II. TINJAUAN PUSTAKA

A. SUMBER SERAT

Menurut Casey (1980), kayu sebagai sumber serat yang digunakan sebagai bahan baku pembuatan kertas secara garis besar terbagi atas dua jenis yaitu kayu daun jarum (Gymnospermae) yang biasa disebut softwood dan kayu daun lebar (Angiospermae) yang disebut hardwood. Keduanya mempunyai perbedaan sifat serat.

Sifat-sifat serat yang berpengaruh terhadap sifat kertas yang dihasilkan adalah panjang serat, diameter serat dan tebal dinding serat. Sifat serat ini biasa disebut dimensi serat. Peranan dimensi serat berhubungan satu sama lain dan pengaruhnya sangat mendasar terhadap sifat fisik kertas serta tujuan penggunaannya (Casey, 1980).

Kayu daun jarum (softwood) mempunyai serat yang lebih panjang dibandingkan kayu daun lebar (hardwood). Panjang trakheid softwood biasanya 3-5 mm (rata-rata 2.5 sampai 8 mm). Panjang ini bervariasi tergantung pada ketinggian pohon, diameter, umur dan tipenya.

Pada umumnya serat panjang menghasilkan kertas yang mempunyai kekuatan sobek yang tinggi dan dalam batas-batas tertentu menghasilkan kertas dengan
kekuatan tarik, kekuatan retak dan kekuatan lipat yang tinggi. Hal ini disebabkan serat panjang memberikan titik tangkap yang luas terhadap gaya yang mengenainya, sehingga dapat menahan gaya yang lebih besar (Soenardi, 1974).

Terdapat hubungan yang nyata antara panjang serat dan kekuatan sobek kertas, tetapi hubungan panjang serat dengan sifat kekuatan kertas yang lain kurang jelas. Sifat kekuatan kertas yang lain tersebut (kekuatan tarik, lipat dan retak) lebih cenderung dipengaruhi oleh kekuatan ikatan antar serat dari pada dengan panjang serat. Serat-serat kayu daun jarum yang tidak digiling menghasilkan kertas yang rendah kualitasnya meskipun serat-serat tersebut mempunyai serat yang panjang. Produk-produk seperti karton, kertas pembungkus dan kertas kantong tidak menggunakan pulp kayu daun lebar karena pulp ini mempunyai serat yang pendek sehingga kurang kuat apabila digunakan sebagai bahan baku pembuatannya, walupun dapat ditemui produk-produk khusus (Casey, 1980).

Dijelaskan lebih lanjut bahwa proses penggilingan akan mempengaruhi kekuatan fisik kertas. Penggilingan akan meningkatkan ketahanan sobek pada tingkat penggilingan tertentu. Sifat kekuatan yang lain seperti daya tarik, retak dan lipat akan meningkat dengan meningkatnya penggilingan.
KERTAS DAN PROSES PEMBUATANNYA

Menurut Standar Industri Indonesia (1982), kertas adalah lembaran yang terdiri dari serat-serat selulosa yang saling tempel-menempel dan jalin-menjalin. Pada beberapa jenis kertas tertentu ditambahkan beberapa bahan penolong berupa zat organik atau anorganik.

Industri kertas dan kertas karton pada dasarnya melibatkan beberapa tahapan proses yaitu pembuatan pulp dari bahan baku berselulosa, penggilingan dan penyaringan pulp serta pembuatan kertas dan penyempurnaannya. Pembuatan pulp pada intinya memberikan perlakuan pada bahan baku berserat secara mekanik, kimia atau kombinasi dari keduaanya sehingga setiap serat dapat dipisahkan dari lignin, zat ekstraktif dan komponen kimia lainnya dari bahan berlignoselulosa. Karakteristik akhir kertas yang dihasilkan akan bergantung
pada kualitas pulp yang ditentukan oleh banyak faktor seperti: pemilihan bahan baku dan tipe proses yang digunakan pada pembuatan pulp (Stephenson, 1952).

