FERTILITAS SPERMATOZOA EJAKULAT DAN EPIDIDIMIS DOMBA GARUT HASIL KRIOPRESERVASI MENGUNAKAN MODIFIKASI PENGENCER TRIS DENGAN BERBAGAI KRIOPROTEKTAN DAN ANTIOKSIDAN

MUHAMMAD RIZAL

SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR
BOGOR
2005
ABSTRAK

Spermatozoa domba sangat sensitif terhadap perubahan suhu yang ekstrim selama proses kriopreservasi semen. Kualitas semen beku domba garut dapat dipertahankan dengan menambahkan berbagai senyawa krioprotetan seperti laktosa dan glicerol serta senyawa antioksidan seperti glutation dan β-karoten. Demikian pula halnya dengan upaya kriopreservasi spermatozoa asai cauda epididimis yang merupakan salah satu alternatif sumber gamet hewan jantan untuk keperluan penerapan teknologi reproduksi, karena spermatozoa tersebut telah memiliki motilitas dan daya membuaht oosit.

Hasil penelitian pada percobaan pertama tentang karakteristik penambalan reproduksi domba jantan didapatkan bahwa pejantan melakukan ejakulasi pertama, kedua, dan ketiga rata-rata pada detik ke 28.91, 86.5, dan 175.58. Volume, konsentrasi, persentase motilitas, TAU, dan MPU masing-masing rata-rata 0.97 ml, 395,05 juta/ml, 77.07%, 86.74%, dan 87.94%. Kandungan protein, fruktosa, vitamin C, vitamin E, natrium, kalium, kalsium, magnesium, fosfor, klorida, dan mangan plasma semen adalah: 4140, 180, 32, 24, 180, 117, 9, 612, 60, 104 dan 5 mg/100 ml. Panjang dan lebar kepala serta panjang ekor spermatozoa rata-rata 6.59, 3.99, dan 42.65 μm. Panjang dan lebar testis kana rata-rata 12.71 dan 6.5 cm sama persis dengan ukuran testis kiri, sedangkan lingkar skrotum rata-rata 32.36 cm. Setiap pejantan mampu menghasilkan semen beku rata-rata 44 straw mini dengan konsentrasi 200 juta spermatozoa motil dari tiga kali ejakulasi. Dapat disimpulkan semua pejantan memiliki libido yang tinggi dan mampu menghasilkan semen berkualitas baik.

Hasil penelitian pada percobaan kedua tentang penambalan berbagai konsentrasi laktosa dan glicerol di dalam pengencer semen beku menunjukkan bahwa tidak terdapat
interaksi antara laktosa dan gliserol dalam meningkatkan kualitas semen pada tahap setelah pengenceran, ekulibrasi, dan thawing. Pada perlakuan laktosa, rata-rata persentase motilitas dan spermatozoa hidup tahap setelah thawing perlakuan L0 (43.33\% dan 53.61\%) nyata (P<0.05) lebih tinggi dibandingkan dengan L0 (35.83\% dan 48.05\%) dan L10 (38.33\% dan 48.50\%). Hasil yang sama juga ditemukan pada parameter persentase TAU dan MPU. Pada tahap setelah thawing, rata-rata persentase TAU dan MPU perlakuan L0 (44.94\% dan 44.22\%) nyata (P<0.05) lebih tinggi dibandingkan dengan perlakuan L0 (38.94\% dan 40.39\%) dan L10 (39.85\% dan 38.55\%). Pada perlakuan gliserol, rata-rata persentase motilitas dan spermatozoa hidup tahap setelah thawing perlakuan Gs (42.78\% dan 52.55\%) nyata (P<0.05) lebih tinggi dibandingkan dengan Gs (37.50\% dan 48.78\%) dan G7 (39.17\% dan 48.39\%). Hasil yang sama juga ditemukan pada parameter rata-rata persentase TAU dan MPU. Pada tahap setelah thawing, rata-rata persentase TAU dan MPU perlakuan Gs (44.78\% dan 44.22\%) nyata (P<0.05) lebih tinggi dibandingkan dengan perlakuan Gs (38.94\% dan 39.50\%) dan G7 (39.61\% dan 39.44\%). Dapat disimpulkan bahwa penambahan 60 mM laktosa dan 5\% gliserol di dalam pengencer Tris merupakan kombinasi terbaik dalam menghasilkan semen beku domba garut.

Hasil penelitian pada percobaan ketiga tentang penambahan berbagai konsentrasi glutation dan \(\beta\)-karoten di dalam pengencer semen beku menunjukkan bahwa rata-rata persentase motilitas dan spermatozoa hidup tahap setelah thawing perlakuan G10 (52.78\% dan 58.78\%), G10 (53.33\% dan 56.67\%) dan K1000 (50.55\% dan 56.78\%) nyata (P<0.05) lebih tinggi dibandingkan dengan perlakuan G15 (49.44\% dan 55.22\%), K1000 (46.11\% dan 52.89\%), K1000 (46.67\% dan 53.33\%), dan kontrol (46.67\% dan 52.33\%). Pada tahap setelah thawing, rata-rata persentase TAU dan MPU spermatozoa perlakuan G10 (54.22\% dan 56.22\%), G10 (54.00\% dan 56.44\%), G15 (51.22\% dan 53.11\%), dan K1000 (51.00\% dan 53.78\%) nyata (P<0.05) lebih tinggi dibandingkan dengan K1000 (49.00\% dan 50.00\%), K1000 (48.89\% dan 49.67\%), dan kontrol (47.11\% dan 48.44\%). Konsentrasi MDA semen beku setelah thawing perlakuan G10 (2.69 mg/kg), G10 (2.92 mg/kg), G15 (2.74 mg/kg), K100 (3.37 mg/kg), K1000 (3.80 mg/kg), dan K1000 (4.61 mg/kg) nyata (P<0.05) lebih rendah dibandingkan dengan kontrol (5.24 mg/kg). Dapat disimpulkan bahwa penambahan dengan konsentrasi 0.05\% glutation atau 0.10\% glutation atau 0.002\% \(\beta\)-karoten di dalam pengencer Tris merupakan dosis yang optimal dalam meningkatkan kualitas semen beku domba garut.

Hasil penelitian pada percobaan keempat tentang pembekuan spermatozoa epididimis didapatkan konsentrasi spermatozoa rata-rata sebanyak 13993.33 juta/ml. Rata-rata persentase motilitas dan spermatozoa hidup setelah pengenceran perlakuan H0 (71.25\% dan 82.83\%) dan H1 (70.00\% dan 79.17\%) nyata (P<0.05) lebih tinggi dibandingkan dengan H2 (61.25\% dan 69.83\%) dan H3 (51.67\% dan 66.17\%). Tidak terdapat perbedaan antarperlakuan pada parameter persentase abnormallitas dan butiran sitoplasma. Rata-rata persentase TAU dan MPU perlakuan H0 (85.83\% dan 81.33\%) nyata (P<0.05) lebih tinggi dibandingkan dengan perlakuan H1 (83.87\% dan 79.5\%), H2 (78.83\% dan 71.17\%), dan H3 (74.5\% dan 71.87\%). Pada tahap setelah thawing, rata-rata persentase motilitas dan spermatozoa hidup perlakuan H0 (45.00\% dan 54.50\%) nyata (P<0.05) lebih tinggi dibandingkan dengan H1 (36.67\% dan 47.33\%), H2 (20.83\% dan 25.00\%), dan H3 (20.00\% dan 28.83\%). Rata-rata persentase TAU dan MPU spermatozoa setelah thawing perlakuan H0 (47.83\% dan 48.83\%) nyata (P<0.05) lebih tinggi dibandingkan dengan H1 (42.67\% dan 38.50\%), H2 (27.17\% dan 26.50\%), dan
Dapat disimpulkan bahwa spermatozoa yang dikoleksi dari cauda epididimis domba garut yang telah disembelih dan sudah dibekukan memenuhi persyaratan kualitas untuk digunakan dalam program inseminasi buatan (IB) dan produksi embrio secara in vitro.

Hasil penelitian kelima tentang fertilitas semen beku dan spermatozoa cauda epididimis yang telah dibekukan menunjukkan bahwa fertilitas semen beku hasil ejakulasi nyata lebih tinggi dibandingkan dengan spermatozoa cauda epididimis yang telah dibekukan. Rata-rata 95.24% betina memperlihatkan gejala utama estrus, yakni betina diam saat dinaiki pejantan pengusik (leaser). Persentase estrus yang diperoleh adalah 100%, sedangkan waktu awal munculnya (onset) estrus adalah rata-rata 33.67 jam setelah pelepasan implan CIDR-G®. Persentase kebuntingan dan kelahiran perlakuan G1:os (58.33% dan 58.33%) nyata (P<0.05) lebih tinggi dibandingkan dengan perlakuan Ho (44.44% dan 33.33%). Dapat disimpulkan bahwa spermatozoa hasil ejakulasi dan yang dikoleksi dari cauda epididimis domba garut dan telah dibekukan layak digunakan dalam program IB secara intracervical serta menghasilkan angka kebuntingan dan kelahiran yang cukup tinggi.

ABSTRACT

MUHAMMAD RIZAL. Fertility of Ejaculate and Epididymal Spermatozoa of Garut Ram Cryopreserved using Modified Tris Extender with Various Cryoprotectants and Antioxidants. Under the supervision of MOZES R. TOELIHERE as chairman, TUTY L. YUSUF, BAMBANG PURWANTARA, and POLMER Z. SITUMORANG as members of the Supervisory Committee.

Ram sperm are sensitive to extreme changes in temperature during the freeze-thaw process. Quality of frozen semen of garut ram can be maintained with the addition of various concentrations of cryoprotectants e.g. lactose and glycerol and antioxidants e.g. glutathione and β-carotene. Frozen cauda epididymal sperm can be used as an alternative of male gamete source for application in reproductive technology, because the sperm is motile and have ability for fertilizing the oocyte.

This research had been carried out in the Laboratory of Animal Breeding Technology of the Agency for Assessment and Application of Technology, Jakarta; “Lesan Putra” Animal Breeding, Bogor, and Laboratory of Agriculture Post Harvest of the Research Institute for Agriculture Post Harvest of the Agricultural Ministry, Bogor, from July 2001 to April 2004. The objectives of this research are: (1) to examine various optimum concentrations of lactose and glycerol in Tris extender for frozen semen of garut ram, (2) to examine the effect of addition of glutathione and β-carotene in various concentrations on the quality of frozen semen of garut ram, (3) to examine the effect of storage period of epididymis on the quality of frozen cauda epididymal sperm of garut ram, (4) to examine the estrus response of garut ewes on administration of CIDR-G®, and (5) to examine the pregnancy and lambing rate of frozen semen from ejaculation and frozen sperm from cauda epididymis of garut ram. Methodology of the research follows the sequences of these five objectives.
Results of the first experiment about characteristics of reproductive performance showed that first, second, and third ejaculations were obtained within 28.91, 86.5, and 175.58 seconds, respectively. Fresh semen volume, sperm concentration, percentages of motility, intact acrosomal cap (IAC), and intact plasma membrane (IPM) were 0.97 ml, 3954.05 million/ml, 77.07%, 86.74%, and 87.94%, respectively. Protein value, fructose, vitamin C, vitamin E, sodium, potassium, calcium, magnesium, phosphor, chloride, and manganese in the seminal plasma of fresh semen were 4140, 180, 3.2, 24, 180, 117, 9, 6.12, 60, 104, and 5 mg/ml, respectively. The length and width of sperm head and length of sperm tail were 6.59, 3.99, and 42.65 μm, respectively. The length and width measurement of right and left testis, and scrotal circumference were 12.71, 6.5, and 32.36 cm, respectively. Capacity of each goat ram to produce frozen semen for three consecutive ejaculations was 44 mini straw with the concentration of 200 million motile sperm per 0.25 ml. In conclusion, all ram had high libido and produce semen with good quality.

