</td>
<td>18.9</td>
<td>18.3</td>
<td>14.5</td>
<td>15.4</td>
<td>1.7</td>
<td>P</td>
</tr>
</tbody>
</table>

Ket: Y = nilai respon genotipe pada kondisi stres kekeringan, X = nilai respon rata-rata dari genotipe pada kondisi stres kekeringan, Yp = nilai respon genotipe pada kondisi non stres kekeringan, Xp = nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan, IS = indeks sensitivitas kekeringan, AT = agak toleran, T = toleran, P = peka, T = toleran, titik (.) = pertumbuhan daun belum maksimal.

Lampiran 29 Nilai IS kekeringan prolin percobaan 1

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>1.7</td>
<td>1.5</td>
<td>1.4</td>
<td>2.2</td>
<td>-0.7</td>
<td>T</td>
</tr>
<tr>
<td>IP-2P</td>
<td>1.7</td>
<td>1.5</td>
<td>2.3</td>
<td>2.2</td>
<td>1.5</td>
<td>P</td>
</tr>
<tr>
<td>Komering</td>
<td>1.8</td>
<td>1.5</td>
<td>2.0</td>
<td>2.2</td>
<td>0.5</td>
<td>T</td>
</tr>
<tr>
<td>IP-1M</td>
<td>1.2</td>
<td>1.5</td>
<td>1.8</td>
<td>2.2</td>
<td>1.2</td>
<td>P</td>
</tr>
<tr>
<td>Papua</td>
<td>2.1</td>
<td>1.5</td>
<td>2.5</td>
<td>2.2</td>
<td>0.6</td>
<td>AT</td>
</tr>
<tr>
<td>Jogyakarta</td>
<td>1.1</td>
<td>1.5</td>
<td>2.2</td>
<td>2.2</td>
<td>1.8</td>
<td>P</td>
</tr>
<tr>
<td>G. Tambora</td>
<td>1.3</td>
<td>1.5</td>
<td>1.8</td>
<td>2.2</td>
<td>0.9</td>
<td>AT</td>
</tr>
<tr>
<td>Dompu-1</td>
<td>1.4</td>
<td>1.5</td>
<td>1.8</td>
<td>2.2</td>
<td>0.8</td>
<td>AT</td>
</tr>
<tr>
<td>Bima</td>
<td>1.7</td>
<td>1.5</td>
<td>3.1</td>
<td>2.2</td>
<td>1.5</td>
<td>P</td>
</tr>
</tbody>
</table>

Ket: Y = nilai respon genotipe pada kondisi stres kekeringan, X = nilai respon rata-rata dari genotipe pada kondisi stres kekeringan, Yp = nilai respon genotipe pada kondisi non stres kekeringan, Xp = nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan, IS = indeks sensitivitas kekeringan, T = toleran, P = peka.

Lampiran 30 Nilai IS kekeringan tanaman hidup percobaan 1

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceh Besar</td>
<td>100.0</td>
<td>64.8</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
<td>T</td>
</tr>
<tr>
<td>IP-2P</td>
<td>33.0</td>
<td>64.8</td>
<td>100.0</td>
<td>100.0</td>
<td>1.9</td>
<td>P</td>
</tr>
<tr>
<td>Komering</td>
<td>33.0</td>
<td>64.8</td>
<td>100.0</td>
<td>100.0</td>
<td>1.9</td>
<td>P</td>
</tr>
<tr>
<td>IP-1M</td>
<td>100.0</td>
<td>64.8</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
<td>T</td>
</tr>
<tr>
<td>Papua</td>
<td>67.0</td>
<td>64.8</td>
<td>92.0</td>
<td>100.0</td>
<td>0.8</td>
<td>AT</td>
</tr>
<tr>
<td>Jogyakarta</td>
<td>8.0</td>
<td>64.8</td>
<td>100.0</td>
<td>100.0</td>
<td>2.6</td>
<td>P</td>
</tr>
<tr>
<td>G. Tambora</td>
<td>100.0</td>
<td>64.8</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
<td>T</td>
</tr>
<tr>
<td>Dompu-1</td>
<td>92.0</td>
<td>64.8</td>
<td>100.0</td>
<td>100.0</td>
<td>0.2</td>
<td>T</td>
</tr>
<tr>
<td>Bima</td>
<td>50.0</td>
<td>64.8</td>
<td>100.0</td>
<td>100.0</td>
<td>1.4</td>
<td>P</td>
</tr>
</tbody>
</table>

Ket: Y = nilai respon genotipe pada kondisi stres kekeringan, X = nilai respon rata-rata dari genotipe pada kondisi stres kekeringan, Yp = nilai respon genotipe pada kondisi non stres kekeringan, Xp = nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan, IS = indeks sensitivitas kekeringan, T = toleran, P = peka, AT = agak toleran.
Lampiran 31 Sidik ragam pengaruh kadar air media dan genotipe terhadap tinggi tanaman 16 minggu setelah tanam di lapangan

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>88.3281</td>
<td>44.1640</td>
<td>0.37_tn</td>
<td>0.6954</td>
<td>11.91</td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>1421.0881</td>
<td>177.6360</td>
<td>1.47_tn</td>
<td>0.1861</td>
<td></td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>31.6325</td>
<td>10.5441</td>
<td>0.09_tn</td>
<td>0.9668</td>
<td></td>
</tr>
<tr>
<td>Genotipe*Kadar Air Media</td>
<td>23</td>
<td>3074.4079</td>
<td>133.6699</td>
<td>0.36_tn</td>
<td>0.3643</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:
- db = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman,
- _tn_ = tidak nyata

Lampiran 32 Sidik ragam pengaruh kadar air media dan genotipe terhadap diameter batang 16 minggu setelah tanam di lapangan

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>0.3026</td>
<td>0.1513</td>
<td>0.56_tn</td>
<td>0.5723</td>
<td>10.77</td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>2.5068</td>
<td>0.3313</td>
<td>1.17_tn</td>
<td>0.3335</td>
<td></td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>0.8285</td>
<td>0.2761</td>
<td>1.03_tn</td>
<td>0.3865</td>
<td></td>
</tr>
<tr>
<td>Genotipe*Kadar Air Media</td>
<td>24</td>
<td>4.0329</td>
<td>0.1753</td>
<td>0.65_tn</td>
<td>0.8722</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:
- db = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman,
- _tn_ = tidak nyata

Lampiran 33 Sidik ragam pengaruh kadar air media dan genotipe terhadap jumlah cabang total 16 minggu setelah tanam di lapangan

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>32.8823</td>
<td>16.4411</td>
<td>1.90_tn</td>
<td>0.1571</td>
<td>40.11</td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>596.5739</td>
<td>74.5717</td>
<td>8.64**</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>19.6304</td>
<td>6.5434</td>
<td>0.76_tn</td>
<td>0.5217</td>
<td></td>
</tr>
<tr>
<td>Genotipe*Kadar Air Media</td>
<td>24</td>
<td>148.1192</td>
<td>6.4399</td>
<td>0.75_tn</td>
<td>0.7804</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:
- db = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman,
- ** = nyata pada α = 0.01, _tn_ = tidak nyata

Lampiran 34 Sidik ragam pengaruh kadar air media dan genotipe terhadap jumlah cabang produktif 16 minggu setelah tanam di lapangan

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>0.0164</td>
<td>0.0082</td>
<td>1.69_tn</td>
<td>1.926</td>
<td>2.91</td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>0.2337</td>
<td>0.0292</td>
<td>5.99**</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>0.0128</td>
<td>0.0042</td>
<td>0.88_tn</td>
<td>0.4568</td>
<td></td>
</tr>
<tr>
<td>Genotipe*Kadar Air Media</td>
<td>24</td>
<td>0.1021</td>
<td>0.0044</td>
<td>0.91_tn</td>
<td>0.5842</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:
- db = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman,
- ** = nyata pada α = 0.01, _tn_ = tidak nyata. Hasil transformasi ln (x+10).
Lampiran 35 Sidik ragam pengaruh kadar air media dan genotipe terhadap jumlah malai/tanaman 16 minggu setelah tanam di lapangan

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>0.12137</td>
<td>0.0606</td>
<td>5.81**</td>
<td>0.0048</td>
<td>4.17</td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>0.7134</td>
<td>0.0891</td>
<td>8.54**</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>0.0277</td>
<td>0.0092</td>
<td>0.89 m</td>
<td>0.4525</td>
<td></td>
</tr>
<tr>
<td>Genotipe*Kadar Air Media</td>
<td>24</td>
<td>0.0113</td>
<td>0.0161</td>
<td>1.55 m</td>
<td>0.0872</td>
<td></td>
</tr>
</tbody>
</table>

Ket: db = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman, m = nyata pada 0.01, m = tidak nyata. Hasil transformasi ln (x+10).

Lampiran 36 Sidik ragam pengaruh kadar air media dan genotipe terhadap jumlah bunga betina/malai 16 minggu setelah tanam di lapangan

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>0.0025</td>
<td>0.0012</td>
<td>0.03 m</td>
<td>0.9680</td>
<td>7.68</td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>2.9257</td>
<td>0.3657</td>
<td>9.35**</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>0.0714</td>
<td>0.0238</td>
<td>0.61 m</td>
<td>0.6114</td>
<td></td>
</tr>
<tr>
<td>Genotipe*Kadar Air Media</td>
<td>24</td>
<td>1.2008</td>
<td>0.0522</td>
<td>1.33 m</td>
<td>0.1815</td>
<td></td>
</tr>
</tbody>
</table>

Ket: db = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman, m = nyata pada 0.01, m = tidak nyata. Hasil transformasi ln (x+10).

Lampiran 37 Sidik ragam pengaruh kadar air media dan genotipe terhadap pembentukan buah

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>1.0213</td>
<td>0.5106</td>
<td>0.64 m</td>
<td>0.5310</td>
<td>24.67</td>
</tr>
<tr>
<td>Genotipe</td>
<td>8</td>
<td>57.4260</td>
<td>7.1782</td>
<td>8.98**</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>3</td>
<td>2.7724</td>
<td>0.9241</td>
<td>1.16 m</td>
<td>0.3330</td>
<td></td>
</tr>
<tr>
<td>Genotipe*Kadar Air Media</td>
<td>24</td>
<td>22.4872</td>
<td>0.9777</td>
<td>1.22 m</td>
<td>0.2578</td>
<td></td>
</tr>
</tbody>
</table>

Ket: db = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman, m = nyata pada 0.01, m = tidak nyata. Hasil transformasi ln (x+10).

Lampiran 38 Sidik ragam pengaruh kadar air media dan genotipe terhadap pertambahan tinggi tanaman 8 MSP percobaan 2

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>4.0717</td>
<td>2.0358</td>
<td>2.05 m</td>
<td>0.1373</td>
<td>35.89</td>
</tr>
<tr>
<td>Genotipe</td>
<td>22</td>
<td>91.0921</td>
<td>4.1405</td>
<td>4.18**</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>1</td>
<td>225.4921</td>
<td>225.4921</td>
<td>227.59**</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Genotipe*Kadar Air Media</td>
<td>16</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.00 m</td>
<td>1.0000</td>
<td></td>
</tr>
</tbody>
</table>

Ket: db = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman, m = nyata pada 0.01, m = tidak nyata.
Lampiran 39 Sidik ragam pengaruh kadar air media dan genotipe terhadap pertambahan diameter batang 8 MSP percobaan 2

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>0.0001</td>
<td>0.0001</td>
<td>2.08*</td>
<td>0.1377</td>
<td>0.27</td>
</tr>
<tr>
<td>Genotipe</td>
<td>22</td>
<td>0.0016</td>
<td>0.0001</td>
<td>1.86*</td>
<td>0.0309</td>
<td></td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>1</td>
<td>0.0034</td>
<td>0.0034</td>
<td>84.79**</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Genotipe*Kadar Air</td>
<td>16</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.00*</td>
<td>1.0000</td>
<td></td>
</tr>
</tbody>
</table>

Ket: db = derajat bebas, JK= jumlah kuadrat, KT= kuadrat tengah, P= peluang, KK= koefisien keragaman, **= nyata pada α 0.01, *= nyata pada α 0.05, t= tidak nyata. Hasil transformasi ln (x+10).

