3. BAHAN, ALAT DAN METODE PENELITIAN

3.1 Bahan

(1) Ikan

Bahan utama yang digunakan adalah ikan lemuru (Sardinella longiceps) yang sudah dibekukan sekitar 4 minggu. Ikan tersebut dibeli di daerah Muncar Banyuwangi, kemudian dibawa dengan mobil container ke SBPPL, Slipi Jakarta dan disimpan dalam cold storage. Ikan tersebut mempunyai panjang antara 16 - 20 cm dan berat antara 39 - 53 g.

(2) Garam

Garam yang digunakan adalah garam rakyat yang berbentuk kristal dengan tingkat kemurnian 94,46%.

(3) Zat Kimia

Zat-zat kimia yang digunakan adalah ; \(\text{H}_2\text{SO}_4 \) pekat, campuran destruksi (CuSO\(_4\) dan K\(_2\text{SO}_4\)) atau "selenium reagent mixture", larutan asam borat 2%, HCl 0,1 N, indikator Tashiro (campuran 100 ml 0,05% methyl red dalam alkohol 95% dengan 15 ml 0,1% methelen blue dalam alkohol 95%), indikator phenolphthalen 1%, AgNO\(_3\) 0,1 N, KCNS 0,1 N, Na\(_2\)SO\(_4\) anhydrous dan petroleum eter heksana.

3.2 Alat

(1) Ember plastik (wadah penggaraman)

Untuk tempat penggaraman digunakan 4 buah ember yang terbuat dari plastik dengan kapasitas masing-masing sekitar 20 liter air.
(2) Timbangan

Timbangan digunakan untuk menimbang berat ikan dan garam.

(3) Pemberat

Pemberat digunakan untuk menekan ikan-ikan agar tidak mengapung pada waktu proses penggaraman basah. Bahan dari pemberat ini adalah kantong plastik sebanyak 3 lapis yang diisi air sekitar 3 liter, kemudian kantong plastik tersebut diikat dengan kuat agar airnya tidak keluar.

(4) Kran air

Digunakan untuk mengalirkan air pada waktu proses thawing.

(5) Kompor dan Panci

Digunakan dalam perebusan garam agar cepat me larut dan menjadi jenuh.

(6) Brinometer

Digunakan untuk mengukur tingkat kejenuhan larutan garam (brine).

(7) Alat-alat laboratorium untuk analisa:

- Kadar Garam terdiri dari : timbangan analitik ke telitian 0,1 mg, erlenmeyer 300 ml, gelas ukur 25 ml, pipet ukuran 5 ml, 10 ml, 25 ml dan 50 ml, buret 50 ml berskala 0,1 ml dan pemanas listerik. Metode yang dipakai untuk menentukan kadar garam ini adalah metode Volhard.

- Kadar Air terdiri dari : timbangan analitik kete-
litian 0,1 mg, sendok contoh dari stainless steel, cawan porselein, oven sebagai alat pengering, alat penjepit (crucible tang) dan eksikator. Metode yang digunakan dalam analisa kadar air ini adalah metode pengeringan oven (direct heating method).

- Kadar lemak terdiri dari : timbangan analitik ketelitian 0,1 mg, tabung soxhlet, selongsong lemak, kapas bebas lemak, labu lemak, oven, alat distilasi dan pemanas listerik. Metode yang digunakan dalam analisa kadar lemak ini adalah metode ekstraksi.

- Kadar protein terdiri dari : timbangan analitik ketelitian 0,1 mg, labu Kjeldhal, gelas ukur 25 ml, corong, alat distilasi uap, erlenmeyer 300 ml, pipet, pemanas listerik. Metode yang digunakan dalam analisa protein ini adalah metode crude Kjeldhal.

- pH terdiri dari : timbangan analitik ketelitian 0,1 mg, gelas piala 100 ml, blender jars, stop watch dan pH meter.

3.3 Metode Penelitian

3.3.1 Persiapan

Ikan yang sudah diambil dari cold storage kemudian di-thawing dengan dialiri air kran selama kurang lebih 3 jam. Kemudian ikan tersebut dimasukkan ke dalam keranjang sambil ditiriskan selama kira-kira 15 menit, tanpa dilakukan penyiangan. Selanjutnya dilakukan pengukuran panjang dan berat ikan. Setelah itu dilakukan penimbangan ikan dan garam, dan ikan tersebut dibagi menjadi 4 bagian yang sama masing-
masing 6 kg ikan. Tujuannya adalah untuk diberikan perlakuan dengan 2 cara penggaraman (penggaraman kering dan penggaraman basah) dan 2 kali ulangan. Untuk penggaraman kering digunakan garam sebanyak 30% dari berat ikan, yaitu 1,8 kg garam (30% dari 6 kg ikan). Sedangkan untuk penggaraman basah digunakan larutan garam jenuh.

