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Distribution Using Artificial Neural Network 

~ u d i ~ a n t o '  and Budi lndra setiawan2 

Abstract 

Information of hydraulic properties of agricultural soils is very important for better 
water management. However, direct measurements of these properties are tedious 
and time consuming. In this paper, we present techniques to estimate the properties 
using artificial neural network (ANN). One technique was used to estimate water 
retention curves and the other to estimate unsaturated hydraulic conductivity curves. 
The data used in this study varied from sandy to clay soils. In general, the technique 
gained considerable results but more data for training is still necessary. 
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A. BACKGROUND 

Soil has important role as a favorable 
medium for plant growth. The soil must 
be able to store and supply water and 
nutrients and be  free of excessive 
concentrations of toxic agents. In fact, 
movement of water and solute through 
the soil is strongly dependent upon soil 
particles corresponding to the soil texture, 
aggregation and density. 

Most of the process involving soil- 
water interaction in the field, and 
particularly the flow of water in the rooting 
zone of most crop plants, occur while the 
soi l  is  in unsaturated condi t ion.  
Unsaturated flow process is complicated 
and difficult to describe quantitatively 

since they often entail changes in the 
state and content of soil water. Such 
changes involve complex relations among 
soil wetness, suction and conductivity. 

Many researchers have studied the 
water flow in unsaturated soil. Setiawan 
(1998), Saleh (2000) and Hermantoro 
(2003) studied the water flow under the 
application of pitcher irrigation in dry land. 
Bresler et a/, (197Ia) and Bresler et a/, 
(1  9 7 1  b, d e v e l o p e d  t h e o r e t i c a l  
considerations and mathematical tools 
to analyze multidimensional transient 
infiltration and simulated water flow from 
trickle irrigation. 

The soil hydraulic properties (i.e., the 
water retention curve and hydraulic 
conductivity) are needed in the study of 
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water flow and solute transport in vadose 
(unsaturated) zone. There are many 
methods of direct measurement that can 
be used to determine soil hydraulic 
properties in the field or in the laboratory. 
The limitation of direct measurement is 
subjected to specific ranges of applicability 
with respect to the soil type and saturation 
and generally quite cumbersome and 
requires a substantial investment in both 
time and money. Furthermore, it is 
impossible to measure soil hydraulics 
conductivity in many vadose zones with 
large areas of land that may have lateral, 
spatial and temporal variability. So, it is 
of interest to develop the alternative 
method for estimating soil hydraulic 
properties. 

One of the methods for estimating soil 
hydraulic properties is pedotransfer 
functions (PTFs). PTFs transfer basic 
information from soil surveys into other 
laborious and expensively determined 
soil properties. McBratney et a/. (2002) 
defined PTFs as predictive soil properties 
from other easily-, routinely-, or cheaply- 
measured properties. 

In this paper we estimate soil hydraulic 
properties (water retention and hydraulic 
conductivity curves) by using PTFs 
approach. Here, the water retention and 
hydraulic conductivity curves were 
estimated from particle size distributions 
using artificial neural network (ANN) along 
with Genuchten model and Setiawan 
model, respectively. 

B. THEORETICAL CONSIDERATIONS 

Particle Size Distributions 

Soil particle covers an extreme size 
range, varying from stones and rock 
(exceeding 0.25 m in size) down to 
submicron clays (< l p m ) .  Various 
systems of size classification have been 
used to define arbitrary limits and ranges 

of soil particle size (i.e., USDA, CSSC, 
ISSS and ASTM). Particle size analysis 
data can be presented and used  in 
several ways, the most common being a 
particle size distribution that the 
percentage of particles less than a given 
particle size is plotted against the 
logarithm of effective particle diameter. 
Particle size analysis is often used in soil 
science to evaluate soil texture. Soil 
texture is based on different combinations 
of sand, silt and clay separates that make 
up the particle size distribution of a soil 
sample (Gee and Baudar, 1986). 

Shiozawa and Campbell (1991 ) used 
the unimodal log-normal and bimodal 
model to model the particle size 
distribution. Bimodal model gives best fit 
the data better than unimodal model. 
Setiawan and Nakano (1993) introduced 
a model of the particle size distribution 
as 

where a is percentage particle smaller 
than 0, 0 is diameter of particles (mm) 
and a l ,  b l ,  and cl  are parameters. This 
model gives good fits to the particle size 
distr ibutions of most soil types. 

Soil Hydraulic Properties Model 

There are three widely used soil 
hydraulic propert ies models i .e., 
Gardener-Russo model, Brooks-Corey 
model and Genuchten model. Genuchten 
(1980) identified S-shaped function that 
fits water-retention characteristics of many 
types of soil very well. Subsequently, 
Genuchten model has become most 
widely used for characterizing soil 
hydraulic properties. Genuchten model 
of soil water retention curve can be 
expressed as follows: 
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k ( 8 )  =k,exp (-a2(8, - 8)b2) 

where k(8) is unsaturated hydraulic 

where 8 ( v )  is volume wetness (cm31cm3), conductivity (cmls), ks is saturated 

0 ,  is residual volume wetness (cm3/cm3), 
0 ,  is saturated volume wetness 
(cm31cm3), l y  is pressure head (cm H20) 
and a, n and m are parameters. b2 are parameters. 

