IV. HASIL DAN PEMBAHASAN

A. PERSIAPAN KULTUR MIKROBA

Dalam proses pertumbuhannya, koloni S. cerevisiae empunyai penampilan dan warna yang lebih putih dan ebih tebal dibandingkan dengan B. licheniformis. edangkan B. licheniformis membentuk koloni yang agak
kasar dengan bagian tepi koloni yang agak mengkerut (Buchanan dan Gibbons, 1974).

Untuk menjaga viabilitas sel, maka kultur stok harus disegarkan setiap dua minggu sekali dengan cara menumbuhkan sel pada agar miring yang baru. hal ini dilakukan terhadap kultur B. licheniformis maupun S. cerevisiae. Sedangkan untuk keperluan panen, baik untuk B. licheniformis maupun S. cerevisiae digunakan media cair. Media cair yang digunakan untuk B. licheniformis adalah Luria Broth, sedangkan untuk S. cerevisiae digunakan media cair east Dekstrosa Pepton.

B. SOLASI DNA

Sel yang akan diisolasi DNA-nya, ditumbuhkan secara bertahap, yaitu dari satu ose ke dalam 10 ml Luria Broth dan diinkubasikan pada suhu 37\(^{\circ}\)C selama 24 jam kemudian 1 ml kultur tersebut dipindahkan ke dalam 99 ml Luria Broth dan diinkubasikan pada suhu yang sama selama 2 - 4 jam. Tahap ini bertujuan
agar sel yang tumbuh cukup banyak dan masih relatif muda. Hal ini memudahkan dalam melakukan isolasi DNA, karena sel yang masih muda dinding selnya lebih mudah hidrolisis.

Panen sel dilakukan dengan menggunakan sentrifuga pada kecepatan 3500 rpm selama 20 menit menggunakan suhu 4°C. Adapun tujuan perlakuan ini adalah untuk memisahkan sel dari supernatannya dan sel dapat dengan mudah disuspensikan kembali. Jika kecepatan sentrifuga terlalu rendah atau waktunya terlalu cepat maka sel selum semuanya terendapkan sehingga sel sulit dipisahkan dari supernatannya. Sebaliknya jika kecepatan sentrifuga terlalu tinggi atau waktunya terlalu lama, akan akan terbentuk endapan sel yang keras dan sulit disuspensikan kembali.

Tahap pertama yang dilakukan untuk mengisolasi DNA adalah memecahkan dinding sel dari bakteri sebagai sel donor, lalu DNA dipisahkan dari komponen lainnya. Pemecahan dinding sel dapat dilakukan secara fisik atau kimia. Pemecahan secara fisik meliputi penggilingan, sonikasi, peningkatan suhu, dan tekanan osmosis; sedangkan pemecahan sel secara kimia meliputi penambahan senyawa pelarut dinding sel seperti sodium odesil sulfat, enzim liozim, dan selulase (Rodriguez dan Tait, 1983; Clark dan Switzer, 1977).
Pada penelitian ini dinding sel dipecahkan dengan perlakuan secara kimia dan fisik. Pemecahan dinding sel dilakukan dengan penambahan sodium dodesil sulfat 25% kemudian diinkubasikan pada suhu 60°C selama 15 - 20 menit. Waktu inkubasi harus diperhatikan karena jika waktu inkubasi terlalu lama maka akan terjadi kerusakan DNA, sedangkan jika terlalu singkat kemungkinan dinding sel belum lisis. Tidak ada enzim yang digunakan dalam pemecahan dinding sel B. licheniformis karena dengan penambahan sodium dodesil sulfat 25% ternyata sudah dapat memecah dinding sel B. licheniformis dengan sempurna.

dan Switzer (1977), fase kedua mengandung pelarut-pelarut organik yang digunakan dan sebagian protein yang terdenaturasi; sedangkan pada fase organik terdapat pecahan sel dan protein terkoagulasi.

Fase atas yang mengandung DNA dipindahkan dengan pipet bermulut besar dan kemudian diendapkan dengan etanol 95%. Pengendapan DNA akan membentuk serabut-serabut putih yang dapat diliiti dengan batang pengaduk steril. Pelilitan juga sekaligus memisahkan serabut DNA dari makromolekul lainnya yang masih ada, seperti protein dan RNA. DNA yang telah diliiti kemudian direndam dalam buffer TE dan disimpan pada suhu rendah (0 - 4°C).

