PEMBUATAN "RAPID TEST" MENGGUNAKAN TEKNIK "KOAGLUTINASI TIDAK LANGSUNG" UNTUK DETEKSI ANTIBODI FLU BURUNG
(Preparation of Rapid Test using Indirect Coagglutination for Detecting Antibody against Bird Flu)

I Wayan Teguh Whawan, Titiek Sunartati
Dep. Penyakit Hewan dan Kesehatan Masyarakat Veteriner,
Fakultas Kedokteran Hewan IPB

ABSTRAK

Kata kunci: Rapid test, koaglutinasi tidak langsung, antibodi H5N1.

ABSTRACT
Until now, there is no rapid agglutination test to detect antibodies to viruses due to the ultra-microscopic character of viral particles. By the help of complex formation of Staphylococcus aureus bearing protein A with rabbit IgG-anti guinea pig IgG which previously immunized with avian influenza (AI) virus of H5N1, agglutination of antibodies to viruses can be visualized. To design the prototype of the test, the bacterial cells of S. aureus were coupled to a complex compound consisting of rabbit IgG-guinea pig IgG-AI H5N1antigen. This protocol is able to detect clearly the presence of AI H5N1 antibody in sera of chicken, rabbit and guinea pig, showing the rapid, clear and distinct

Keywords: Rapid test, indirect coagglutination, H5N1 antibody.

PENDAHULUAN
Saat ini penyakit flu burung telah bersifat enzootic pada ayam, sehingga peluang kontaminasi lingkungan oleh virus avian influenza H5N1 sangat tinggi. Masalah yang dihadapi dalam pemantauan virus AI H5N1 adalah beragamnya uji yang digunakan, rumit, mahal dan sering membutuhkan keahlian khusus. Melihat dan menerapkan permasalahar tersebut maka dalam usulan penelitian ini akan dicari
suatu upaya untuk mempermudah aplikasi uji yang digunakan, serta dapat digunakan secara praktis, cepat, murah dan aman untuk setiap jenis induk semangkat yang akan dilihat. Dengan memanfaatkan kemampuan Protein A yang dapat berinteraksi dengan Fc-fraksi IgG. Berdasarkan sifat biologis ini kesungkiran besar dapat dibuat matriks pembelajaran (Staphylococcus aureus utuh kaya protein A) yang telah diakuisi dengan IgG kelinci anti IgG marnot dan matriks ini dapat digunakan sebagai reagen aglutinasi dalam uji koaglutinasi tidak langsung (indirect coagglutination).

Protein A diketahui sebagai komponen permukaan yang umum ditemukan pada permukaan dinding sel S. aureus (Sjostrom et al., 1984; Kusunoki et al., 1992). Protein A merupakan polipeptida dengan berat molekul 13-45 kDa (kilo Dalton), yang terletak secara kovalen pada lapisan dinding sel S. aureus (Forssen, 1970; Boyle dan Reis, 1987; Kusunoki et al., 1992; Takeuchi et al., 1995). Secara biologis protein A berperan sebagai faktor virulensi bakteri, yaitu mampu berikatan kust pada bagian Fc (fragment crystallizable) dari hampir semua subklas imunoglobulin G (IgG) berbagai spesies, kecuali IgG1 (manusia), IgG1 (mencit); IgG1, IgG2a, IgG2b (tikus); dan tidak berikatan pada Fc Ig ayam (IgY) dan 'lambing (Boyle et al., 1985; Harlow dan Lane, 1988). Protein A juga dapat
berikatara dengan bagian Fc IgA dan IgM pada beberapa species (Arbuthnot et al., 1983). Bagian Fab (fragment antigen binding) pada IgG yang erat pada protein A menghadap ke luar dan bebas berikatan dengan Ag spesifik (Praseno, 1995; Jawetz et al., 1996).