Genuchten model combined the soil 
water retention function with pore size Artificial Neural Network 

distribution model of Mualem (1976) and 
obtained the following relationship of Developments of PTFs using ANN 

hydraulic conductivity in terms of effective have increased rapidly in recent years 

degree of saturation (Se) (Pachepsky et a/.,  1996; Schaap and 
Bouten, 1996; Tamari et a / . ,  1996; 
Minasny and McBratney, 2002). An 

2 advantage o f ANN, as compared to 
k ( ~ , )  = kss;  [ I  - (1 - S:'("-l))'-lin] (3) traditional PTFs, is that ANN requires no 

a priori model concept. 
Feed forward neural network have 

been applied successfully to solve some 
difficult and diverse problems by training 
the network in a supervised manner with 
a highly popular algorithm known as the 
error back propagation algorithm. This 

(4) algorithm is based on the error-correction 
learning rule and it may be viewed as its 
generalization. Basically, error back 
propagation learning consists of two 

where ks is the saturated hydraulic phases performed through different layers 
conductivity (cmls), Se is the effective of network: a forward pass and backward 
degree of saturation, and I is a parameter pass (Kantardzic, 2003). 
that account for the dependence of the In the forward pass, input data vector 
tortuosity and the correlation factors on is applied to the input nodes of network, 
the water content estimated, to be about and its effect propagates through the 
0.5 as an average of many soil. network layer by layer. Finally, a set of 

Setiawan and Nakano (1993) outputs is produced as the actual 
developed unsaturated hydraulic response of the network. We may thus 
conductivity as a function of volume write 
wetness. Herewith, the model is referred 
as Setiawan model. Performances of 
Setiawan model have been tested tn 

elsewhere Setiawan and Nakano (1 993) Y/ ( n )  = w0' (n)  xi (n)  
and Saleh (2000). The Setiawan model i= I 
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Table 1 Summary of retention curve data 

Ranges of retention curve data 

Soil type Hydraulic conductivity Volumetric wetness 
(cmls) (cm 3 Icm 3 ) 

Clay loam -1 6000-0 0.255-0.445 
Fine sand -1 6000-0 0.042-0.365 
Light clay -1 6000-0 0.21 5-0.453 
Loam -1 6000-0 0.098-0.503 
Loamy fine sand -1 6000-0 0.060-0.439 
Medium coarse sand -1 6000-0 0.01 7-0.365 
Medium fine sand -1 6000-0 0.023-0.350 
Sandy clay loam -1 6000-0 0.180-0.432 
Sandy loam - 16000-0 0.061-0.465 
Silt loam - 1 6000-0 0.092-0.509 
Silty clay loam - 1 6000-0 0.185-0.475 
Silty clay - 1 6000-0 0.257-0.507 

where x,(n) is the input data, w,j (n) is 
weight, p is the activation function, rn is 
the number of inputs for jth neuron, yj(n) 
is output of neuron at jth neuron and n is 
number of iterations. 

During the backward phase, the 
weights are all adjusted in accordance 
with an error-correction rule. The principle 
is minimization of the function E(n). The 
correction Awij(n) applied to wij(n) is 
defined by the delta rule as follows: 

A wii (n )  = 176; (n)x; (n)  (8 

where r,~ is learning rate and d,(n) is the 
output target for jth neuron. A simple 
method of increasing the rate of learning 
yet avoiding the problem of instability is 
to modify the delta rule by including a 
momentum (a) term: 

Having computed the adjustment 
Awg(n), the updated value of weight is 
determined by: 

(9) 
wii (n  + 1 )  = wii(n) + Awi/ (n )  (12) 
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Table 2 Summary of hydraulic conductivity data 

Range of hydraulic conductivity curve data 

Soil type Hydraulic conductivity Volumetric wetness 

(cmls) (cm 3 Icm 3 ) 

Clay loam 9.72~1 O-7-l. 16x1 0-5 0.41 1-0.445 
Fine sand 3.90~1 0-6-5.79x1 0-4 0.196-0.365 
Light clay 7.1 1 x1 0-6-4.05x1 0-5 0.360-0.453 
Loam 5.74~1 0-6-5.79x1 0-5 0.420-0.503 
Loamy fine sand 5 .73~1 0-6-3.07x1 0-4 0.179-0.437 
Medium coarse sand 1.1 6x1 0-8-3.47x1 0-3 0.095-0.353 
Medium fine sand 3.47~1 0-7-1 .27x1 0-3 0.1 55-0.350 
Sandy clay loam 7.97~1 0-6-2.72x1 0-4 0.338-0.432 
Sandy loam 1.16~1 0-7-1 .91x1 0-4 0.260-0.453 
Silt loam 1 .02x10-~-7.52~1 03 0.461 -0.509 
Silty clay loam 1.62~10-~-1.74~1 0-5 0.372-0.475 
Silty clay 5.21 x1 D7-1 .50x1 0-5 0.463-0.507 