Dalam melakukan pemisahan DNA dari campuran protein juga sekaligus terjadi penginaktifan enzim-enzim yang dapat mengganggu proses transformasi, misalnya enzim nuklease. Pencucian yang dilakukan dengan buffer SET dan penggunaan sodium dodesil sulfat bertujuan untuk menginaktifkan enzim tersebut dengan cara mengeluarkan ion-ion bivalent yang diperlukan untuk aktivitasnya oleh senyawa pengikat EDTA yang terdapat dalam buffer SET serta oleh sodium dodesil sulfat.
C. KARAKTERISASI DNA

Dari hasil pengukuran absorbansi dengan menggunakan spektrofotometer pada panjang gelombang 200 nm sampai 300 nm dari isolat DNA, diperoleh nilai absorbansi maksimum pada panjang gelombang 258.1 nm, nilai absorbansi pada 260 nm adalah 0.455 sedangkan nilai absorbansi pada 280 nm adalah 0.224. Rasio antara A_{260}/A_{280} adalah sebesar 2.03. Hasil tersebut menunjukkan bahwa isolat DNA yang berhasil diisolasi sudah cukup murni. Kurva absorbansi DNA pada panjang gelombang 200 nm sampai 300 nm dapat dilihat pada Gambar 4, sedangkan hasil pengukuran absorbansi dengan spektrofotometer pada panjang gelombang 260 nm dan 280 nm serta rasio A_{260}/A_{280} dapat dilihat pada Tabel 2.

Tabel 2. Absorbansi pada panjang gelombang 260 nm dan 280 nm serta rasio A_{260}/A_{280}

<table>
<thead>
<tr>
<th>A_{260}</th>
<th>A_{280}</th>
<th>A_{260}/A_{280}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.455</td>
<td>0.224</td>
<td>2.03</td>
</tr>
</tbody>
</table>

Menurut Brown (1986) konsentrasi DNA dalam suatu sampel dapat dihitung dengan menggunakan standar 1 OD untuk setiap 50 μg DNA untai ganda per ml larutan DNA. Isolat DNA pada penelitian ini mempunyai konsentrasi
DNA sebagai DNA unta ganda sebesar 568.75 μg/ml. DNA yang akan digunakan dalam proses transformasi diencer-kan 100 kali sehingga konsentrasi nya menjadi 5.6875 μg/ml atau 5.6875 ng/μl.

D. TRANSFER DNA

Pada penelitian ini proses transfer DNA Bacillus licheniformis ke dalam sel Saccharomyces cerevisiae dilakukan dengan menggunakan metoda Rodriguez dan Tait (1983) dan Ito et al (1983) yang telah mengalami modifikasi. Adapun prosedur transformasi dilakukan sesuai dengan yang dijelaskan dalam Bab III.

Transformasi merupakan pemindahan sifat-sifat dari suatu jasad renik ke jasad renik lainnya melalui bagian-bagian DNA tertentu dari jasad renik pertama (Fardia, 1989). Pada penelitian ini dilakukan pemindahan sifat dari B. licheniformis ke dalam sel S. cerevisiae melalui pemindahan DNA. Transfer DNA pada penelitian ini melibatkan dua jenis mikro-organisme dari kelas yang berlainan.

Menurut Rodriguez dan Tait (1983), transformasi adalah suatu gejala yang nyata yang tidak terbatas hanya terjadi di laboratorium, tetapi juga terjadi secara alamiah. Dalam proses transformasi yang terjadi secara alamiah, bakteri umumnya memasuki suatu tahap

Sel *S. cerevisiae* dapat dijadikan kompeten dengan perlakuan ion logam alkali seperti Li⁺, Na⁺, K⁺, Cs⁺, dan Rb⁺. Penggunaan LiCl ternyata memberikan efisiensi transformasi maksimum dibandingkan dengan ion logam alkali lainnya (Ito et al, 1983). Pada penelitian ini sel *S. cerevisiae* dibuat kompeten dengan penambahan LiCl 0.2 M dan penambahan PEG-4000 70 % yang bertujuan untuk meningkatkan sifat kompeten dari sel inang dengan membuka pori-pori membran sel sehingga DNA asing dapat masuk serta menstabilkan frekuensi transformasi. Peranan LiCl belum diketahui dengan jelas, diduga mekanismenya mirip dengan pengaruh CaCl₂ terhadap sel *E. coli* yaitu membentuk suatu kompleks pada permukaan sel sehingga transformasi dapat berlangsung dengan baik. Peranan PEG yaitu mengubah muatan membran
akibat interaksi antara muatan negatif pada PEG, kation monovalen, dan permukaan sel khamir yang menyebabkan perubahan konformasi dan pengumpulan sel (Ito et al., 1983).