Lampiran 40 Sidik ragam pengaruh kadar air media dan genotipe terhadap pertambahan jumlah daun 8 MSP percobaan 2

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>0.0283</td>
<td>0.0141</td>
<td>1.24*</td>
<td>0.2973</td>
<td>4.22</td>
</tr>
<tr>
<td>Genotipe</td>
<td>22</td>
<td>0.5209</td>
<td>0.0236</td>
<td>2.07*</td>
<td>0.0142</td>
<td></td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>1</td>
<td>0.1015</td>
<td>0.1015</td>
<td>8.80**</td>
<td>0.0042</td>
<td></td>
</tr>
<tr>
<td>Genotipe*Kadar Air</td>
<td>16</td>
<td>0.2476</td>
<td>0.0154</td>
<td>1.35*</td>
<td>0.1978</td>
<td></td>
</tr>
</tbody>
</table>

Ket: db = derajat bebas, JK= jumlah kuadrat, KT= kuadrat tengah, P= peluang, KK= koefisien keragaman, **= nyata pada α 0.01, *= nyata pada α 0.05, t= tidak nyata. Hasil transformasi ln (x+10).

Lampiran 41 Sidik ragam pengaruh kadar air media dan genotipe terhadap luas daun 8 MSP percobaan 2

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>429.6159</td>
<td>214.8149</td>
<td>0.79*</td>
<td>0.4591</td>
<td>25.58</td>
</tr>
<tr>
<td>Genotipe</td>
<td>22</td>
<td>10250.7453</td>
<td>465.9429</td>
<td>1.72*</td>
<td>0.0627</td>
<td></td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>1</td>
<td>15676.4682</td>
<td>15676.4682</td>
<td>57.83**</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Genotipe*Kadar Air</td>
<td>8</td>
<td>1475.6358</td>
<td>184.4544</td>
<td>0.68*</td>
<td>0.7061</td>
<td></td>
</tr>
</tbody>
</table>

Ket: db = derajat bebas, JK= jumlah kuadrat, KT= kuadrat tengah, P= peluang, KK= koefisien keragaman, **= nyata pada α 0.01, t= tidak nyata.

Lampiran 42 Sidik ragam pengaruh kadar air media dan genotipe terhadap kadar air daun 8 MSP percobaan 2

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>Db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>35.9197</td>
<td>17.9598</td>
<td>0.85*</td>
<td>0.4335</td>
<td>6.005</td>
</tr>
<tr>
<td>Genotipe</td>
<td>22</td>
<td>1104.4145</td>
<td>50.2006</td>
<td>2.38**</td>
<td>0.0056</td>
<td></td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>1</td>
<td>791.9456</td>
<td>791.9456</td>
<td>37.47**</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Genotipe*Kadar Air</td>
<td>11</td>
<td>1038.7729</td>
<td>94.4339</td>
<td>4.47**</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>

Ket: db = derajat bebas, JK= jumlah kuadrat, KT= kuadrat tengah, P= peluang, KK= koefisien keragaman, **= nyata pada α 0.01, t= tidak nyata.
Lampiran 43 Sidik ragam pengaruh kadar air media dan genotipe terhadap jumlah cabang 8 MSP percobaan 2

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>0.0013</td>
<td>0.0006</td>
<td>0.08 in</td>
<td>0.9225</td>
<td>3.82</td>
</tr>
<tr>
<td>Genotipe</td>
<td>22</td>
<td>1.5442</td>
<td>0.0070</td>
<td>0.86 in</td>
<td>0.6453</td>
<td></td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>1</td>
<td>0.0968</td>
<td>0.0968</td>
<td>11.85**</td>
<td>0.0010</td>
<td></td>
</tr>
<tr>
<td>Genotipe*Kadar Air</td>
<td>15</td>
<td>0.0472</td>
<td>0.0031</td>
<td>0.39 in</td>
<td>0.9780</td>
<td></td>
</tr>
</tbody>
</table>

Ket: db = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman, ** = nyata pada α 0.01, in = tidak nyata. Hasil transformasi ln (k+10).

Lampiran 44 Sidik ragam pengaruh kadar air media dan genotipe terhadap bobot kering akar 8 MSP percobaan 2

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>0.1332</td>
<td>0.0666</td>
<td>0.16 in</td>
<td>0.8498</td>
<td>36.07</td>
</tr>
<tr>
<td>Genotipe</td>
<td>22</td>
<td>28.7795</td>
<td>1.3081</td>
<td>3.20**</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>1</td>
<td>6.4066</td>
<td>6.4066</td>
<td>15.67**</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td>Genotipe*Kadar Air</td>
<td>22</td>
<td>7.6783</td>
<td>0.3490</td>
<td>0.85 in</td>
<td>0.6519</td>
<td></td>
</tr>
</tbody>
</table>

Ket: db = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman, ** = nyata pada α 0.01, in = tidak nyata.

Lampiran 45 Sidik ragam pengaruh kadar air media dan genotipe terhadap bobot kering tajuk 8 MSP percobaan 2

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>22.6960</td>
<td>11.3480</td>
<td>1.10 in</td>
<td>0.3366</td>
<td>34.75</td>
</tr>
<tr>
<td>Genotipe</td>
<td>22</td>
<td>887.8439</td>
<td>40.3565</td>
<td>3.92**</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>1</td>
<td>948.9817</td>
<td>948.9817</td>
<td>92.22**</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Genotipe*Kadar Air</td>
<td>22</td>
<td>289.1248</td>
<td>13.1420</td>
<td>1.28 in</td>
<td>0.2107</td>
<td></td>
</tr>
</tbody>
</table>

Ket: db = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman, ** = nyata pada α 0.01, in = tidak nyata.

Lampiran 46 Sidik ragam pengaruh kadar air media dan genotipe terhadap bobot kering tajuk/akar 8 MSP percobaan 2

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>0.0154</td>
<td>0.0027</td>
<td>0.91 in</td>
<td>0.4067</td>
<td>26.69</td>
</tr>
<tr>
<td>Genotipe</td>
<td>22</td>
<td>0.1324</td>
<td>0.0160</td>
<td>2.03*</td>
<td>0.0112</td>
<td></td>
</tr>
<tr>
<td>Kadar Air Media</td>
<td>1</td>
<td>0.1399</td>
<td>0.1399</td>
<td>47.12**</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Genotipe*Kadar Air</td>
<td>22</td>
<td>0.0729</td>
<td>0.0033</td>
<td>1.12 in</td>
<td>0.3470</td>
<td></td>
</tr>
</tbody>
</table>

Ket: db = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman, * = nyata pada α 0.05, ** = nyata pada α 0.01, in = tidak nyata.
<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>6.1233</td>
<td>3.0616</td>
<td>0.21 **</td>
<td>0.8086</td>
<td>18.79</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>494.1103</td>
<td>22.4519</td>
<td>1.56 **</td>
<td>0.0755</td>
<td></td>
</tr>
<tr>
<td>KAM</td>
<td>1</td>
<td>14.2510</td>
<td>14.2514</td>
<td>0.99 **</td>
<td>0.3222</td>
<td></td>
</tr>
<tr>
<td>G*KAM</td>
<td>22</td>
<td>203.3310</td>
<td>9.2423</td>
<td>0.64 **</td>
<td>0.8802</td>
<td></td>
</tr>
</tbody>
</table>

Ket: G = genotipe, KAM = kadar air media, db = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman, tn = tidak nyata.

Lampiran 49

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>23.6269</td>
<td>11.8134</td>
<td>0.88 **</td>
<td>0.4167</td>
<td>33.29</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>1183.7977</td>
<td>53.8089</td>
<td>4.03 **</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>KAM</td>
<td>1</td>
<td>1109.6071</td>
<td>1109.6071</td>
<td>83.06 **</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td>G*KAM</td>
<td>22</td>
<td>366.6236</td>
<td>16.6647</td>
<td>1.25 **</td>
<td>0.2322</td>
<td></td>
</tr>
</tbody>
</table>

Ket: G = genotipe, KAM = kadar air media, db = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman, ** = nyata pada α 0.01, tn = tidak nyata.

Lampiran 50

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>7.3753</td>
<td>3.6876</td>
<td>30.64 **</td>
<td>0.0001</td>
<td>12.44</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>3.5414</td>
<td>0.1609</td>
<td>1.35 **</td>
<td>0.1931</td>
<td></td>
</tr>
<tr>
<td>KAM</td>
<td>1</td>
<td>0.0025</td>
<td>0.0025</td>
<td>0.02 **</td>
<td>0.8849</td>
<td></td>
</tr>
<tr>
<td>G*KAM</td>
<td>17</td>
<td>4.2399</td>
<td>0.2494</td>
<td>2.07 **</td>
<td>0.0229</td>
<td></td>
</tr>
</tbody>
</table>

Ket: G = genotipe, KAM = kadar air media, db = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman, ** = nyata pada α 0.01, * = nyata pada α 0.05, tn = tidak nyata.

Lampiran 51

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F-hitung</th>
<th>P</th>
<th>KK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok</td>
<td>2</td>
<td>7.8298</td>
<td>3.9149</td>
<td>0.30 **</td>
<td>0.7404</td>
<td>23.54</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>399.2160</td>
<td>18.1461</td>
<td>1.40 **</td>
<td>0.1588</td>
<td></td>
</tr>
<tr>
<td>KAM</td>
<td>1</td>
<td>219.0621</td>
<td>219.0621</td>
<td>16.92 **</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>G*KAM</td>
<td>17</td>
<td>408.9798</td>
<td>24.0576</td>
<td>1.86 **</td>
<td>0.0499</td>
<td></td>
</tr>
</tbody>
</table>

