III. METODOLOGI

3.1 Alat dan Bahan

Alat dan bahan yang digunakan dalam penelitian ini adalah

1) Kapal Riset KAL Baruna Jaya I;

2) Dua unit jaring trawl dasar;

3) Alat-alat penunjang, seperti tabel data (fishing log), length measuring board, timbangan dengan berbagai kapasitas, alat sortasi (keranjang);

4) Echo Sounder Honeywell Elac type LAZ 4700 dan Survey Sounder dengan frekuensi 15 kHz;

5) Botol Nansen dan termometer balik;

6) Alkohol dan Formalin.

Kapal riset KAL Baruna Jaya I adalah kapal milik Badan Pengkajian dan Penerapan Teknologi yang diawaki oleh Dinas Hidro-oseanografi TNI AL.

Spesifikasi umum adalah sebagai berikut:

1) Nama Kapal : KAL Baruna Jaya I;

2) Panjang total (LOA) : 60.4 m;

3) Panjang perpendicular (LPP) : 55.3 m;

4) Lebar (B) : 11.6 m;

5) Tinggi geladak : 6.5 m;

6) Draft : 4.5 m;

7) Bahan kapal : Besi;
(8) Berat : 1200 ton;
(9) Tonase Kotor : 700 GT;
(10) Jelajah : 7500 mil laut pada 12 knot;
(11) Mesin : 2 buah Niigata disel 825 HP;
(12) Perlengkapan lain :
- satu set swinging stern gantry, kapasitas 10 ton;
- satu set winch utama dilengkapi 2 x 6500 m tali baja berdiameter 15 mm.

Pengambilan sampel ikan laut dalam di perairan Kai dan Tanimbar akuan dengan menggunakan otter trawl. Panjang tali ris atas 18.8 m dan ris bawah 21.74 m. Pengambilan sampel ikan di perairan laut dangkal juga dilakukan dengan menggunakan otter trawl dengan spesifikasi panjang tali ris atas 23.4 m dan panjang tali ris bawah 28.6 m. Bahan jaring dipakai terbuat dari PE (polyethylene) dengan ukuran mata 2 inci mulai bagian sayap sampai kantong. Untuk membuka mulut jaring di dalam air, digunakan dua buah otter board yang dipasang pada ujung sayap kiri dan kanan dengan menggunakan bridle line sepanjang 3 m. Konstruksi jaring dan otter board yang digunakan disajikan dalam Gambar 4 untuk perairan su dan Gambar 5 untuk perairan Tanimbar dan Kai.
Gambar 4. Desain Ottertrawl dan Otterboard yang Dioperasikan di Perairan Aru
Gambar 5. Desain Ottertrawl dan Otterboard yang Dioperasikan di Perairan Tanimbar dan Kai

2. Metode Pengumpulan Data

Posisi stasiun penangkapan ditentukan berdasarkan metode eksplorasi dimana jumlah dan sebaran stasiun penangkapan diharapkan mewakili cakupan perairan (Soselisa dan Rustam, 1993). Pengambilan
sampel dilakukan pada 61 stasiun, 12 stasiun diantaranya dianggap gagal karena kerusakan jaring (sobek), mulut jaring membekit, atau kondisi dasar yang tidak rata dan berbukit-bukit. Stasiun pengambilan sampel efektif berjumlah 49 buah.

Pengambilan sampel menggunakan metode swept area. Alat tangkap sesuai dengan metode ini adalah trawl dasar. Trawl menyapu suatu dasan dasar yang dapat diduga dengan baik. Luas area sapuan adalah dasan yang efektif disapu oleh jaring setiap kali jaring dioperasikan. Penghitungan luas area sapuan menggunakan rumusan yang dikemukakan oleh Sparre (1985) yaitu

\[ a = D \cdot h \cdot X_2 \]

mana

- \( a \): Luas area sapuan \((\text{km}^2)\) per jam;
- \( D \): Panjang daerah sapuan \((\text{km})\);
- \( h \cdot X_2 \): Wing spread atau bentangan sayap yang dianggap sebagai lebar daerah sapuan.

