Lampiran
Lampiran 1. Komposisi Bahan Makanan Buatan

<table>
<thead>
<tr>
<th>Bahan dasar yang dipakai</th>
<th>% berat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tepung dedak udang</td>
<td>69,00</td>
</tr>
<tr>
<td>Tepung tapioka</td>
<td>9,66</td>
</tr>
<tr>
<td>Minyak ikan</td>
<td>5,00</td>
</tr>
<tr>
<td>Minyak jagung</td>
<td>5,00</td>
</tr>
<tr>
<td>Vitamin</td>
<td>0,80</td>
</tr>
<tr>
<td>Mineral</td>
<td>3,00</td>
</tr>
<tr>
<td>Kolesterol</td>
<td>0,30</td>
</tr>
<tr>
<td>Sellulosa</td>
<td>1,24</td>
</tr>
<tr>
<td>CMC</td>
<td>6,00</td>
</tr>
<tr>
<td>Jumlah</td>
<td>100,00</td>
</tr>
</tbody>
</table>

(Sumber: Modifikasi Ransum Sikong, 1982)
Lampiran 2. Nilai Gizi Makanan Buatan yang Digunakan

<table>
<thead>
<tr>
<th>Senyawaan</th>
<th>Nilai (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>31,48</td>
</tr>
<tr>
<td>Lemak</td>
<td>5,77</td>
</tr>
<tr>
<td>Abu</td>
<td>17,42</td>
</tr>
<tr>
<td>Serat kasar</td>
<td>9,96</td>
</tr>
<tr>
<td>BETN</td>
<td>25,24</td>
</tr>
<tr>
<td>Ca</td>
<td>6,65</td>
</tr>
<tr>
<td>P</td>
<td>1,22</td>
</tr>
</tbody>
</table>

* Hasil analisa Laboratorium Fakultas Peternakan, IPB.
Lampiran 3. Alat dan Cara Pengukuran Parameter Kualitas Air

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Alat/cara</th>
<th>Ketelitian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suhu air</td>
<td>Termometer</td>
<td>0,5</td>
</tr>
<tr>
<td>pH</td>
<td>Digital pH meter</td>
<td>0,01</td>
</tr>
<tr>
<td>Salinitas</td>
<td>Rafraktometer</td>
<td>0,1</td>
</tr>
<tr>
<td>Oksigen terlaut</td>
<td>YSI 58 Oxygen meter</td>
<td>0,01</td>
</tr>
<tr>
<td>Nitrit dan ammonia</td>
<td>Metoda Nessler dengan HACH Spektophotometer</td>
<td>-</td>
</tr>
</tbody>
</table>
Lampiran 4. Model Penyusunam Data untuk RAL

<table>
<thead>
<tr>
<th>Ulangan</th>
<th>Perlakuan</th>
<th>Total</th>
</tr>
</thead>
</table>
| | I | II | III | | \(
| 1 | \(Y_{11} \) | \(Y_{21} \) | \(Y_{31} \) | \(Y_{.1} \) |
| 2 | \(Y_{12} \) | \(Y_{22} \) | \(Y_{32} \) | \(Y_{.2} \) |
| 3 | \(Y_{13} \) | \(Y_{23} \) | \(Y_{33} \) | \(Y_{.3} \) |
| Total | \(Y_{1.} \) | \(Y_{2.} \) | \(Y_{3.} \) | \(Y_{..} \) |
| Rata-rata | \(\bar{Y}_{1.} \) | \(\bar{Y}_{2.} \) | \(\bar{Y}_{3.} \) | \(\bar{Y}_{..} \) |

Model dari rancangan penelitian adalah :

\[
Y_{ij} = \mu + \beta_i + \alpha_{ij} \quad (i = 1,2,3) \\
\quad \Quad
Lampiran 5. Daftar Analisa Sidik Ragam untuk RAL