Results of the second experiment about addition of various concentrations of lactose and glycerol in frozen semen extender showed that there was no interaction between lactose and glycerol in improving the quality of sperm after dilution, equilibration, and thawing. Percentages of post thawing motility and live sperm for L0 (43.33% and 53.61%) were significantly (P<0.05) higher than L0 (35.83% and 48.05%) and L10 (38.33% and 48.50%). Percentages of post thawing IAC and IPM for L0 (44.94% and 44.22%) were significantly (P<0.05) higher than L0 (38.94% and 40.39%) and L10 (38.83% and 38.55%). Percentages of post thawing motility and live sperm for G5 (42.78% and 52.55%) were significantly (P<0.05) higher than G5 (37.50% and 48.78%) and G7 (39.17% and 48.39%). Percentages of post thawing IAC and IPM for G5 (44.78% and 44.22%) were significantly (P<0.05) higher than G5 (38.94% and 39.50%) and G7 (39.61% and 39.44%). In conclusion, addition of 60 mM lactose and 5% glycerol is the best combination in Tris extender to produce frozen semen of goat ram.

Results of the third experiment about addition of various concentrations of glutathione and β-carotene in frozen semen extender showed that mean percentages of post thawing motility and live sperm for Gl0 (52.78% and 58.78%), Gl10 (53.33% and 59.67%), and Kt0.02 (50.55% and 56.78%) were significantly (P<0.05) higher than Gl0 (48.44% and 55.22%), Kt0.02 (46.11% and 52.89%), Kt0.05 (48.67% and 53.33%), and control (46.67% and 52.33%). Mean percentages of post thawing IAC and IPM for Gl0 (54.22% and 56.22%), Gl10 (54.00% and 56.44%), Gl0 (51.22% and 53.11%) were significantly (P<0.05) higher than Kt0.01 (49.00% and 50.00%), Kt0.02 (48.89% and 49.67%), and control (47.11% and 48.44%). Malondialdehyde (MDA) concentration of frozen-thawed semen for Gl0 (2.89 mg/kg), Gl10 (2.92 mg/kg), Gl0 (2.74 mg/kg), Kt0.01 (3.37 mg/kg), Kt0.02 (3.80 mg/kg), and Kt0.05 (4.61 mg/kg) were significantly (P<0.05) lower than control (5.24 mg/kg). In conclusion, addition of 0.05% glutathione, 0.10% glutathione, or 0.002% β-carotene in Tris extender is the optimum dose in improving frozen semen quality of goat ram.

Results of the fourth experiment about cryopreservation of cauda epididymal sperm showed that the mean sperm concentration was 13,993.33 million/ml. Mean percentages of sperm motility and live sperm for H0 (71.25% and 82.83%) and H1 (70% and 79.17%) were significantly (P<0.05) higher than H2 (61.25% and 69.83%) and H3 (51.67% and
66.17%), nevertheless it was still higher than the minimum requirement. There was no significant (P>0.05) difference between treatment for mean sperm abnormality and cytoplasmic droplet parameters. Mean percentages of sperm IAC and IPM for Ho (85.83% and 81.33%) were significantly (P<0.05) higher than H1 (83.67% and 79.5%), H2 (78.83% and 78.17%), and H3 (74.5% and 71.67%). Sperm quality of post equilibration for Ho and H1 were significantly (P<0.05) higher than H2 and H3. Mean percentages of post thawing sperm motility and live for Ho (45.00% and 54.50%) were significantly (P<0.05) higher than H1 (36.67% and 47.33%), H2 (20.83% and 25.00%), and H3 (20.00% and 28.83%). Mean percentages of post thawing sperm IAC and IPM for Ho (47.83% and 48.63%) were significantly (P<0.05) higher than H1 (42.67% and 38.50%), H2 (27.17% and 26.50%), and H3 (24.67% and 25.00%). In conclusion, freeze-thawed ram epididymal sperm collected from fresh cauda epididymis after slaughter can be used for artificial insemination (AI) and in vitro embryo production programs.

Results of the fifth experiment about fertility of frozen-thawed semen and frozen-thawed cauda epididymal sperm showed that fertility of frozen-thawed semen was significantly higher than frozen-thawed cauda epididymal sperm. Mean percentage of standing heat as especial symptom of estrus was 95.24%. Percentage of estrus was 100%, and onset estrus was 33.67 hours after release of CIDR-G®. Pregnancy and lambing rate for Glu® (58.33% and 58.33%) was significantly (P<0.05) higher than Ho (44.44% and 33.33%). In conclusion, frozen semen from ejaculation and frozen sperm from cauda epididymis of Garut ram are suitable for use in artificial insemination by intracervical method.
SURAT PERNYATAAN

Dengan ini Saya menyatakan bahwa disertasi berjudul Fertilitas Spermatozoa Ejakulat dan Epididimis Domba Garut Hasil Kriopreservasi Menggunakan Modifikasi Pengencer Tris dengan Berbagai Krioprotektan dan Antioksidan adalah karya Saya sendiri dan belum diajukan dalam bentuk apa pun pada perguruan tinggi mana pun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir setiap topik disertasi ini.

Bogor, Januari 2005

[Signature]

Muhammad Rizal
NIM 995099
FERTILITAS SPERMATOZOA EJAKULAT DAN EPIDIDIMIS DOMBA GARUT HASIL KRIOPRESERVASI MENGGUNAKAN MODIFIKASI PENGENCER TRIS DENGAN BERBAGAI KRIOPROTEKTAN DAN ANTIOKSIDAN

MUHAMMAD RIZAL

Disertasi
sebagai salah satu syarat untuk memperoleh gelar
Doktor pada
Program Studi Biologi Reproduksi

SEKOLAH PASCASARJANA
INSTITUT PERTANIAN BOGOR
BOGOR
2005
Judul Disertasi: FERTILITAS SPERMATOZOA EJAKULAT DAN EPIDIDIMIS DOMBA GARUT HASIL KRIOPRESERVASI MENGGUNAKAN MODIFIKASI PENGENCER TRIS DENGAN BERBAGAI KRIOPROTEKTAN DAN ANTIOKSIDAN

Nama: Muhammad Rizal
NIM: 995099

Disetujui
Komisi Pembimbing

Prof. Dr. drh. Mozes R. Toelihere, M.Sc.
Ketua

Dr. drh. Tuty L. Yusuf, M.S.
Anggota

Dr. drh. Bambang Purwantara, M.Sc.
Anggota

Dr. Ir. Polmer Z. Situmorang
Anggota

Diketahui

Ketua Program Studi
Biologi Reproduksi

Dr. drh. Tuty L. Yusuf, M.S.

Dekan Sekolah Pascasarjana
Institut Pertanian Bogor

Prof. Dr. Ir. Syafrika Manuwoto, M.Sc.

Tanggal Ujian: 1 Februari 2005
Tanggal Lulus: 11 FEB 2005
RIWAYAT HIDUP

Penulis dilahirkan di Enrekang, Sulawesi Selatan pada tanggal 28 Februari 1965. Penulis merupakan anak kelima di antara sembilan bersaudara dari pasangan Muhammad Amin dan Sitti Halidjah.

Sebanyak enam artikel dari disertasi ini yang telah dipublikasikan di berbagai jurnal, yakni:
5. Penyimpanan epididimis domba pada suhu 5 °C selama tiga hari: Pengaruhnya terhadap kualitas spermatozoa yang telah dibekukan. Media Kedokteran Hewan

PRAKATA

Penulis mengucapkan syukur kehadirat Allah Rabbul Alamin karena berkat rahmat-Nya sehingga penelitian dan penulisan disertasi ini dapat diselesaikan dengan baik. Disertasi ini memuat hasil penelitian tentang metode pembekuan (kriopreservasi) semen hasil ejakulasi dan spermatozoa yang dikoleksi dari cauda epididimis hewan yang telah disembelih dengan menggunakan kombinasi beberapa krioprotektan dan antioksidan serta inseminasi buatan (IB) pada domba garut. Penelitian ini dimaksudkan sebagai upaya untuk meningkatkan produktivitas dan perbaikan mutu genetik ternak, pelestarian sumberdaya ternak unggul, hewan-hewan langka, serta hewan-hewan yang bermasalah dalam melakukan proses ejakulasi secara normal atau tidak memberikan respons terhadap upaya penampungan semen menggunakan alat bantu serta hewan atau ternak yang mati secara mendadak.

Penulis mengucapkan terima kasih dan penghargaan yang tinggi pada Bapak Prof. Dr. drh. Mozes R. Toelihere, M.Sc. sebagai ketua komisi pembimbing, Ibu Dr. drh. Tuty L. Yusuf, M.S., Bapak Dr. drh. Bambaran Purwantara, M.Sc. dan Bapak Dr. Ir. Polmer Z. Sitorong masing-masing sebagai anggota komisi pembimbing atas arahan dan bimbingannya mulai dari proses perancangan dan pelaksanaan penelitian hingga
penulisan disertasi sehingga menambah wawasan penulis dalam berbagai hal, terutama dalam hal kriopreservasi semen dan IB. Terima kasih disampaikan pada Bapak Dr. drh. M. Agus Setiadi, Bapak Dr. drh. Iman Supriatna, dan Bapak Dr. Ir. I Ketut Sutama, M.Sc., APU sebagai penguji luar komisi yang telah memperkaya disertasi ini.

Penulis juga menyampaikan terima kasih dan penghargaan pada Herdis, Ahmad Selamet Aku, Lanjar Djaelani, Endang Triwulannisih, Bess Tiesnamurti, Arief Boediono, Noor Aidawati, Marlene Nalley, Odilia Rovara, R. Iis Arifiantini, Yulnawati, Takdir Sallil, dan Ristika Handarini atas bantuannya selama penelitian dan penulisan disertasi. Hal yang sama juga disampaikan pada seluruh rekan-rekan mahasiswa Program Studi Biologi Reproduksi dan berbagai pihak yang tidak sempat disebutkan satu per satu.

Sebagai ucapan terima kasih dan rasa cinta, penulis mendedikasikan karya yang sederhana ini pada Ibunda Sitti Halidjah dan Ayahanda Muhammad Amin serta kakak-kakak dan adik-adik atas semua rasa cinta, bimbingan, serta bantuan materi dan dorongan moril sehingga penulis dapat menyelesaikan proses pendidikan yang berat ini. Hanya Allah SWT lah yang mampu membalas semua kebaikan itu.

Akhinya penulis berharap bahwa apa yang telah dihasilkan ini dapat bermanfaat bagi pengembangan ilmu pengetahuan di masa yang akan datang serta dapat menjadi bagian dari solusi dalam upaya pengembangan peternakan di Indonesia, khususnya peternakan domba.