Dalam hal ini, \( h \) adalah panjang tali ris atas \((\text{m})\) dan \( X_2 \) adalah fraksi dari tali ris atas yang setara dengan lebar pola sapuan jaring trawl. Untuk daerah Sisia Tenggara, harga \( X_2 \) untuk trawl dasar berkisar antara 0.4 (Shindo, 1973 dalam Sparre, 1985) hingga 0.66 (SCSP, 1978 dalam Sparre, 1985). Pauly (1980) dalam Sparre (1985) menyarankan \( X_2 = 0.5 \) sebagai kompromi yang baik.
Posisi untuk setiap stasiun dapat diketahui dengan tepat, meliputi awal dan akhir hauling, karena kapal dilengkapi dengan GPS (Global Positioning System) sebagai sarana utama navigasi. Peralatan yang digunakan adalah unit penerima satelit navigasi Magellan, dengan kecepatan penerimaan posisi setiap 9 detik. Oleh karena itu penghitungan panjang kerah sapuan dilakukan dengan menggunakan rumus (Sparre, 1985)

\[ D = 60 \cdot \sqrt{(\text{lat}1-\text{lat}2)^2 + (\text{lon}1+\text{lon}2)^2 \cdot \cos^2(0.5(\text{lat}1+\text{lat}2))} \]

mana

- \text{lat}1 : Lintang pada saat permulaan hauling (derajat);
- \text{lat}2 : Lintang pada saat akhir hauling (derajat);
- \text{lon}1 : Bujur pada saat awal hauling (derajat);
- \text{lon}2 : Bujur pada saat akhir hauling (derajat);
- \text{D} : Panjang daerah sapuan (mil laut);

Karena \text{D} didapat dalam satuan mil laut, maka harus dilakukan konversi satuan mil laut menjadi km dengan cara mengalikan terhadap suatu faktor konversi yaitu 1.852, sehingga 1 mil laut = 1.852 km.

Setelah waktu tersebut, jaring diangkat ke kapal. Kecepatan penurunan dan penaikan jaring diusahakan pelan, untuk memberi kesempatan penyesuaian pelampung dan juga ikan yang tertangkap terhadap perubahan tekanan hidrostatik yang ekstrim. Selama towing, seorang operator harus selalu mengamati kertas pencatat echo sounder untuk melihat apakah sewaktu-aktu terdapat suatu tonjolan (gunung) di dasar laut yang dapat merusak jaring. Apabila terjadi hal yang demikian, segera winch diputar mundur agar segera diangkat untuk mencegah kerusakan yang lebih parah. Urutan pengoperasian jaring disajikan pada Gambar 7.


3.3 Metode Analisis Data

Biomasa diduga dengan pendekatan catch per unit area (CPUA) yang turunkan dari pembagian catch (C) terhadap luas area sapuan (A). Pendugaan ini tergantung pada seberapa akurat luas area sapuan diduga. pada saat jaring dioperasikan, diasumsikan bahwa tali tidak membentik dan
Gambar 7. Pengoperasian Jaring

(1) Jaring saat berada di dalam air.

(2) Jaring ditarik ke kapal.

(3) Bagian kantong ditarik ke kapal.

(4) Hasil tangkapan ditumpahkan diatas buritan.
jaring terbuka sempurna, sehingga lebar bukaan sayap hanya tergantung pada kecepatan haulung, kondisi perairan, arus dan panjang tali selambar.

Biomasa per luas area sapuan per jam dihitung dengan menggunakan rumus (Sparre, 1985)

\[
\frac{C_w}{t} = \frac{C_w}{a} \times \frac{a}{t}
\]

dimana

\( C_w \): Hasil tangkapan (kg);
\( a \): Luas area sapuan (mil laut²);
\( t \): Lama haulung (jam);

dengan kata lain \( C_w/a \) (kg/mil laut²) adalah hasil tangkapan per unit area.

Pendugaan biomassa (hasil tangkapan) per unit area dihitung dengan menggunakan rumus (Sparre, 1985)

\[
b/a = \frac{(C_w/a)}{X_1}
\]

dimana

\( b/a \): Biomasa per unit area (kg/mil laut²);
\( X_1 \): Fraksi biomasa yang tertangkap pada luasana daerah sapuan.

Nilai \( X_1 \) yang disarankan untuk trawl dasar yang dioperasikan pada survei di Kepulauan Tenggara adalah 0.5 (Isarankura, 1971 dalam Sparre, 1985 dan Aeger et al, 1980 dalam Sparre, 1985).