Protein A merupakan reagen penting dalam imunologi dan teknik diagnostik laboratorium. Sebagai contoh pada protein A yang berikatan dengan molekul (IgG) yang diaraikan terhadap antigen (Ag) bakteri tertentu akan mengaglutinisasi bakteri yang mempunyai Ag itu (koaglutinasi) (Jawetz et al., 1996). Menurut Wibawan dan Pasaibun (1993), uji koaglutinasi dengan menggunakan protein A merupakan metode yang sangat mudah untuk dilakukan, cepat (30 detik), hasil yang akurat serta murah. Dalam penelitian ini akan dibuat prototype Kt Diagnostik dalam bentuk aglutinatcr yang terdiri dari IgG keluca anti IgG marmot yang berasaksi spesifik dengan virus Al HSN1, yang telah dibebani S. aureus- protein A.

Tujuan penelitian ini adalah untuk menyiapkan prototipe Kt-Diagnostik Flu Burung dengan menggunakan prinsip-prinsip uji koaglutinasi dengan memperhatikan keandalan prototipe Kt-Diagnostik sehingga layak digunakan di lapangan. Pada akhirnya diharapkan hasil penelitian ini dapat digunakan sebagai informasi dasar dalam pengembangan dan produksi Kit Diagnostik Cepat (Rapid Test) terhadap Flu Burung.

METODE PENELITIAN

Isolat Bakteri

Penentuan S. aureus yang Kaya Protein A

Untuk menentukan kandidat isolat S. aureus yang kaya protein A digunakan teknik serum soft-agar. Isolat bakteri yang akan diuji diizinkan ke dalam 10 ml serum soft-agar (Brain Heart Infusion /BHI+15% agar dan 100ul serum kelinci), diagilitasi dan kemudian diinkubasikan dalam suhu 37°C selama 18 jam. Perubahan cairan koloni dufus menjadi kompak adalah indikator keberadaan protein A pada permukaan sel bakteri (Djannatun, 2002).

Produksi Serum Spesifik H5N1 pada Marmot

Produksi antibody spesifik pada marmot dilakukan dengan menyuntikkan vaksin AI H5N1 Close 1 (IPB-Shigeta) yang dilakukan secara berkala sesuai dengan rekomendasi pabrik. Aplikasi vaksin yang pertama dilakukan dengan menyuntikkan vaksin 0.5 ml secara intra musculair, dan diulang booster 2 minggu kemudian. Keberadaan antibody spesifik H5N1 dalam serum ditentukan dengan uji haemoinhibition agglutination test (HI Test) dan agar gel precipitations test (AGPT).

Preparasi IgG kelinci anti terhadap IgG Marmot

Kelinci divaksinasi dengan sediaan IgG marmot yang telah dimurnikan (1 mg/ml) yang telah disiapkan sebelumnya dengan metode berurutan (sequential method) yaitu vaksinasi minggu I sebanyak 0,5 ml, diulang minggu II berturut-turut tiaga kali sebanyak 1 ml kemudian diulang lagi minggu III berturut-turut tiaga kali sebanyak 1 ml (Zhoc et al., 1994). Injeksi dilakukan melalui vena auricularis. Satu minggu setelah vaksinasi terakhir darah diambil dari arteri auricularis. Darah yang didapat diinkubasi pada suhu 37°C selama 1 jam kemudian diinkubasi pada suhu 4°C selama 18-24 jam. Serum dipisahkan dan disimpan dalam tabung Eppendorf untuk kemudian keberadaan antibodi terhadap IgY ayam diuji dengan Agar Gel Precipitation Test (AGPT).
Preparasi Aglutinasi

Preparasi matriks pembekuan menggunakan bakteri utah *S. aureus* yang kaya protein A dan padanya diikatkan IgG muru anti IgG marmot. Bakteri utah sebelum digunakan sebagai pembekuan terlebih dahulu diawetkan dengan formaldehid dan secara berkala diuji kelayakannya. Dalam proses ini dilakukan optimalisasi komposisi antara bakteri dengan IgG dengan box titration sehingga tidak terjadi self agglutination. Pada akhir aktivitas tahap ini akan diperoleh 2 macam reagen yakni reagen matriks pembekuan (sediaan A) dan reagen antigen H5N1; yang telah diaktivasi dan terikat dengan IgG marmot (sediaan B). Kedua reagen inilah diharapkan nantinya dapat digunakan sebagai prototipe Diagnostik Kit.