Bogor, Agustus 2004

Penulis
DAFTAR ISI

<table>
<thead>
<tr>
<th>Bab</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAFTAR TABEL</td>
<td>xiii</td>
</tr>
<tr>
<td>DAFTAR GAMBAR</td>
<td>xiv</td>
</tr>
<tr>
<td>PENDAHULUAN</td>
<td>1</td>
</tr>
<tr>
<td>Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td>Tujuan Penelitian</td>
<td>4</td>
</tr>
<tr>
<td>Manfaat Penelitian</td>
<td>5</td>
</tr>
<tr>
<td>Hipotesis</td>
<td>5</td>
</tr>
<tr>
<td>Daftar Pustaka</td>
<td>5</td>
</tr>
<tr>
<td>TINJAUAN PUSTAKA</td>
<td>6</td>
</tr>
<tr>
<td>Domba Garut (Priangan)</td>
<td>6</td>
</tr>
<tr>
<td>Pengenceran Semen</td>
<td>6</td>
</tr>
<tr>
<td>Kriopreservasi (Pembekuan) Semen</td>
<td>8</td>
</tr>
<tr>
<td>Krioprotektan</td>
<td>9</td>
</tr>
<tr>
<td>Jenis dan Peranan Antioksidan dalam Meningkatkan Kualitas Semen Beku</td>
<td>15</td>
</tr>
<tr>
<td>Pembekuan Spermatozoa yang Diaspirasi dari Epididimis</td>
<td>20</td>
</tr>
<tr>
<td>Sinkronisasi Estrus dan Evaluasi Kebuntingan</td>
<td>21</td>
</tr>
<tr>
<td>Daftar Pustaka</td>
<td>22</td>
</tr>
<tr>
<td>Karakteristik Penampilan Reproduksi Domba Garut Jantan</td>
<td>29</td>
</tr>
<tr>
<td>Abstrak</td>
<td>29</td>
</tr>
<tr>
<td>Abstract</td>
<td>29</td>
</tr>
<tr>
<td>Pendahuluan</td>
<td>30</td>
</tr>
<tr>
<td>Bahan dan Metode</td>
<td>31</td>
</tr>
<tr>
<td>Hasil dan Pembahasan</td>
<td>35</td>
</tr>
<tr>
<td>Kesimpulan</td>
<td>51</td>
</tr>
<tr>
<td>Daftar Pustaka</td>
<td>51</td>
</tr>
<tr>
<td>Efektivitas Berbagai Koncentrasi Laktosa dan Glicerol Terhadap Kualitas Semen Beku Domba Garut</td>
<td>55</td>
</tr>
<tr>
<td>Abstrak</td>
<td>55</td>
</tr>
<tr>
<td>Abstract</td>
<td>55</td>
</tr>
<tr>
<td>Pendahuluan</td>
<td>56</td>
</tr>
<tr>
<td>Bahan dan Metode</td>
<td>58</td>
</tr>
<tr>
<td>Hasil dan Pembahasan</td>
<td>61</td>
</tr>
<tr>
<td>Kesimpulan</td>
<td>72</td>
</tr>
<tr>
<td>Daftar Pustaka</td>
<td>72</td>
</tr>
</tbody>
</table>
DAFTAR TABEL

Halaman

1. Rata-rata respons tingkah laku kawin (libido) pejantan domba garut 36
2. Rata-rata karakteristik sifat fisik semen segar domba garut .. 39
3. Komposisi beberapa senyawa kimia plasma semen domba garut 45
4. Ukuran spermatozoa domba garut ... 47
5. Ukuran testis dan skrotum domba garut .. 49
6. Komposisi pengencer dasar .. 58
7. Pengaruh berbagai konsentrasi laktosa dan gliserol terhadap persentase motilitas spermatozoa domba garut ... 62
8. Pengaruh berbagai konsentrasi laktosa dan gliserol terhadap persentase spermatozoa hidup domba garut ... 63
9. Pengaruh berbagai konsentrasi laktosa dan gliserol terhadap persentase TAU spermatozoa domba garut ... 67
10. Pengaruh berbagai konsentrasi laktosan dan gliserol terhadap persentase MPU spermatozoa domba garut ... 68
11. Komposisi modifikasi pengencer Tris .. 80
12. Pengaruh berbagai konsentrasi glutation dan β-karoten terhadap persentase motilitas spermatozoa domba garut ... 83
13. Pengaruh berbagai konsentrasi glutation dan β-karoten terhadap persentase spermatozoa hidup domba garut ... 84
14. Pengaruh berbagai konsentrasi glutation dan β-karoten terhadap persentase TAU spermatozoa domba garut ... 86
15. Pengaruh berbagai konsentrasi glutation dan β-karoten terhadap persentase MPU spermatozoa domba garut ... 87
16. Rata-rata konsentrasi MDA semen beku domba garut setelah thawing 90
17. Komposisi modifikasi pengencer Tris .. 98
18. Pengaruh waktu penyimpanan epididimis terhadap kualitas spermatozoa asai cauda epididimis domba garut ... 102
19. Pengaruh waktu penyimpanan epididimis terhadap kualitas spermatozoa asai cauda epididimis domba garut setelah proses pengolahan 105
20. Frekuensi kemunculan gejala-gejala estrus pada domba garut betina 116
21. Persentase kebuntingan dan kelahiran hasil IB menggunakan semen beku 120
<table>
<thead>
<tr>
<th>No</th>
<th>Gambar Deskripsi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rumus umum gliserol (Voet dan Voet 1990)</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Mekanisme autooksidasi (Siregar 1992)</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>Spermatozoa yang hidup ditandai oleh kepala berwama putih (a)</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>dan spermatozoa yang mati ditandai oleh kepala berwama merah (b)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Spermatozoa dengan membran plasma sel yang utuh ditandai oleh ekor melingkar (a)</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>dan yang rusak ditandai oleh ekor lurus (b)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Spermatozoa dengan tudung akrosom yang utuh ditandai oleh ujung kepala berwama</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>hitam pekat (a) dan yang rusak ditandai oleh ujung kepala berwama putih (b)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A. Epididimis domba setelah dipisahkan dari testis, caput (a), corpus (b),</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>cauda (c), dan vas deferens (d). B. Penyimpanan epididimis di dalam lemari es</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Cauda epididimis yang telah disayat dan dibilas-tekan dengan pengencer Tris</td>
<td>99</td>
</tr>
<tr>
<td>8</td>
<td>A. Embrio (bulatan putih) umur 35 hari, B. fetus umur 120 hari, dan C. kotiledon</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>umur kebutungan 83 hari</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>A. Anak domba hasil IB dari semen beku (Gloos) dan B. Anak domba hasil IB</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>dari spermatozoa epididimis yang telah dibekukan (Ho)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Saluran reproduksi domba ganut betina (A) dan cervix (B)</td>
<td>124</td>
</tr>
</tbody>
</table>
PENDAHULUAN

Latar Belakang

Domba garut (domba priangan) merupakan hasil persilangan antara domba merino dengan domba kaapstad dari Afrika dan domba lokal Indonesia yang terbentuk sejak tahun 1800-an, sehingga memiliki daya adaptasi yang tinggi terhadap lingkungan Indonesia, terutama di daerah Jawa Barat. Domba garut juga dikenal sebagai salah satu jenis domba prolific di daerah tropik serta memiliki berat badan yang relatif lebih besar dibandingkan dengan domba lokal lainnya. Menurut Mason (1980) domba priangan merupakan domba paling prolific dibandingkan dengan persilangan priangan dan domba ekor gemuk serta domba ekor gemuk dan domba ekor tipis lokal. Domba garut jantan dewasa memiliki berat badan sekitar 60 – 80 kg, bahkan dapat mencapai lebih dari 100 kg, sehingga sangat memungkinkan dijadikan sebagai sumber bibit dan donor semen dengan tujuan memperbaiki performans domba lokal lainnya melalui pendekatan teknologi reproduksi, seperti inseminasi buatan (IB) atau produksi embrio secara in vitro, dan transfer embrio (TE). Di samping itu, kerait dengan salah satu kebudayaan masyarakat Jawa Barat, domba garut memiliki nilai ekonomi yang sangat tinggi sebagai domba laga. Domba garut jantan yang telah berkali-kali memenangi lomba adu ketangkasan domba memiliki nilai ekonomi yang sangat tinggi, dapat mencapai puluhan hingga ratusan juta rupiah. Dengan demikian domba garut memiliki potensi yang besar untuk dikembangkan menjadi sebuah peternakan yang modern, produktif, dan efisien.

Potensi domba garut yang cukup besar ini seharusnya dapat dioptimumkan untuk memenuhi berbagai tantangan kebutuhan masyarakat, apabila mendapat perhatian yang serius dari berbagai pihak yang terkait langsung sebagai praktisi di bidang peternakan. Seiring dengan itu juga untuk meningkatkan potensi ekonomi peternak di pedesaan serta sekaligus menjawab tantangan kemungkinan ekspor daging domba di masa yang akan datang.

Upaya yang harus ditempuh untuk menjawab tantangan tersebut di atas adalah bagaimana meningkatkan populasi dalam waktu yang relatif lebih singkat dan memperbaiki mutu genetik temak secara bertahap. Tantangan tersebut perlu didekati dengan penerapan teknologi di bidang peternakan yang telah berkembang dengan pesat dewasa ini, khususnya teknologi reproduksi. Penerapan teknologi reproduksi pada temak domba garut menjadi suatu hal yang penting, karena selama ini memang belum mendapat
perhatian yang memadai dari para peneliti. Hal ini ditandai oleh langkanya informasi hasil penelitian di bidang reproduksi pada domba garut.

Salah satu teknologi reproduksi yang cukup aplikatif dan efisien untuk diterapkan adalah teknologi IB. IB merupakan teknik yang cukup efektif dan ampuh untuk dimanfaatkan dalam upaya meningkatkan populasi dan mutu genetik ternak, namun khusus pada ternak ruminansia kecil termasuk domba garut, teknologi ini belum begitu populer karena terdapat kendala-kendala teknis dalam pelaksanaannya. Deposisi semen saat IB tidak mudah dilakukan karena cervix yang kecil dan struktur lubang yang tidak beraturan serta tidak memungkinkan untuk merogoh rektum seperti yang dilakukan pada ternak ruminansia besar seperti sapi. Dengan demikian untuk meningkatkan keberhasilan IB pada domba, perlu dilakukan peningkatan kualitas semen (semen cair atau semen beku) dan waktu pelaksanaan IB yang tepat.

Pengolahan semen merupakan hal yang penting karena terkait dengan upaya menjaga daya hidup dan kemampuan spermatozoa membuahi oosit. Dalam proses pengolahan semen, terdapat beberapa perlakuan yang sebenarnya tidak menguntungkan bagi spermatozoa, tetutama dalam proses pembuatan semen beku.

Dalam proses pembekuan (kiropreservasi) semen, spermatozoa memperoleh perlakuan suhu yang ekstrim sangat rendah hingga mencapai \(-196\) °C dan dapat mengakibatkan dampak negatif terhadap spermatozoa. Pada suhu rendah di bawah titik beku akan terjadi perubahan-perubahan fisik dan kimia di dalam sel spermatozoa seperti terbentuknya kristal-kristal es dan meningkatnya konsentrasi elektrotit intraseluler, sehingga menyebabkan terjadinya cold shock (kejutan dingin) pada spermatozoa. Untuk mengurangi pengaruh negatif ini, beberapa perlakuan dapat dicobakan seperti dengan menambahkan berbagai senyawa berupa krioprotektan dan antioksidan di dalam pengencer semen. Dengan demikian, kerusakan spermatozoa selama proses kriopreservasi semen dapat ditekan, sehingga kualitas semen beku yang dihasilkan pun lebih baik.

Dikenal dua golongan krioprotektan, yakni krioprotektan ekstraseluler dan intraseluler. Krioprotektan ekstraseluler berupa gula seperti laktosa, maltosa, dan sukrosa tidak dapat memasuki sel, sehingga mereka melindungi sel dengan cara "membungkus" membran plasma sel. Sedangkan krioprotektan intraseluler seperti gliserol, etilen glikol, dan dimethyl sulfoxide (DMSO) dapat memasuki sel, sehingga dapat melindungi sel dari dalam dengan cara menyeimbangkan osmolaritas intra dan ekstrasel serta memodifikasi
struktur permukaan kristal-kristal es sehingga tidak terlalu tajam (Supriatna dan Pasaribu 1992). Penggunaan kedua jenis krioprotektan ini secara bersamaan diharapkan akan tercipta suatu sinergi yang baik antara keduanya sehingga lebih optimal dalam melindungi sel spermatozoa dari kerusakan selama proses produksi semen beku.

Penggunaan laktosa dan gliserol sebagai krioprotektan telah dikenal luas dalam proses kriopreservasi semen berbagai jenis hewan temak. Namun pada domba garut belum diketahui konsentrasi yang optimal dalam mempertahankan kualitas semen beku. Demikian pula halnya dengan penggunaan antioksidan glutation dan \(\beta \)-karoten dalam pengencer semen, belum lazim digunakan dalam proses kriopreservasi semen terutama semen domba.