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td>k - 1</td>
<td>JKP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$S_p^2 = \frac{\text{JKP}}{k - 1}$</td>
<td>S_p^2/g^2</td>
</tr>
<tr>
<td>Galat</td>
<td>k(n-1)</td>
<td>JKG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$S_g^2 = \frac{\text{JKG}}{k(n-1)}$</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>kn - 1</td>
<td>JKT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$S_t^2 = \frac{\text{JKT}}{kn - 1}$</td>
<td></td>
</tr>
</tbody>
</table>

$$
\text{JKT} = \sum_{i=1}^{k} \sum_{j=1}^{n} (Y_{ij} - \bar{Y}_{..})^2
$$

$$
\text{JKP} = \sum_{i=1}^{k} (Y_{i..} - \bar{Y}_{..})^2
$$

$$
\text{JKG} = \text{JKT} - \text{JKP}
$$

Keterangan:

- n = Jumlah ulangan
- k = Jumlah perlakuan
- JKT = Jumlah kuadrat total
- JKP = Jumlah kuadrat perlakuan
- JKG = Jumlah kuadrat galat

Sumber : Steel dan Torrie (1981)
Lampiran 7. Keadaan Oksigen Terlarut dalam Air pada Tingkat Padat Penebaran 40 ekor/m², 70 ekor/m² dan 100 ekor/m²

<table>
<thead>
<tr>
<th>Tingkat padat penebaran (ekor/m²)</th>
<th>Waktu pengamat (minggu)</th>
<th>Ulangan</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>6,43</td>
<td>6,46</td>
<td>6,39</td>
</tr>
<tr>
<td>1</td>
<td>6,70</td>
<td>6,77</td>
<td>6,70</td>
</tr>
<tr>
<td>40</td>
<td>6,18</td>
<td>6,07</td>
<td>6,19</td>
</tr>
<tr>
<td>3</td>
<td>6,73</td>
<td>6,64</td>
<td>6,64</td>
</tr>
<tr>
<td>4</td>
<td>6,94</td>
<td>6,97</td>
<td>6,93</td>
</tr>
<tr>
<td>0</td>
<td>6,34</td>
<td>6,39</td>
<td>6,38</td>
</tr>
<tr>
<td>1</td>
<td>6,69</td>
<td>6,69</td>
<td>6,68</td>
</tr>
<tr>
<td>70</td>
<td>6,07</td>
<td>6,10</td>
<td>6,12</td>
</tr>
<tr>
<td>3</td>
<td>6,67</td>
<td>6,63</td>
<td>6,56</td>
</tr>
<tr>
<td>4</td>
<td>6,92</td>
<td>6,93</td>
<td>6,94</td>
</tr>
<tr>
<td>0</td>
<td>6,34</td>
<td>6,42</td>
<td>6,33</td>
</tr>
<tr>
<td>1</td>
<td>6,70</td>
<td>6,65</td>
<td>6,69</td>
</tr>
<tr>
<td>100</td>
<td>6,13</td>
<td>6,17</td>
<td>6,08</td>
</tr>
<tr>
<td>3</td>
<td>6,61</td>
<td>6,63</td>
<td>6,60</td>
</tr>
<tr>
<td>4</td>
<td>6,68</td>
<td>6,90</td>
<td>6,90</td>
</tr>
</tbody>
</table>
Lampiran 8. Keadaan Keasaman Air pada Tingkat Padat Penebaran 40 ekor/m², 70 ekor/m² dan 100 ekor/m²

<table>
<thead>
<tr>
<th>Tingkat padat penebaran (ekor/m²)</th>
<th>Waktu pengamatan (minggu)</th>
<th>Ulangan</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>7,84</td>
<td>7,99</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>7,93</td>
<td>7,90</td>
</tr>
<tr>
<td>40</td>
<td>2</td>
<td>7,98</td>
<td>8,00</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>7,98</td>
<td>7,97</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>7,98</td>
<td>7,96</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>7,90</td>
<td>7,90</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>7,89</td>
<td>7,90</td>
</tr>
<tr>
<td>70</td>
<td>2</td>
<td>7,95</td>
<td>7,99</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>7,94</td>
<td>7,97</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>7,96</td>
<td>7,95</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>7,86</td>
<td>7,89</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>7,90</td>
<td>7,90</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
<td>7,95</td>
<td>7,94</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>7,97</td>
<td>7,94</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>7,96</td>
<td>7,96</td>
</tr>
</tbody>
</table>
Lampiran 9. Keadaan Ammonia (NH$_3$-N) dan Nitrit (NO$_2$-N) dalam Air pada Tingkat Padat Penebaran 40 ekor/m2, 70 ekor/m2 dan 100 ekor/m2