Ket: G = genotipe, KAM = kadar air media, db = derajat bebas, JK = jumlah kuadrat, KT = kuadrat tengah, P = peluang, KK = koefisien keragaman, ** = nyata pada α 0.01, * = nyata pada α 0.05, tn = tidak nyata.
<table>
<thead>
<tr>
<th>Genotipe</th>
<th>22-23%</th>
<th>37-38%</th>
<th>22-23%</th>
<th>37-38%</th>
<th>22-23%</th>
<th>37-38%</th>
<th>22-23%</th>
<th>37-38%</th>
<th>22-23%</th>
<th>37-38%</th>
<th>22-23%</th>
<th>37-38%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TT (cm)</td>
<td>DB (cm)</td>
<td>JD</td>
<td>LD (cm³)</td>
<td>KAD (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dompoe-2</td>
<td>1.2</td>
<td>0.06</td>
<td>0.00</td>
<td>22.9</td>
<td>108.7</td>
<td>79.3 a-b</td>
<td>78.5 a-b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curup</td>
<td>-</td>
<td>3.8</td>
<td>-</td>
<td>-</td>
<td>77.7</td>
<td>-</td>
<td>75.9 a-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogor-1</td>
<td>0.8</td>
<td>-0.20</td>
<td>0.03</td>
<td>3.2</td>
<td>59.5</td>
<td>-</td>
<td>76.6 a-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogor-2</td>
<td>0.3</td>
<td>-0.10</td>
<td>0.03</td>
<td>2.8</td>
<td>59.7</td>
<td>78.9 a-b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogor-3</td>
<td>-</td>
<td>5.0</td>
<td>-</td>
<td>2.5</td>
<td>81.8</td>
<td>79.7 ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sukabumi-1</td>
<td>0.1</td>
<td>-0.10</td>
<td>0.03</td>
<td>2.0</td>
<td>49.2</td>
<td>78.9 ab</td>
<td>80.6 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sukabumi-2</td>
<td>0.9</td>
<td>4.0</td>
<td>0.10</td>
<td>3.5</td>
<td>61.5</td>
<td>74.3</td>
<td>75.8 a-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pontianak</td>
<td>-</td>
<td>3.6</td>
<td>-</td>
<td>4.7</td>
<td>-</td>
<td>79.1</td>
<td>78.2 a-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pidi</td>
<td>0.2</td>
<td>-0.10</td>
<td>0.00</td>
<td>4.0</td>
<td>69.3</td>
<td>69.2 b-d</td>
<td>75.1 a-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lahat</td>
<td>0.3</td>
<td>-0.16</td>
<td>0.03</td>
<td>2.5</td>
<td>82.7</td>
<td>76.9 a-c</td>
<td>76.7 a-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pagar Alam</td>
<td>0.8</td>
<td>4.0</td>
<td>-0.10</td>
<td>1.0</td>
<td>60.9</td>
<td>-</td>
<td>76.4 a-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indralaya</td>
<td>1.8</td>
<td>3.6</td>
<td>0.06</td>
<td>2.7</td>
<td>23.6</td>
<td>65.9</td>
<td>79.7 ab</td>
<td>77.1 a-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kupang</td>
<td>1.2</td>
<td>2.4</td>
<td>-0.13</td>
<td>1.5</td>
<td>29.7</td>
<td>49.8</td>
<td>73.7 a-c</td>
<td>78.4 ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palembang</td>
<td>2.5</td>
<td>-</td>
<td>0.03</td>
<td>3.0</td>
<td>-</td>
<td>73.7</td>
<td>-</td>
<td>80.1 ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lampung-2</td>
<td>0.6</td>
<td>3.2</td>
<td>-0.10</td>
<td>2.7</td>
<td>52.7</td>
<td>81.6 a</td>
<td>75.3 a-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lampung-3</td>
<td>0.3</td>
<td>2.9</td>
<td>0.00</td>
<td>2.0</td>
<td>82.2</td>
<td>-</td>
<td>81.6 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saweli</td>
<td>0.3</td>
<td>5.0</td>
<td>-0.10</td>
<td>2.0</td>
<td>-</td>
<td>64.5</td>
<td>-</td>
<td>77.4 a-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sumba</td>
<td>0.4</td>
<td>4.0</td>
<td>-0.16</td>
<td>1.0</td>
<td>32.0</td>
<td>70.8</td>
<td>47.9 e</td>
<td>78.0 a-c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP-2M</td>
<td>0.3</td>
<td>4.0</td>
<td>-0.15</td>
<td>0.5</td>
<td>61.3</td>
<td>67.3 c-d</td>
<td>80.6 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP-2A</td>
<td>0.3</td>
<td>4.5</td>
<td>-0.06</td>
<td>0.0</td>
<td>2.2</td>
<td>39.9</td>
<td>81.6</td>
<td>59.9 d-e</td>
<td>78.9 ab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>1</td>
<td>4.6</td>
<td>-0.13</td>
<td>4.0</td>
<td>33.0</td>
<td>73.4</td>
<td>74.6 a-c</td>
<td>79.4 ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jenepeko</td>
<td>-</td>
<td>4.4</td>
<td>0.06</td>
<td>-</td>
<td>2.3</td>
<td>62.8</td>
<td>-</td>
<td>78.7 ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medan</td>
<td>4.9</td>
<td>-0.06</td>
<td>-</td>
<td>3.0</td>
<td>-</td>
<td>83.2</td>
<td>-</td>
<td>79.1 ab</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: TT= pertambahan tinggi tanaman, DB= pertambahan diameter batang, JD= pertambahan jumlah daun, LD= luas daun, KAD= Kadar air daun. Angka-angka yang diikuti huruf yang berbeda pada kolom yang sama menunjukkan berbeda nyata berdasarkan uji lanjut DMRT a 0.05.
<table>
<thead>
<tr>
<th>Genotipe</th>
<th>22-23%</th>
<th>37-38%</th>
<th>22-23%</th>
<th>37-38%</th>
<th>22-23%</th>
<th>37-38%</th>
<th>22-23%</th>
<th>37-38%</th>
<th>22-23%</th>
<th>37-38%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BKA (g)</td>
<td>BKT (g)</td>
<td>BKA/BKT</td>
<td>PA (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Dumai-2</td>
<td>0.5</td>
<td>0.0</td>
<td>2.0</td>
<td>2.5</td>
<td>11.9</td>
<td>15.2</td>
<td>0.15</td>
<td>0.18</td>
<td>23.5</td>
<td>19.1</td>
</tr>
<tr>
<td>Curup</td>
<td>-</td>
<td>0.2</td>
<td>1.2</td>
<td>1.8</td>
<td>4.0</td>
<td>11.0</td>
<td>0.29</td>
<td>0.17</td>
<td>16.6</td>
<td>21.3</td>
</tr>
<tr>
<td>Bogor-1</td>
<td>0.0</td>
<td>0.7</td>
<td>1.4</td>
<td>2.0</td>
<td>5.4</td>
<td>10.3</td>
<td>0.26</td>
<td>0.19</td>
<td>21.2</td>
<td>20.8</td>
</tr>
<tr>
<td>Bogor-2</td>
<td>0.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.6</td>
<td>3.6</td>
<td>8.8</td>
<td>0.27</td>
<td>0.18</td>
<td>16.2</td>
<td>19.7</td>
</tr>
<tr>
<td>Bogor-3</td>
<td>-</td>
<td>0.7</td>
<td>1.9</td>
<td>2.3</td>
<td>6.7</td>
<td>10.4</td>
<td>0.27</td>
<td>0.22</td>
<td>19.3</td>
<td>22.8</td>
</tr>
<tr>
<td>Sukabumi-1</td>
<td>0.5</td>
<td>1.8</td>
<td>1.7</td>
<td>1.5</td>
<td>6.4</td>
<td>9.8</td>
<td>0.25</td>
<td>0.15</td>
<td>21.7</td>
<td>22.0</td>
</tr>
<tr>
<td>Sukabumi-2</td>
<td>0.0</td>
<td>1.0</td>
<td>1.2</td>
<td>2.1</td>
<td>5.6</td>
<td>13.7</td>
<td>0.22</td>
<td>0.16</td>
<td>19.5</td>
<td>19.5</td>
</tr>
<tr>
<td>Pontianak</td>
<td>-</td>
<td>0.7</td>
<td>1.6</td>
<td>2.0</td>
<td>4.9</td>
<td>11.5</td>
<td>0.33</td>
<td>0.17</td>
<td>19.0</td>
<td>17.5</td>
</tr>
<tr>
<td>Pidi</td>
<td>0.5</td>
<td>0.2</td>
<td>1.0</td>
<td>1.5</td>
<td>4.6</td>
<td>7.6</td>
<td>0.21</td>
<td>0.19</td>
<td>17.2</td>
<td>18.7</td>
</tr>
<tr>
<td>Latah</td>
<td>0.5</td>
<td>2.3</td>
<td>1.8</td>
<td>2.4</td>
<td>7.1</td>
<td>11.0</td>
<td>0.25</td>
<td>0.20</td>
<td>22.2</td>
<td>19.7</td>
</tr>
<tr>
<td>Pagar Alam</td>
<td>0.0</td>
<td>0.7</td>
<td>1.2</td>
<td>1.2</td>
<td>5.6</td>
<td>8.1</td>
<td>0.20</td>
<td>0.13</td>
<td>18.4</td>
<td>19.4</td>
</tr>
<tr>
<td>Indralaya</td>
<td>0.5</td>
<td>1.5</td>
<td>2.3</td>
<td>1.8</td>
<td>8.1</td>
<td>9.6</td>
<td>0.31</td>
<td>0.19</td>
<td>21.7</td>
<td>20.3</td>
</tr>
<tr>
<td>Kupang</td>
<td>0.0</td>
<td>0.8</td>
<td>2.2</td>
<td>2.9</td>
<td>11.1</td>
<td>21.3</td>
<td>0.20</td>
<td>0.14</td>
<td>22.1</td>
<td>22.0</td>
</tr>
<tr>
<td>Palembang</td>
<td>-</td>
<td>1.0</td>
<td>1.5</td>
<td>2.1</td>
<td>7.3</td>
<td>12.8</td>
<td>0.20</td>
<td>0.16</td>
<td>20.9</td>
<td>22.6</td>
</tr>
<tr>
<td>Lampung-2</td>
<td>0.0</td>
<td>0.8</td>
<td>1.5</td>
<td>1.3</td>
<td>6.8</td>
<td>6.9</td>
<td>0.21</td>
<td>0.17</td>
<td>18.7</td>
<td>21.0</td>
</tr>
<tr>
<td>Lampung-3</td>
<td>0.0</td>
<td>0.2</td>
<td>0.9</td>
<td>1.8</td>
<td>5.0</td>
<td>11.7</td>
<td>0.14</td>
<td>0.15</td>
<td>17.9</td>
<td>18.4</td>
</tr>
<tr>
<td>Sawel</td>
<td>0.0</td>
<td>1.3</td>
<td>1.4</td>
<td>1.8</td>
<td>6.2</td>
<td>12.7</td>
<td>0.22</td>
<td>0.15</td>
<td>24.3</td>
<td>21.1</td>
</tr>
<tr>
<td>Sumba</td>
<td>0.0</td>
<td>0.3</td>
<td>1.5</td>
<td>2.9</td>
<td>7.0</td>
<td>19.1</td>
<td>0.21</td>
<td>0.16</td>
<td>23.5</td>
<td>22.8</td>
</tr>
<tr>
<td>IP-2M</td>
<td>0.0</td>
<td>0.0</td>
<td>1.4</td>
<td>1.2</td>
<td>4.5</td>
<td>7.4</td>
<td>0.32</td>
<td>0.18</td>
<td>16.2</td>
<td>17.4</td>
</tr>
<tr>
<td>IP-2A</td>
<td>0.0</td>
<td>0.5</td>
<td>1.2</td>
<td>2.1</td>
<td>5.6</td>
<td>10.6</td>
<td>0.19</td>
<td>0.19</td>
<td>16.6</td>
<td>21.5</td>
</tr>
<tr>
<td>China</td>
<td>0.0</td>
<td>0.7</td>
<td>3.4</td>
<td>2.9</td>
<td>12.4</td>
<td>16.5</td>
<td>0.30</td>
<td>0.17</td>
<td>21.3</td>
<td>21.1</td>
</tr>
<tr>
<td>Jeneponto</td>
<td>-</td>
<td>1.5</td>
<td>1.2</td>
<td>2.0</td>
<td>5.2</td>
<td>12.0</td>
<td>0.21</td>
<td>0.17</td>
<td>21.2</td>
<td>24.8</td>
</tr>
<tr>
<td>Medan</td>
<td>-</td>
<td>1.7</td>
<td>1.1</td>
<td>1.8</td>
<td>4.9</td>
<td>14.9</td>
<td>0.20</td>
<td>0.12</td>
<td>16.0</td>
<td>15.6</td>
</tr>
</tbody>
</table>