Cara pembuatan larutan garam jenuh adalah dengan dilarutkannya garam dalam air secukupnya. Garam dan air tersebut dimasukkan ke dalam panci sambal direbus di atas kompor. Setelah itu larutan garam yang dihasilkan didinginkan selama kira-kira 1 jam. Selanjutnya dimasukkan brinemeter ke dalam larutan garam tersebut. Bila brinemeter terapung dan menunjukkan angka 100 maka larutan garam tersebut sudah dianggap jenuh.

3.3.2 Proses Penggaraman

Selanjutnya pengambilan contoh dilakukan menurut jadwal waktu yang sudah ditentukan, yaitu pada saat perendaman 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66 dan 72 jam. Parameter yang dianalisa meliputi kadar garam, kadar air, kadar lemak, kadar protein dan pH.

Diagram proses persiapan dan proses penggaraman dapat dilihat pada lampiran.

3.3.3 Perlakuan dan Kodifikasi

Perlakuan yang diberikan dalam penelitian ini adalah sebagai berikut:

(1) Cara Penggaraman
 - Penggaraman Kering \(P_1 \)
 - Penggaraman Basah \(P_2 \)

(2) Lama Penggaraman
 - 0 jam \(T_0 \)
 - 6 jam \(T_6 \)
 - 12 jam \(T_{12} \)
 - 18 jam \(T_{18} \)
 - 24 jam \(T_{24} \)
 - 30 jam \(T_{30} \)
 - 36 jam \(T_{36} \)
 - 42 jam \(T_{42} \)
 - 48 jam \(T_{48} \)
 - 54 jam \(T_{54} \)
 - 60 jam \(T_{60} \)
 - 66 jam \(T_{66} \)
 - 72 jam \(T_{72} \)
3.3.4 Rancangan Percobaan

Rancangan percobaan yang digunakan adalah "Split Plot in Time" dengan rancangan acak lengkap. Model umum rancangan adalah:

\[Y_{ijk} = U + P_i + d_{ik} + T_j + (PT)_{ij} + E_{ijk} \]

- \(Y_{ijk} \) = Nilai pengamatan perlakuan ke-\(i \), j dan ulangan k.
- \(U \) = Nilai tengah umum.
- \(P_i \) = Pengaruh dari cara penggaraman ke-\(i \).
- \(T_j \) = Pengaruh dari lama penggaraman ke-\(j \).
- \((PT)_{ij} \) = Pengaruh interaksi antara cara penggaraman ke-\(i \) dan lama penggaraman ke-\(j \).
- \(d_{ik} \) = Pengaruh acak untuk perlakuan ke-\(i \) pada ulangan ke-\(k \).
- \(E_{ijk} \) = Pengaruh acak untuk perlakuan ke-\(i \), ke-\(j \) pada ulangan ke-\(k \).

Dimana, \(i = 1, 2 \)
\(j = 1, 2, 3, \ldots, 13 \)
\(k = 1, 2 \)

3.3.5 Prosedur Pengamatan

Prosedur pengamatan yang dilakukan meliputi analisa:

3.3.5.1 Kadar Garam

Contoh sebanyak 2 - 3 gram dimasukkan ke dalam cawan porcelin yang bersih. Kemudian dipanaskan dalam oven bersuatu antara 102-105°C selama waktu tertentu (± 24 jam). Setelah itu dibakar ke dalam tanur yang bersuatu 600°C selama 12 jam hingga menjadi abu. Selanjutnya abu yang
didapatkan tersebut dilarutkan dengan aquades sehingga mencapai 50 ml di dalam labu ukur. Kemudian diambil 10 ml dan dimasukkan ke dalam erlenmeyer, lalu ditambahkan 10-15 ml AgNO₃ dan 3 tetes Ferri Amonium Sulfat (NH₄Fe(SO₄)₂) jenuh. Setelah itu dititrasi dengan KCNS 0,1 N sampai larutan berwarna coklat terang. Kemudian dibuatkan pula larutan blanko seperti analisa diatas.

