A MODELING APPROACH TO COLLABORATIVE FOREST MANAGEMENT

By

HERRY PURNOMO

POSTGRADUATE PROGRAM
BOGOR AGRICULTURAL UNIVERSITY
2003
ABSTRACT

HERRY PURNOMO. A Modeling Approach to Collaborative Forest Management. Under the direction of Rudy C. Tarumingkeng, Endang Suhendang, Dudung Darusman, Mohammad Syamsun and Upik Rosalina.

A successful sustainable development strategy requires that forest management be carried out in a participatory way. This includes the involvement of local communities. The importance of communities’ participation has been written into Indonesian Law No. 41 on Forestry (1999). However, how this law can be implemented in areas already allocated to a concession holder is still unclear. The state-owned company, Inhutani II Sub Unit Malinau, has managed a forest area in Malinau District, East Kalimantan for over 10 years. Forest-dependent communities located in the managed area were Long Seturan, Long Loreh and Langap villages. The company managed the area based on plans approved by the local and central governments. They established permanent sample plots for measuring the stand growth and yield data in their area, and were asked to improve the well-being of local communities. However, the schemes did not give the company sufficient space to manage the area creatively, or provide a systematic way to involve the communities in the management of the forest.

This research was aimed at seeking scenarios of sustainable forest management (SFM) that addressed the above limitations. To reach this aim, two research hypotheses were proposed:

1. Local forest stakeholders can define their own SFM Criteria and Indicators (C&I) for specific sites where they live, or that concern them;
2. Collaborative management of forests by all relevant stakeholders will achieve better forest management outcomes.

An artificial society of primary forest actors was built using a multi-agent system approach, used for developing scenarios to increase the sustainability of forest management. Indicators of forest cover and standing stock, communities’ incomes, company revenue and taxes paid to local and central governments measured the sustainability.

The research results showed that local communities that lived in the area of Inhutani II were able to define C&I of SFM. The local C&I are not different from the generic or scientific C&I of SFM. However, these C&I are formulated with different structures and argumentations. The developed knowledge-based system found a way to harmonize this knowledge. Collaboration between concessionaires and the communities appeared to be the most suitable alternative for SFM - particularly for improving communities’ incomes without decreasing the quality of the forest. An appropriate decentralization policy is a condition for implementing collaborative forest management.
LETTER OF STATEMENT

I herewith declare that the dissertation entitled “A Modeling Approach to Collaborative Forest Management” is purely my work with the supervision of the advisory committee. This dissertation has never been submitted to other universities to get a similar degree. All data and information sources have been stated clearly in the document and their correctness can be checked.

Bogor, 6 May 2003

Herry Purnomo
A MODELING APPROACH TO COLLABORATIVE FOREST MANAGEMENT

By

HERRY PURNOMO

A Dissertation
In partial fulfillment of the requirements for the degree of Doctor of Forestry Science

POSTGRADUATE PROGRAM
BOGOR AGRICULTURAL UNIVERSITY
2003
Dissertation Title : A Modeling Approach to Collaborative Forest Management
Name : Herry Purnomo
Student Registration Number : 975068
Study Program : Forestry Science

Approved by,

1. The Advisory Committee

Prof. Dr. Ir. Rudy C. Tarumingkeng, MSc
Chairperson

Prof. Dr. Ir. Endang Suhendang, MS
Member

Prof. Dr. Ir. Dudung Darusman, MA
Member

Dr. Ir. Mohammad Syamsun, MSc
Member

Dr. Ir. Upik Rosalina, DEA
Member

2. Head of Forestry Science Study Program

Prof. Dr. Ir. Cecep Kusmana, MS

3. Director of Postgraduate Program

Prof. Dr. Ir. Syafirida Manuwoto, MSc

Doctor degree was awarded on 9 July 2002
BIOGRAPHY

The researcher was born in Lumajang, East Java, on 21 April 1964 as the third child of Abdul Rasyid and the late Siti Masamah. His undergraduate program was carried out as a Study Program at the Agricultural Meteorology, Faculty of Science and Mathematics, Bogor Agricultural University, completed in 1987. In 1990, the researcher studied Computer Science at a Sandwich Program in a cooperative program between the University of Indonesia and University of Maryland USA for a Master of Science degree, completed in 1990. In 1997, the researcher joined the Forestry Science Study Program, a Postgraduate Program at Bogor Agricultural University, to do a Doctoral degree.

The researcher is a lecturer at the Faculty of Forestry, Bogor Agricultural University. He primarily teaches Systems Analysis. He is also a researcher at the Center for International Forestry Research (CIFOR) in Bogor.

on Forest Margin Interactions, organized by CIFOR Regional Office, Harare, Zimbabwe. He also visited Beijing, China for presenting criteria and indicators for sustainable forest management and related tools in June 2002.