Koloni yang tumbuh pada media tersebut diseleksi berdasarkan morfologi dan kemampuannya untuk membentuk areal bening. Penampakan sel hasil transformasi mirip dengan Saccharomyces cerevisiae yaitu koloninya tebal dan halus, sedangkan koloni Bacillus

Gambar 5. Bentuk sel Bacillus licheniformis (pembesar-
ran 1000 kali)
Gambar 6. Bentuk sel *Saccharomyces cerevisiae* (pembesaran 1000 kali)

Gambar 7. Bentuk sel hasil transformasi setelah 8 kali pemindahan (pembesaran 1000 kali)
E. **EFISIENSI TRANSFORMASI**

Dari hasil penelitian ini jumlah sel hasil transformasi yang dapat memproduksi protease ekstraseluler diperoleh rataan 11 koloni per cawan. Pada penelitian ini, proses transformasi menggunakan DNA yang telah dilencerkan 100 kali dalam buffer TE, dengan konsentrasi 56.875 ng/10 μl. Sebanyak 10 μl DNA stok ditambahkan pada 0.1 ml sel kompeten. Penggunaan 10 μl DNA dengen pertimbangan jika DNA yang ditambahkan melewati titik kejenuhan akan menurunkan efisiensi transformasi (Levy, et al, 1973). Pada setiap cawan disebarkan 10 μl transforman sehingga dalam setiap cawan terdapat 5.6875 ng DNA atau 568.75 x 10^-11 g DNA.

Dari hasil penelitian ini dapat dihitung efisiensi transformasi untuk setiap ng DNA. Rataan koloni proteolitik dari setiap cawan petri adalah 11 koloni, maka dapat diperoleh efisiensi transformasi sebesar 2 koloni proteolitik ekstraseluler per 1 ng DNA. Jadi efisiensi transformasi yang diperoleh dalam penelitian
ini setara dengan 2.0×10^3 koloni proteolitik ekstraseluler per μg DNA. Nilai tersebut lebih tinggi dibandingkan dengan hasil percobaan Ito et al (1983) yaitu sebesar 2.3×10^3 koloni per $10 \mu g$ DNA atau 2.3×10^2 koloni per μg DNA.

Efisiensi transformasi yang dihitung dalam penelitian ini hanya berdasarkan kemampuan sel hasil transformasi untuk memproduksi protease ekstraseluler. Jadi besar kemungkinan efisiensi transformasi yang sebenarnya lebih besar dari hasil penelitian ini, karena kemungkinan ada pula sel hasil transformasi yang tidak dapat memproduksi protease ekstraseluler yang tidak terhitung dalam penelitian ini.

F. UJI FISIOLOGIS MIKROBA

Uji fisiologis mikroba dilakukan terhadap B. licheniformis sebagai sel donor, S. cerevisiae sebagai sel inang, dan sel hasil transformasi. Pengujian ini bertujuan untuk mengetahui aktivitas enzim pada suatu mikroorganisme karena merupakan indikasi dari ekspresi gen-gen tertentu yang terdapat dalam DNA. Uji fisiologis mikroba ini meliputi uji hidrolisa skim, uji kestabilan transforman, uji hidrolisa pati, uji Voges-Proskauer, uji hidrolisa gelatin, dan uji aktivitas protease.
1. Uji Hidrolisa Skim dan Kestabilan Transforman

Uji hidrolisa skim dilakukan dengan menggunakan cawan yang berisi media agar yang telah ditambahkan skim 2%. Media agar yang digunakan ada dua macam, yaitu Luria Agaruntuk *B. licheniformis* dan Yeast Dekstrosa Pepton Agar untuk *S. cerevisiae* dan sel hasil transformasi. Pengujian ini pada prinsipnya berdasarkan kemampuan mikroba dalam mensintesa enzim proteolitik ekstraseluler yang dapat menghidrolisa skim. Mikroba yang mampu menghidrolisa skim akan dikelilingi oleh areal bening di sekitar koloni yang tumbuh.