Perhitungan:

Kadar Garam (NaCl) = \(\frac{58,45 \times (A - B) \times C}{1000 \times D} \) \(\times \) fp \(\times \) 100%

Keterangan:
A = ml KCNS blanko
B = ml KCNS contoh
C = Normalitet KCNS
D = Berat contoh (g)
fp = faktor pengencer

3.3.5.2 Kadar Air

Cawan porselin yang bersih dipanaskan dalam oven bersuhu antara 102-105°C selama 10-12 jam. Kemudian cawan porselin tersebut dikeluarkan dari oven dan langsung dimasukkan ke dalam eksikator selama 30 menit. Setelah itu ditimbang pada timbangan analitik. Selanjutnya dimasukkan contoh yang sudah dirajang kecil-kecil sebanyak 1 hingga 4 gram, lalu dikeringkan dalam oven dengan suhu 102-105°C. Pengeringan dalam oven dilakukan sampai tercapai berat konstan. Perhitungan:

Kadar Air = \(\frac{\text{bobot contoh} - \text{bobot kering}}{\text{bobot contoh}} \) \(\times \) 100%
3.3.5.3 Kadar Lemak

Perhitungan:

\[
\text{Kadar Lemak} = \frac{\text{berat labu dan lemak - berat labu kosong}}{\text{berat contoh}} \times 100\%
\]

3.3.5.4 Kadar Protein

(1) Proses Destruksi

Contoh yang sudah dirajang halus ditimbang sebanyak 1-2 gram, kemudian dimasukkan ke dalam labu kjeldahl beserta 3 gram campuran destruksi (selen) dan 20 ml asam sulfat pekat. Selanjutnya labu kjeldahl dipanaskan di atas pemanas listerik hingga warna larutan berubah menjadi jernih. Selama pemanasan pada
ujung labu kjeldahl dipasang corong untuk mencegah memerciknya larutan asam sulfat pekat keluar.

(2) Proses Distilasi

Setelah selesai proses destruksi labu kjeldahl didinginkan. Kemudian permukaan dalam dari labu dibislas dengan aquades dan larutan dikocok hingga homogen. Setelah itu dipersiapkan peralatan distilasi. Gambar alat distilasi dapat dilihat dibawah ini:

![Gambar Distilasi Uap](image_url)

Gambar 1. Alat Destilasi Uap

Larutan di dalam labu (A) didihahkan, lalu kran (b) dibuka arah vertikal, kran (a), (c) dan (d) ditutup. Kemudian larutan contoh dimasukkan secara kuantitatif ke dalam labu (C) melalui corong (d) dan 3 tetes indikator phenolphthalein. Selanjutnya dipasang larutan penampung dalam erlenmeyer 300 ml sebanyak 50 ml asam borat 2% dan 5 tetes indikator tashiro di bawah ujung pen-
dingin (E) dimana ujungnya tercelup dalam penampung. Setelah itu dituangkan secara bertahap larutan NaOH pekat melalui corong (d) sampai larutan contoh dalam labu (C) bersifat alkalis, dan dialirkan uap panas ke dalam labu (C) dengan cara kran (b) dibuka arah horizontal dan kran (a), kran (c) dan kran (d) ditutup. Distilasi diakhiri bila distilat yang menetes diujung kolom pendingin (E) bereaksi netral terhadap laksmus merah. Warna larutan penampung menjadi hijau. Kemudian larutan contoh dikeluarkan pada labu (C) dengan cara menutup kran (b) sehingga uap panas mengalir ke arah vertikal dan kran (c) dibuka.

(3) Proses Titrasi

Setelah proses distilasi larutan penampung tadi dititrasi dengan HCl 0,1 N hingga warna larutan berubah menjadi merah muda (pink).

Perhitungan:

$$Kadar\ Protein = \frac{(ml\ titrasi\ HCl \times N\ HCl) \times 14 \times 6.25}{1000 \times \text{berat}\ contoh\ (g)} \times 100\%$$

3.3.5.5 pH

Contoh yang sudah direjaqng halus sebanyak 20 gram dimasukkan ke dalam blender jars dan ditambahkan 40 ml aquades, kemudian diblend selama 1 menit. Setelah itu dituangkan ke dalam gelas piala 100 ml, dan diukur pH-nya dengan menggunakan pH-meter. Sebelum alat pH-meter digunakan untuk mengukur pH contoh maka harus diterakan dulu ja-
rum petunjuk pH dengan larutan buffer pH 4 dan larutan buffer pH 7. Besarnya harga pH dibaca pada skala dan ditentukan setelah jarum petunjuk bergerak selama 1 menit.