Keterangan: BKT = bobot kering tajuk, BKA = bobot kering akar, BKA/BKT = nisbah BKA/BKT, PA = panjang akar, ST = stomata terbuka, KS = kerapatan stomata, JTH = jumlah tanaman hidup. Angka yang diikuti huruf 'y' yang berbeda pada kolom yang sama menunjukkan berbeda nyata berdasarkan uji lanjut DMRT α 0.05.
<table>
<thead>
<tr>
<th>Genotipe</th>
<th>KAM</th>
<th>JTH (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>22-23%</td>
<td>37-38%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>BKTg (g)</th>
<th>ST (%)</th>
<th>KS (g)</th>
<th>JTH (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curup</td>
<td>5.1 e</td>
<td>12.9 b-d</td>
<td>3.3 b-d</td>
<td>5.2 b-d</td>
</tr>
<tr>
<td>Bogor-1</td>
<td>6.8 d-e</td>
<td>12.3 cd</td>
<td>-</td>
<td>11.7 b-d</td>
</tr>
<tr>
<td>Bogor-2</td>
<td>4.6 e</td>
<td>10.3 cd</td>
<td>0.0 d</td>
<td>11.3 b-d</td>
</tr>
<tr>
<td>Bogor-3</td>
<td>8.5 c-e</td>
<td>12.7 b-d</td>
<td>36.3 a</td>
<td>3.9 b-d</td>
</tr>
<tr>
<td>Sukabumi-1</td>
<td>8.1 c-e</td>
<td>11.3 cd</td>
<td>-</td>
<td>13.1 b-d</td>
</tr>
<tr>
<td>Sukabumi-2</td>
<td>6.8 d-e</td>
<td>15.8 a-d</td>
<td>16.2 ab</td>
<td>6.5 b-d</td>
</tr>
<tr>
<td>Pontianak</td>
<td>6.5 d-e</td>
<td>13.5 b-d</td>
<td>22.7 ab</td>
<td>9.3 b-d</td>
</tr>
<tr>
<td>Pidi</td>
<td>5.6 d-e</td>
<td>9.1 d</td>
<td>14.9 a-d</td>
<td>4.9 b-d</td>
</tr>
<tr>
<td>Lahat</td>
<td>8.9 d-e</td>
<td>13.3 b-d</td>
<td>0.0 d</td>
<td>3.2 b-d</td>
</tr>
<tr>
<td>Pagar Alam</td>
<td>6.7 d-e</td>
<td>9.2 d</td>
<td>9.1 a-d</td>
<td>5.6 b-d</td>
</tr>
<tr>
<td>Indralaya</td>
<td>6.8 d-e</td>
<td>11.4 c-d</td>
<td>1.3 cd</td>
<td>5.0 b-d</td>
</tr>
<tr>
<td>Kupang</td>
<td>13.3 a-c</td>
<td>24.2 a</td>
<td>0.0 d</td>
<td>9.9 b-d</td>
</tr>
<tr>
<td>Palembang</td>
<td>8.7 c-e</td>
<td>15.0 a-d</td>
<td>20.1 ab</td>
<td>17.7 a-d</td>
</tr>
<tr>
<td>Lampung-2</td>
<td>8.2 c-e</td>
<td>8.1 d</td>
<td>10.4 a-d</td>
<td>6.9 b-d</td>
</tr>
<tr>
<td>Lampung-3</td>
<td>5.8 d-e</td>
<td>13.4 b-d</td>
<td>-</td>
<td>8.0 b-d</td>
</tr>
<tr>
<td>Saweh</td>
<td>7.6 d-e</td>
<td>14.2 b-d</td>
<td>-</td>
<td>6.5 b-d</td>
</tr>
<tr>
<td>Sumba</td>
<td>8.4 c-e</td>
<td>22.0 ab</td>
<td>1.1 cd</td>
<td>8.6 b-d</td>
</tr>
<tr>
<td>IP-2M</td>
<td>5.9 d-e</td>
<td>8.5 d</td>
<td>11.9 a-d</td>
<td>4.6 b-d</td>
</tr>
<tr>
<td>IP-2A</td>
<td>6.8 d-e</td>
<td>12.6 b-d</td>
<td>5.3 b-d</td>
<td>13.5 b-d</td>
</tr>
<tr>
<td>China</td>
<td>15.8 a</td>
<td>19.3 a-c</td>
<td>1.8 b-d</td>
<td>3.5 b-d</td>
</tr>
<tr>
<td>Jenepeonto</td>
<td>6.4 d-e</td>
<td>13.9 b-d</td>
<td>4.6 b-d</td>
<td>14.9 b-d</td>
</tr>
<tr>
<td>Medan</td>
<td>6.0 d-e</td>
<td>16.7 d-a</td>
<td>25.0 ab</td>
<td>5.0 b-d</td>
</tr>
</tbody>
</table>

Keterangan: BKTg = bobot kering total, ST = stomata terbuka, KS = kersapan stomata, JTH = jumlah tanaman hidup. Angka yang diikuti huruf yang berbeda pada kolom yang sama menunjukkan berbeda nyata berdasarkan uji lanjut DMRT α 0.05.
Lampiran 53 Nilai IS kekeringan pertambahan tinggi tanaman percobaan 2

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dompu-2</td>
<td>1.2</td>
<td>0.6</td>
<td>5.9</td>
<td>3.7</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>Curup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Bogor-1</td>
<td>0.8</td>
<td>0.6</td>
<td>2.5</td>
<td>3.7</td>
<td>0.8</td>
<td>AT</td>
</tr>
<tr>
<td>Bogor-2</td>
<td>0.3</td>
<td>0.6</td>
<td>3.1</td>
<td>3.7</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Bogor-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Sukabumi-1</td>
<td>0.1</td>
<td>0.6</td>
<td>2.3</td>
<td>3.7</td>
<td>1.2</td>
<td>P</td>
</tr>
<tr>
<td>Sukabumi-2</td>
<td>0.9</td>
<td>0.6</td>
<td>4.0</td>
<td>3.7</td>
<td>0.9</td>
<td>AT</td>
</tr>
<tr>
<td>Pontian-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Pidi</td>
<td>0.2</td>
<td>0.6</td>
<td>3.0</td>
<td>3.7</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Lahat</td>
<td>0.3</td>
<td>0.6</td>
<td>4.4</td>
<td>3.7</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Pagar Alam</td>
<td>0.8</td>
<td>0.6</td>
<td>4.0</td>
<td>3.7</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>Indralaya</td>
<td>1.8</td>
<td>0.6</td>
<td>3.6</td>
<td>3.7</td>
<td>0.6</td>
<td>AT</td>
</tr>
<tr>
<td>Kupang</td>
<td>1.0</td>
<td>0.6</td>
<td>2.4</td>
<td>3.7</td>
<td>0.7</td>
<td>AT</td>
</tr>
<tr>
<td>Palembang</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Lampung-2</td>
<td>0.6</td>
<td>0.6</td>
<td>3.2</td>
<td>3.7</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>Lampung-3</td>
<td>0.3</td>
<td>0.6</td>
<td>2.9</td>
<td>3.7</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Sawelis</td>
<td>0.3</td>
<td>0.6</td>
<td>5.0</td>
<td>3.7</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Sumbar</td>
<td>0.4</td>
<td>0.6</td>
<td>4.0</td>
<td>3.7</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>IP-2M</td>
<td>0.3</td>
<td>0.6</td>
<td>4.0</td>
<td>3.7</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>IP-2A</td>
<td>0.3</td>
<td>0.6</td>
<td>4.5</td>
<td>3.7</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>China</td>
<td>1.2</td>
<td>0.6</td>
<td>4.6</td>
<td>3.7</td>
<td>0.9</td>
<td>AT</td>
</tr>
<tr>
<td>Jenepeko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Medan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
</tbody>
</table>

Keterangan:
- Y: nilai respon genotipe pada kondisi stres kekeringan
- X: nilai respon rata-rata dari genotipe pada kondisi stres kekeringan
- Yp: nilai respon genotipe pada kondisi non stres kekeringan
- Xp: nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan
- IS: indeks sensitivitas kekeringan
- AT: agak toleran
- P: peka, titik (=) tanaman mati.

Lampiran 54 Nilai IS kekeringan pertambahan diameter batang percobaan 2

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dompu-2</td>
<td>2.29</td>
<td>2.29</td>
<td>2.30</td>
<td>2.30</td>
<td>0.40</td>
<td>T</td>
</tr>
<tr>
<td>Curup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Bogor-1</td>
<td>2.29</td>
<td>2.29</td>
<td>2.30</td>
<td>2.30</td>
<td>1.29</td>
<td>P</td>
</tr>
<tr>
<td>Bogor-2</td>
<td>2.30</td>
<td>2.29</td>
<td>2.30</td>
<td>2.30</td>
<td>0.30</td>
<td>T</td>
</tr>
<tr>
<td>Bogor-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Sukabumi-1</td>
<td>2.29</td>
<td>2.29</td>
<td>2.30</td>
<td>2.30</td>
<td>1.00</td>
<td>AT</td>
</tr>
<tr>
<td>Sukabumi-2</td>
<td>2.31</td>
<td>2.29</td>
<td>2.31</td>
<td>2.30</td>
<td>-0.39</td>
<td>T</td>
</tr>
<tr>
<td>Pontian-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Pidi</td>
<td>2.29</td>
<td>2.29</td>
<td>2.30</td>
<td>2.30</td>
<td>1.00</td>
<td>AT</td>
</tr>
<tr>
<td>Lahat</td>
<td>2.28</td>
<td>2.29</td>
<td>2.31</td>
<td>2.30</td>
<td>2.29</td>
<td>P</td>
</tr>
<tr>
<td>Pagar Alam</td>
<td>2.29</td>
<td>2.29</td>
<td>2.30</td>
<td>2.30</td>
<td>1.29</td>
<td>P</td>
</tr>
<tr>
<td>Indralaya</td>
<td>2.30</td>
<td>2.29</td>
<td>2.31</td>
<td>2.30</td>
<td>0.59</td>
<td>AT</td>
</tr>
<tr>
<td>Kupang</td>
<td>2.29</td>
<td>2.29</td>
<td>2.30</td>
<td>2.30</td>
<td>1.69</td>
<td>P</td>
</tr>
<tr>
<td>Palipan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
</tbody>
</table>

Keterangan:
- Y: nilai IS kekeringan pertambahan diameter batang
- X: nilai IS kekeringan pertambahan diameter batang rata-rata
- Yp: nilai IS kekeringan pertambahan diameter batang non stres kekeringan
- Xp: nilai IS kekeringan pertambahan diameter batang rata-rata non stres kekeringan
- IS: indeks sensitivitas kekeringan
- AT: agak toleran
<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lampung-3</td>
<td>2.30</td>
<td>2.29</td>
<td>2.30</td>
<td>2.30</td>
<td>0.30</td>
<td>T</td>
</tr>
<tr>
<td>Saweli</td>
<td>2.29</td>
<td>2.29</td>
<td>2.30</td>
<td>2.30</td>
<td>1.00</td>
<td>AT</td>
</tr>
<tr>
<td>Sumba</td>
<td>2.29</td>
<td>2.29</td>
<td>2.30</td>
<td>2.30</td>
<td>1.29</td>
<td>P</td>
</tr>
<tr>
<td>IP-2M</td>
<td>2.29</td>
<td>2.29</td>
<td>2.30</td>
<td>2.30</td>
<td>1.50</td>
<td>P</td>
</tr>
<tr>
<td>IP-2A</td>
<td>2.29</td>
<td>2.29</td>
<td>2.29</td>
<td>2.30</td>
<td>1.29</td>
<td>P</td>
</tr>
<tr>
<td>China</td>
<td>2.29</td>
<td>2.29</td>
<td>2.30</td>
<td>2.30</td>
<td>1.29</td>
<td>P</td>
</tr>
<tr>
<td>Jeneponto</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>Medan</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
</tbody>
</table>

Ket: \(Y = \) nilai respon genotipe pada kondisi stres kekeringan, \(X = \) nilai respon rata-rata dari genotipe pada kondisi stres kekeringan, \(Yp = \) nilai respon genotipe pada kondisi non stres kekeringan, \(Xp = \) nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan, IS = indeks sensitivitas kekeringan, T = toleran, AT = agak toleran, P = peka, titik (.) = tanaman mati.