Menurut Stephenson (1952), proses yang paling menentukan dalam pembuatan kertas adalah persiapan stok. Pada tahap ini dibentuk sifat kertas yang sesuai dengan jenis kertas yang akan diproduksi. Pembentukan sifat kertas dilakukan dengan pencampuran pulp, penyaringan dan pembersihan, penggilingan dan penambahan bahan kimia.

B.1. INTERNAL SIZING

Menurut Mcdonald (1970), kertas dan karton dibuat melalui proses internal sizing supaya memiliki penampakan yang baik dan memuaskan apabila kontak dengan berbagai macam cairan. Dengan internal sizing peresapan air pada kertas pembungkus dapat diperlambat.
Gambar 1. Diagram alir proses pembuatan kertas

Casey (1981) juga menjelaskan bahwa internal sizing merupakan proses untuk memberikan ketahanan kertas terhadap cairan yang relatif encer untuk memberikan karakteristik akhir kertas yang baik, seperti ketahanan terhadap peresapan air, tinta encer, susu, kopi, darah, jus atau cairan lain. Ketahanan terhadap suatu cairan tertentu belum tentu juga tahan terhadap cairan lain. Darih rosin dapat
memberikan ketahanan terhadap air dan beberapa cairan yang bersifat asam, tetapi tidak tahan pada cairan alkali.

Jumlah darip rosiny yang digunakan dalam proses internal sizing bergantung dari kualitas kertas dan fungsinya serta efektifitas yang ingin diperoleh. Beberapa kualitas kertas membutuhkan penggunaan lebih dari satu persen darip rosiny dari berat pulp yang digunakan.

B.2. SURFACE SIZING

Menurut Podder (1982), surface sizing merupakan penambahan bahan kimia tertentu pada permukaan kertas untuk memperoleh sifat-sifat yang diinginkan.

Kegunaan surface sizing dari kertas pengemas mencakup ketahanan penetrasi minyak, lemak dan bahan-bahan pelarut lain serta peningkatan ketahanan retak, tarik dan ketahanan terhadap abrasi. Surface sizing dapat menyebabkan rendahnya ketahanan sobek (Klass, 1982).

3. PROSES PELAPISAN (PIGMENT COATING)

Pigment coating merupakan proses pelapisan kertas dengan bahan-bahan kimia dan pigmen untuk meningkatkan mutu cetak dan penampakan kertas. Proses pelapisan dibuat untuk memperoleh sifat permukaan yang unggul dalam pencetakan, yaitu kelicinan
yang tinggi, penyerapan tinta yang lebih baik, lebih putih dan lebih mengkilap (Casey, 1981).

Bahan baku yang digunakan dalam proses pelapisan terdiri dari dua bahan utama yaitu kertas dasar dan campuran bahan salut (coating color). Coating color merupakan campuran dari beberapa bahan kimia yang berbeda sifat dan fungsinya sehingga mempunyai sifat akhir baru yang berbeda. Menurut Casey (1981), campuran bahan salut yang paling sederhana terdiri dari zat warna (calcined clay, plastic pigment, silicates, alumina trihydrate) dan zat pengikat atau binder (pati casein, animal glue, PVA, turunan selulosa, lateks). Selain pigmen dan binder, ke dalam bahan salut biasanya ditambahkan bahan aditif (lubricant, foam control agent, flow modifier dll).

Kertas dasar merupakan komponen terpenting dalam penentuan kualitas dari kertas salut. Sifat-sifat kertas dasar yang penting antara lain keseragaman formasi, porositas, sifat kekuatan fisik kertas, kadar air, derajat putih, opasitas dan kelincahan permukaan.

a. Pigmen

Pigmen merupakan komponen utama dalam campuran bahan salut. Umumnya pemakaiannya berkisar antara 70-90 persen dari berat total campuran
salut. Jenis pigmen yang biasa dipakai adalah kaolin (clay), kalsium karbonat, titanium oksida dan satin white (Casey, 1981).