Glutation dan \(\beta \)-karoten sebagai senyawa antioksidan dapat dipahami karena mampu membersihkan radikal bebas hidroksil (OH\(^{-}\)) dan singlet oksigen (\(\cdot{\text{O}}_{2}\)) (Tuminah 2000) yang sangat reaktif dan menyebabkan terjadinya peroksidasi lipida pada membran plasma sel, sehingga memungkinkan digunakan di dalam pengencer semen. Namun demikian, pemakaian glutation dan \(\beta \)-karoten sebagai antioksidan di dalam pengencer semen beku masih jarang dibandingkan dengan antioksidan lain seperti vitamin C, vitamin E (\(\alpha \)-tokoferol), butylated hydroxytoluene (BHT), dan lain-lain, sehingga memerlukan pengkajian yang lebih mendalam pada semen berbagai jenis hewan. Menurut Suryohudoyo (2000) glutation bersifat hidrofik dan berperan di dalam sitosol, sedangkan \(\beta \)-karoten bersifat lipofilik dan berperan pada membran plasma sel. Dengan demikian diharapkan bahwa kedua senyawa antioksidan ini dapat secara optimal melindungi sel spermatozoa dari kerusakan akibat serangan zat oksidan dan radikal bebas selama proses pengolahan semen.

Sebagai salah satu sumber spermatozoa selain hasil ejakulasi, diketahui bahwa spermatozoa asal cauda epididimis telah memiliki kemampuan fisiologik yang kurang lebih sama dengan spermatozoa hasil ejakulasi, namun ini belum mendapatkan perhatian yang serius untuk dimanfaatkan. Pemotongan hewan jantan menyebabkan terbuangnya epididimis sebagai salah satu sumber spermatozoa, sehingga perlu penelitian dan pengkajian untuk mengetahui sifat fisiologik spermatozoa tersebut, seperti upaya kriopreservasi dan penerapan dalam teknologi reproduksi. Upaya ini dilakukan untuk memanfaatkan secara optimal spermatozoa asal epididimis sebagai model dalam upaya konservasi dan pelestarian plasma nutfah hewan jantan yang tergolong hewan langka.
Pengolahan spermatozoa yang dikoleksi dari epididimis juga dimaksudkan sebagai antisipasi terhadap pejantan-pejantan domba garut atau hewan-hewan jantan lain yang mati mendadak, atau bermasalah dalam melakukan ejakulasi secara normal, serta tidak memberikan respons dalam upaya menampung semen menggunakan alat bantu, padahal hewan-hewan ini tergolong hewan langka atau memiliki mutu genetik yang unggul. Metode ini juga dapat menjadi salah satu solusi dalam upaya pelestarian sumberdaya hewan-hewan jantan liar atau buas yang sedang ditangkarkan, dengan cara aspirasi spermatozoa menggunakan spuit jarum suntik langsung pada cauda epididimis hewan hidup yang sebelumnya telah dianastesi.

Dalam lingkup penelitian ini dilakukan serangkaian percobaan yang meliputi:
1. Pengamatan karakteristik penampilan reproduksi domba garut jantan.
2. Penggunaan berbagai konsentrasi senyawa krioprotektan laktosa dan gliserol di dalam pengencer Tris dalam kriopreservasi semen domba garut.
3. Penggunaan berbagai konsentrasi senyawa antioksidan glutation dan β-karoten di dalam pengencer Tris dalam kriopreservasi semen domba garut.
4. Upaya pemanfaatan spermatozoa asal epididimis domba garut dengan melakukan kriopreservasi.
5. Uji fertilitas semen beku hasil ejakulasi dan spermatozoa beku asal cauda epididimis domba garut melalui IB secara intracervical.

Tujuan Penelitian

Penelitian ini bertujuan meningkatkan keberhasilan IB pada domba garut melalui aspek-aspek sebagai berikut:
1. Menguji konsentrasi optimum krioprotektan laktosa dan gliserol dalam pengencer semen beku domba garut.
2. Menguji pengaruh penambahan antioksidan glutation dan β-karoten dalam berbagai konsentrasi terhadap kualitas semen beku domba garut.
3. Menguji pengaruh lama penyimpanan epididimis terhadap kualitas spermatozoa cauda epididimis yang telah dibekukan pada domba garut.
5. Menguji kemampuan fertilitas semen beku hasil ejakulasi dan spermatozoa asal cauda epididimis yang telah dibekukan pada domba garut.
Manfaat Penelitian

Hasil penelitian ini diharapkan dapat memberikan manfaat sebagai berikut:
1. Mendapatkan paket teknologi IB pada domba garut dengan penyediaan pengencer dan teknik kiopreservasi yang baik.
2. Sebagai salah satu upaya untuk melestarikan sumberdaya hewan jantan yang unggul atau langka, baik yang mampu maupun yang tidak mampu melakukan ejakulasi secara normal atau yang tidak memberikan response terhadap upaya penampungan semen dengan alat bantu dan hewan yang mati mendadak melalui pemanfaatan spermatozoa asal cauda epididimis yang telah dibekukan.

Hipotesis

Hipotesis yang dikemukakan mendahului penelitian ini adalah sebagai berikut:
1. Penambahan laktosa dan gliserol dengan konsentrasi yang optimum di dalam pengencer Tris akan meningkatkan kualitas semen buku domba garut.
2. Penambahan glutation dan β-karoten dengan konsentrasi yang optimum di dalam pengencer Tris akan meningkatkan kualitas semen buku domba garut.
3. Penyimpanan epididimis domba garut pada suhu 5 °C dalam waktu terbatas dapat mempertahankan kualitas spermatozoa segar dan yang telah dibekukan.
4. Fertilitas semen buku hasil ejakulasi lebih baik dibandingkan dengan spermatozoa cauda epididimis yang telah dibekukan.

Daftar Pustaka

TINJAUAN PUSTAKA

Domba Garut (Priangan)

Domba garut memiliki berat badan yang relatif lebih tinggi dibandingkan dengan domba lokal lainnya, betina dewasa memiliki berat antara 30 – 60 kg, sedangkan pejantan dewasa seberat 60 – 80 kg bahkan dapat mencapai lebih dari 100 kg. Sedangkan laju ovulasi domba priangan rata-rata 2.1 (antara 1 dan 5) dengan jumlah anak sekelahiran rata-rata 1.8 (antara 1 dan 5) (Bradford et al. 1986). Keunggulan lain domba lokal Indonesia antara lain daya tahan tubuh yang relatif tinggi terhadap serangan parasit. Walau belum dipahami mekanisme kerja gen, akan tetapi diketahui bahwa domba ekor tipis Jawa dan Sumatera yang digembalakan di perkebunan karet Sumatera Utara memiliki daya tahan tinggi terhadap serangan parasit internal (Tiesnamurti 2002). Beberapa sifat unggul yang dimiliki domba ekor tipis ini dapat dimanfaatkan untuk meningkatkan performans domba-domba lokal lainnya yang ada di beberapa daerah di Indonesia.

Pengenceran Semen

Menurut Toelihere (1993), pengencer yang baik harus: (1) mempunyai tekanan osmosis isotonis dan dapat mempertahankan tekanan isotonis itu selama penyimpanan, (2) memberikanimbangan unsur mineral yang dibutuhkan untuk kehidupan spermatozoa, (3) menyediakan bahan makanan bagi spermatozoa untuk proses metabolismenya, (4) memiliki lipoprotein atau lestitin untuk melindungi spermatozoa terhadap cekaman dingin, (5) menyediakan penyegaga terhadap produksi akhir metabolisme yang bersifat
racun terhadap spermatozoa, (6) merupakan sumber bahan reduksi untuk melindungi enzim seluler yang mengandung sulhidril, dan (7) bebas dari substansi produk kuman-kuman atau organisme penyakit menular yang berbahaya terhadap spermatozoa, saluran reproduksi betina, proses fertilisasi, implantasi dan perkembangan embrio. Pengencer yang dapat digunakan untuk pengenceran semen domba antara lain: pengencer Tris, laktosa dan susu skim.

Pengencer Tris

Kriopreservasi semen domba menggunakan pengencer Tris telah dilaporkan oleh banyak peneliti dengan tingkat keberhasilan perbaikan kualitas semen yang bervariasi. Penggunaan Tris sebagai bahan utama pengencer semen domba telah dilakukan oleh beberapa peneliti pada awal tahun 1970-an (Hahn 1972). Tris sebagai komponen dasar pengencer untuk kriopreservasi dalam bentuk pelet telah dilakukan secara sistematis oleh Salamon dan Visser (1972). Pada penelitian mereka, semen domba diencerkan dengan Tris konsentrasi 250 – 400 mM dan glukosa. Untuk pengujiannya fertilitas, semen diencerkan lima kali dengan 300 mM Tris + 27.75 mM glukosa + 94.7 mM asam sitrat + 15% kuning telur + 5% gliserol + antibiotik dan dibekukan dalam bentuk pelet pada keadaan kering bekuan (dry ice), dihasilkan angka kebuntingan sebesar 30 – 57% setelah inseminasi secara transcervical (Visser dan Salamon 1973). Menurut Molinia et al. (1990) kombinasi antara 30 dan 290 mM gula (monosakarida dan disakarida) dengan 100 – 300 mM Tris (osmolaritas sekitar 325 mOsmol) tidak mempengaruhi motilitas dan fertilitas spermatozoa setelah thawing.
Kriopreservasi (Pembekuan) Semen

Menurut Salamon dan Maxwell (1995) pendinginan semen yang telah diencerkan mendekati suhu 0 °C merupakan suatu periode adaptasi spermatozoa untuk mengurangi metabolisme yang biasa disebut periode ekuilibrasi. Secara tradisional, ekuilibrasi telah dianggap sebagai waktu spermatozoa tetap kontak dengan gliserol sebelum pembekuan. Selama itu terjadi penetrasi gliserol ke dalam spermatozoa untuk menciptakan keseimbangan konsentrasi intraseluler dan ekstraseluler. Ekuilibrasi tidak saja untuk keseimbangan konsentrasi gliserol, tetapi juga untuk komponen pengencer lain yang aktif untuk keseimbangan osmotik.

Jika cooling rate lambat, air keluar (eksosmose) cukup banyak untuk mencapai keseimbangan potensial kimiai air intra dan ekstraseluler. Di dalam sel terjadi dehidrasi untuk menghindari pembekuan intraseluler. Jika sel dibekukan dengan cooling rate cepat, keseimbangan potensial terganggu dan air membeku intraseluler, sedangkan pada cooling rate yang terlalu tinggi, terbentuk kristal es halus intraseluler. Kristal es yang halus memiliki energi permukaan yang besar dan tidak stabil serta cenderung membentuk

Menurut Supriatna dan Pasaribu (1992) prinsip utama cooling rate adalah kecepatan optimal yang dapat memberi kesempatan air keluar dari dalam sel secara kontinu bertahap sebagai respons sel terhadap kenaikan konsentrasi larutan ekstraseluler yang semakin tinggi di antara kristal-kristal es yang terbentuk. Ada empat faktor yang mempengaruhi pasase air melalui membran plasma sel, yakni (1) tipe sel, setiap macam sel memiliki membran plasma sel yang khas, (2) rasio permukaan terhadap volume, air akan keluar masuk lebih cepat pada sel yang kecil (spermatozoa) daripada sel yang besar (embrio), (3) waktu dan suhu, air akan keluar masuk lebih cepat pada suhu yang tinggi daripada suhu rendah, dan (4) perbedaan konsentrasi intra dan ekstraseluler, pasase air melalui membran plasma sel lebih cepat ke konsentrasi solut yang tinggi daripada yang rendah.

Krioprotektan

Krioprotektan adalah zat kimia non elektrolit yang berfungsi mereduksi pengaruh letal selama proses kriopreservasi sel di antaranya baik yang berupa efek larutan maupun pembentukan kristal es ekstra atau intraseluler sehingga dapat menjaga viabilitas sel setelah kriopreservasi (Supriatna dan Pasaribu 1992).