Lampung-55 Nilai IS kekeringan pertambahan jumlah daun percobaan 2

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dompu-2</td>
<td>3.7</td>
<td>2.1</td>
<td>4.5</td>
<td>2.8</td>
<td>0.7</td>
<td>AT</td>
</tr>
<tr>
<td>Curup</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>Bogor</td>
<td>2.8</td>
<td>2.1</td>
<td>3.2</td>
<td>2.8</td>
<td>0.5</td>
<td>T</td>
</tr>
<tr>
<td>Bogor-1</td>
<td>1.0</td>
<td>2.1</td>
<td>2.8</td>
<td>2.8</td>
<td>2.5</td>
<td>P</td>
</tr>
<tr>
<td>Bogor-2</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>Sukabumi-1</td>
<td>0.8</td>
<td>2.1</td>
<td>2.0</td>
<td>2.8</td>
<td>2.2</td>
<td>P</td>
</tr>
<tr>
<td>Sukabumi-2</td>
<td>4.0</td>
<td>2.1</td>
<td>3.5</td>
<td>2.8</td>
<td>-0.6</td>
<td>T</td>
</tr>
<tr>
<td>Pontianak</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>Pidi</td>
<td>0.0</td>
<td>2.1</td>
<td>4.0</td>
<td>2.8</td>
<td>3.8</td>
<td>P</td>
</tr>
<tr>
<td>Lahat</td>
<td>2.0</td>
<td>2.1</td>
<td>2.5</td>
<td>2.8</td>
<td>0.8</td>
<td>AT</td>
</tr>
<tr>
<td>Pagar Alam</td>
<td>1.0</td>
<td>2.1</td>
<td>3.5</td>
<td>2.8</td>
<td>2.7</td>
<td>P</td>
</tr>
<tr>
<td>Indralaya</td>
<td>6.5</td>
<td>2.1</td>
<td>2.7</td>
<td>2.8</td>
<td>-5.5</td>
<td>T</td>
</tr>
<tr>
<td>Kupang</td>
<td>1.7</td>
<td>2.1</td>
<td>1.5</td>
<td>2.8</td>
<td>-0.4</td>
<td>T</td>
</tr>
<tr>
<td>Palembang</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>Lampung-2</td>
<td>2.7</td>
<td>2.1</td>
<td>3.5</td>
<td>2.8</td>
<td>0.9</td>
<td>AT</td>
</tr>
<tr>
<td>Lampung-3</td>
<td>2.0</td>
<td>2.1</td>
<td>2.7</td>
<td>2.8</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>Saweli</td>
<td>2.0</td>
<td>2.1</td>
<td>2.0</td>
<td>2.8</td>
<td>0.0</td>
<td>T</td>
</tr>
<tr>
<td>Sumba</td>
<td>1.0</td>
<td>2.1</td>
<td>1.8</td>
<td>2.8</td>
<td>1.7</td>
<td>P</td>
</tr>
<tr>
<td>IP-2M</td>
<td>0.5</td>
<td>2.1</td>
<td>3.3</td>
<td>2.8</td>
<td>3.2</td>
<td>P</td>
</tr>
<tr>
<td>IP-2A</td>
<td>0.0</td>
<td>2.1</td>
<td>2.2</td>
<td>2.8</td>
<td>3.8</td>
<td>P</td>
</tr>
<tr>
<td>China</td>
<td>4.0</td>
<td>2.1</td>
<td>2.5</td>
<td>2.8</td>
<td>-2.3</td>
<td>T</td>
</tr>
<tr>
<td>Jeneponto</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>Medan</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
</tbody>
</table>

Ket: \(Y = \) nilai respon genotipe pada kondisi stres kekeringan, \(X = \) nilai respon rata-rata dari genotipe pada kondisi stres kekeringan, \(Yp = \) nilai respon genotipe pada kondisi non stres kekeringan, \(Xp = \) nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan, IS = indeks sensitivitas kekeringan, T = toleran, AT = agak toleran, P = peka, titik (.) = tanaman mati.
Lampiran 56 Nilai IS kekeringan luas daun percobaan 2

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dompu-2</td>
<td>22.7</td>
<td>34.0</td>
<td>100.7</td>
<td>74.9</td>
<td>1.4</td>
<td>P</td>
</tr>
<tr>
<td>Curup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Bogor-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Bogor-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Bogor-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Sukabumi-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Sukalat-2</td>
<td>61.5</td>
<td>34.0</td>
<td>74.3</td>
<td>74.9</td>
<td>0.3</td>
<td>T</td>
</tr>
<tr>
<td>Pontianak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Pidi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Lahat</td>
<td>27.4</td>
<td>34.0</td>
<td>82.7</td>
<td>74.9</td>
<td>1.2</td>
<td>P</td>
</tr>
<tr>
<td>Pagar Alam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Indralaya</td>
<td>23.6</td>
<td>34.0</td>
<td>65.9</td>
<td>74.9</td>
<td>1.2</td>
<td>P</td>
</tr>
<tr>
<td>Kupang</td>
<td>29.7</td>
<td>34.0</td>
<td>49.8</td>
<td>74.9</td>
<td>0.7</td>
<td>AT</td>
</tr>
<tr>
<td>Palembang</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Lampung-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Lampung-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Sawahlunto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Sumbawa</td>
<td>32.0</td>
<td>34.0</td>
<td>70.8</td>
<td>74.9</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>IP-2Midi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>IP-2Arimo</td>
<td>39.9</td>
<td>34.0</td>
<td>81.6</td>
<td>74.9</td>
<td>0.9</td>
<td>AT</td>
</tr>
<tr>
<td>China</td>
<td>33.0</td>
<td>34.0</td>
<td>73.4</td>
<td>74.9</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>Jeneponto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Medan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
</tbody>
</table>

Ket: Y = nilai respon genotipe pada kondisi stres kekeringan, X = nilai respon rata-rata dari genotipe pada kondisi stres kekeringan, Yp = nilai respon genotipe pada kondisi non stres kekeringan, Xp = nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan, IS = indeks sensitivitas kekeringan, AT = agak toleran, P = peka, titik (.) = tanaman mati/pertumbuhan daun belum maksimal

Lampiran 57 Nilai IS kekeringan kadar air daun percobaan 2

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dompu-2</td>
<td>79.3</td>
<td>72.1</td>
<td>78.5</td>
<td>77.9</td>
<td>-0.2</td>
<td>T</td>
</tr>
<tr>
<td>Curup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Bogor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Bogor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Bogor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Sukabumi-1</td>
<td>78.9</td>
<td>72.1</td>
<td>80.6</td>
<td>77.9</td>
<td>0.3</td>
<td>T</td>
</tr>
<tr>
<td>Sukalat-2</td>
<td>75.8</td>
<td>72.1</td>
<td>76.7</td>
<td>77.9</td>
<td>0.2</td>
<td>T</td>
</tr>
<tr>
<td>Pontianak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Pidi</td>
<td>69.2</td>
<td>72.1</td>
<td>75.1</td>
<td>77.9</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>Lahat</td>
<td>76.9</td>
<td>72.1</td>
<td>76.7</td>
<td>77.9</td>
<td>-0.0</td>
<td>T</td>
</tr>
<tr>
<td>Pagar Alam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Indralaya</td>
<td>79.7</td>
<td>72.1</td>
<td>77.1</td>
<td>77.9</td>
<td>-0.5</td>
<td>T</td>
</tr>
<tr>
<td>Kupang</td>
<td>73.7</td>
<td>72.1</td>
<td>78.4</td>
<td>77.9</td>
<td>0.8</td>
<td>AT</td>
</tr>
<tr>
<td>Palembang</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Lampung-2</td>
<td>81.6</td>
<td>72.1</td>
<td>75.3</td>
<td>77.9</td>
<td>-1.1</td>
<td>T</td>
</tr>
<tr>
<td>Lampung-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>Genotipe</td>
<td>Y</td>
<td>X</td>
<td>Yp</td>
<td>Xp</td>
<td>IS</td>
<td>Kelas</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>Saweli</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>Sumba</td>
<td>47.9</td>
<td>72.1</td>
<td>78.0</td>
<td>77.9</td>
<td>5.1</td>
<td>P</td>
</tr>
<tr>
<td>IP-2M</td>
<td>67.3</td>
<td>72.1</td>
<td>80.6</td>
<td>77.9</td>
<td>2.2</td>
<td>P</td>
</tr>
<tr>
<td>IP-2A</td>
<td>59.9</td>
<td>72.1</td>
<td>78.9</td>
<td>77.9</td>
<td>3.2</td>
<td>P</td>
</tr>
<tr>
<td>China</td>
<td>74.6</td>
<td>72.1</td>
<td>79.4</td>
<td>77.9</td>
<td>0.8</td>
<td>AT</td>
</tr>
<tr>
<td>Jeneponto</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>Medan</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
</tbody>
</table>

Ket: Y = nilai respon genotipe pada kondisi stres kekerasan, X = nilai respon rata-rata dari genotipe pada kondisi stres kekerasan, Yp = nilai respon genotipe pada kondisi non stres kekerasan, Xp = nilai respon rata-rata dari genotipe pada kondisi non stres kekerasan, IS = indeks sensitivitas kekerasan, AT = agak toleran, P = peka, titik () = tanaman mati/permubuhan daun belum maksimal.