Sebenarnya masih ada satu tahap lagi yang yaitu pendugaan biomassa total (ton) yang terdapat di daerah penelitian. Tahap ini mengandikan adanya
1. Nilai yang akurat dari luasan total perairan yang diteliti (A km²). Beberapa hambatan teknik menyebabkan tahap ini tidak dilakukan karena tidak tersedia data A. Hambatan teknik tersebut adalah tidak tersedianya peta yang menyajikan kedalaman perairan secara akurat, sehingga tidak dapat dibuat garis isodepth, yang menghubungkan kedalaman yang sama, untuk menghitung luasan area pada strata kedalaman tertentu.

4. Metode Pengambilan Contoh Air Laut

Sejumlah contoh air laut diambil dan diukur untuk mengetahui kondisi lingkungan perairan. Parameter lingkungan yang diukur adalah suhu air laut, limitas, kadar oksigen terlarut serta kecerahan. Contoh diambil dengan menggunakan botol Nansen yang diturunkan pada kedalaman tertentu (Gambar 8). Penentuan kedalaman pengambilan contoh dilakukan kemudian rupa, meliputi lapisan permukaan hingga ke dekat dasar perairan.

Tetapi karena obyek penelitian adalah ikan dasar (demersal) maka kedalaman pengambilan contoh lebih ditekankan pada daerah dasar perairan.

Gambar 8. Botol Nansen dan Termometer Balik
Setelah semua botol terbalik dan tertutup, tali baja ditarik kembali dan satu persatu botol dilepaskan dari tali baja dan diletakkan pada rak sesuai dengan urutannya. Air contoh pertama kali diambil untuk keperluan analisis DO yang ditempatkan pada botol BOD dengan menggunakan selang karet pada kran botol untuk menghindari terjadinya gelembung udara. Sisanya digunakan untuk analisis salinitas. Pembacaan suhu air laut dilakukan melalui termometer yang dilekatkan pada botol Nansen.

3.4.1 Pengukuran Suhu Air Laut

Suhu air laut diukur dengan menggunakan dua buah termometer dapat (reversing thermometer), yaitu protected reversing thermometer dan unprotected reversing thermometer. Kedua termometer tersebut dilekatkan pada botol Nansen (Gambar 8). Pada saat botol Nansen berbalik di dalamalaman yang diinginkan, air raksasa yang terdapat pada appendix akan terputus, sehingga air raksasa yang terdapat pada pipa kapiler tidak mengalir lagi. Air raksasa tersebut menunjukkan suhu perairan.

Protected reversing thermometer tertutup di dalam pembungkus kaca yang kuat, dapat mencatat pembacaan sebenarnya dari suhu air laut tanpa pengaruhi tekanan hidrostatik luar. Unprotected reversing thermometer tertutup di dalam pembungkus gelas yang kuat dengan salah satu ujungnya terbuka. Termometer ini dapat mengukur suhu air laut dan tekanan hidrostatik secara kontak langsung dengan air.
Nilai suhu sebenarnya didapat dari nilai pembacaan thermometer setelah dilakukan koreksi. Koreksi tersebut berbeda untuk masing masing thermometer. Koreksi suhu untuk protected reversing thermometer adalah

$$T_w = T' + C + I$$

dimana

- $T_w$: Suhu air yang sebenarnya (terkoreksi) pada protected reversing thermometer;
- $T'$: Suhu air yang terbaca pada termometer utama;
- $I$: Indeks koreksi dari termometer utama (pada sheet calibration);
- $C$: Koreksi muai panas.

Nilai koreksi muai panas ($C$) diberikan oleh

$$C = \frac{(T' + V_o) (T' - t)}{K - 100}$$

dimana

- $V_o$: Volume air raksa di bawah 0°C (sheet calibration);
- $t$: Suhu yang terbaca pada termometer bantu;
- $K$: $1/\alpha$
- $\alpha$: Koefisien muai panas air raksa (sheet calibration).

Nilai suhu yang diperoleh dari protected reversing thermometer adalah nilai suhu yang sebenarnya dari kedalaman terukur.
Koreksi untuk unprotected reversing thermometer adalah

\[ T_U = T_U' + C + I \]

dimana

- \( T_U \): Suhu air terkoreksi pada unprotected reversing thermometer;
- \( T_U' \): Suhu yang terbaca pada termometer utama;
- \( I \): Indeks koreksi (sheet calibration);
- \( C \): Koreksi muai panas.

