PROGRAM KREATIFITAS MAHASISWA

PEMANFAATAN EKSOPOLISAKARIDA DARI LIMBAH MEDIA KULTUR Spirulina platensis SEBAGAI OBAT INFLAMASI

BIDANG KEGIATAN :
PKM-GT

Diusulkan oleh:

Ketua : Hardi Bestura Perkasa C34080036 2008
Anggota : Silvia Handayani C34080083 2008
 Hana Nurulita Prestisia C34080053 2008

INSTITUT PERTANIAN BOGOR
BOGOR
2011
HALAMAN PENGESAHAN

1. Judul Kegiatan: Pemanfaatan Eksopolisakarida Dari Limbah Media Kultur Spirulina platensis Sebagai Obat Inflamasi

2. Bidang Kegiatan: () PKM-AI (x) PKM-GT

3. Ketua Pelaksana Kegiatan
 a. Nama Lengkap: Hardi Bestura Perkasa
 b. NIM: C34080036
 c. Jurusan: Teknologi Hasil Perairan
 d. Universitas/Institut/Politeknik: Institut Pertanian Bogor
 e. Alamat Rumah dan No Tel./HP: Babakan Lio/085693210750
 f. Alamat email: bestura@gmail.com

4. Anggota Pelaksana Kegiatan/Penulis: 2 orang

5. Dosen Pendamping
 a. Nama Lengkap dan Gelar: Dr. Ir. Iriani Setyaningsih, MS
 b. NIP: 19600925 198601 2 001
 c. Alamat Rumah dan No Tel./HP: Perumahan Taman Pagelaran Blok A10/25 Bogor/081213423860

Menyetujui

Ketua Departemen Teknologi Hasil Perairan

(Prof. Dr. Ir. Yonny Koesmaryono, MS.) (Dr. Ir. Iriani Setyaningsih, MS.)
NIP. 19581228 198503 1 003 NIP. 19600925 198601 2 001

Wakil Rektor Bidang Kemahasiswaan Institut Pertanian Bogor

(Dr. Ir. Ruddy Suwandi, MS., M.Phil.) (Hardi Bestura Perkasa)
NIP. 19580511 198503 1 002 NIM. C34080036

Dosen Pendamping

Bogor, 4 Maret 2011
KATA PENGANTAR

Puji syukur Kami panjatkan kehadirat Tuhan Yang Maha Esa karena atas berral rahmat dan karunianya kami dapat menyelesaikan tulisan ini dengan baik. Pada kesempatan kali ini kami mengucapkan terimakasih kepada Dr. Ir. Iriani Setyaningsih, MS. yang telah banyak mengarahkan, membimbing, dan memberikan masukan serta inspirasinya untuk dapat menyelesaikan tulisan ini dengan baik.

Kami berharap semoga tulisan ini dapat memberikan alternatif baru sumber eksopolisakarida sebagai obat luka terbuka yaitu dari limbah media kultur *Spirulina platensis* sebagai anti-inflamasi. Selain itu, pemanfaatan limbah media kultur diharapkan dapat meningkatkan nilai ekonomi limbah media kultur dan mengurangi dampak limbah cair tersebut terhadap lingkungan.

Akhir kata, kami ucapkan terimakasih kepada pihak DIKTI yang telah memberikan kesempatan dan memfasilitasi kami untuk dapat menuangkan ide-ide kreatif ke dalam suatu tulisan yang bermanfaat.

Bogor, Februari 2011

Penulis
DAFTAR ISI

<table>
<thead>
<tr>
<th>Bab</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kata Pengantar</td>
<td>ii</td>
</tr>
<tr>
<td>Ringkasan</td>
<td>iv</td>
</tr>
<tr>
<td>Pendahuluan</td>
<td>1</td>
</tr>
<tr>
<td>Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td>Tujuan</td>
<td>2</td>
</tr>
<tr>
<td>Manfaat Penulisan</td>
<td>2</td>
</tr>
<tr>
<td>Gagasan</td>
<td>4</td>
</tr>
<tr>
<td>Spirulina platensis</td>
<td>4</td>
</tr>
<tr>
<td>Eksopolisakarida</td>
<td>5</td>
</tr>
<tr>
<td>Proses Inflamasi</td>
<td>6</td>
</tr>
<tr>
<td>Implementasi Antiinflamasi dalam Bentuk Gel</td>
<td>8</td>
</tr>
<tr>
<td>Kesimpulan</td>
<td>9</td>
</tr>
<tr>
<td>Daftar Pustaka</td>
<td>10</td>
</tr>
</tbody>
</table>
DAFTAR GAMBAR