Dari hasil penelitian ini ternyata sel hasil transformasi mampu menghidrolisa skim, hal ini ditunjukkan oleh adanya areal bening di sekeliling koloni yang tumbuh. Dengan demikian terlihat bahwa mikroba hasil transformasi bersifat proteolitik. Sifat proteolitik ini hanya dimiliki oleh salah satu induknya, yaitu *B. licheniformis*.

Uji kestabilan transforman dilakukan dengan menggunakan metoda Sasonko et al (1992) yang dimodifikasi. Uji ini hanya dilakukan terhadap sel hasil transformasi dengan menggunakan Yeast Dekstrosa Pepton Agar yang mengandung skim 2%. Uji

Gambar 8. Uji hidrolisa skim terhadap Bacillus licheniformis dibandingkan dengan kontrol

2. Uji Hidrolisa Pati

Uji hidrolisa pati dilakukan dengan menggunakan media agar pati (Starch Agar). Pati merupakan
Gambar 9. Uji hidrolisa skim *Saccharomyces cerevisiae* dibandingkan dengan kontrol

Gambar 10. Uji hidrolisa skim transforman dibandingkan dengan kontrol (setelah 8 kali pemindahan)

Dari hasil penelitian ini terlihat bahwa B. licheniformis dan sel hasil transformasi dapat menghidrolisa pati. Hal ini dapat diketahui berdasarkan adanya areal bening di sekeliling koloni setelah ditetesi dengan larutan gram yodium, sedangkan pada bagian yang tidak ditumbuhi koloni tampak berwarna biru. Sebaliknya S. cerevisiae tidak dapat menghidrolisa pati, karena tidak terbentuk areal bening di sekeliling koloni setelah ditetesi larutan gram yodium. Warna biru yang timbul tersebut terjadi karena adanya reaksi antara pati yang tidak terhidrolisa dengan larutan gram yodium sehingga membentuk kompleks yang berwarna biru.

Sel hasil transformasi dapat menghidrolisa pati menunjukkan bahwa sel tersebut dapat menghasilkan enzim amilase yang mampu menghidrolisa pati.
menjadi molekul yang lebih sederhana seperti dekstrin, maltosa, dan glukosa. Hasil uji hidrolisa pati yang dilakukan terhadap *B. licheniformis*, *S. cerevisiae*, dan transforman dapat dilihat pada Gambar 11, 12, dan 13.

Uji Voges-Proskauer

Uji Voges-Proskauer didasarkan atas kemampuan suatu mikroorganisme untuk membentuk asetilmetylkarbinol (asetoin) yang merupakan hasil samping dari metabolisme karbohidrat. Pembentukan
Gambar 12. Uji hirolisa pati *Saccharomyces cerevisiae*

Gambar 13. Uji hidrolisa pati terhadap transforman
1. Dianggap mengandung bahan aktif atau seluluh kanya tinta ini tanpa mengalami perubahan, penelitian penelitian jenis lainnya, penelitian laporan, penelitian kritik atau tipologi suatu modul.

2. Dokumentasi merupakan dan penelitian tidak mengandung bahan aktif atau seluluh kanya tinta ini dalam bentuk pop-up atau tinta IPB.

Dari hasil penelitian ini tampak bahwa *B. licheniformis* dan sel hasil transformasi menunjukkan hasil uji positif. Hal ini dapat diamati dengan adanya warna merah pada media yang telah diinokulasikan, diinkubasi, dan ditambahkan alfa-naftol serta KOH, kemudian didiamkan selama 30 menit. Sel *S. cerevisiae* sebaliknya memberikan hasil negatif, karena tidak membentuk warna merah atau merah muda pada media. Warna merah yang terbentuk pada media yang diinokulasikan dengan sel hasil transformasi lebih muda jika dibandingkan dengan warna merah pada media yang diinokulasikan dengan *B. licheniformis*. Hal ini kemungkinan disebabkan oleh rendahnya produksi asetilmetykarbinol pada sel hasil transformasi jika dibandingkan dengan *B. licheniformis*. Hasil uji Voges-Pro
kauer yang dilakukan terhadap *B. licheniformis*, *S. cerevisiae*, transforman, dan kontrol dapat dilihat pada Gambar 14.