<table>
<thead>
<tr>
<th>Tingkat padat penebaran (ekor/m2)</th>
<th>Waktu pengamatan (minggu)</th>
<th>NH$_3$-N (ppm)</th>
<th>NO$_2$-N (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0</td>
<td>-</td>
<td>0.007</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-</td>
<td>0.012</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0.022</td>
<td>0.022</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-</td>
<td>0.014</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>-</td>
<td>0.013</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-</td>
<td>0.016</td>
</tr>
<tr>
<td>70</td>
<td>2</td>
<td>0.022</td>
<td>0.024</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-</td>
<td>0.017</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.022</td>
<td>0.029</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0.015</td>
<td>0.018</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.015</td>
<td>0.024</td>
</tr>
<tr>
<td>70</td>
<td>2</td>
<td>0.022</td>
<td>0.027</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-</td>
<td>0.019</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.034</td>
<td>0.034</td>
</tr>
</tbody>
</table>
Lampiran 10. Minimum, Maksimum dan Rata-rata parameter Fisika dan Kimia untuk setiap Perlakuan Selama Penelitian Berlangsung

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Perlakuan (ekor/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Suhu (°C)</td>
<td>25,0 - 30,0</td>
</tr>
<tr>
<td></td>
<td>27,3</td>
</tr>
<tr>
<td>Salinitas (ppt)</td>
<td>19,0 - 21,0</td>
</tr>
<tr>
<td>Oksigen (ppm)</td>
<td>6,07-6,97</td>
</tr>
<tr>
<td></td>
<td>6,58</td>
</tr>
<tr>
<td>pH</td>
<td>7,84-8,00</td>
</tr>
<tr>
<td></td>
<td>7,95</td>
</tr>
<tr>
<td>Ammonia (ppm)</td>
<td>0,000-0,022</td>
</tr>
<tr>
<td></td>
<td>0,004</td>
</tr>
<tr>
<td>Nitrit (ppm)</td>
<td>0,007-0,022</td>
</tr>
<tr>
<td></td>
<td>0,013</td>
</tr>
<tr>
<td>Tingkat padat penebaran (ekor/m²)</td>
<td>Waktu (minggu)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>70</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
Lampiran 12. Jumlah Udang Uji yang Hidup pada Tingkat Padat Penebaran 40 ekor/m², 70 ekor/m² dan 100 ekor/m²

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Ulangan</th>
<th>Jumlah yang hidup (ekor) pada minggu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>40 ekor</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>per m²</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>70 ekor</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>per m²</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>100 ekor</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>per m²</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>30</td>
</tr>
</tbody>
</table>
Lampiran 13. Berat Rata-rata Individu (gram) Udang Uji pada Tingkat Padat Penebaran 40 ekor/m², 70 ekor/m² dan 100 ekor/m²

<table>
<thead>
<tr>
<th>Tingkat padat penebaran (ekor/m²)</th>
<th>Waktu (minggu)</th>
<th>Ulangan I</th>
<th>Ulangan II</th>
<th>Ulangan III</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0,0542</td>
<td>0,0519</td>
<td>0,0556</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0,0652</td>
<td>0,0710</td>
<td>0,0691</td>
</tr>
<tr>
<td>40</td>
<td>2</td>
<td>0,1103</td>
<td>0,1114</td>
<td>0,1083</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0,1517</td>
<td>0,1577</td>
<td>0,1514</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0,2360</td>
<td>0,2296</td>
<td>0,2333</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0,0431</td>
<td>0,0427</td>
<td>0,0462</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0,0549</td>
<td>0,0540</td>
<td>0,0558</td>
</tr>
<tr>
<td>70</td>
<td>2</td>
<td>0,0834</td>
<td>0,0755</td>
<td>0,0841</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0,1080</td>
<td>0,1027</td>
<td>0,1146</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0,1762</td>
<td>0,1743</td>
<td>0,1801</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0,0428</td>
<td>0,0437</td>
<td>0,0433</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0,0446</td>
<td>0,0576</td>
<td>0,0566</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
<td>0,0684</td>
<td>0,0833</td>
<td>0,0803</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0,0887</td>
<td>0,1093</td>
<td>0,1059</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0,1454</td>
<td>0,1724</td>
<td>0,1783</td>
</tr>
</tbody>
</table>
Lampiran 14. Analisa Sidik Ragam Laju Pertumbuhan Individu Udang Uji