Lampiran 58 Nilai IS kekerasan jumlah cabang percobaan 2

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dompak</td>
<td>2.4</td>
<td>2.3</td>
<td>2.3</td>
<td>2.4</td>
<td>-1.0</td>
<td>T</td>
</tr>
<tr>
<td>Curup</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>Bogor</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>Bogor</td>
<td>2.3</td>
<td>2.3</td>
<td>2.4</td>
<td>2.4</td>
<td>1.2</td>
<td>P</td>
</tr>
<tr>
<td>Sukabumi-1</td>
<td>2.3</td>
<td>2.3</td>
<td>2.5</td>
<td>2.4</td>
<td>2.1</td>
<td>P</td>
</tr>
<tr>
<td>Sukabumi-2</td>
<td>2.3</td>
<td>2.3</td>
<td>2.4</td>
<td>2.4</td>
<td>1.7</td>
<td>P</td>
</tr>
<tr>
<td>Pontianak</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>Pidi</td>
<td>2.4</td>
<td>2.3</td>
<td>2.3</td>
<td>2.4</td>
<td>-1.7</td>
<td>T</td>
</tr>
<tr>
<td>Lahat</td>
<td>2.3</td>
<td>2.3</td>
<td>2.5</td>
<td>2.4</td>
<td>2.7</td>
<td>P</td>
</tr>
<tr>
<td>Pagar Alam</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>Indralaya</td>
<td>2.4</td>
<td>2.3</td>
<td>2.4</td>
<td>2.4</td>
<td>0.5</td>
<td>T</td>
</tr>
<tr>
<td>Kupang</td>
<td>2.3</td>
<td>2.3</td>
<td>2.4</td>
<td>2.4</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>Palembang</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>Lampung-2</td>
<td>2.3</td>
<td>2.3</td>
<td>2.4</td>
<td>2.4</td>
<td>1.0</td>
<td>P</td>
</tr>
<tr>
<td>Lampung-3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.4</td>
<td>2.4</td>
<td>0.5</td>
<td>T</td>
</tr>
<tr>
<td>Saweli</td>
<td>2.3</td>
<td>2.3</td>
<td>2.4</td>
<td>2.4</td>
<td>2.1</td>
<td>P</td>
</tr>
<tr>
<td>Sumba</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.4</td>
<td>0.5</td>
<td>T</td>
</tr>
<tr>
<td>IP-2M</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.4</td>
<td>0.0</td>
<td>T</td>
</tr>
<tr>
<td>IP-2A</td>
<td>2.3</td>
<td>2.3</td>
<td>2.4</td>
<td>2.4</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>China</td>
<td>2.3</td>
<td>2.3</td>
<td>2.5</td>
<td>2.4</td>
<td>2.6</td>
<td>P</td>
</tr>
<tr>
<td>Jeneponto</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>Medan</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
</tbody>
</table>

Ket: Y = nilai respon genotipe pada kondisi stres kekerasan, X = nilai respon rata-rata dari genotipe pada kondisi stres kekerasan, Yp = nilai respon genotipe pada kondisi non stres kekerasan, Xp = nilai respon rata-rata dari genotipe pada kondisi non stres kekerasan, IS = indeks sensitivitas kekerasan, AT = agak toleran, P = peka, titik () = tanaman mati/tidak ada cabang.
Lampiran 59 Nilai IS kekeringan bobot kering akar percobaan 2

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dompu-2</td>
<td>2.0</td>
<td>1.6</td>
<td>2.5</td>
<td>2.0</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>Curup</td>
<td>1.2</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>1.7</td>
<td>P</td>
</tr>
<tr>
<td>Bogor-1</td>
<td>1.4</td>
<td>1.6</td>
<td>2.0</td>
<td>2.0</td>
<td>1.4</td>
<td>P</td>
</tr>
<tr>
<td>Bogor-2</td>
<td>1.0</td>
<td>1.6</td>
<td>1.6</td>
<td>2.0</td>
<td>1.8</td>
<td>P</td>
</tr>
<tr>
<td>Bogor-3</td>
<td>1.9</td>
<td>1.6</td>
<td>2.3</td>
<td>2.0</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>Sukabumi-1</td>
<td>1.7</td>
<td>1.6</td>
<td>1.5</td>
<td>2.0</td>
<td>-0.7</td>
<td>T</td>
</tr>
<tr>
<td>Sukabumi-2</td>
<td>1.2</td>
<td>1.6</td>
<td>2.1</td>
<td>2.0</td>
<td>2.1</td>
<td>P</td>
</tr>
<tr>
<td>Pontianak</td>
<td>1.6</td>
<td>1.6</td>
<td>2.0</td>
<td>2.0</td>
<td>0.9</td>
<td>AT</td>
</tr>
<tr>
<td>Pidi</td>
<td>1.0</td>
<td>1.6</td>
<td>1.5</td>
<td>2.0</td>
<td>1.7</td>
<td>P</td>
</tr>
<tr>
<td>Lahat</td>
<td>1.8</td>
<td>1.6</td>
<td>2.4</td>
<td>2.0</td>
<td>1.3</td>
<td>P</td>
</tr>
<tr>
<td>Pagar Alam</td>
<td>1.2</td>
<td>1.6</td>
<td>1.2</td>
<td>2.0</td>
<td>0.0</td>
<td>T</td>
</tr>
<tr>
<td>Indralaya</td>
<td>2.3</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>-1.3</td>
<td>T</td>
</tr>
<tr>
<td>Kupang</td>
<td>2.2</td>
<td>1.6</td>
<td>2.9</td>
<td>2.0</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Palermbing</td>
<td>1.5</td>
<td>1.6</td>
<td>2.1</td>
<td>2.0</td>
<td>1.6</td>
<td>P</td>
</tr>
<tr>
<td>Lampung 1-2</td>
<td>1.5</td>
<td>1.6</td>
<td>1.3</td>
<td>2.0</td>
<td>-0.8</td>
<td>T</td>
</tr>
<tr>
<td>Lampung 1-3</td>
<td>0.9</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>2.4</td>
<td>P</td>
</tr>
<tr>
<td>Sawelitung</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Sumbang</td>
<td>1.5</td>
<td>1.6</td>
<td>2.9</td>
<td>2.0</td>
<td>2.4</td>
<td>P</td>
</tr>
<tr>
<td>Jepara</td>
<td>1.4</td>
<td>1.6</td>
<td>1.2</td>
<td>2.0</td>
<td>-0.8</td>
<td>T</td>
</tr>
<tr>
<td>Jeneponto</td>
<td>1.2</td>
<td>1.6</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>P</td>
</tr>
<tr>
<td>Medan</td>
<td>1.1</td>
<td>1.6</td>
<td>2.1</td>
<td>2.0</td>
<td>3.0</td>
<td>P</td>
</tr>
</tbody>
</table>

Keterangan: Y = nilai respon genotipe pada kondisi stres kekeringan, X = nilai respon rata-rata dari genotipe pada kondisi stres kekeringan, Yp = nilai respon genotipe pada kondisi non stres kekeringan, Xp = nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan, IS = indeks sensitivitas kekeringan, AT = agak toleran, P = peka.

Lampiran 60 Nilai IS kekeringan bobot kering tajuk percobaan 2

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dompu-2</td>
<td>11.7</td>
<td>6.5</td>
<td>13.2</td>
<td>11.8</td>
<td>0.3</td>
<td>T</td>
</tr>
<tr>
<td>Curup</td>
<td>4.0</td>
<td>6.5</td>
<td>11.0</td>
<td>11.8</td>
<td>1.4</td>
<td>P</td>
</tr>
<tr>
<td>Bogor-1</td>
<td>5.4</td>
<td>6.5</td>
<td>10.3</td>
<td>11.8</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Bogor-2</td>
<td>3.6</td>
<td>6.5</td>
<td>8.8</td>
<td>11.8</td>
<td>1.3</td>
<td>P</td>
</tr>
<tr>
<td>Bogor-3</td>
<td>6.7</td>
<td>6.5</td>
<td>10.4</td>
<td>11.8</td>
<td>0.8</td>
<td>AT</td>
</tr>
<tr>
<td>Sukabumi-1</td>
<td>6.4</td>
<td>6.5</td>
<td>9.8</td>
<td>11.8</td>
<td>0.8</td>
<td>AT</td>
</tr>
<tr>
<td>Sukabumi-2</td>
<td>5.6</td>
<td>6.5</td>
<td>13.7</td>
<td>11.8</td>
<td>1.3</td>
<td>P</td>
</tr>
<tr>
<td>Pontianak</td>
<td>4.9</td>
<td>6.5</td>
<td>11.5</td>
<td>11.8</td>
<td>1.3</td>
<td>P</td>
</tr>
<tr>
<td>Pidi</td>
<td>4.6</td>
<td>6.5</td>
<td>7.6</td>
<td>11.8</td>
<td>0.9</td>
<td>AT</td>
</tr>
<tr>
<td>Lahat</td>
<td>7.1</td>
<td>6.5</td>
<td>11.0</td>
<td>11.8</td>
<td>0.8</td>
<td>AT</td>
</tr>
<tr>
<td>Pagar Alam</td>
<td>5.6</td>
<td>6.5</td>
<td>8.1</td>
<td>11.8</td>
<td>0.7</td>
<td>AT</td>
</tr>
<tr>
<td>Indralaya</td>
<td>8.1</td>
<td>6.5</td>
<td>9.6</td>
<td>11.8</td>
<td>0.3</td>
<td>T</td>
</tr>
<tr>
<td>Kupang</td>
<td>11.1</td>
<td>6.5</td>
<td>21.3</td>
<td>11.8</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Palembang</td>
<td>7.3</td>
<td>6.5</td>
<td>12.8</td>
<td>11.8</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>Genotipe</td>
<td>Y</td>
<td>X</td>
<td>Yp</td>
<td>Xp</td>
<td>IS</td>
<td>Kelas</td>
</tr>
<tr>
<td>---------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>Lampung-2</td>
<td>6.8</td>
<td>6.5</td>
<td>6.9</td>
<td>11.8</td>
<td>0.1</td>
<td>T</td>
</tr>
<tr>
<td>Lampung-3</td>
<td>5.0</td>
<td>6.5</td>
<td>11.7</td>
<td>11.8</td>
<td>1.3</td>
<td>P</td>
</tr>
<tr>
<td>Saweli</td>
<td>6.2</td>
<td>6.5</td>
<td>12.5</td>
<td>11.8</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Sumba</td>
<td>7.0</td>
<td>6.5</td>
<td>19.1</td>
<td>11.8</td>
<td>1.4</td>
<td>P</td>
</tr>
<tr>
<td>IP-2M</td>
<td>4.6</td>
<td>6.5</td>
<td>7.4</td>
<td>11.8</td>
<td>0.9</td>
<td>AT</td>
</tr>
<tr>
<td>IP-2A</td>
<td>5.6</td>
<td>6.5</td>
<td>10.6</td>
<td>11.8</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>China</td>
<td>12.4</td>
<td>6.5</td>
<td>16.5</td>
<td>11.8</td>
<td>0.6</td>
<td>AT</td>
</tr>
<tr>
<td>Jeneponto</td>
<td>5.2</td>
<td>6.5</td>
<td>12.0</td>
<td>11.8</td>
<td>1.3</td>
<td>P</td>
</tr>
<tr>
<td>Medan</td>
<td>4.9</td>
<td>6.5</td>
<td>14.9</td>
<td>11.8</td>
<td>1.5</td>
<td>P</td>
</tr>
</tbody>
</table>

Ket: Y= nilai respon genotipe pada kondisi stres kekeringan, X= nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan, Yp= nilai respon genotipe pada kondisi stres kekeringan, Xp= nilai respon genotipe pada kondisi non stres kekeringan, IS= indeks sensitivitas kekeringan, AT= agak toleran, P= peka, Y= nilai respon genotipe pada kondisi stres kekeringan.