C. MATERIALS AND METHODS 

Materials 

The soils that used were 10 types of 
soil base on USDA classification system 
i.e., clay loam, sand (fine sand, medium 
coarse sand and medium fine sand), clay 
(light clay), loam, loamy sand (loamy fine 
sand), sandy clay loam, sandy loam, silt 
loam, silty clay loam and silty clay (de 
Laat, 1991). For each soil type the 
pressure head was given for thirteen 
values (0, -10, -20, -31, -50, -100, -250, 
-500, -1000, -2500, -5000, -10000, -1600 
cm) for retention curve data. For each 
soil type the pressure head was given for 
six values (0, -1 0, -20, -31, -50, -100 cm) 
for hydraulic conductivity curve data. The 
summary of soils for retention curves and 
hydraulic conductivity data are shown in 
Table 1 and 2, respectively. 

Parameter Optimization 

Parameters optimization of particle 
size distribution model (a l ,  b l  and c l ) ,  
Genuchten model (Or, O,, 2 ,  n and m) and 
Setiawan model (ks, a2, and b2) were 
done using Marquardt algorithm 
(Marquardt, 1963 and Setiawan and 
Shiozawa, 1992). The algorithm is 
powerful method to solve a nonlinear 
curve fitting. The Optimized parameters 
of Genuchten and Setiawan model are 
then referred here as original parameters. 

First, ANN was developed to estimate 
the Genuchten parameters from the 
parameters of particle size distribution 
model. The structure of ANN is shown in 
.Figure 1. Second, ANN was developed 
to estimate the Setiawan model 
parameters from the parameters of 
particle size distribution model and 
saturated volume wetness (Figure 2). 
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lnput Hidden 
layer Output 

Figure 1. The structure of ANN to estimate Genuchten model parameters 

Input Hidden 
layer Output 

Figure 

Figure 2. The structure of ANN to estimate Setiawan model parameters I - 
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Figure 3 Comparison between parameters by Genuchten model with by ANN: (a) 
Residual volume wetness (Or), (b) Saturated volume wetness (Os), 

(c) a-parameter, (d) n-parameter, and (e) m-parameter 
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Figure 4 Comparison between parameters by Setiawan model with by ANN: 
(a) Saturated hydraulic conductivity (ks), (b) a2-parameter, and (c) b2-parameter 
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Estimated parameters from ANN are then D. RESULT AND DISCUSSION 
referred here as estimated parameters. 
The learning process was carried out Estimation of Water Retention Curves 

gain =0.9. parameters estimated by ANN and the 
original of Genuchten model. It can be 

I 
i ANN Performance seen that the estimation is generally good 

for all parameters but not for Br. 'The 
The accuracy of ANN to estimate highest of coefficient of determination is 

Genutchten and Setiawan model fo rmparameter fo l lo~edbya,n ,8~,and 
parameters were analyzed by coefficient 8,. The lowest APD is for 8, followed by 
of determination ( R ~ )  and average m, n and a parameter and 6, parameter. 
percentage of deviation (APD). Coefficient Figure 5 presents five comparisons 
of determination is defined as ratio of of water retention data and Genuchten 
variation of data explained by model to model with original and estimated 
the total variation. APD is defined as a parameters. There was generally good 
fraction of deviation of the original data agreement between measured data and 

I 
t 
i 

value the model (Stoecker. 1989). Genuchten model with original and i 

i estimated parameters. Moreover. , 
Genuchten model  wi th  or ig ina l  
parameters gives well fitted for all soil 

Figure 5. Water retention data and Genuchten model with original and estimated 

i parameters 
i 
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type but Genuchten model with estimated 
parameters gives better estimation for 
water retention curve especially for sand 
and clay soil type. Genutchen model with 
estimated parameters underestimates for 
silty clay and loam soil type. 
Estimation of Hydraulic Conductivity 
Curves 

Figure 4 shows comparisons of 
parameters estimated by ANN and the 
original of Setiawan model. Parameters 
estimation by ANN produced good result. 
It can be seen that the coefficient of 
determination for all parameter reach 
0.99. The APD for ks, a2, and b2 
parameter are 6.25%. 3.22O/0, and 0.41 %, 
respectively. 

Figure 6 shows comparisons of 
hydraulic conductivity data and Setiawan 
model with original and estimated 
parameters. We present hydraulic 
conductivity curves for five soil type. It 

can be seen that Setiawan model with 
original parameters can be so closer than 
Set iawan model  w i th  es t ima ted  
parameters to the hydraulic conductivity 
data. Setiawan model with original and 
estimated parameters is better fitted the 
hydraulic conductivity data more than 
1 .E-6. Moreover, Setiawan model with 
est imated parameters has good 
agreements especially for light clay soil 
type and underestimates for loam soil 
type. 

E. CONCLUSION 

Techniques to estimate water retention 
and hydraulic conductivity curves have 
been developed using artificial neural 
network. The results were considerably 
satisfied but more data training is deemed 
necessary for better achievement. 
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Figure 6. Hydraulic conductivity data and Setiawan model with original and estimated 
parameters 
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