Menurut Elyani dan Jenni (1992), kaolin merupakan pigmen dasar untuk kertas cetak dengan rumus kimia Al₂O₃·2SiO₂·2H₂O. Jenis pigmen ini mempunyai harga yang relatif rendah dan pemakainannya sebagai zat warna dalam proses penyalutan akan meningkatkan mutu cetak dan mengurangi penyebaran tinta cetak pada kertas. Kaolin mempunyai sifat-sifat sebagai berikut:

- specific gravity : 2.57 - 2.63
- index refraction : 1.56
- derajat putih : 65 - 86 %
- ukuran partikel : + 44

b. **Binder**

Binder mempunyai pengaruh yang besar pada sifat campuran bahan salut dan sifat akhir kertas salut. Fungsi binder antara lain bertindak sebagai pembawa pigmen, pengikat partikel pigmen menjadi satu, mengikat partikel pigmen dengan kertas, memberi sifat alir yang dibutuhkan dan mengontrol absorpsi tinta cetak selama proses cetak pada kertas. Binder terbagi menjadi dua jenis yaitu natural binder (pati, casein, soys protein, derivat selulosa) dan sintetik binder (styrene-butadiene, acrylic, PVAC, PVA).

Styrene-butadiene (SBR) dikenal juga dengan nama lateks, mempunyai viskositas rendah berbentuk emulsi berwarna putih dengan bau yang spesifik. Lateks cocok dengan hampir semua jenis binder lain dan dapat digunakan dengan sebagian besar pigmen (Elyani dan Jenni, 1992).

c. Aditif

Selain pigmen dan binder yang merupakan komponen utama, campuran bahan salut masih harus ditambahkan bahan kimia aditif seperti modifier, lubricant, dispersants dan lain-lain.

Kertas salut yang dicetak akan bersentuhan dengan air dan apabila binder yang dipakai dapat larut dalam air, lapisan salut akan lunak dan tinta akan lepas. Untuk mengatasi masalah tersebut biasanya ditambahkan bahan insolubilizer
seperti aldehida, melamin formaldehyde, borat atau khromat (Elyani dan Jenni, 1992).

Menurut SII no. 1158 th 1984 persyaratan kertas cetak salut adalah sebagai berikut :

- Gramatur (g/m^2) : 71 - 200
- pH (ekstraksi dingin) : 6-8
- Derajat putih (%) : min. 70
- Kilap (75 huter) (%) : maks. 75
- Kekasaran (Bendstgen) (ml/menit) : maks. 100
- Cobb 60 (g/m^2) : maks. 35
- Ketahanan cabut (IGT) (P.m/s) : min. 300
- Penetrasi minyak (IGT) (1000/mm) : 7-8

Kertas Glasin

Kertas glasin adalah kertas yang mempunyai permukaan lebaran yang mengkilap, transparan dan tahan terhadap minyak dan lemak. Kertas glasin termasuk dalam golongan kertas khusus (yang dibuat untuk tujuan dan spesifikasi khusus). Sifat-sifat khusus tersebut dibuat dengan cara perlakuan terhadap pulp atau kertas yang sudah jadi dengan penambahan bahan sizing.

Menurut Casey (1952), kertas glasin dan kertas tahan minyak mempunyai porositas rendah sehingga mempunyai ketahanan terhadap minyak yang tinggi. Karakteristik umum kertas glasin adalah sebagai berikut:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gramatur</td>
<td>30-75 g/m²</td>
</tr>
<tr>
<td>Tebal</td>
<td>0.025-0.070 μm</td>
</tr>
<tr>
<td>Solid friction</td>
<td>0.62-0.75</td>
</tr>
<tr>
<td>Specific volume</td>
<td>1.0</td>
</tr>
<tr>
<td>Air volume</td>
<td>13 %</td>
</tr>
</tbody>
</table>