Gambar 14. Uji Voges-Proskauer terhadap *Bacillus licheniformis* (BL), *Saccharomyces cerevisiae* (SC), transforman (T1) di-bandingkan dengan kontrol (KT)

4. Uji Hidrolisa Gelatin

Menurut Salle (1961), gelatin merupakan suatu protein yang dapat membentuk gel jika dilarutkan dalam air panas. Gelatin yang terhidrolisa akan kehilangan sifat membentuk gel. Hidrolisa gelatin merupakan suatu rekasi enzimatik, di mana enzim yang berperan adalah gelatinase. Hidrolisa gelatin
dapat digunakan sebagai salah satu cara untuk menguji adanya enzim proteolitik.

Uji hidrolisa gelatin dilakukan dengan menggunakan media nutrien gelatin yang telah diinokulasi kan dengan kultur mikroba dan diinkubasikan selama 5 - 8 hari pada suhu 35°C, kemudian didinginkan dalam es selama dua jam. Hasil penelitian ini menunjukkan bahwa B. licheniformis dan sel hasil transformasi dapat menghidrolisa gelatin, sedangkan S. cerevisiae tidak dapat menghidrolisa gelatin. Hal ini ditandai dengan tetap mencairnya media nutrien gelatin yang telah diinokulasi dengan B. licheniformis dan sel

Gambar 15. Uji hidrolisa gelatin Bacillus licheniformis (BL), Saccharomyces cerevisiae (SC), transforman (TR) dibandingkan dengan kontrol

5. Uji Aktivitas Protease

Tujuan dari pengujian ini adalah untuk membandingkan aktivitas protease ekstraseluler yang dihasilkan oleh sel hasil transformasi dibandingkan dengan kedua induknya. Hasil pengujian aktivitas
protease terhadap sel hasil transformasi dan kedua induknya dapat dilihat pada Tabel 3.

Tabel 3. Penguji aktivitas protease pada media Luria Broth dan Yeast Dekstrosa Pepton (inkubasi 24 jam, 37°C)

<table>
<thead>
<tr>
<th>Mikroba</th>
<th>Media</th>
<th>A_{st}</th>
<th>A_{bl}</th>
<th>A_{sp}</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. licheniformis</td>
<td>LB</td>
<td>0.4437</td>
<td>0.0000</td>
<td>0.0315</td>
<td>0.0426</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6198</td>
<td>0.0000</td>
<td>0.0809</td>
<td>0.0783</td>
</tr>
<tr>
<td></td>
<td>YDP</td>
<td>0.5086</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5850</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>LB</td>
<td>0.3979</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5086</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>YDP</td>
<td>0.3770</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4815</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Transforman</td>
<td>LB</td>
<td>0.6576</td>
<td>0.0000</td>
<td>0.0009</td>
<td>0.0008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6989</td>
<td>0.0000</td>
<td>0.0004</td>
<td>0.0004</td>
</tr>
<tr>
<td></td>
<td>YDP</td>
<td>0.4318</td>
<td>0.0000</td>
<td>0.0362</td>
<td>0.0509</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5229</td>
<td>0.0000</td>
<td>0.0969</td>
<td>0.1112</td>
</tr>
</tbody>
</table>

Berdasarkan hasil yang diperoleh dari penguji-an seperti yang tercantum dalam Tabel 3, maka didapatkan aktivitas protease rata-rata untuk setiap mikroba adalah sebagai berikut:
B. licheniformis : 0.0605 unit/ml (LB)
0.0000 unit/ml (YDP)
S. cerevisiae : 0.0000 unit/ml (LB)
0.0000 unit/ml (YDP)
Transforman : 0.0006 unit/ml (LB)
0.0808 unit/ml (YDP)

Dari hasil perhitungan aktivitas protease rata-rata di atas, menunjukkan bahwa aktivitas protease ekstraseluler yang tertinggi dihasilkan oleh transforman yang diinokulasikan dalam media YDP, disusul oleh B. licheniformis yang diinokulasikan dalam media LB dan transforman yang diinokulasikan dalam media LB. Hasil tersebut menunjukkan bahwa produksi protease yang optimum untuk sel hasil transformasi adalah dengan menggunakan media YDP, sedangkan untuk B. licheniformis dengan menggunakan media LB. Hal ini menegaskan bahwa transforman lebih menyerupai S. cerevisiae karena memiliki aktivitas protease lebih tinggi pada media YDP dibandingkan LB. Aktivitas protease yang dimiliki sel hasil transformasi yang diinokulasikan dalam media YDP lebih besar daripada aktivitas protease B. licheniformis yang diinokulasikan dalam media LB. Hasil ini mungkin disebabkan adanya faktor-faktor lingkungan yang lebih mendukung terhadap pertumbuhan sel hasil
transformasi sehingga sel hasil transformasi tersebut dapat memproduksi protease dalam jumlah yang lebih tinggi daripada *B. licheniformis*.