Berdasarkan perpaduan antara sifat fisika dan kimia (besar molekul, polaritas dan koligatif) krioprotektan dengan sifat biologis membran plasma sel yang semipermeabel, krioprotektan dibagi ke dalam dua bagian, yakni krioprotektan ekstraseluler dan
kioprotektan intraseluler. Krioprotektan ekstraseluler adalah krioprotektan yang tidak dapat menembus membran plasma sel karena memiliki berat molekul yang besar, sedangkan krioprotektan intraseluler dapat menembus membran plasma dan masuk ke dalam sel karena berat molekulnya kecil (Supriatna dan Pasaribu 1992). Gliserol (gliserin), dimethyl sulfoxide (DMSO), etilen glikol dan 1,2 propanediol merupakan senyawa-senyawa yang termasuk golongan krioprotektan intraseluler. Krioprotektan ekstraseluler meliputi polyvinilpyrrolidone (PVP), gula dengan molekul besar seperti sukrosa, rafinosa dan laktosa, protein dan lipoprotein, kuning telur, serum darah dan susu.

Khusus dalam proses pembekuan semen, krioprotektan intraseluler yang paling umum digunakan adalah gliserol, sedangkan krioprotektan ekstraseluler yang lumrah digunakan adalah lipoprotein dan protein (di dalam susu pengencer dan kuning telur) dan berbagai macam gula.

Peranan Gliserol dalam Pengencer Semen

Gliserol mempunyai sifat yang larut dalam lemak, sehingga dapat langsung masuk ke dalam sel menembus membran plasma dengan keuntungan sebagai berikut: akan menggantikan air yang keluar dari dalam sel pada saat proses pembekuan berlangsung, sehingga keseimbangan konsentrasi elektrolit intra dan ekstraseluler tetap terjaga; menurunkan titik beku larutan, sehingga memberikan kesempatan kepada sel mengeluarkan air dan memperpanjang aklimatisasi sel terhadap perubahan suhu yang drastis sehingga memperkecil jumlah air yang membeu intraseluler; mengubah secara fisik kristal-kristal es yang terbentuk menjadi lebih lembut, dan juga ikut melindungi membran plasma sel (Supriatna dan Pasaribu 1992).

Menurut Voet dan Voet (1990) gliserol umumnya digunakan sebagai agen protektif pada pembekuan semen. Krioprotektan ini merupakan komponen utama lipida yang mengandung tiga atom karbon (C) dan tiga gugus OH (Gambar 1) yang dibentuk melalui lipolisis, yakni difosforilasi dan dioksidasi menjadi dihidroksiasetoni fosfat dan selanjutnya dihidrolisis menjadi gliseraldehyda 3-fosfat.

Gambar 1 Rumus umum gliserol (Voet dan Voet 1990).

Supriatna dan Pasanbu (1992) menyatakan keuntungan penggunaan gliserol dalam proses pembekuan sel adalah: (1) menurunkan titik beku larutan sehingga pengeluaran air dari dalam sel baru terjadi pada suhu yang rendah sekali dan menyebabkan reduksi volume sel di dalam proses pendinginan dapat berkurang serta mencegah presipitasi larutan, (2) melindungi membran plasma sel sehingga menjadi lentur, tidak rapuh, dan meningkatkan afinitas lipoprotein membran terhadap ion K⁺, (3) mencegah terjadinya dehidrasi karena gliserol memiliki daya ikat yang kuat terhadap air, dan (4) memecahkan kristal es yang berurukan besar dan berbentuk tajam yang dapat merusak sel atau organ sel secara mekanik. Sedangkan menurut Amann (1999) gliserol memiliki sifat toksisitas yang lebih rendah terhadap sel spermatozoa dibandingkan dengan etilen glikol dan DMSO. Gliserol juga mampu menurunkan derajat pembentukan kristal es di dalam sel spermatozoa.

Menurut Parks dan Graham (1992) dalam pembekuan semen pemakaian gliserol sebagai krioprotektan lebih baik dibandingkan dengan DMSO karena: (1) gliserol memiliki daya ikat terhadap air (water binding) yang lebih tinggi dibandingkan dengan DMSO. Sehingga air yang membeku tidak berupa kristal tajam yang dapat merusak sel
spermatozoa secara mekanik, (2) kecepatan pasase gliserol ke dalam sel lebih cepat dibandingkan dengan DMSO. Gliserol butuh waktu hanya sekitar 8 menit untuk mencapai ekuilibrium, sementara DMSO membutuhkan waktu sekitar 12 menit.

Gliserol dengan kelebihan seperti tersebut di atas, mampu mengikat sebagian air intraseluler sehingga tidak keluar seluruhnya. Dengan demikian tidak terjadi efek solusi (tingginya konsentrasi solut di dalam sel) yang menyebabkan kematian sel. Demikian pula dengan waktu yang lebih lama DMSO masuk ke sel, ini akan menyebabkan air memiliki waktu yang lebih panjang untuk keluar dari dalam sel (sehingga air yang keluar terlalu banyak) dan mengakibatkan efek solusi sehingga sel rusak (Supriatna dan Pasaribu 1992).

Kemampuan penetrasi krioprotoktan ke dalam sel yang cepat memang dibutuhkan pada sel kecil seperti spermatozoa. Hal ini karena nisbah antara permukaan dan volume sel spermatozoa adalah kecil yang menyebabkan air intraseluler sangat cepat keluar dari dalam sel, sehingga krioprotoktan pun harus dengan cepat masuk ke sel untuk menggantikan posisi air yang telah keluar. Menurut Supriatna dan Pasaribu (1992) apabila air yang keluar dari dalam sel melebihi 85%, maka sel akan rusak atau bahkan mati.

Proses penambahan gliserol (gliserolisasi) ke dalam pengencer oleh banyak peneliti disarankan dilakukan pada suhu pengencer sekitar 5 °C. Akan tetapi pada proses pembuatan semen beku di lapang yang tidak dilengkapi dengan mesin pendingin sulit diterapkan, sehingga di tingkat lapang gliserolisasi dilakukan pada suhu kamar. Metode seperti ini tetap menghasilkan semen beku dengan kualitas yang baik (Toelither et al. 2000). Hal yang sama dinyatakan oleh Tuli dan Holtz (1994) bahwa penambahan pada suhu 5 °C tidak memberikan keuntungan lebih dibandingkan dengan penambahan pada suhu 30 °C.

Konsentrasi Gliserol di dalam Pengencer Semen

Gliserol mampu memberikan perlindungan terhadap sel spermatozoa, akan tetapi dapat juga merusak struktur spermatozoa selama proses pembekuan semen, menyebabkan osmotic shock dan menimbulkan efek negatif terhadap antibiotik di dalam pengencer semen (Toelither 1993), serta menurunkan volume sel spermatozoa sebanyak setengah dari volume larutan isolitik setelah thawing (Parks dan Graham 1992). Karena itu konsentrasi gliserol yang ditambahkan di dalam pengencer semen bergantung pada
metode pendinginan atau pembekuan, komposisi pengencer, dan metode penambahannya (Fahy 1986).

Untuk pembekuan semen domba dengan metode konvensional yang lambat dan menggunakan pengencer yang umumnya hipertonik, kebanyakan peneliti menemukan bahwa konsentrası gliserol yang optimal adalah dengan rentang 6% – 8% (First et al. 1961), 3% – 4% (Curry 1995), 7% pada domba st. croix (Feradis 1999). Pada kambing peranakan Etawah penambahan 6% gliserol dalam pengencer Tris dapat lebih efektif mempertahankan motilitas, daya hidup dan keutuhan membran plasma sel dibandingkan dengan 5% dan 7% (Tambing 1999), 3% – 9% (Leboeuf 2000), dan 8% pada kambing beetal (Singh et al. 1995). Pada semen sapi dan kerbau, persentase gliserol yang umum digunakan dalam pembekuan semen adalah sebanyak 7% (Toelhier 1993; Herdis 1998; Rizal et al. 1999), 6% - 9% (Curry 1995), dan 4% pada kuda (Curry 1995).

Pada studi tentang pembekuan semen kambing, Singh et al. (1995) membandingkan antara krioprotetkan 8% gliserol dengan 3%, 6%, dan 8% DMSO. Persentase motilitas yang diperoleh setelah thawing pada perlakuan 8% gliserol nyata lebih tinggi (45.49%) dibandingkan dengan perlakuan DMSO, yakni hanya 15.33% untuk 3% DMSO, 21.66% untuk 6% DMSO, dan 19.08% untuk 8% DMSO. Hal yang sama juga didapatkan pada parameter kerusakan akrosom dan abnormalitas spermatozoa, nyata lebih rendah pada perlakuan gliserol dibandingkan dengan DMSO. Hasil serupa juga dilaporkan oleh Feradis et al. (2001) yang melakukan penelitian pembekuan spermatozoa monyet ekor panjang yang diaspirasi dari epididimis. Dilaporkan bahwa krioprotetkan gliserol lebih baik dalam melindungi spermatozoa dibandingkan dengan DMSO dan propanediol.

Peranan Kuning Telur di dalam Pengencer Semen

Menurut Jones dan Martin (1973) kuning telur mampu mempertahankan motilitas serta integritas akrosom dan membran plasma mitokondria spermatozoa. Kuning telur juga mempunyai sifat osmotic buffer, sehingga spermatozoa lebih toleran baik terhadap
pengencer hipotonik maupun hipertonik. Kuning telur mengandung low-density lipoprotein (LDL), khususnya fosfolipida yang telah diidentifikasi sebagai komponen efektif dalam melindungi spermatozoa terhadap pengaruh pendinginan yang cepat (Parks dan Graham 1992), dan mencegah peningkatan aliran ion kalsium yang berlebihan ke dalam sel yang dapat merusak spermatozoa (White 1993).

Kuning telur mengandung fosfolipida sehingga mampu menjaga spermatozoa dari cekaman dingin, akan tetapi mekanisme aksi protектив lipida ini belum diketahui dengan jelas. Beberapa penjelasan dapat dipertimbangkan yaitu: pertama, fusi gelombang-gelombang fosfolipida dengan membran plasma spermatozoa atau interpolasi (penyisihan) fosfolipid ke dalam membran plasma sehingga menubah nisbah asam lemak tak jenuh ganda dan asam lemak jenuh pada memran plasma sel; kedua, struktur lipida eksogen dapat mengekstrak kolesterol membran plasma sel, dengan demikian menubah nisbah kolesterol terhadap fosfolipida pada membran plasma sel; ketiga, struktur fosfolipida dapat berikatan secara sederhana dengan permukaan membran plasma sel, menyebabkan pengaturan kembali komponen membran plasma sel (unsur pokok) (Quinn et al. 1980).

Kandungan kolesterol spermatozoa berbagai jenis hewan dan manusia berbeda, yang berakibat terdapat perbedaan tingkat kerentanan masing-masing spermatozoa dalam proses pengolahan semen. Spermatozoa kelinci dan manusia masing-masing mengandung 545 dan 555 μg kolesterol/1000 juta sel, kira-kira dua kali lebih tinggi daripada spermatozoa domba (286 μg/1000 juta sel) dan sapi (300 μg/1000 juta sel). Kandungan kolesterol spermatozoa dalam setiap kelompok lemak sama dan digambarkan dalam nisbah molar fosfolipida dan kolesterol yang kira-kira 0.4 untuk domba dan sapi, dan kira-kira satu untuk kelinci dan manusia. Spermatozoa yang memiliki level kolesterol lebih tinggi dan derajat asam lemak tak jenuh lebih rendah, akan mempunyai struktur
membran plasma yang lebih kompak dan cenderung lebih resisten terhadap cekaman dingin (Darrin-Bennett et al. 1973).

Krioprotektan Ekstraseluler

Selain protein dan lipoprotein (terdapat di dalam susu dan kuning telur) yang telah umum digunakan dalam proses pembekuan semen dan ditargetkan berfungsi sebagai krioprotektan ekstraseluler, pemakaian beberapa jenis gula seperti glukosa, fruktosa, dan laktosa untuk tujuan yang sama juga telah lazim dipakai dalam proses pembekuan semen. Pemakaian laktosa sebagai salah satu bahan pengencer selain berfungsi sebagai bahan makanan juga yang terpenting adalah peranannya sebagai krioprotektan ekstraseluler.