Uji Koaglutinasi

Uji keandalan prototipe diagnostik kit dalam mendeteksi antibodi terhadap H5N1 pada ayam, marmot dan kelinci.

HASIL DAN PEMBAHASAN

Semua isolat bakteri *S. aureus* yang digunakan bersifat mesofil aerobikal, tumbuh dengan baik setelah diinkubasi dalam media BHI selama 24-48 jam pada suhu 35 ± 1° C. Dalam pewarnaan Gram semua isolat berbentuk bulat (kokus), Gram +, motil, aerobik dan aerobic fakultatif, memiliki aktifitas katalase, koagulase dan oxidase serta dapat memfertasikan manitol, koagulase.

<table>
<thead>
<tr>
<th>No.</th>
<th>Nama/kode kultur</th>
<th>Hasil Uji pada Serum Soft Agar</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>SA-1</td>
<td>Diffuse</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>SA-2</td>
<td>Diffuse</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>SA-3</td>
<td>Diffuse</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>SA-4</td>
<td>Diffuse</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>SA-5</td>
<td>Diffuse</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>SA-6</td>
<td>Diffuse</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>SA-7</td>
<td>Diffuse</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>SA-8</td>
<td>Diffuse</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>SA-9</td>
<td>Diffuse</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>SA-10</td>
<td>Diffuse</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>SA-11</td>
<td>Diffuse</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>SA-12</td>
<td>Diffuse</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>SA-13</td>
<td>Diffuse</td>
<td></td>
</tr>
</tbody>
</table>

Teknik serum soft-agar menggunakan serum kelinci, dapat memisahkan bakteri *S. aureus* yang memiliki des tidak memiliki protein A pada permukaan selnya. Isolat SA 3, 4, 5, 6 dan 11 bentuk koloni kempak pada serum soft-agar, sedangkan isolat *S. aureus* lainnya tetap menunjukkan koloni difus pada serum soft-agar (Gambar 1).

![Gambar 1. Perubahan bentuk koloni difus (sebelum penambahan serum kelinci) menjadi kempak pada *S. aureus* SA5 dan SA11 pada uji serum soft-agar menggunakan serum kelinci](image)

Seluruh isolat yang digunakan dalam penelitian ini menunjukkan pertumbuhan keruh pada media casr THB. Dari 13 isolat *S. aureus*, 5 isolat mengekspresikan keberadaan protein A dan 8 isolat tidak menunjukkan ekspresi protein A pada permukaan selnya. Dari 5 isolat yang memiliki protein A dipilih 2 isolat yakni SA 5 dan SA 11, sebagai kandidat penambahan matriks serdaskan kualitas perubahan koloni yang ditunjukkan Selanjutnya untuk keamanan dan kenyamanan pekerjaan selanjutnya, kedua isolat ini dihubukkan pada media agar

825
darah dan digunakan sebagai isolat kerja dan dibuat pula isolat untuk disimpan yang akan digunakan bilamana diperlukan.