In the year 2002, as a senior author, he submitted five different scientific papers to international journals. Two papers entitled “Multi-agent Simulation of Alternative Scenarios of Collaborative Forest Management” and “Collaborative Modelling to Support Forest Management: Qualitative Systems Analysis at Lumut Mountain, Indonesia” will be published in the Journal of Forest Small Scale Economics, Management and Policy, in the year 2003. The other three papers are in the reviewing processes.
ACKNOWLEDGMENTS

My sincere gratitude and appreciation go to my supervisors Prof. Dr. Rudy C. Tarumingkeng, Prof. Dr. Endang Suhendang, Prof. Dr. Dudung Darusman, Dr. Mohammad Syamsun and Dr. Upik Rosalina for their precious help, continuous encouragement, and wise guidance during my graduate work. Without their contributions, I would never have reached the goal of my doctoral program.

This study would not have been possible without the funding I received. I would like to thank the Ministry of National Education, which provided me financial support for this program. My thanks also to the Center for International Forestry Research (CIFOR) that provided data and information essential to this study. Special appreciation goes to Dr. Ravi Prabhu, Dr. Carol Colfer, Dr. Mandy Haggith and Dr. Doris Capistrano, for their support and help during the completion of this program. I would also thank Catherine Snow for her kind English edit and polish.

Acknowledgment must also be extended to my late mother, my father, my mother-in-law and family members who never forgot to support and pray for the successful completion of my study. I also would like to express my thanks to those involved in the CIFOR Adaptive Collaborative Management Project, CIFOR Bulungan Research Forest and Inhutani II, for sharing data and knowledge during the study. My thanks also to my colleagues at the Forest Management Department, Faculty of Forestry, Bogor Agricultural University, for their encouragement and support.

To my wife, Nina Yudisiana, and to my children, Ryan Maulana Herwindo and Arina Salsabila, please accept my very special thanks. Their love,
compassion and understanding have always been in my deepest heart. I could never have successfully completed this task without their sacrifices.

Above all, praise is to Allah, the Almighty God, who created and sustains us. He is The Ultimate One who has made the accomplishment of my mission of study possible. May Allah, the most gracious and the Most Merciful, bless us and give us every guidance in facing our future.
LIST OF TABLES

Table 2.1. The differences between scientific and indigenous or traditional knowledge (Walker 1994) .. 14
Table 3.1. Villages inside Inhutani II boundary ... 37
Table 3.2. Presence or absence indicator of each knowledge type 38
Table 4.1. The generic knowledge of ecological criteria for SFM 53
Table 4.2. The generic knowledge of economical criteria for SFM 55
Table 4.3. The generic knowledge of social criteria for SFM 57
Table 4.4. The generic knowledge of SFM ... 57
Table 4.5. A comparison of the developed C&I with the ITTO’s C&I 59
Table 4.6. A comparison of the developed C&I with FSC’s P&C 61
Table 4.7. A comparison of the developed C&I with the Montréal Process C&I ... 63
Table 4.8. A comparison of developed C&I with Finnish C&I 64
Table 4.9. A comparison of the developed C&I with ATO’s C&I 66
Table 4.10. Generic C&I and their types ... 69
Table 4.11. Summary of C&I comparison and their categories 70
Table 4.12. Revised Generic C&I ... 72
Table 4.13. Supernatural indicators of good forest management, as identified by the local communities .. 81
Table 4.14. Policy indicators of good forest management, as identified by the local communities ... 81
Table 4.15. Socio-economic indicators of good forest management, as identified by the local communities 82
Table 4.16. Biophysical indicators of good forest management, as identified by the local communities ... 83
Table 4.17. The knowledge comparison between scientific and local knowledge ... 84
Table 4.18. Falsification of supernatural generic indicators 87
Table 4.19. Falsification of policy generic indicators .. 87
Table 4.20. Falsification of socio-economic generic indicators 88
Table 4.21. Falsification of biophysical generic indicators 89
Table 4.22. The hierarchy of nodes ... 93
Table 4.23. Stakeholder identification using “Who Counts” matrix 98
Table 4.24. The stakeholders’ characteristics and their primary identified goals .. 100
Table 4.25. The stakeholders’ primary activities ... 100
Table 4.26. Budget projection of Inhutani II (in thousand rupiah) 106
Table 4.27. Sequence diagram of agent interactions 107
Table 4.28. Local communities’ response to events 109
Table 4.29. Forest Cover of Inhutani II year 1991 116
Table 4.30. Landsat image interpretation and simulation results on 117
Table 4.31. Average number of trees per Ha of pristine forest stand before logging .. 120
Table 4.32. Stand structure Dynamics Components (Septiana, 2000) 121
Table 4.33. Number of trees per Ha of pristine forest stand before logging after logging .. 122
Table 4.34. Simulation result of the revenue, cost and net revenue (in million rupees) .. 124
Table 4.35. The timber production of Inhutani II ... 126
Table 4.36. The difference between the actual net revenue and its plan 126
Table 4.37. Regulations applied to concession holders................................. 130
Table 4.38. Amount of money paid by concession holders 131
Table 4.39. The overall model evaluation .. 133
Table 4.40. Criteria for collaborative timber harvesting from the perspective of two parties... 136
Table 4.41. Simulation outputs as biophysical indicators of the model 139
Table 4.42. Simulation outputs (In million rupiahs per year) as economic indicators of the model under the collaborative scenario 140
Table 4.43. Scenarios examined using simulation... 143
Table 4.44. The simulation outputs for non-collaboration and scenario A...... 144
Table 4.45. The simulation outputs for non-collaboration and scenario B..... 145
Table 4.46. The simulation outputs for non-collaboration and scenario C...... 146
Table 4.47. Sign Test for median of simulation outputs of different scenarios. 147
Table 4.48. SFM indicators of Scenario B of collaborative management....... 149
LIST OF FIGURES