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>Fhit.</th>
<th>F_{0.05}</th>
<th>F_{0.01}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td>2</td>
<td>0.0026</td>
<td>0.0013</td>
<td>6.5*</td>
<td>5.14</td>
<td>10.92</td>
</tr>
<tr>
<td>Galat</td>
<td>6</td>
<td>0.0007</td>
<td>0.0002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jumlah</td>
<td>8</td>
<td>0.0033</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Berbeda nyata pada taraf nyata 0.05

Uji Beda Nyata Jujur Laju Pertumbuhan Individu Udang Uji:

\[
\bar{Y}_3, \quad \bar{Y}_2, \quad \bar{Y}_1.
\]

\[
0.3325, \quad 0.3463, \quad 0.3737
\]

\[
K_1, \quad K_2, \quad K_3
\]

\[
W = q_{0.05}(3,6) \times S_{\bar{X}} = 4.34 \times \sqrt{\frac{0.0002}{3}} = 0.0354
\]

\[
W = q_{0.01}(3,6) \times S_{\bar{X}} = 6.33 \times \sqrt{\frac{0.0002}{3}} = 0.0517
\]

\[
d_{K_1K_2} = 0.0138, \quad d_{K_1K_3} = 0.0412*, \quad d_{K_2K_3} = 0.0274
\]

\[
A \quad B \quad C
\]
Lampiran 15. Analisa Sidik Ragam Produksi

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F hit.</th>
<th>F 0,05</th>
<th>F 0,01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td>2</td>
<td>2,9029</td>
<td>1,4515</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galat</td>
<td>6</td>
<td>0,5931</td>
<td>0,0989</td>
<td>14,68</td>
<td>5,14</td>
<td>10,92</td>
</tr>
<tr>
<td>Jumlah</td>
<td>8</td>
<td>3,4960</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Berbeda nyata pada taraf nyata 0,05 dan berbeda sangat nyata pada taraf nyata 0,01

Uji Beda Nyata Jujur Produksi Udang Uji :

\[
\bar{Y}_1, \quad \bar{Y}_2, \quad \bar{Y}_3.
\]

\[
\begin{align*}
K_1 & = 2,0671 \\
K_2 & = 2,7408 \\
K_3 & = 3,4580
\end{align*}
\]

\[
w = q_{0,01} (3,6) \times s_{\bar{Y}} = 4,34 \times \sqrt{\frac{0.0989}{3}} = 0,7880
\]

\[
w = q_{0,05} (3,6) \times s_{\bar{Y}} = 6,33 \times \sqrt{\frac{0.0989}{3}} = 1,1493
\]

\[
d_{K_1K_2} = 0,6737 \quad d_{K_1K_3} = 1,3909^* \quad d_{K_2K_3} = 0,7532
\]

A B C
Lampiran 16. Analisa Sidik Raga Kelangsungan Hidup Udang Uji antara Perlakuan

<table>
<thead>
<tr>
<th>Sumber keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F hit.</th>
<th>F₀,₀₅</th>
<th>F₀,₀₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td>2</td>
<td>5,5007</td>
<td>2,7504</td>
<td>0,24⁴</td>
<td>5,14</td>
<td>10,92</td>
</tr>
<tr>
<td>Galat</td>
<td>6</td>
<td>68,5073</td>
<td>11,4179</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>74,0080</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⁴ Tidak berbeda nyata pada taraf nyata 0,05