Protein A diketahui merupakan komponen permukaan yang umumnya ditemukan pada *S. aureus* (Sherris *et al.*, 1984; Kusunoki *et al.*, 1992). Protein A merupakan polipeptida dengan berat molekul 13-45 kDa (kilo Dalton), yang terikat secara kovalen pada lapisan dinding sel *S. aureus* (Forsgren, 1970; Boyle dan Reis, 1987; Kusunoki *et al.,* 1992; Takeshi *et al.,* 1995). Secara biologis protein A berperan sebagai faktor virulensi bakteri, yaitu mampu berikatan kuat pada bagian Fc (fragment crystallizable) dari hampir semua subklas imunoglobulin G (IgG) berbagai spesies, khususnya IgG1 (manusia); IgG1 (mencit); IgG1, IgG2a, IgG2b (tikus); dan tidak berikatan pada Fc Ig ayam (IgY) dan kambing (Boyle *et al.,* 1985; Harlow dan Lane, 1988). Protein A juga dapat berikatan dengan bagian Fc IgA dan IgM pada beberapa spesies (Arbuthnott *et al.,* 1983). Bagian Fab (fragment antigen binding) pada IgG yang terikat pada protein A menghadap keluar dan bebas berikatan dengan Ag spesifik (Prazono, 1995; Jawetz *et al.,* 1996).

Pada serum marmot yang disuntik dengan vaksin AI H5N1 setelah dilakukan booster kedua, titer antibodi spesifik H5N1 dapat ditentukan sebesar 27 dan reaksi precipitasi dapat didemonstrasikan pada uji AGPT dan dilakukan permutasi IgG marmot secara afinitas kromatografi menggunakan protein A-Sepharose. Sediaan A diperoleh dengan mencampurkan suspenSI SA 5 (10⁶ c.f.u) dengan serum kelinci anti IgG marmot dengan perbandingan 4:1 (v/v), diinkubasi dalam waktu 60 menit. Sediaan B diperoleh dengan melakukan pencampuran antara antigen (virus AI) dengan serum marmot anti virus AI H5N1, optimalisasi racikan dilakukan melalui box titrasi, sehingga pencampuran tadi tidak menimbulkan aglutinasi.

Tabel 2. Teknik SA dan SSA untuk menguji keberadaan protein A pada *S. aureus*

<table>
<thead>
<tr>
<th>No</th>
<th>Kode Isolat</th>
<th>Sifat tumbuh dalam THB</th>
<th>Bentuk koloni pada SA</th>
<th>Benih koloni pada SSA menggunakan serum:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ayam</td>
</tr>
<tr>
<td>1</td>
<td>Isolat SA 3, 4, 5, 6 dan 11</td>
<td>keruh</td>
<td>Difus</td>
<td>difus</td>
</tr>
<tr>
<td>2</td>
<td>Isolat SA 1, 2, 7, 8, 9, 10, 12, 13</td>
<td>keruh</td>
<td>Difus</td>
<td>difus</td>
</tr>
<tr>
<td>3</td>
<td>S. aureus Control (+)</td>
<td>keruh</td>
<td>difus</td>
<td>difus</td>
</tr>
<tr>
<td></td>
<td>S. epidermidis (kontrol -)</td>
<td>keruh</td>
<td>difus</td>
<td>difus</td>
</tr>
</tbody>
</table>
Protoipe Diagnostik Kit adalah merupakan reaksi antara sediaan A dan sediaan B, dengan perbandingan tertentu, sehingga diperoleh suatu suspensi yang tidak menunjukkan reaksi aglutinasi. Ilustrasi prototipe Diagnostik Kit ditampilkan pada Gambar 2.

Gambar 2. Prototipe satu partikel koaglutinat Diagnostik-Kit untuk identifikasi antibodi avian influenza H5N1

Untuk aplikasi uji maka dilakukan pengujian terhadap serum ayam yang sebelumnya telah diketahui memiliki antibodi terhadap AI H5N1. Antibodi dalam serum ayam ini diperoleh dari vaksinasi. Sebagai pembanding digunakan darah ayam yang tidak mengandung antibodi terhadap AI H5N1. Hasil menunjukkan bahwa uji koaglutinasi tidak langsung ini mampu mengidentifikasi serum yang mengandung antibodi AI (Gambar 6) dan sebaliknya tidak bereaksi dengan serum ayam yang tidak memiliki antibodi terhadap AI H5N1. Reaksi dapat dibaca dalam waktu 3-5 detik, adanya gumpalan seperti pasir menunjukkan reaksi positif dan sebaliknya reaksi negatif ditunjukkan oleh suspensi yang tetap homogen. Butiran aglutinati dapat diperjelas dengan jalan memberikan zat pewarna yang umum digunakan dalam pewarnaan bakteri, misalnya Methylene Blue.