Gambar 1. Mikroalga Spirulina platensis ... 5
Gambar 2. Proses inflamasi pada kulit... 7
RINGKASAN

Mikroalga *Spirulina platensis* merupakan mikroorganisme atau jasad renik dengan tingkat organisasi selnya termasuk ke dalam tumbuhan tingkat rendah, yang kini telah banyak dimanfaatkan oleh masyarakat dalam pengobatan beberapa penyakit. Pengkulturan *Spirulina platensis* tersebut menghasilkan limbah cair berupa media kultur. Limbah cair dalam produksi mikroalga merupakan salah satu faktor yang dapat berdampak negatif bagi lingkungan apabila tidak ditangani dengan baik. Media kultur mikroalga ini mengandung komponen eksopolisakarida yang disekresikan oleh mikroalga.

Eksopolisakarida larut (RPS) yang diekresikan oleh filamen cyanobacteria *Spirulina platensis* adalah metabolit primer. Eksopolisakarida dari limbah media kultur *Spirulina platensis* dapat diperoleh dengan cara menekstaksinya menggunakan metode netralisasi asam (HCl) basa (NaOH) dan dipresipitasi menggunakan etanol. Kelompok eksopolisakarida *Spirulina platensis* merupakan komponen yang dapat berperan sebagai anti-inflamatori.

Antiinflamasi merupakan suatu proses dari penyembuhan luka dimana chemoattractants, sitokin, dan komponen pelengkap yang dihasilkan di daerah inflamasi lokal, menyebabkan aktivasi endotelium dan leukosit. Faktor pemicu terutama sitokin mengaktifkan molekul adhesi leukosit yang integrins. Kemudian dalam perekrutan leukosit tergantung pada adhesi yang ketat.

Salah satu bentuk produk dari obat antiinflamasi adalah gel. Gel merupakan sistem penghantaran obat yang paling baik untuk berbagai rute pemberian dan cocok dengan berbagai bahan obat yang berbeda. Gel sangat cocok pada pemakaian di kulit dengan fungsi kelenjar sebaseus yang berlebihan. Setelah kering akan meninggalkan lapisan tipis tembus pandang, elastis dengan daya lekat tinggi, yang tidak menyumbat pori, sehingga tidak mempengaruhi pernafasan kulit. Oleh karena itu, eksopolisakarida yang dihasilkan *Spirulina platensis* dapat digunakan sebagai antiinflamasi dalam penyembuhan luka.
PENDAHULUAN

Latar Belakang

Mikroalga *Spirulina platensis* merupakan mikroorganisme atau jasad renik dengan tingkat organisasi selnya termasuk ke dalam tumbuhan tingkat rendah, yang kini telah banyak dimanfaatkan oleh masyarakat dalam pengobatan beberapa penyakit. Semakin banyak masyarakat yang memanfaatkan mikroalga tersebut maka banyak pengusaha budidaya yang memproduksinya dalam skala besar, seperti pembudidaya asal Jepara, Jawa Tengah yang dapat menghasilkan 120 kg *Spirulina platensis* per bulan. Biomassa sel tersebut diperoleh dari kultivasi *Spirulina platensis* pada 5 buah kolam yang berukuran 20x10 m (Trubus 2010). Namun, produksi *Spirulina platensis* tersebut menghasilkan limbah cair berupa media kultur.

Eksopolisakarida yang dihasilkan oleh mikroalga mempunyai prospek untuk diaplikasikan pada spektrum yang luas, seperti di industri makanan,

Menurut Knapp (2003), eksopolisakarida merupakan senyawa yang mampu mempercepat proses pemulihan jaringan yang rusak apabila tubuh mengalami luka, sehingga aplikasi senyawa ini dapat digunakan sebagai obat inflamasi secara topikal sehingga berpotensi dalam penyediaan bahan baku obat yang berbasis alamiah yang bernilai ekonomi tinggi. Formula sediaan eksopolisakarida memiliki prospek yang baik untuk digunakan secara topikal pada luka terbuka. Salah satu formula yang sering digunakan untuk penggunaan topikal yaitu dalam formulasi gel. Gel dapat digunakan sebagai pelunak kulit dan sangat cocok digunakan di daerah yang berambut (Knapp 2003). Oleh karena itu, pemanfaatan eksopolisakarida dari limbah media kultur Spirulina platensis sebagai obat luka terbuka adalah alternatif yang potensial untuk dikembangkan.