Upaya memperbaiki kualitas semen beku dengan cara menambahkan beberapa jenis gula juga dilaporkan oleh beberapa peneliti, seperti 210 mM glukosa di dalam pengencer Tris pada semen beku domba, dan didapatkan motilitas setelah thawing sebesar 46.20% (Molinia et al. 1993) dan 184.96 mM glukosa di dalam pengencer Tris pada semen babi didapatkan motilitas setelah thawing sebesar 58% (de los Reyes 2000). Pada semen beku kambing peranakan etawah dengan menambahkan 9% w/v rafinosa (Suwarso 1999), pada semen beku domba pampinta (friesian x comredale) diperoleh motilitas sebesar 64% dan 52.10% masing-masing untuk penambahan trehalosa dan EDTA (Aisen et al. 2000, 2002). Akan tetapi penambahan adenitol, inositol, mannitol, sorbitol, dan xylitol di dalam pengencer Tris menurunkan motilitas semen domba setelah thawing (Molinia et al. 1994a).

Singh et al. (1995) melaporkan bahwa pemakaian laktosa sampai 180 mM (25.92 g/400 ml pengencer) yang dikombinasikan dengan 8% gliserol nyata lebih baik dalam menghasilkan semen beku kambing dibandingkan dengan laktosa 120 mM, laktosa 60 mM, dan hanya gliserol (tanpa laktosa). Hasil serupa dilaporkan Amin et al. (2000) bahwa pengencer laktosa lebih baik dalam mempertahankan kualitas semen beku kerbau lumpur dibandingkan dengan pengencer Tris sitrat dan susu skim.

Jenis dan Peranan Antioksidan dalam Meningkatkan Kualitas Semen Beku

Menurut Halliwell dan Gutteridge (1990) antioksidan adalah suatu substrat yang pada konsentrasi rendah dihadapkan pada substrat yang dapat dioksidi, secara nyata
menunda atau menghambat oksidasi dari substrat tersebut. Sedangkan menurut Krinsky (1982) antioksidan adalah suatu senyawa yang melindungi sistem biologi terhadap suatu efek yang berpotensi merusakan dari suatu proses atau reaksi yang menyebabkan oksidasi yang meluas. Antioksidan merupakan senyawa nukleofilik atau yang mempunyai kemampuan mereduksi, memadamkan atau menekan reaksi radikal bebas.

Menurut Suryohudoyo (2000) akibat yang ditimbulkan reaksi rantai peroksida
lipida pada membran plasma sel adalah terputusnya rantai asam lemak menjadi berbagai
senyawa yang bersifat toksik terhadap sel. Senyawa-senyawa yang terbentuk dan toksik
tersebut adalah antara lain berbagai macam aldehida seperti malondialdehida (MDA) dan
9-hidroksi-nonenal (HNE), serta bermacam-macam hidrokarbon seperti etana (C2H6) dan
pentana (C5H12).

Pencetusan : \(RH + OH^- \rightarrow R^- + H_2O \)
Perambatan : \(R^- + O_2 \rightarrow ROO^- \)
\[ROO^- + RH \rightarrow ROOH + R^- \]
Terminasi : \(R^- + R^- \rightarrow RR^- \)
\[ROO^- + ROO^- \rightarrow ROOR + O_2 \]

Gambar 2 Mekanisme autooksida (Siregar 1992).

Struktur matriks lipida akan mengalami kerusakan apabila terjadi reaksi rantai
peroksida lipida yang berkepanjangan, menyebabkan instabilitas membran plasma sel.
Kerusakan minimum mengubah viskositas (kekentalan) membran plasma sel dan
merangsang aktivitas enzim fosfolipase A2. Peningkatan kerusakan pada sistem
nonmembran juga telah dilaporkan. Karena spermatozoa tidak dapat melakukan
biosintesis untuk memperbaiki kerusakan, maka menyebabkan gangguan pada fungsi
biologik spermatozoa (Hammerstedt 1993).

Menurut Jones et al. (1979) serta Maxwell dan Watson (1996) membran plasma
sel spermatozoa kaya akan asam lemak tak jenuh sehingga rentan terhadap kerusakan
akibat reaksi peroksida lipida. Reaksi peroksida lipida terjadi pada spermatozoa yang
disimpan lama dan dapat menurunkan daya tahan serta mempengaruhi pengawetan
semen untuk IB (Alvarez dan Storey 1982). Proses reaksi peroksida lipida merubah
struktur spermatozoa, terutama pada bagian akrosom, kehilangan motilitas, perubahan
metabolisme yang cepat dan pelepasan komponen intraseluler (Jones dan Mann 1977).

Penambahan antioksidan dalam pengencer semen beku telah banyak dilaporkan
oleh banyak peneliti dengan hasil yang baik dibandingkan dengan kontrol. Menurut
Feradis (1999) penambahan vitamin E sebanyak 0.2 g/100 ml pengencer lebih baik dalam
m meningkatkan kualitas semen beku domba st. croix dibandingkan dengan BHT sebanyak 0.2 g/100 ml pengencer.

Penggunaan Glutation dalam Pengencer Semen

Menurut Suryohudoyo (2000) glutation mampu menetralisir kerja radikal bebas hidroksil yang sangat reaktif. Radikal hidroksil dapat merusak tiga jenis senyawa penting untuk mempertahankan integritas sel, yakni asam lemak, khususnya asam lemak tak jenuh yang merupakan komponen penting fosfolipida penyusun membran plasma sel; DNA, yang merupakan perangkat genetik sel; dan protein, yang memegang berbagai peran sebagai enzim, antibodi, pembentuk matriks, dan sitoskeleton.

Hasil penelitian Pomares et al. (1994) yang dilaporkan oleh Leboeuf et al. (2000) dinyatakan bahwa penambahan glutation peroksidase (1 unit/ml) meningkatkan viabilitas
spermatozoa domba dan kambing pada penyimpanan suhu 5 °C. Sedangkan Earl et al. (1997) melaporkan bahwa penambahan glutation sebanyak 0.3 mg/ml media pada semen beku yang telah dicairkan kembali dapat meningkatkan persentase blastosis sapi dibandingkan dengan tanpa penambahan glutation. Gadea et al. (2000) melaporkan bahwa penambahan 1 mM dan 5 mM glutation ke dalam semen beku yang telah dithawing meningkatkan persentase penetrasi terhadap oosit dan persentase pembentukan pronukleus jantan dibandingkan dengan kontrol. Peningkatan kemampuan penetrasi spermatozoa babi terhadap oosit dengan penambahan 0.25 mM glutation juga dilaporkan oleh Boquest et al. (1999). Hal ini disebabkan oleh glutation dapat melindungi spermatozoa dari kerusakan akibat serangan radikal bebas.

β-karoten Sebagai Senyawa Antioksidan

Schweigert dan Zucker (1988) menyatakan bahwa kandungan β-karoten di dalam sel cukup rendah, dan dapat bersifat toksik jika konsentrasi nya berlebihan. Sebagai perbandingan, hasil penelitiannya dilaporkan bahwa konsentrasi β-karoten di dalam folikel sapi hanya sebesar 2.44 μg/ml atau 0.00244 mg/ml.

Hasil beberapa penelitian pada manusia menunjukkan bahwa β-karoten memiliki kemampuan kerja sebagai senyawa antioksidan yang baik. Ini ditunjukkan dengan percobaan terapi β-karoten yang dapat menurunkan kadar peroksidasi serum, malondialdehida serum, low-density lipoprotein (LDL) yang diinduksi oleh ion Cu, kerusakan DNA, dan pirimidin teroksidasi (Pryor et al. 2000). Menurut Oshima et al.
(1993) β-karoten memiliki kemampuan memproteksi liposom (suatu vesikel yang memiliki fosfolipid bilayer tunggal) dari kerusakan akibat serangan singlet oksigen.

Menurut Oshima et al. (1993) singlet oksigen merupakan salah satu jenis senyawa oksigen reaktif yang dihasilkan dari proses biologis aerobik alamiah dan berbahaya terhadap kelangsungan hidup sel. Singlet oksigen merusak sel karena dapat menimbulkan reaksi rantai peroksida lipida pada membran plasma sel dan merusak organel-organel sel lainnya. Daya rusak singlet oksigen terhadap sel dapat dicapai oleh β-karoten dengan mekanisme kerja sebagai berikut:

\[^1\text{O}_2 + ^1\text{Car} \rightarrow ^3\text{O}_2 + ^3\text{Car}^* \]

\[^3\text{Car}^* \rightarrow ^1\text{Car} + \text{panas.} \]

β-karoten (\(^1\text{Car}\)) meredam singlet oksigen (\(^1\text{O}_2\)) melalui mekanisme fisikal, dengan cara menransfer energi dari singlet oksigen ke β-karoten yang memiliki struktur kaya elektron. β-karoten menjadi lebih aktif setelah mendapat tambahan energi dan berubah bentuk menjadi triplet (\(^3\text{Car}^*\)), setelah itu β-karoten triplet tersebut menghilangkan sebagian energi sebagai panas dan kembali ke bentuk semula (\(^1\text{Car}\)). Karena mekanisme kerjanya berlangsung secara fisik, maka struktur β-karoten tidak mengalami perubahan setelah bekerja, sehingga masih memiliki kemampuan memproteksi sel dari serangan singlet oksigen berikutnya.

Pembekuan Spermatozoa yang Diaspirasi dari Epididimis

Pembekuan spermatozoa yang diaspirasi dari epididimis pada berbagai hewan telah dilaporkan oleh beberapa peneliti dengan tingkat keberhasilan yang bervariasi. Persentase motilitas progresif dan persentase akrosom utuh sebelum dan setelah pembekuan yang diperoleh masing-masing sebesar 30% dan 15% serta 62% dan 29% pada beruang (Anel et al. 1999), persentase motilitas 75% dan 48% pada badak (Lubbe et al. 1999), sedangkan pada llama tidak berhasil dan hanya 5% pada alpaca (Bravo et al. 2000). Menurut Squires et al. (2000) persentase motilitas spermatozoa epididimis bekuk dapat ditingkatkan dengan menambahkan plasma semen.

Penggunaan beberapa jenis pengencer dan konsentrasi gliserol dalam proses pembekuan spermatozoa epididimis juga telah dilaporkan oleh beberapa peneliti. Konsentrasi 8% gliserol lebih baik dibandingkan dengan 4% dan 6% dengan pengencer
Tris-sitrat-kuning telur pada spermatozoa epididimis bekuk moyet ekor panjang (Feradis et al. 2001), sedangkan pada semen rusa merah iberian 8% lebih baik dibandingkan dengan 4% (Garde et al. 2000).

Hasil penelitian Anei et al. (1999) menunjukkan bahwa spermatozoa epididimis beruang yang mati dapat dibekukan dengan menggunakan pengencer TEST-fruktosa dengan 20% kuning telur dan 4% gliserol. Sedangkan Squires et al. (2000) menggunakan pengencer susu skim-kuning telur dengan 4% gliserol pada spermatozoa epididimis kuda.

Sinkronisasi Estrus dan Evaluasi Kebuntingan

Sinkronisasi estrus merupakan salah satu upaya untuk memudahkan manajemen pelaksanaan IB, karena betina dalam jumlah banyak dapat dimasuki dalam waktu bersamaan. Sinkronisasi estrus dapat menggunakan berbagai macam senyawa hormon seperti PGF2α dan progesteron atau progesteron dikombinasikan dengan estrogen.

Sinkronisasi estrus menggunakan progesteron dalam bentuk controlled internal drug release (CIDR) pada domba telah dicoba oleh beberapa peneliti yakni Hamra et al. (1986), Wheaton et al. (1993), dan Fukui et al. (1994) dengan tingkat keserentakan estrus yang cukup baik. Keuntungan penggunaan CIDR adalah dapat mengurangi akumulasi lendir berbau busuk yang keluar saat pelepasan spon. Menurut Hamra et al. (1986) konsentrasi progesteron plasma darah meningkat mendekati konsentrasi maksimal (2.1 ng/ml) dalam 24 jam setelah implan CIDR, serta mencapai konsentrasi tertinggi (2.4 ng/ml) pada hari keempat, dan kemudian menurun secara gradal ke konsentrasi 1.5 ng/ml pada hari ke-13. Sedangkan Wheaton et al. (1993) melaporkan konsentrasi progesteron sekitar 5.5, 3.5, 2.3, dan 1.7 ng/ml masing-masing 2 jam, 24 jam, 4 hari, dan 13 hari setelah implan CIDR.