1. Lampung-2 61 Nilai IS kekeringan bobot akar/tajuk percobaan 2

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dompak</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>-0.6</td>
<td>T</td>
</tr>
<tr>
<td>Curup</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>2.4</td>
<td>P</td>
</tr>
<tr>
<td>Bogor</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>1.2</td>
<td>P</td>
</tr>
<tr>
<td>Bogor</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>1.7</td>
<td>P</td>
</tr>
<tr>
<td>Bogor</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>1.2</td>
<td>P</td>
</tr>
<tr>
<td>Sukabumi-i1</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>2.2</td>
<td>P</td>
</tr>
<tr>
<td>Sukabumi-i2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>1.3</td>
<td>P</td>
</tr>
<tr>
<td>Puntiunak</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>3.1</td>
<td>P</td>
</tr>
<tr>
<td>Pidi</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>T</td>
</tr>
<tr>
<td>Lahat</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.20</td>
<td>0.7</td>
<td>AT</td>
</tr>
<tr>
<td>Pagar Alam</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>1.8</td>
<td>P</td>
</tr>
<tr>
<td>Indralaya</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>2.1</td>
<td>P</td>
</tr>
<tr>
<td>Kupang</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>1.4</td>
<td>P</td>
</tr>
<tr>
<td>Palembang</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>1.3</td>
<td>P</td>
</tr>
<tr>
<td>Lampung-2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>1.2</td>
<td>P</td>
</tr>
<tr>
<td>Lampung-3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>-0.2</td>
<td>T</td>
</tr>
<tr>
<td>Saweli</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>1.6</td>
<td>P</td>
</tr>
<tr>
<td>Sumba</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>IP-2M</td>
<td>0.3</td>
<td>0.2</td>
<td>0.8</td>
<td>0.2</td>
<td>-2.0</td>
<td>T</td>
</tr>
<tr>
<td>IP-2A</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.0</td>
<td>T</td>
</tr>
<tr>
<td>China</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>2.6</td>
<td>P</td>
</tr>
<tr>
<td>Jeneponto</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>1.2</td>
<td>P</td>
</tr>
<tr>
<td>Medan</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>2.2</td>
<td>P</td>
</tr>
</tbody>
</table>

Ket: Y= nilai respon genotipe pada kondisi stres kekeringan, X= nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan, Yp= nilai respon genotipe pada kondisi stres kekeringan, Xp= nilai respon genotipe pada kondisi non stres kekeringan, IS= indeks sensitivitas kekeringan, AT= agak toleran, P= peka.
Lampiran 62 Nilai IS kekerengan panjang akar percobaan 2

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dompu-2</td>
<td>23.5</td>
<td>19.8</td>
<td>19.1</td>
<td>20.2</td>
<td>-10.3</td>
<td>T</td>
</tr>
<tr>
<td>Curup</td>
<td>16.6</td>
<td>19.8</td>
<td>21.4</td>
<td>20.2</td>
<td>10.0</td>
<td>P</td>
</tr>
<tr>
<td>Bogor-1</td>
<td>21.2</td>
<td>19.8</td>
<td>20.8</td>
<td>20.2</td>
<td>-0.9</td>
<td>T</td>
</tr>
<tr>
<td>Bogor-2</td>
<td>16.2</td>
<td>19.8</td>
<td>19.8</td>
<td>20.2</td>
<td>8.0</td>
<td>P</td>
</tr>
<tr>
<td>Bogor-3</td>
<td>19.3</td>
<td>19.8</td>
<td>22.8</td>
<td>20.2</td>
<td>7.0</td>
<td>P</td>
</tr>
<tr>
<td>Sukabumi-1</td>
<td>21.7</td>
<td>19.8</td>
<td>22.0</td>
<td>20.2</td>
<td>0.6</td>
<td>AT</td>
</tr>
<tr>
<td>Sukabumi-2</td>
<td>19.5</td>
<td>19.8</td>
<td>19.5</td>
<td>20.2</td>
<td>-0.1</td>
<td>T</td>
</tr>
<tr>
<td>Pontianak</td>
<td>19.0</td>
<td>19.8</td>
<td>17.5</td>
<td>20.2</td>
<td>-3.8</td>
<td>T</td>
</tr>
<tr>
<td>Pidi</td>
<td>17.2</td>
<td>19.8</td>
<td>18.8</td>
<td>20.2</td>
<td>3.7</td>
<td>P</td>
</tr>
<tr>
<td>Lahat</td>
<td>22.2</td>
<td>19.8</td>
<td>19.8</td>
<td>20.2</td>
<td>-5.5</td>
<td>T</td>
</tr>
<tr>
<td>Pagar Alam</td>
<td>18.4</td>
<td>19.8</td>
<td>19.4</td>
<td>20.2</td>
<td>2.5</td>
<td>P</td>
</tr>
<tr>
<td>Indralaya</td>
<td>21.7</td>
<td>19.8</td>
<td>20.4</td>
<td>20.2</td>
<td>-3</td>
<td>T</td>
</tr>
<tr>
<td>Kupang</td>
<td>22.1</td>
<td>19.8</td>
<td>20.0</td>
<td>20.2</td>
<td>-4.7</td>
<td>T</td>
</tr>
<tr>
<td>Palembang</td>
<td>20.9</td>
<td>19.8</td>
<td>22.6</td>
<td>20.2</td>
<td>3.4</td>
<td>P</td>
</tr>
<tr>
<td>Lampung-2</td>
<td>18.7</td>
<td>19.8</td>
<td>21.0</td>
<td>20.2</td>
<td>4.9</td>
<td>P</td>
</tr>
<tr>
<td>Lampung-3</td>
<td>17.9</td>
<td>19.8</td>
<td>18.4</td>
<td>20.2</td>
<td>1.3</td>
<td>P</td>
</tr>
<tr>
<td>Sawahlunto</td>
<td>24.3</td>
<td>19.8</td>
<td>21.2</td>
<td>20.2</td>
<td>-6.7</td>
<td>T</td>
</tr>
<tr>
<td>Sumbar</td>
<td>23.5</td>
<td>19.8</td>
<td>22.9</td>
<td>20.2</td>
<td>-1.3</td>
<td>T</td>
</tr>
<tr>
<td>IP-2M</td>
<td>16.2</td>
<td>19.8</td>
<td>17.4</td>
<td>20.2</td>
<td>3.1</td>
<td>P</td>
</tr>
<tr>
<td>IP-2A</td>
<td>16.6</td>
<td>19.8</td>
<td>21.5</td>
<td>20.2</td>
<td>10.3</td>
<td>P</td>
</tr>
<tr>
<td>China</td>
<td>21.3</td>
<td>19.8</td>
<td>22.0</td>
<td>20.2</td>
<td>1.5</td>
<td>P</td>
</tr>
<tr>
<td>Jeneponto</td>
<td>21.2</td>
<td>19.8</td>
<td>21.7</td>
<td>20.2</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>Median</td>
<td>16.0</td>
<td>19.8</td>
<td>15.6</td>
<td>20.2</td>
<td>-1.2</td>
<td>T</td>
</tr>
</tbody>
</table>

Ket: Y = nilai respon genotipe pada kondisi stres kekerengan, X = nilai respon rata-rata dari genotipe pada kondisi stres kekerengan, Yp = nilai respon genotipe pada kondisi non stres kekerengan, Xp = nilai respon rata-rata dari genotipe pada kondisi non stres kekerengan, IS = indeks sensitivitas kekerengan, AT = agak toleran, P = peka.

Lampiran 63 Nilai IS kekerengan bobot kering total percobaan 2

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dompu-2</td>
<td>13.8</td>
<td>7.9</td>
<td>15.6</td>
<td>13.7</td>
<td>0.3</td>
<td>T</td>
</tr>
<tr>
<td>Curup</td>
<td>5.1</td>
<td>7.9</td>
<td>12.9</td>
<td>13.7</td>
<td>1.4</td>
<td>P</td>
</tr>
<tr>
<td>Bogor</td>
<td>6.8</td>
<td>7.9</td>
<td>12.3</td>
<td>13.7</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Bogor</td>
<td>4.6</td>
<td>7.9</td>
<td>10.3</td>
<td>13.7</td>
<td>1.3</td>
<td>P</td>
</tr>
<tr>
<td>Bogor</td>
<td>8.5</td>
<td>7.9</td>
<td>12.7</td>
<td>13.7</td>
<td>0.8</td>
<td>AT</td>
</tr>
<tr>
<td>Sukabumi-1</td>
<td>8.1</td>
<td>7.9</td>
<td>11.3</td>
<td>13.7</td>
<td>0.7</td>
<td>AT</td>
</tr>
<tr>
<td>Sukabumi-2</td>
<td>6.8</td>
<td>7.9</td>
<td>15.8</td>
<td>13.7</td>
<td>1.3</td>
<td>P</td>
</tr>
<tr>
<td>Pontianak</td>
<td>6.5</td>
<td>7.9</td>
<td>13.5</td>
<td>13.7</td>
<td>1.2</td>
<td>P</td>
</tr>
<tr>
<td>Pidi</td>
<td>5.6</td>
<td>7.9</td>
<td>9.1</td>
<td>13.7</td>
<td>0.9</td>
<td>AT</td>
</tr>
<tr>
<td>Lahat</td>
<td>8.9</td>
<td>7.9</td>
<td>13.3</td>
<td>13.7</td>
<td>0.8</td>
<td>AT</td>
</tr>
<tr>
<td>Pagar Alam</td>
<td>6.7</td>
<td>7.9</td>
<td>9.2</td>
<td>13.7</td>
<td>0.6</td>
<td>AT</td>
</tr>
<tr>
<td>Indralaya</td>
<td>6.8</td>
<td>7.9</td>
<td>11.4</td>
<td>13.7</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>Kupang</td>
<td>13.3</td>
<td>7.9</td>
<td>24.2</td>
<td>13.7</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Palembang</td>
<td>8.7</td>
<td>7.9</td>
<td>15</td>
<td>13.7</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>Genotipe</td>
<td>Y</td>
<td>X</td>
<td>Yp</td>
<td>Xp</td>
<td>IS</td>
<td>Kelas</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>Lampung-2</td>
<td>8.2</td>
<td>7.9</td>
<td>8.1</td>
<td>13.7</td>
<td>0.0</td>
<td>T</td>
</tr>
<tr>
<td>Lampung-3</td>
<td>5.8</td>
<td>7.9</td>
<td>13.4</td>
<td>13.7</td>
<td>1.3</td>
<td>P</td>
</tr>
<tr>
<td>Saweli</td>
<td>7.6</td>
<td>7.9</td>
<td>14.2</td>
<td>13.7</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Sumba</td>
<td>8.4</td>
<td>7.9</td>
<td>22</td>
<td>13.7</td>
<td>1.5</td>
<td>P</td>
</tr>
<tr>
<td>IP-2M</td>
<td>5.9</td>
<td>7.9</td>
<td>8.5</td>
<td>13.7</td>
<td>0.7</td>
<td>AT</td>
</tr>
<tr>
<td>IP-2A</td>
<td>6.8</td>
<td>7.9</td>
<td>12.6</td>
<td>13.7</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Cina</td>
<td>15.8</td>
<td>7.9</td>
<td>19.3</td>
<td>13.7</td>
<td>0.4</td>
<td>T</td>
</tr>
<tr>
<td>Jeneponto</td>
<td>6.4</td>
<td>7.9</td>
<td>13.9</td>
<td>13.7</td>
<td>1.3</td>
<td>P</td>
</tr>
<tr>
<td>Medan</td>
<td>6</td>
<td>7.9</td>
<td>16.7</td>
<td>13.7</td>
<td>1.5</td>
<td>P</td>
</tr>
</tbody>
</table>

Ket: Y = nilai respon genotipe pada kondisi stres kekeringan, X = nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan, Yp = nilai respon genotipe pada kondisi non stres kekeringan, Xp = nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan, IS = indeks sensitivitas kekeringan, AT = agak toleran, P = peka.