Tujuan

Penulisan penulisan gagasan ini bertujuan untuk mengkaji potensi pemanfaatan eksopolisakarida dari limbah media kultur Spirulina platensis sebagai alternatif baru sumber obat inflamasi (peradangan) yang ramah lingkungan.

Manfaat Penulisan

Manfaat penulisan ini adalah memberikan alternatif baru dengan memanfaatkan eksopolisakarida sebagai obat luka terbuka (Trubus 2010). Pemanfaatan eksopolisakarida dari limbah media kultur ini dapat menjadi sumber baru dalam pencarian obat-obat baru yang berperan sebagai anti-inflamasi. Spirulina dapat dimanfaatkan lebih optimal, karena limbahnya juga dapat
dijadikan bahan yang bermanfaat. Menurut Roudesli (2009), limbar cair yang dihasilkan setelah pengkulturan *Spirulina platensis* selama 21 hari adalah tertinggi sebesar 210 mg/L, sedangkan untuk biomassanya maksimum perharinya adalah 0.15 g/L/hari. Pemanfaatan limbah media kultur *Spirulina platensis* diharapkan dapat meningkatkan nilai ekonomi limbah media kultur dan mengurangi dampak limbah cair tersebut terhadap lingkungan. Pengolahan dan pemanfaatan limbah cair ini diharapkan dapat mengurangi biaya dalam produksi *Spirulina platensis* yaitu memanfaatkan limbah dengan cara memisahkan eksopolisakaridanya, sehingga diharapkan menciptakan produksi *Spirulina platensis* yang ramah lingkungan.
GAGASAN

Spirulina platensis

Spirulina platensis merupakan mikroalga yang mudah ditumbuhkan, tidak tergantung musim, dan kultivasinya dapat dilakukan pada lahan yang tidak luas. Mikroalga ini mengandung komponen kimia yang lengkap, namun pemanfaatannya belum optimal.

Sel cyanobacteria memiliki ciri yang khas yaitu dikelilingi oleh lapisan eksternal *mucilaginous* secara esensial mengandung bahan polisakarida atau dikenal dengan eksopolisakarida. Lapisan polisakarida ini dapat digolongkan menjadi tiga jenis: sarung, kapsul, dan lendir. Lapisan polisakarida lebih atau kurang melekat pada permukaan sel, sebagian polisakarida terlarut sering hadir dalam medium kultur. Protokol yang digunakan untuk ekstraksi polimer eksopolisakarida cyanobacteria umumnya dibedakan menjadi tiga fraksi, yaitu sarungnya; *capsulate polysaccrides* (CPS) yang meliputi lapisan kapsul dan bagian lapisan lendir melekat dengan baik ke permukaan sel, serta polisakarida yang dirilis (RPS) yang meliputi fraksi terlarut dari lapisan lendir yang melekat pada permukaan sel (Richert *et al.* 2005).

Sejak awal 1950-an, lebih dari seratus jenis cyanobacteria pada dua puluh genus yang berbeda, telah diteliti memproduksi eksopolisakarida yang dirilis ke dalam media kultur (RPS). Sifat kimia dan reologi menunjukkan bahwa polisakarida tersebut komplek anionik heteropolymers, pada sekitar 80% kasus mengandung enam sampai sepuluh monosakarida yang berbeda dan dalam sekitar 90% kasus yang mengandung satu atau lebih asam uronic, hampir semua memiliki komponen non-saccharidic, seperti gugus peptida, asetil, piruvil dan/atau kelompok sulfat (De Philippis *et al.* 2001). Salah satu jenis cyanobacteria yang berpotensi memproduksi RPS adalah *Spirulina platensis*.