Evaluasi kebuntingan dini dapat dilakukan dengan pemeriksaan kadar hormon progesteron dan menggunakan alat ultrasonografi (USG). Menurut Reichenbach et al. (1996) evaluasi kebuntingan dini pada domba dapat dilakukan dengan uji kadar hormon progesteron plasma darah menggunakan metode radioimmunoassay (RIA) pada 16 hari setelah inseminasi. Dinyatakan bahwa kadar hormon progesteron sebesar 1.19 ng/ml sangat baik digunakan sebagai pembanding antara domba yang bunting dengan yang tidak bunting. Hasil pengamatannya diperoleh 95% (18 dari 19 ekor yang diamati) bunting dan 100% domba yang tidak bunting berhasil ditentukan dengan tepat.
Daftar Pustaka

Mazur P. 1977. The role of intracellular freezing of cells, with emphasis on mammalian ova and embryos. Proc 9th Congr Anim Reprod and AI 1:99-144.

KARAKTERISTIK PENAMPILAN REPRODUKSI DOMBA GARUT JANTAN

ABSTRAK

Informasi tentang data dasar potensi reproduksi pejantan domba garut sangat dibutuhkan untuk mengetahui kemampuan pejantan memproduksi semen (cair atau beku) dalam program IB. Penelitian diakukan terhadap enam ekor domba garut jantan dewasa berumur tiga hingga lima tahun untuk mengetahui potensi reproduksi pejantan domba garut. Kelakuan kelamin jantan diobservasi, dan semen ditampung dengan vagina buatan satu kali dalam satu minggu serta dievaluasi kualitasnya dengan mikroskop, kemudian dihitung kemampuannya memproduksi semen beku. Hasil penelitian didapatkan pejantan melakukan ejakulasi pertama, kedua, dan ke-5 rata-rata pada detik ke 28.91, 86.5, dan 175.58. Volume, konsentrasi, persentase motilitas, TAU, dan MPU rata-rata 0.97 ml, 3954.05 juta/ml, 77.07%, 86.74%, dan 87.94%. Kandungan protein, fruktosa, vitamin C, vitamin E, natrium, kalium, kalsium, magnesium, fosfor, klorida, dan mangan plasma semen adalah: 4140, 180, 3.2, 24, 180, 117, 9, 6.12, 60, 104 dan 5 mg/100 ml. Panjang dan lebar kepala serta panjang ekor spermatozoa rata-rata 6.59, 3.99, dan 42.65 um. Panjang dan lebar testis kanan rata-rata 12.71 dan 6.5 cm sama persis dengan ukuran testis kiri, sedangkan lingkar skrotum rata-rata 32.36 cm. Setiap pejantan mampu menghasilkan semen beku rata-rata 44 straw mini dengan konsentrasi 200 juta spermatozoa motil dari tiga kali ejakulasi. Dapat disimpulkan semua pejantan memiliki libido yang tinggi dan mampu menghasilkan semen berkualitas baik.

ABSTRACT

Basic information on reproductive potency of garut rams is necessary to identify the capacity of rams in producing chilled or frozen semen for artificial insemination program. This study was conducted to observe reproductive capacity of garut rams. Six garut rams between three and five years old were used in this study. The male sexual behavior was observed and semen was collected once a week using artificial vagina. Semen quality was evaluated under the microscope and its potency to produce frozen semen was calculated. Results showed that the first, second, and third ejaculations were obtained within 28.91, 86.5, and 175.58 seconds, respectively. Fresh semen volume, sperm concentration, motility, intact acrosomal cap, and intact plasma membrane were 0.97 ml, 3954.05 million/ml, 77.07%, 86.74%, and 87.94%, respectively. Protein value, fructose, vitamin C, vitamin E, sodium, potassium, calcium, magnesium, phosphor, chloride, and mangan in seminal plasma of fresh semen were 4140, 180, 3.2, 24, 180, 117, 9, 6.12, 60, 104, and 5 mg/ml, respectively. The sperm head length and width, and length of sperm tail were 6.59, 3.99, and 42.65 um, respectively. The length and width of right and left testis, and scrotal circumference were 12.71, 6.5, and 32.36 cm, respectively. Capacity of each garut ram to produce frozen semen for three consecutive ejaculations was 44 mini straws with the concentration of 200 million motile sperm per 0.25 ml. In conclusion, all rams had high libido and produce semen with good quality.
PENDAHULUAN

Informasi mengenai data dasar potensi reproduksi pejantan domba garut belum banyak dilaporkan, padahal data ini dibutuhkan untuk mengetahui kemampuan pejantan memproduksi semen cair atau beku dalam program inseminasi buatan (IB). Pengamatan tingkah laku kawin sangat diperlukan untuk menentukan tingkat libido seekor pejantan. Demikian pula halnya dengan informasi mengenai karakteristik semen segar dan komposisi plasma semen diperlukan dalam menentukan kebijakan proses pengolahan semen dalam kerangka produksi semen cair dan beku. Sedangkan informasi tentang morfometrik spermatozoa juga akan menjustifikasi tingkat kesuburan pejantan.

Abnormalitas spermatozoa berupa kepala yang terlalu besar (macrocephalic) atau terlalu kecil (microcephalic), kepala yang lebar, memanjang, berganda, ekor berganda atau melingkar menunjukkan spermatozoa yang tidak dapat membuahi oosit. Kepala yang terlalu besar dengan pangkal kepala yang lebih lebar daripada normal mungkin adalah sel yang mengandung kromosom diploid. Menurut Toelihere (1993) spermatozoa yang macrocephalic ditemukan sebanyak 0.14% pada pejantan-pejantan sapi Hereford yang mengalami inbreeding dan line-breeding yang terlampau dekat. Sedangkan abnormalitas pada ekor menghambat pergerakan dan menurunkan fertilitas spermatozoa.

Pada penelitian ini dilakukan pengamatan terhadap tingkah laku kawin pejantan domba garut yang sekaligus mencerminkan libido pejantan-pejantan tersebut. Juga dilakukan evaluasi kuantitas dan kualitas semen segar, sehingga dapat diketahui kapasitas pejantan domba garut melayani betina dalam program IB. Kandungan beberapa senyawa kimia plasma semen, morfometrik spermatozoa dan testis juga dievaluasi sebagai pelengkap data dasar reproduksi pejantan domba garut. Hasil
penelitian mungkin dapat menjadi salah satu acuan dalam menentukan kelayakan seekor pejantan domba garut sebagai pejantan yang baik sebagai donor semen dalam program IB. Menurut Achjadi (2003) dengan menyeleksi pejantan-pejantan sapi perah lokal yang ada di Indonesia untuk mendapatkan pejantan unggul paling tidak diperlukan waktu sekitar 12 tahun, dengan salah satu syarat adalah memiliki lingkar skrotum lebih dari 32 cm.

BAHAN DAN METODE

Tempat dan Waktu Penelitian

Bahan Penelitian

Hewan Percobaan

Hewan percobaan yang digunakan adalah enam ekor pejantan domba garut (Duta, Rangga, Boris, Warok, Lesan, dan Topi) dewasa kelamin dengan kondisi tubuh dan kesehatan yang baik, berat badan rata-rata 83,17 ± 9,80 kg (berkisar antara 70,50 dan 97,50 kg) dan umur sekitar tiga hingga lima tahun. Pejantan dikandangkan secara individu dan diberikan pakan berupa rumput dan leguminosa segar sekitar 7 - 9 kg dan 250 g ampas tahu atau tempe per ekor per hari. Untuk menjaga kesehatan, pejantan dimandikan setiap minggu.

Bahan dan Peralatan

Bahan-bahan penelitian yang digunakan adalah: semen segar domba garut, formaldehid (Merck, Germany), NaCl fisiologik, NaCl 3%, larutan hipoosmotik (tekanan osmotik 100 mOsmol/l), pewarna eosin B (Merck, Germany), alkohol, KY jelly (Johnson and Johnson, Indonesia), dan lain-lain.
Alat-alat yang digunakan adalah: vagina buatan, tabung spermatozoa, tabung reaksi, gelas ukur, gelas erlenmeyer, stop watch, termometer, mikroskop cahaya, gelas objek, gelas penutup, pipet tetes, hemositometer, pH meter, pembakar bunsen, timbangan mikro, penangas air, dan lain-lain.

Metode Penelitian

Pengamatan Tingkah Laku Kawin

Tingkah laku kawin pejantan sebagai respons pejantan terhadap betina sebelum kawin yang diamati adalah:

Waktu pertama mencumbu betina: waktu yang dibutuhkan pejantan untuk memulai mencumbu betina sejak pertama kali didekatkan dengan betina pemancing.

Waktu pertama kali menaiki betina: waktu yang dibutuhkan pejantan untuk menaiki betina pemancing untuk pertama kali, tetapi belum melakukan kopulasi dan ejakulasi.

Waktu melakukan ejakulasi pertama (waktu reaksi pertama): waktu yang dibutuhkan pejantan untuk melakukan ejakulasi pertama sejak didekatkan dengan betina pemancing.

Waktu melakukan ejakulasi kedua: waktu yang dibutuhkan pejantan untuk melakukan ejakulasi kedua sejak didekatkan dengan betina pemancing.

Waktu melakukan ejakulasi ketiga: waktu yang dibutuhkan pejantan untuk melakukan ejakulasi ketiga sejak didekatkan dengan betina pemancing.

Waktu reaksi kedua: waktu yang dibutuhkan pejantan untuk melakukan ejakulasi kedua terhitung sejak selesai melakukan ejakulasi pertama (waktu ejakulasi kedua dikkurangi waktu ejakulasi pertama).

Waktu reaksi ketiga: waktu yang dibutuhkan pejantan untuk melakukan ejakulasi ketiga terhitung sejak selesai melakukan ejakulasi kedua (waktu ejakulasi ketiga dikurangi waktu ejakulasi kedua).

Pengamatan Karakteristik dan Komposisi Kimiawi Plasma Semen Segar

Semen ditampung menggunakan vagina buatan satu kali dalam satu minggu, dan jumlah penampungan semen sebanyak 15 kali. Segera setelah ditampung, semen dinilai secara makroskopik dan mikroskopik. Penilaian makroskopik meliputi:

Volume semen: dapat langsung diamati pada tabung penampung semen yang berskala.
Warna semen: pengamatan terhadap warna semen segar segera setelah semen ditampung.

Konsistensi (kekentalan) semen: pengamatan tingkat kekentalan semen segar dengan cara memiringkan tabung penampung yang berisi semen segar kemudian ditegakkan kembali dan diamati laju aliran semen ke bawah melewati dinding tabung. Kekentalan digolongkan ke dalam: encer, sedang, dan kental.

Derajat keasaman (pH): penentuan pH semen segar menggunakan pH meter.

Penilaian mikroskopik meliputi:

Gerakan massa spermatozoa: pengamatan terhadap gerakan massa spermatozoa. Satu tetes sampel semen segar diletakkan pada gelas objek tanpa gelas penutup kemudian diamati dengan mikroskop cahaya pembesaran objektif 10 kali. Gerakan massa digolongkan ke dalam: + (1) jika gerakan massa yang ditimbulkan sangat tipis, ++ (2) jika gerakan massa yang ditimbulkan cukup tebal dan agak lambat, dan +++ (3) jika gerakan massa yang ditimbulkan tebal dan besar serta bergerak cepat.

Konsentrasi spermatozoa: jumlah sel spermatozoa dalam satu milliliter semen. Dihitung menggunakan hemositometer atau kamar hitung Neubauer.