Lampiran 64 Nilai IS kekeringan stomata terbuka percobaan 2

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dompu</td>
<td>3.3</td>
<td>10.2</td>
<td>5.2</td>
<td>7.8</td>
<td>-1.2</td>
<td>T</td>
</tr>
<tr>
<td>Curup</td>
<td>0.0</td>
<td>10.2</td>
<td>11.3</td>
<td>7.8</td>
<td>-3.2</td>
<td>T</td>
</tr>
<tr>
<td>Bogor</td>
<td>36.6</td>
<td>10.2</td>
<td>3.9</td>
<td>7.8</td>
<td>27.2</td>
<td>P</td>
</tr>
<tr>
<td>Bogor-1</td>
<td>16.2</td>
<td>10.2</td>
<td>6.6</td>
<td>7.8</td>
<td>4.8</td>
<td>P</td>
</tr>
<tr>
<td>Bogor-2</td>
<td>22.7</td>
<td>10.2</td>
<td>9.9</td>
<td>7.8</td>
<td>4.2</td>
<td>P</td>
</tr>
<tr>
<td>Pontianik</td>
<td>14.9</td>
<td>10.2</td>
<td>5.0</td>
<td>7.8</td>
<td>6.5</td>
<td>P</td>
</tr>
<tr>
<td>Pidi</td>
<td>0.0</td>
<td>10.2</td>
<td>3.2</td>
<td>7.8</td>
<td>-3.2</td>
<td>T</td>
</tr>
<tr>
<td>Lahat</td>
<td>9.1</td>
<td>10.2</td>
<td>5.6</td>
<td>7.8</td>
<td>2.0</td>
<td>P</td>
</tr>
<tr>
<td>Pagar Alam</td>
<td>1.3</td>
<td>10.2</td>
<td>5.1</td>
<td>7.8</td>
<td>-2.4</td>
<td>T</td>
</tr>
<tr>
<td>Indralaya</td>
<td>0.0</td>
<td>10.2</td>
<td>9.9</td>
<td>7.8</td>
<td>-3.2</td>
<td>T</td>
</tr>
<tr>
<td>Kupang</td>
<td>20.1</td>
<td>10.2</td>
<td>17.7</td>
<td>7.8</td>
<td>0.4</td>
<td>T</td>
</tr>
<tr>
<td>Palembang</td>
<td>10.4</td>
<td>10.2</td>
<td>6.9</td>
<td>7.8</td>
<td>1.7</td>
<td>P</td>
</tr>
<tr>
<td>Lampung-3</td>
<td>1.1</td>
<td>10.2</td>
<td>8.9</td>
<td>7.8</td>
<td>-2.9</td>
<td>T</td>
</tr>
<tr>
<td>Sumbu</td>
<td>11.9</td>
<td>10.2</td>
<td>4.7</td>
<td>7.8</td>
<td>5.1</td>
<td>P</td>
</tr>
<tr>
<td>IP-2M</td>
<td>5.3</td>
<td>10.2</td>
<td>13.5</td>
<td>7.8</td>
<td>-2.0</td>
<td>T</td>
</tr>
<tr>
<td>China</td>
<td>1.8</td>
<td>10.2</td>
<td>3.6</td>
<td>7.8</td>
<td>-1.7</td>
<td>T</td>
</tr>
<tr>
<td>Jeneponto</td>
<td>4.6</td>
<td>10.2</td>
<td>15.0</td>
<td>7.8</td>
<td>-2.2</td>
<td>T</td>
</tr>
<tr>
<td>Medan</td>
<td>25.0</td>
<td>10.2</td>
<td>5.0</td>
<td>7.8</td>
<td>13.0</td>
<td>P</td>
</tr>
</tbody>
</table>

Ket: Y = nilai respon genotipe pada kondisi stres kekeringan, X = nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan, Yp = nilai respon genotipe pada kondisi non stres kekeringan, Xp = nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan, IS = indeks sensitivitas kekeringan, AT = agak toleran, P = peka, titik (.) = tanaman mati/pertumbuhan daun belum maksimal.
Lampiran 65 Nilai IS kekeringan kerapatan stomata percobaan 2

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dompu-2</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>Curup</td>
<td>24.0</td>
<td>19.0</td>
<td>12.8</td>
<td>14.3</td>
<td>3.0</td>
<td>P</td>
</tr>
<tr>
<td>Bogor-1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>Bogor-2</td>
<td>12.8</td>
<td>19.0</td>
<td>17.2</td>
<td>14.3</td>
<td>-0.9</td>
<td>T</td>
</tr>
<tr>
<td>Bogor-3</td>
<td>23.3</td>
<td>19.0</td>
<td>14.4</td>
<td>14.3</td>
<td>2.1</td>
<td>P</td>
</tr>
<tr>
<td>Sukabumi-1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>Sukabumi-2</td>
<td>17.0</td>
<td>19.0</td>
<td>12.7</td>
<td>14.3</td>
<td>1.2</td>
<td>P</td>
</tr>
<tr>
<td>Pontianak</td>
<td>19.6</td>
<td>19.0</td>
<td>12.8</td>
<td>14.3</td>
<td>1.8</td>
<td>P</td>
</tr>
<tr>
<td>Pidi</td>
<td>25.3</td>
<td>19.0</td>
<td>14.8</td>
<td>14.3</td>
<td>2.4</td>
<td>P</td>
</tr>
<tr>
<td>Lahat</td>
<td>10.3</td>
<td>19.0</td>
<td>14.9</td>
<td>14.3</td>
<td>-1.1</td>
<td>T</td>
</tr>
<tr>
<td>Pagar Alam</td>
<td>22.0</td>
<td>19.0</td>
<td>14.4</td>
<td>14.3</td>
<td>1.8</td>
<td>P</td>
</tr>
<tr>
<td>Indralaya</td>
<td>20.8</td>
<td>19.0</td>
<td>14.5</td>
<td>14.3</td>
<td>1.5</td>
<td>P</td>
</tr>
<tr>
<td>Kupang</td>
<td>12.9</td>
<td>19.0</td>
<td>14.7</td>
<td>14.3</td>
<td>-0.4</td>
<td>T</td>
</tr>
<tr>
<td>Palembang</td>
<td>21.1</td>
<td>19.0</td>
<td>16.2</td>
<td>14.3</td>
<td>1.0</td>
<td>AT</td>
</tr>
<tr>
<td>Lampung-2</td>
<td>19.3</td>
<td>19.0</td>
<td>15.9</td>
<td>14.3</td>
<td>0.7</td>
<td>AT</td>
</tr>
<tr>
<td>Lampung-3</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>Sawa</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>P</td>
</tr>
<tr>
<td>Sumbawa</td>
<td>13.2</td>
<td>19.0</td>
<td>13.2</td>
<td>14.3</td>
<td>0.0</td>
<td>T</td>
</tr>
<tr>
<td>IP-2M</td>
<td>20.6</td>
<td>19.0</td>
<td>10.9</td>
<td>14.3</td>
<td>3.0</td>
<td>P</td>
</tr>
<tr>
<td>IP-2A</td>
<td>13.3</td>
<td>19.0</td>
<td>12.8</td>
<td>14.3</td>
<td>0.1</td>
<td>T</td>
</tr>
<tr>
<td>China</td>
<td>12.3</td>
<td>19.0</td>
<td>12.4</td>
<td>14.3</td>
<td>-0.0</td>
<td>T</td>
</tr>
<tr>
<td>Jeneponto</td>
<td>23.6</td>
<td>19.0</td>
<td>19.0</td>
<td>14.3</td>
<td>0.8</td>
<td>AT</td>
</tr>
<tr>
<td>Medan</td>
<td>21.4</td>
<td>19.0</td>
<td>14.0</td>
<td>14.3</td>
<td>1.8</td>
<td>P</td>
</tr>
</tbody>
</table>

Ket: Y = nilai respon genotipe pada kondisi stres kekeringan, X = nilai respon rata-rata dari genotipe pada kondisi stres kekeringan, Yp = nilai respon genotipe pada kondisi non stres kekeringan, Xp = nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan, IS = indeks sensitivitas kekeringan, AT = agak toleran, P = peka, titik (.) = tanaman mati/pertumbuhan daun belum maksimal.

Lampiran 66 Nilai IS kekeringan tanaman hidup percobaan 2

<table>
<thead>
<tr>
<th>Genotipe</th>
<th>Y</th>
<th>X</th>
<th>Yp</th>
<th>Xp</th>
<th>IS</th>
<th>Kelas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dompu-2</td>
<td>100.0</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
<td>T</td>
</tr>
<tr>
<td>Curup</td>
<td>0.0</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>1.7</td>
<td>P</td>
</tr>
<tr>
<td>Bogor-1</td>
<td>33.3</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Bogor-2</td>
<td>33.3</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Bogor-3</td>
<td>0.0</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>1.7</td>
<td>P</td>
</tr>
<tr>
<td>Sukabumi-1</td>
<td>50.0</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>0.9</td>
<td>AT</td>
</tr>
<tr>
<td>Sukabumi-2</td>
<td>33.3</td>
<td>40.9</td>
<td>66.7</td>
<td>100.0</td>
<td>0.9</td>
<td>AT</td>
</tr>
<tr>
<td>Pontianak</td>
<td>0.0</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>1.7</td>
<td>P</td>
</tr>
<tr>
<td>Pidi</td>
<td>25.0</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>1.3</td>
<td>P</td>
</tr>
<tr>
<td>Lahat</td>
<td>50.0</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>0.9</td>
<td>AT</td>
</tr>
<tr>
<td>Pagar Alam</td>
<td>33.3</td>
<td>40.9</td>
<td>66.7</td>
<td>100.0</td>
<td>0.9</td>
<td>AT</td>
</tr>
<tr>
<td>Indralaya</td>
<td>33.3</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>1.1</td>
<td>P</td>
</tr>
<tr>
<td>Kupang</td>
<td>100.0</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
<td>T</td>
</tr>
<tr>
<td>Palembang</td>
<td>0.0</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>1.7</td>
<td>P</td>
</tr>
<tr>
<td>Genotipe</td>
<td>Y</td>
<td>X</td>
<td>Yp</td>
<td>Xp</td>
<td>IS</td>
<td>Kelas</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>Lampung 2</td>
<td>50.0</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>0.9</td>
<td>AT</td>
</tr>
<tr>
<td>Lampung 3</td>
<td>16.7</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>1.4</td>
<td>P</td>
</tr>
<tr>
<td>Saweli</td>
<td>16.7</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>1.4</td>
<td>P</td>
</tr>
<tr>
<td>Sumba</td>
<td>83.3</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>0.3</td>
<td>T</td>
</tr>
<tr>
<td>IP-2M</td>
<td>100.0</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
<td>T</td>
</tr>
<tr>
<td>IP-2A</td>
<td>83.3</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>0.3</td>
<td>T</td>
</tr>
<tr>
<td>China</td>
<td>100.0</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
<td>T</td>
</tr>
<tr>
<td>Jeneponto</td>
<td>0.0</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>1.7</td>
<td>P</td>
</tr>
<tr>
<td>Medan</td>
<td>0.0</td>
<td>40.9</td>
<td>100.0</td>
<td>100.0</td>
<td>1.7</td>
<td>P</td>
</tr>
</tbody>
</table>

Ket: Y = nilai respon genotipe pada kondisi stres kekeringan, X = nilai respon rata-rata dari genotipe pada kondisi stres kekeringan, Yp = nilai respon genotipe pada kondisi non stres kekeringan, Xp = nilai respon rata-rata dari genotipe pada kondisi non stres kekeringan, IS = indeks sensitivitas kekeringan, AT = agak toleran, P = peka.