Mikroalga *Spirulina platensis* merupakan mikroorganisme atau jasad renik dengan tingkat organisasi selnya termasuk ke dalam tumbuhan tingkat rendah. mikroalga dikelompokkan ke dalam Filum Talofita karena tidak memiliki akar, batang dan daun sejati (semu). Namun mikroalga ini memiliki zat warna hijau daun (pigmen klorofil) yang mampu melakukan fotosintesis dengan bantuan air...
(H₂O), CO₂ dan sinar matahari yang dapat mengubah energi kinetik menjadi energi kimia dalam bentuk biomassa atau yang lebih dikenal dengan karbohidrat. Bentuk sel mikroalga *Spirulina platensis* memanjang seperti benang, bercabang umumnya disebut fitoplankton (Kanibawa 2001). Morfologi mikroalga *Spirulina platensis* secara mikroskopik disajikan pada Gambar 1.

Tabel 1. Komposisi kandungan proksimat mikroalga *Spirulina platensis*

<table>
<thead>
<tr>
<th>Komposisi proksimat</th>
<th>Kuantitas (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>60-70</td>
</tr>
<tr>
<td>Karbohidrat</td>
<td>19-20</td>
</tr>
<tr>
<td>Pigmen</td>
<td>6</td>
</tr>
<tr>
<td>Lemak</td>
<td>4-5</td>
</tr>
<tr>
<td>Serat</td>
<td>3</td>
</tr>
<tr>
<td>Abu</td>
<td>3</td>
</tr>
<tr>
<td>Mineral</td>
<td>7</td>
</tr>
</tbody>
</table>

Eksopolisakarida

Eksopolisakarida terlarut (RPS) yang diekresikan oleh filamen cyanobacteria *Spirulina platensis* adalah metabolit primer. Eksopolisakarida tersebut dibentuk oleh sepuluh macam unit monomer termasuk enam gula netral (xilosa, rhamnosa, fucose, galaktosa, mannose dan glukosa dalam proporsi 1.3/0.3/0.7/2.7/traces/2), dua gula yang tidak teridentifikasi, dua asam uronic dan kelompok sulfat masing-masing sebesar 40% dan 5% dari massa molekul (Mouthim *et al.* 1993). Eksopolisakarida dari limbah media kultur *Spirulina platensis* dapat diperoleh dengan cara mengekstraksinya menggunakan metode netralisasi asam (HCl) basa (NaOH) dan dipresipitasi menggunakan etanol. Suspensi dipisahkan dengan disentrifus untuk memperoleh endapan eksopolisakarida (Gerry dan Daniel 1982). Kelompok sulfat yang terdapat pada eksopolisakarida *Spirulina platensis* merupakan komponen yang dapat berperan sebagai anti-inflamantori. Menurut Matsui *et al.* (2003), sulfat polisakarida yang diterapkan secara topikal pada manusia diketahui dapat menghambat kemerahan pada kulit yang disebabkan oleh iritasi.

Jaringan cedera yang disebabkan oleh infeksi atau kerusakan fisik membangkitkan reaksi inflamasi/peradangan dan peristiwa yang diperlukan untuk mendapatkan kembali homeostasis normal. Pusat untuk peristiwa ini adalah translokasi leukosit, termasuk monosit, neutrofil, dan limfosit T, dari sistem vaskular melalui endotelium dan matriks ekstraselular (ECM) ke jaringan terluka. Penyakit ini ditandai dengan munculnya warna kemerahan, bengkak, nyeri dan disertai panas. Migrasi transendothelial ini terjadi dalam proses empat langkah sekuensial dan melibatkan tindakan bersama dari *chemoattractants* dan mempromosikan molekul adhesi, seperti *selectins* dan *integrins*.

Proses Inflamasi

Proses inflamasi pada kulit berawal dari adhesi leukosit menuju endothelium, disajikan pada Gambar 2 (Adam dan Shaw 1994). Pada langkah pertama, *chemoattractants*, sitokin, dan komponen pelengkap yang dihasilkan di daerah inflamasi lokal, menyebabkan aktivasi endotelium dan leukosit. *Up-regulation* sitokin lokal dan sistemik, seperti tumor necrosis factor (*α*-TNF)-(TNF-**α**) dan interleukin-1 (IL-1**β**), menginduksi ekspresi molekul adhesi antar...

