IV. HASIL DAN PEMBAHASAN

1 Hasil

1.1 Tingkat Kelangsungan Hidup dan Pertumbuhan

Tingkat kelangsungan hidup yang tertinggi ditunjukkan oleh kelompok ikan yang mendapat perlakuan hormon dengan dosis 600 mg/kg makanan (perlakuan B) yaitu sebesar 74,4 %. Sedangkan tingkat kelangsungan hidup yang terendah adalah 74,4 % yang didapat pada kelompok ikan kontrol.

Laju pertumbuhan harian yang tertinggi ditunjukkan oleh kelompok ikan kontrol yaitu 9,291 % dan yang terendah ditunjukkan oleh kelompok ikan yang mendapat perlakuan hormon dengan dosis 600 mg/kg makanan (perlakuan B) yaitu 732 %. Data selengkapnya mengenai tingkat kelangsungan hidup dan pertumbuhan disajikan dalam Tabel 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>A</th>
<th>Perlakuan B</th>
<th>Perlakuan C</th>
<th>Kontrol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umlah Ikan Akhir Perlakuan (Ekor)</td>
<td>113</td>
<td>120</td>
<td>118</td>
<td>112</td>
</tr>
<tr>
<td>Tingkat Kelangsungan Hidup (%)</td>
<td>75,3</td>
<td>80,0</td>
<td>78,7</td>
<td>74,4</td>
</tr>
<tr>
<td>Bobot Rata-rata Ikan Akhir (gram)</td>
<td>2,147</td>
<td>1,907</td>
<td>2,047</td>
<td>2,341</td>
</tr>
<tr>
<td>Laju Pertumbuhan Harian (%)</td>
<td>9,055</td>
<td>8,732</td>
<td>8,924</td>
<td>9,291</td>
</tr>
</tbody>
</table>
Suhu selama percobaan berlangsung, berkisar antara 24°C sampai 26°C.

1.1.2 Identifikasi Kelamin

Kelompok ikan yang mendapat perlakuan hormon, memperlhatkan struktur yang sebagian besar menunjukkan kesamaan dengan penampilan gonad ikan kontrol, walaupun beberapa sampel ikan menunjukkan ukuran ovarium yang tidak normal (ditandai dengan ukuran ovarium yang jauh lebih kecil dibandingkan ovarium ikan kontrol).

Hasil pemeriksaan gonad pada ikan kontrol menunjukkan sel-sel telur yang berukuran bervariasi dari 0,3 mm sampai 1,0 mm. Jaringan lemak nampak berada di sekitar sel-sel telur.

Pada ikan yang mendapat perlakuan hormon, ditemukan bakal sel telur dan bakal sel sperma pada setiap gonad yang diperiksa. Sel sperma nampak tersebar di antara telur dan ada pula yang berada di kantung yang melingkar lingkar tidak beraturan.
Gambar 1 dan 2 masing-masing menunjukkan penampilan gonad ikan kontrol dan gonad ikan yang mendapat perlakuan hormon.

Gambar 1. Jaringan sel gonad ikan mas kontrol

Gambar 2. Jaringan sel gonad ikan yang mendapat perlakuan hormon
1.1.3 Perubahan Kelamin

Kelompok ikan kontrol tidak menunjukkan adanya perubahan kelamin (100% betina). Sedangkan kelompok ikan yang mendapat perlakuan hormon testosteron propionat dengan dosis 450 mg, 600 mg, atau 750 mg/kg makanan ternyata terjadi perubahan kelamin yang tidak sempurna (terbentuk jenis kelamin hermafrodit) sebesar 100% untuk masing-masing kelompok (Tabel 3).

Tabel 3. Data perubahan kelamin ikan mas uji kelompok perlakuan dan kontrol dengan waktu pemberian hormon 40 hari

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>Dosis Hormon (mg/kg makanan)</th>
<th>Jantan (%)</th>
<th>Betina (%)</th>
<th>Hermafrodit (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>450</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>600</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>C</td>
<td>750</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Kontrol</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

4.2 Pembahasan

Hasil percobaan menunjukkan bahwa perubahan kelamin dapat terjadi pada ikan mas jenis majalaya bergenotip betina dengan pemberian hormon testosteron propionat. Perubahan yang terjadi adalah terbentuknya jenis kelamin hermafrodit, yaitu sel telur dan sel sperma terlihat
1. Dilangkah sebelum atau seluruh jenis kelamin jantan fenotip yang sempurna tidak dihasilkan dalam perco-
 pain ini. Persentase kejadian terbentuknya individu
 hermafrodit adalah 100 % pada semua kelompok ikan yang
 mendapat perlakuan hormon.

 Perubahan yang terjadi pada gonad telah ditunjukkan
 oleh penggunaan hormon testosteron propionat pada beberapa
 spesies ikan, seperti X. helleri. Dalam hal ini terjadi
 penghisapan kembali gonad betina dan terjadi pula beberapa
 tahap spermatogenesis (Baldwin dan Goldin, 1939). Pada
 spesies ikan Lebistes reticulatus betina terjadi proses
 pembentukan sel telur.

 Terbentuknya kelamin hermafrodit diduga disebabkan
 dosis hormon testosteron propionat yang diberikan belum
 mencukupi untuk menyebabkan gonad ikan mas berubah menjadi
 jantan sempurna. Dalam hal ini pembentukan sel gamet yang
 permanen ditentukan oleh dua jenis hormon yaitu hormon
 adrogen sebagai hormon yang mengarahkan ke pembentukan
 sel sperma dan hormon lain yang mengarahkan ke pembentukan
 sel telur sehingga dalam satu gonad, sel telur dan
 sel sperma berkembang bersama-sama. Walaupun demikian
 keterangan bagaimana proses hormon steroid bekerja se-
 hingga dapat menghasilkan jenis hermafrodit masih sangat
 sedikit.

 Hasil penelitian Okada et al., (1981) yang mengana-
 lisis pengaruh konsentrasi hormon 17α-metiltestosteron
pada ikan trout pelangi (*Salmo gairdneri*) untuk mendapatkan kelamin jantan, menunjukkan bahwa terjadinya perubahan kelamin memerlukan dosis hormon yang tepat. Dosis yang rendah tidak menghasilkan perubahan kelamin pada gonad dan dosis yang tinggi akan menyebabkan ikan menjadi steril. Terbentuknya individu hermafrodit akan semakin berkurang calau dose semakin mendekati nilai optimum.