Koreksi muai panas (C) diberikan oleh

\[ C = \frac{(T_U' + V_d) (T_W - t_u)}{K} \]

dimana

- \( T_W \): Suhu air yang sebenarnya (terkoreksi) pada protected reversing thermometer;
- \( t_u \): Suhu yang terbaca pada termometer bantu yang ada pada unprotected reversing thermometer.

3.4.2 Pengukuran Salinitas

Salinitas diukur langsung menggunakan T.S - Salinometer digital (Gambar 9). Terlebih dahulu dilakukan kalibrasi untuk menghindari anympangan yang diakibatkan oleh kesalahan alat. Kalibrasi dilakukan dengan menggunakan air laut baku dengan salinitas 35 ppt (standard sea water). Karena air laut baku sulit didapat dan terbatas jumlahnya, maka
Gambar 9. T.S - Salinometer Digital

apat diganti dengan menggunakan air laut subbaku. Air laut subbaku dibuat dengan cara mentitrasi air contoh dengan larutan perak nitrat \((\text{AgNO}_3)\) pada konsentrasi tertentu yang ekivalen dengan air laut dalam volume yang sama.

Suhu contoh air diukur, kemudian konduktivitas contoh air dalam sel disetimbangkan dengan larutan contoh standar. Kesetimbangan ditunjukkan oleh indikator pada alat dengan melihat nilai \(K_{15}\) dan suhu pengukuran \((t)\).

Besaran \(K_{15}\) adalah rasio konduktivitas contoh terhadap konduktivitas larutan KCl standar pada suhu 15\(^\circ\)C dan tekanan 1 atm. Nilai \(K_{15}\) diberikan oleh persamaan

\[
K_{15} = \frac{C_{(S, 15, 1)}}{C_{(KCl, 15, 1)}}; \\
S = 1.80655 \ C_{(S, 15, 1)}
\]
dimana

\[ C_{(8, 15, 1)} \] : Konduktivitas larutan contoh pada suhu 15°C, 1 atm;
\[ C_{(KCI, 15, 1)} \] : Konduktivitas larutan KCl standar pada suhu 15°C, 1 atm;
S : Salinitas air contoh.

3.4.3 Pengukuran Oksigen Terlarut

Kadar oksigen terlarut (DO) dianalisis dengan menggunakan alat Botol gelas;
Pipet otomatis dan pipet transfer;
Buret Schellbach otomatis;
Magnetic stirrer;
Labu titrasi (erlenmeyer).

Reaksi yang digunakan telah disiapkan terlebih dahulu yaitu

- Larutan Mangan klorida (MnCl₂);
- Larutan Alkali yodida;
- Larutan Asam sulfat (97%);
- Larutan Kanji;
- Larutan Normalitas Standar Black Run;
- Larutan tiosulfat (Na₂S₂O₃).

Prosedur analisis DO adalah
1) Ke dalam botol BOD yang berisi contoh air ditambahkan 1 ml MnCl₂ dan 1 ml alkali yodida dengan memakai pipet otomatis;
Botol ditutup kembali agar tidak ada gelembung udara yang terperangkap. Botol dibolak-balikkan sebanyak 15 kali agar larutan teraduk rata. Kemudian dibiarankan selama 2-3 menit sampai endapan turun ke dasar botol. Setelah itu dibolak-balik kembali 15 kali dan dibiarankan hingga endapan turun ke dasar;

Ke dalam botol ditambahkan 1 ml asam sulfat pekat. Botol dibiarankan lagi 2-3 menit kemudian dibolak-balikkan kembali hingga endapan larut. Setelah itu botol disimpan di tempat gelap selama 1 jam;

Setelah didiamkan di tempat gelap selama 1 jam, larutan dalam botol dipindahkan ke dalam erlenmeyer 500 ml. Botol BOD dibislas dengan akuades dan air pembiasanya dituangkan juga ke dalam erlenmeyer yang telah berisi larutan contoh;

Larutan contoh dalam erlenmeyer dititrasi dengan larutan tiosulfat. Titrasi dilakukan dengan cepat sampai larutan berwarna kuning pucat. Kemudian ditambahkan 0.5 ml larutan kanji dan larutan akan berwarna biru. Titrasi diteruskan pelan-pelan sampai warna biru hilang dan larutan tidak berwarna. Bila larutan telah berwarna bening, maka titrasi selesai.