Figure 2.1. Conceptual framework for sustainability assessment 9
Figure 2.2. Normative and scientific aspects of sustainability (modified from Becker 1997) .. 10
Figure 2.3. The stakeholders conceptualized components (in box) and their perceived categories (in italic) of “good forest management” (Kearney et al. 1999) .. 12
Figure 2.4. The general architecture of a knowledge base system 13
Figure 2.5. Model of a fuzzy system (Panigrahi 1998) ... 16
Figure 2.6. Qualitative and quantitative reasoning (Guerinn 1991) 17
Figure 2.7. Perception and action subsystems (Weiss 1999) 18
Figure 2.8. Agents that maintain state (Weiss, 1999) ... 19
Figure 2.9. Schematic diagram of a generic belief-desire-intention architecture (Weiss 1999) .. 20
Figure 2.10. Coordination among agents (Ossowski 1999) 21
Figure 2.11. Comparison in methods of problem solving (modified from Holling 1978, and Starfield and Bleloch 1988 in Grant et al., 1997) 22
Figure 3.1. The research sequence ... 28
Figure 3.2. P, C & I concept for sustainable forest management assessment .. 32
Figure 3.3. A network of C&I for sustainable forest management assessment .. 33
Figure 3.4. Relationship of conditions and indicators of sustainability 35
Figure 3.5. The four principle activities in the creation of knowledge base (Walker et al. 1994) .. 39
Figure 3.6. KBS inference engine .. 40
Figure 3.7. An example of model components and their interaction located in the spatial system ... 41
Figure 3.8. Spatial representation of the firm’s activities and the movement of villagers .. 42
Figure 3.9. Communication among forest stakeholders 42
Figure 4.1. Organization of a forest .. 48
Figure 4.2. A model of a forest ... 50
Figure 4.3. Original and new functions of forests due to management 50
Figure 4.4. Trade-off situation faced by forest managers 51
Figure 4.5. The synergy situation faced by forest managers 52
Figure 4.6. Number of stems and diameter class relationship 54
Figure 4.7. Learning mechanisms of stakeholders ... 56
Figure 4.8. Swidden agriculture activities ... 76
Figure 4.9. A typical village with its swidden agriculture (j is jekau) 77
Figure 4.10. The KBS architecture ... 91
Figure 4.11. Network of nodes that represent criteria and indicators 92
Figure 4.12. The argumentation process ... 93
Figure 4.13. The relation between nodes .. 94
Figure 4.14. Assessment process ... 95
Figure 4.15. The architecture of the simulation model 103
Figure 4.16. Main menu of “Forest Actors” .. 112
Figure 4.17. The situation map of study area in 1991 113
Figure 4.18. The communication observer .. 114
Figure 4.19. The example of simulation output diagrams 115
Figure 4.20. The FMU vegetation after eight years simulation 117
Figure 4.21. Diagram of vegetation areas after eight year's simulation time.... 118
Figure 4.22. Pristine forest stands structure.. 121
Figure 4.23. Number of trees per Ha of pristine forest stand before logging after ... 122
Figure 4.24. The simulation result of standing stock for 20 years 123
Figure 4.25. Simulation result diagram of the revenue, cost and net revenue. 124
Figure 4.26. Diagram of the difference between the actual net revenue and its plan .. 127
Figure 4.27. The income per household (in rupiahs), showing the communities’ products at fixed price in the year 2000. .. 129
Figure 4.28. The income per household (in rupiahs) using the communities’ product prices in the year 2000, with 10 % inflation 129
Figure 4.29. Simulation results of financial payments.. 132
Figure 4.30. A social phenomenon of collaboration.. 135
Figure 4.31. Development of collaboration scenarios.. 136
Figure 4.32. The simulation map showing results of non-collaborative and collaborative management ... 141
Figure 4.33. Nine different simulation outputs of the best scenario (Scenario B). The collaboration area is black... 148
Figure 5.1. Plausible connections in a decentralization policy that.................... 154
Figure 5.2. Influences of a selected decentralization policy.............................. 158
LIST OF APPENDICES

Appendix 1. Interview guide of local knowledge on forest management......... 172
Appendix 2. List of criteria and indicators from internationally recognized....... 173
Appendix 3. The screen shows of the implementation of the built KBS 195
Appendix 4. The selected stakeholders’ characteristics 201
Appendix 5. Digital maps used in the simulation... 203
Appendix 6. Costs and revenues of Inhutani II .. 207
Appendix 7. The Smalltalk codes of the communities’ reasoning and 211