G. INTEGRASI DNA DONOR DENGAN DNA SEL INANG DAN EKSPRESI GENETIKANYA

Dari hasil-hasil uji yang telah dilakukan terhadap sel hasil transformasi maka dapat dikatakan bahwa sel hasil transformasi telah mewarisai beberapa sifat dari *B. licheniformis* (Tabel 4). Hal ini menunjukkan bahwa telah terjadi pemindahan DNA dari *B. licheniformis* ke dalam sel *S. cerevisiae*. DNA tersebut kemudian berintegrasi dengan DNA *S. cerevisiae* dan terekspresi secara genetika. Tidak dapat diketahui dengan pasti apakah DNA *B. licheniformis* yang masuk ke dalam *S. cerevisiae* tersebut berintegrasi dengan DNA kromosom atau dengan DNA plasmid pada sel *S. cerevisiae*.

Menurut Watson di dalam Sudding (1990), DNA donor yang masuk ke dalam suatu sel akan berintegrasi dengan DNA sel inang yang bersangkutan. Integrasi ini menyebabkan perubahan genetika dari sel inang. Pada umumnya integrasi DNA donor dengan DNA kromosom sel inang terjadi secara pindah silang antara pasangan-pasangan basis yang homolog dari DNA donor dengan DNA sel inang.
Mekanisme integrasi antara DNA donor dengan DNA sel inang terjadi karena adanya DNA donor yang masuk ke dalam sel akan terurai menjadi untai tunggal. Untai tunggal ini selanjutnya akan berintegrasi dengan DNA sel inang pada pasangan-pasangan basa yang homolog dengan menyisipkan untai bebas lainnya secara komplemen sehingga akan terbentuk suatu hibrida DNA. Hibrida DNA yang terbentuk ini kemudian akan direplikasi dan ditranskripsi pada saat sel melakukan reproduksi (Sudding, 1990).

Pada umumnya S. cerevisiae mempunyai plasmid (Watson di dalam Sudding, 1990), maka terdapat beberapa kemungkinan masuknya DNA donor ke dalam sel S. cerevisiae, antara lain:

1. Jika DNA donor tidak berhasil masuk ke dalam inti sel, maka kemungkinan DNA donor tersebut akan berintegrasi dengan DNA plasmid dari sel inang yang mempunyai rangkaian pasangan-pasangan basa yang homolog.

2. Adanya fragmen DNA donor yang tidak berintegrasi dengan DNA inang, sehingga fragmen DNA tersebut akan membentuk DNA lingkar di dalam sel inang dan akan bereplikasi sendiri.

3. Jika DNA donor berhasil berintegrasi dengan inti sel, maka DNA donor tersebut dapat berintegrasi...
dengan DNA kromosom sel inang yang mempunyai rang-
kaian-rangkaian basa yang homolog.

Menurut Sudding (1990), ekspresi gen-gen dari sel
donor ke dalam sel inang melalui proses transformasi
apot dipelajari dari ekspresi sifat-sifat sel hasil
transformasi. Hasil pengujian dan ekspresi sifat-
sifat yang dilakukan terhadap *B. licheniformis,*
S. cerevisiae, dan sel hasil transformasi dapat dili-
hat pada Tabel 4.

**Tabel 4. Ekspresi sifat-sifat dari *B. licheniformis,*
S. cerevisiae, dan transforman**

<table>
<thead>
<tr>
<th>Aspek Pengujian</th>
<th>B. licheniformis</th>
<th>S. cerevisiae</th>
<th>Transforman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morfologi batang</td>
<td>+</td>
<td>-</td>
<td>ellips</td>
</tr>
<tr>
<td>Kestabilan</td>
<td></td>
<td></td>
<td>stabil</td>
</tr>
<tr>
<td>Hidrolisa skim</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Hidrolisa pati</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Voges-Proskauer</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Hidrolisa gelatin</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Aktivitas protease</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>