Ilai oksigen terlarut dihitung dengan rumus

\[
Kadar \ O_2 \ (ml/l) = \frac{B}{B-2} \times 5.6 \times 10 \times N \times V
\]
dimana

\[ B : \text{Volume botol BOD (300 ml)}; \]

\[ 2 : \text{Volume MnCl}_2 \text{ dan Alkali yodida yang digunakan dalam titrasi;} \]

\[ 5.6 : \text{Konstanta;} \]

\[ 10 : \text{Volume K}_2\text{Cr}_2\text{O}_7; \]

\[ N : \text{Normalitas Tiosulfat;} \]

\[ V : \text{Volume tiosulfat yang terpakai untuk titrasi.} \]

Volume larutan K\textsubscript{2}Cr\textsubscript{2}O\textsubscript{7} adalah volume yang digunakan untuk membuat larutan tiosulfat yang telah disiapkan terlebih sebelumnya. Normalitas tiosulfat dihitung dengan menggunakan rumus

\[ N = \frac{V_1 N_1}{V_2 - V_b} \]

dimana

\[ N : \text{Normalitas tiosulfat;} \]

\[ V_1 : \text{Volume K}_2\text{Cr}_2\text{O}_7; \]

\[ N_1 : \text{Normalitas K}_2\text{Cr}_2\text{O}_7 (0.01 \text{ N}); \]

\[ V_2 : \text{Volume tiosulfat yang dibutuhkan;} \]

\[ V_b : \text{Volume Black Run.} \]

3.4.4 Pengukuran Kecerahan

Kecerahan perairan atau kedalaman penetrasi cahaya diukur dengan membaca langsung menggunakan piring Seichi. Piring Seichi
3.5 Metode Analisis Hubungan Pemangs - Mangsa

Tinjauan terhadap adanya hubungan pemangs-mangsa dilakukan dengan tiga metode. Pertama adalah menggunakan metode analisis visual hadap kontur sebaran mendatar dan yang kedua adalah menggunakan analisis regresi dan korelasi linier serta yang ketiga menggunakan koefisien relasi peringkat. Penggunaan ketiga metode tersebut dimaksudkan untuk elihat apakah terdapat hubungan antara pemangs dengan mangsanya.

Persamaan regresi linier yang digunakan adalah (Walpole, 1988)

\[ \hat{Y} = a + bx \]

mana

\[ b = \frac{n \sum x_i y_i - (\sum x_i)(\sum y_i)}{n \sum x_i^2 - (\sum x_i)^2} \]

\[ a = \hat{Y} - bx \]

Untuk mengetahui ukuran hubungan linier antara dua peubah \( X \) dan diduga dengan koefisien korelasi contoh \( r \), yaitu (Walpole, 1988)
$r = \frac{\sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)}{\sqrt{[\sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2][\sum_{i=1}^{n} y_i^2 - (\sum_{i=1}^{n} y_i)^2]}}$

Berkaitan dengan nilai $r$, Walpole (1988) menyatakan bahwa hubungan linier sempurna terdapat antara nilai $x$ dan $y$ dalam contoh, bila $r = +1$ atau $-1$. Bila $r$ mendekati nol, hubungan linier antara $x$ dan $y$ sangat lemah atau mungkin tidak ada sama sekali.

Selain metode regresi dan korelasi, digunakan juga metode nonparametrik dalam melihat hubungan pemangsaan ini. Statistika nonparametrik yang digunakan adalah koefisien Korelasi Peringkat Spearman.


Koefisien korelasi peringkat Spearman ($r_s$) dirumuskan sebagai (Walpole, 1988)

$$r_s = 1 - \frac{6 \sum_{i=1}^{n} d_i^2}{n(n^2 - 1)}$$

mana

$d_i :$ Selisih antara peringkat bagi $x_i$ dan $y_i$;

$n :$ Banyaknya pasangan data.
Dalarn hal ini

x: Pemangsa, yaitu *Rekea prometheoides*, *Neopinnula orientalis* dan *Cubiceps whiteleggi*;

y: Mangsa, yaitu *Champsodon arafurensis* dan *Diaphus*;

n: 5.

ai \( r_s \) dapat terjadi dari -1 sampai +1 dan ditafsirkan sama dengan nilai \( r \) yang diperoleh dari pengukuran numerik (parametrik) (Walpole, 1988).