Gambar 2. Proses inflamasi pada kulit
Sumber: Adam dan Shaw (1994)

Menurut Matsui et al. (2003), migrasi leukosit dari kapiler darah ke situs peradangan merupakan komponen penting dari proses inflamasi dan terjadi dalam serangkaian langkah, dua di antaranya adalah adhesi dan chemotaxis. Secara in vitro, bahan polisakarida dapat menghambat migrasi leukosit
polymorphonuclear (PMNs) terhadap molekul chemoattractant standar dan juga memblokir sebagian adhesi ke sel endotel PMNs. Hasil penelitian ini juga menunjukkan bahwa mekanisme anti inflamasi untuk sulfat polisakarida, setidaknya sebagian, dikarenakan adanya penghambatan sirkulasi perekrutan sel kekebalan terhadap stimulus inflamasi. Peneliti juga menyarankan bahwa sulfat polisakarida sangat cocok digunakan dalam produk topikal.

Bentuk sediaan topikal dapat mempermudah penggunaan eksopolisakarida Spirulina platensis sebagai anti-inflamasi. Ada beberapa keuntungan penggunaan obat secara topikal antara lain yaitu menghindari kesulitan absorbsi obat melalui saluran cerna yang disebabkan oleh aktivitas enzim dan interaksi obat dengan makanan, menghindari resiko dan ketidaksesuaian terapi secara parenteral, dan bermacam-macam absorbsi dan metabolisme yang berhubungan dengan terapi oral, serta mampu menghentikan efek obat secara cepat apabila diperlukan secara klinik (Ansel 1989).

Implementasi Antiinflamasi dalam Bentuk Gel

KESIMPULAN

Spirulina platensis adalah mikroalga yang berwarna hijau kebiruan yang termasuk ke dalam suku *Oscillatoriaceae*. *Spirulina* berpotensi digunakan dalam bidang pangan, kesehatan atau bahan baku pakan hewan dan unggas. Pengkulturan *Spirulina* menyisakan limbah yang tidak termanfaatkan dan dapat mencemari lingkungan. Limbah cair media kultur *Spirulina platensis* mengandung senyawa eksopolisakarida hasil ekskresi dari mikroalga yang dapat digunakan sebagai farmasetika yang mampu mempercepat proses pemulihan jaringan yang rusak apabila tubuh mengalami luka. Aplikasi senyawa ini antara lain sebagai obat inflamasi secara topikal sehingga berpotensi dalam penyeediaan bahan baku obat yang berbasis alamiah yang bernilai ekonomi tinggi serta mengurangi dampak limbah cair tersebut terhadap lingkungan.
DAFTAR PUSTAKA

1. Ketua Pelaksana Kegiatan:
 a. Nama Lengkap : Hardi Bestura Perkasa
 b. Tempat,tanggal lahir : Bengkulu, 23 Juni 1990
 c. Alamat Asal : Bengkulu
 d. Alamat Bogor : Jl. Babakan Lio
 e. Agama : Islam
 f. Riwayat Pendidikan : SD N 95 Bengkulu, SMP N 1 Curup, SMA N 1 Curup
 g. Pengalaman Organisasi : HIMASILKAN 2009-2010
 h. Prestasi : -

 TANDA TANGAN

 Hardi Bestura Perkasa

2. Anggota Pelaksana Kegiatan:
 a. Nama Lengkap : Silvia Handayani
 b. Tempat,tanggal lahir : Jakarta, 22 Februari 1989
 c. Alamat Asal : Jakarta
 d. Alamat Bogor : Jl. Babakan Raya
 e. Agama : Islam
 f. Riwayat Pendidikan : SDN Kalibata 04 Pagi, SMPN 41 Jakarta, SMAN 38 Jakarta
 g. Pengalaman Organisasi : HIMASILKAN 2009-2010
 h. Prestasi : Juara Lomba Mading

 TANDA TANGAN

 Silvia Handayani
3. Anggota Pelaksana Kegiatan:

a. Nama Lengkap: Hana Nurulita Prestisia
b. Tempat, tanggal lahir: Jakarta, 10 Februari 1990
c. Alamat Asal: Serang, Banten
d. Alamat Bogor: Jl. Babakan Lebak
e. Agama: Islam
f. Riwayat Pendidikan: SD N 2 Kramatwatu, SMP N 1 Kramatwatu, SMA N 1 Kramatwatu
g. Pengalaman Organisasi: Agriaswara IPB, FPC, BMC
h. Prestasi: Peserta Murid Teladan Kabupaten Serang

TANDA TANGAN

Hana Nurulita Prestisia