Protoipe kit ini dapat mendeskriminasi beberapa serum yang mengandung antibodi spesifik terhadap H5N1 dengan serum yang tidak mengandung antibodi spesifik ini. Dengan menggunakan masing-masing 5 ekor ayam, 5 ekor kelinci dan 5 ekor marmut yang sebelumnya disensitisa dengan vaksin inaktif H5N1, keberadaan antibodi dapat dideteksi pada semua serum hewan tersebut. Hal ini
ditunjukkan dengan adanya reaksi koaglutinasi yang jelas dalam waktu 5 detik pengamatan. Reaksi ini tiddi dijumpai jika kit direaksikan dengan serum yang tidak mengandung antibodi terhadap AI H5N1 dari masing-masing 5 ekor hewan yang tidak divaksin AI H5N1 (Tabel 3).

<table>
<thead>
<tr>
<th>Reaksi Koaglutinasi</th>
<th>Kelinci</th>
<th>Marmot</th>
<th>Ayam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum hasil vaksinasi menggunakan vakain AI H5N1*</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Serum normal*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* Keterangan: masing-masing serum diambil dari 5 ekor

Penelusuran penulis terhadap informasi ilmiah yang telah dipublikasikan, belum menemukan adanya publikasi yang memuat tentang prinsip penggunaan metode tidak langsung dalam uji koaglutinasi. Penggunaan prinsip uji tidak langsung banyak digunakan untuk teknik haemagglutinasi (indirect haemagglutination), ELISA (indirect ELISA), indirect immunomagnetic separation (IMS) dan indirect immunofluorescent (Del Rio et al., 2003, Datta et al., 2008, Rufli, 1980, Jesudason, 2005).

Gambar 3. Suatu contoh reaksi aglutinasi (kiri) antara serum ayam yang mengandung antibodi spesifik dengan suspensi aglutinat homolognya dan reaksi negatif (kanan) pada serum ayam normal

Penelitian sebelumnya menunjukkan bahwa protein A tidak dapat berinteraksi dengan Fc-fraksi IgY ayam tetapi dapat berinteraksi dengan Fc-fraksi IgG kelinci (Halimah, 2001; Djatmatur, 2002). Hal ini berarti IgY ayam tidak...
dapat langsung berkaitan dengan sel bakteri S. aureus, dengan demikian teknik koaglutinasi tidak langsung mutlak dibutuhkan.

KESIMPULAN

Prototipe Diagnostik Kit dengan prinsip Koaglutinasi tidak langsung menggunakan S. aureus sebagai penebbar, dapat digunakan sebagai uji cepat (rapid test) untuk mendeteksi keberadaan antibodi tertentu (avian influenza) dalam serum.

Teknik ini dapat dikembangkan untuk ràndeteksì keberadaan antibodi atau antigèse terÌntentu dalam serum dan dapat digunakan untuk mendeteksi antibodi dalam berbagai serum hewan dan manusia.

UCAPAN TERIMA KASIH

Terimakasih diucapkan kepada Institut Pertanian Bogor yang telah membiayai penelitian ini melalui Program Riset Unggulan IPB tahun 2009. Ucapan terimakasih disampaikan pula kepada Agus Somantri, S.Pc, Ivan Apliantoni dan Sellyn, A.Md. yang banyak membantu dalam pekerjaan laboratorium dan Eri Hermawan, SE. yang banyak membantu dalam penyusunan tulisan dan laporan ini.

DAFTAR PUSTAKA