Persentase motilitas spermatozoa: persentase spermatozoa yang bergerak progresif. Ditentukan secara subjektif pada delapan lapang pandang yang berbeda dengan mikroskop cahaya pembesaran 400 kali. Angka yang diberikan berkisar antara 0% hingga 100% dengan skala 5%.

Persentase spermatozoa hidup: persentase spermatozoa yang hidup. Ditentukan dengan pewarnaan 2% eosin B. Spermatozoa yang hidup ditandai oleh kepala yang berwarna putih, sedangkan yang mati ditandai oleh kepala yang berwarna merah. Sebanyak minimal 200 spermatozoa dievaluasi menggunakan mikroskop cahaya pembesaran 400 kali.

Persentase abnormalitas spermatozoa: persentase spermatozoa yang abnormal. Pengamatan terhadap morfologi spermatozoa dilakukan dari preparat yang dipakai untuk menghitung persentase spermatozoa hidup. Sebanyak minimal 200 spermatozoa dievaluasi menggunakan mikroskop cahaya pembesaran 400 kali.

Persentase tudung akrosom utuh (TAU) spermatozoa: persentase spermatozoa yang memiliki tudung akrosom utuh. Tudung akrosom utuh ditandai oleh ujung kepala spermatozoa yang berwarna hitam tebal, apabila semen dipaparkan di dalam larutan NaCl
fisiologik yang mengandung 1% formalin (Saacke dan White 1972). Sebanyak minimal 200 spermatozoa dievaluasi menggunakan mikroskop cahaya pembesaran 1000 kali.

Persentase membran plasma utuh (MPU) spermatozoa: persentase spermatozoa yang memiliki membran plasma utuh. Ditentukan dengan menggunakan metode osmotic resistance test (ORT) atau hypoosmotic swelling (HOS) test (Revell dan Mrode 1994). Spermatozoa yang memiliki membran plasma utuh ditandai oleh ekor yang melingkar atau menggembung, sedangkan yang rusak ditandai oleh ekor yang lurus, apabila semen dipaparkan di dalam larutan hiposmotik dan diinkubasi pada suhu 37°C selama 60 menit. Sebanyak minimal 200 spermatozoa dievaluasi menggunakan mikroskop cahaya pembesaran 400 kali.

Komposisi kimiai plasma semen: plasma semen keenam pejantan dicampur kemudian dianalisis untuk mengetahui kandungan beberapa komponen kimiai yang terkandung di dalamnya meliputi air, abu, lemak, protein, karbohidrat (fruktosa, glukosa, manosa, dan maltotriosa), vitamin C dan E, serta mineral (Na, K, Ca, Mg, P, Cl, dan Mn).

Pengamatan Morfometrik Spermatozoa, Testis, dan Skrotum

Pengamatan terhadap morfometrik spermatozoa, testis, dan skrotum meliputi:

- **Panjang kepala spermatozoa:** bagian terpanjang kepala spermatozoa. Diukur dengan mikrometer pada mikroskop cahaya pembesaran 1000 kali.
- **Lebar kepala spermatozoa:** bagian terlebar kepala spermatozoa. Diukur dengan mikrometer pada mikroskop cahaya pembesaran 1000 kali.
- **Panjang ekor spermatozoa:** panjang mulai dari pangkal hingga ujung ekor spermatozoa. Diukur dengan mikrometer pada mikroskop cahaya pembesaran 1000 kali.
- **Panjang testis:** ukuran bagian terpanjang testis kanan dan kiri. Diukur dengan menggunakan jangka sorong.
- **Lebar testis:** ukuran bagian terlebar testis kanan dan kiri. Diukur dengan menggunakan jangka sorong.
- **Lingkar skrotum:** ukuran lingkar skrotum bagian tengah yang menyelaputi testis kanan dan kiri. Diukur dengan menggunakan meteran kain.
Peubah yang Diamati

Peubah respons pejantan sebelum kawin yang diamati adalah waktu pertama mencumbu betina, waktu pertama menaiki betina, selang waktu untuk menaiki betina yang kedua kali, dan selang waktu untuk menaiki betina yang ketiga kali. Parameter karakteristik semen segar yang diamati adalah volume, warna, konsistensi (kekentalan), derajat keasaman (pH), gerakan massa, persentase motilitas, persentase spermatozoa hidup, konsentrasi spermatozoa, persentase abnormalitas, persentase tudung akrosom utuh (TAU), dan persentase membran plasma utuh (MPU) spermatozoa. Morfometrik spermatozoa yang diamati meliputi panjang dan lebar kepala, dan panjang ekor. Pengukuran testis dan skrotum meliputi panjang dan lebar testis kanan dan kiri serta lingkar skrotum.

Analisis Data

Data tingkah laku kawin (libido) dan sifat fisik semen segar dianalisis dengan analisis ragam dalam bentuk rancangan acak lengkap enam perlakuan dan jumlah ulangan yang bervariasi, sedangkan perbedaan antarpertakuan diuji dengan uji beda nyata terkecil (Steel dan Torrie 1993). Data yang lain dianalisis dengan menentukan rata-rata dan standar deviasi serta disajikan secara deskriptif.

HASIL DAN PEMBAHASAN

Tingkah Laku Kawin (Libido)

Respons pejantan berupa tingkah laku sebelum melakukan aktivitas kawin dapat dijadikan sebagai indikator kapasitas keinginan kawin (libido) seekor pejantan. Data ini dipertukan sebagai salah satu syarat untuk menentukan unggul tidaknya seekor pejantan, karena biasanya terdapat korelasi yang positif antara libido dengan kuantitas dan kualitas semen segar yang dihasilkan. Hal ini juga penting diketahui karena sifat libido ini umumnya menunut secara genetik.

Terdapat perbedaan antarindividu dalam melakukan respons tingkah laku mencumbu betina pemancing (Tabel 1). Pejantan Rangga merupakan pejantan yang secara nyata lebih lamban dalam melakukan aktivitas tersebut dibandingkan dengan lima
pejantan lainnya. Tidak terdapat perbedaan antarpejantan dalam melakukan aktivitas waktu pertama kali menaiki betina, waktu melakukan ejakulasi pertama, dan waktu reaksi ketiga. Pada parameter waktu melakukan ejakulasi kedua dan waktu reaksi kedua pejantan Duta memerlukan waktu yang nyata lebih lama dibandingkan dengan pejantan lainnya. Pejantan Lesan dan Duta memerlukan waktu yang paling lama untuk melakukan ejakulasi ketiga dibandingkan dengan pejantan lainnya. Perbedaan ini diduga disebabkan oleh adanya perbedaan potensi genetik yang dimiliki setiap individu pejantan. Boris, Warok, dan Topi merupakan pejantan yang memperlihatkan aktivitas libido paling baik, yang ditandai dengan respons dalam melakukan semua peubah libido yang konsisten relatif lebih cepat dibandingkan dengan pejantan lainnya (Tabel 1).

<table>
<thead>
<tr>
<th>Peubah</th>
<th>Nama domba</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Duta</td>
<td>Ranga</td>
</tr>
<tr>
<td>Mencumbu belina</td>
<td>2.00 ±</td>
<td>6.25 ±</td>
</tr>
<tr>
<td>Menaiki belina</td>
<td>1.25a</td>
<td>3.03ab</td>
</tr>
<tr>
<td>Ejakulasi pertama</td>
<td>21.33 ±</td>
<td>14.00 ±</td>
</tr>
<tr>
<td>Ejakulasi ketiga</td>
<td>183.00 ±</td>
<td>86.75 ±</td>
</tr>
<tr>
<td>Waktu reaksi kedua</td>
<td>72.69b</td>
<td>50.60a</td>
</tr>
<tr>
<td>Waktu reaksi ketiga</td>
<td>248.12ab</td>
<td>136.75ab</td>
</tr>
<tr>
<td>Waktu reaksi ketiga</td>
<td>53.71ab</td>
<td>48.90ab</td>
</tr>
<tr>
<td>Waktu reaksi ketiga</td>
<td>114.56ab</td>
<td>56.29b</td>
</tr>
<tr>
<td>Waktu reaksi ketiga</td>
<td>58.70ab</td>
<td>54.17ab</td>
</tr>
<tr>
<td>Waktu reaksi ketiga</td>
<td>65.80ab</td>
<td>75.00a</td>
</tr>
</tbody>
</table>

a,b dalam baris yang sama menunjukkan berbeda nyata (*P*<0.05).

Banyak data yang tersaji dalam Tabel 1 secara statistik berbeda tidak nyata, walaupun nilai rata-ratanya berbeda jauh, seperti pada peubah waktu reaksi ketiga. Hal ini disebabkan oleh adanya variasi yang sangat besar setiap individu pejantan dalam melakukan aktivitas libido tersebut, yang tercermin pada standar deviasi yang sangat tinggi (variasi nilai setiap peubah sangat besar antarulangan). Variasi yang sangat besar
ini diduga disebabkan oleh perbedaan betina pemancing yang digunakan saat penampungan semen.

Hasil penelitian menunjukkan bahwa secara umum semua pejantan domba garut yang digunakan dalam penelitian ini memiliki libido yang sangat baik. Ini ditunjukkan oleh respons pejantan yang spontan "merayu" dengan cara menggesek-gesekkan tubuhnya dan mengeluarkan suara khas begitu dekatkan pada betina pemancing dalam keadaan tidak estrus, bahkan pejantan-pejantan ini juga bersedia melayani vagina busatan apabila domba jantan yang digunakan sebagai hewan pemancing. Respons pejantan ditunjukkan dengan langsung "merayu" dan mencium vulva betina yang dilakukan pada rata-rata 2.75 detik (berkisar antara 1 dan 6 detik) setelah dekatkan pada betina pemancing, kemudian diikuti dengan tingkah laku menyengir (flehmen).

Tingkat libido domba-domba percobaan lebih tinggi dibandingkan dengan domba suffolk, texel, dan dorset horn seperti yang dilaporkan Boland et al. (1985). Boland et al. (1985) melaporkan bahwa dalam waktu 20 menit domba jantan mampu menaiki betina (mounting) dan ejakulasi (mating) terhadap domba betina estrus masing-masing sebanyak rata-rata 10.30 dan 3.50 kali pada domba suffolk, 6 dan 3.90 kali pada domba texel, serta 4.50 dan 3.60 kali pada domba dorset horn. Perbedaan lain yang menunjukkan bahwa
libido domba garut lebih tinggi adalah bahwa dalam percobaan ini betina yang digunakan sebagai pemancing dalam keadaan tidak estrus, sedangkan dalam percobaan terhadap domba suffix, texel, dan dorset horm digunakan betina yang sedang estrus. Betina yang sedang estrus tentu akan lebih meningkatkan libido pejantan dibandingkan dengan menggunakan betina pemancing yang tidak estrus.

Libido yang tinggi juga ditunjukkan dari sikap semua pejantan yang tidak mau meninggalkan tempat betina pemancing (tempat penampungan semen) walaupun telah melakukan ejakulasi sebanyak tiga kali. Pada saat penampungan semen, pejantan lain yang berada di dalam kandang memperlihatkan sikap "marah" dengan cara memanjang dan menanduk-nanduk kandang karena ingin juga mendekati betina pemancing.

Tingginya libido domba-dombapercobaan diduga disebabkan oleh selain karena faktor genetik, juga karena manajemen pemeliharaan yang baik, seperti pemberian pakan yang cukup baik kuantitas maupun kualitas. Demikian pula dengan penempatan kandang pejantan yang terpisah dari kandang betina serta exercise dan memandikan pejantan yang rutin setiap minggu. Menurut Toeliihere (1993) faktor-faktor yang mempengaruhi libido dapat berasal dari luar atau dari dalam tubuh hewan tersebut, dan pejantan yang secara genetik memiliki libido yang rendah lebih cenderung untuk mengembangkan sikap penolakan psikis untuk melakukan aktivitas kawin.

Karacteristik Semen Segar

Evaluasi terhadap karakteristik semen segar dimaksudkan untuk mengetahui potensi reproduksi seekor pejantan serta untuk menentukan kadar pengenceran yang dibutuhkan dan apakah semen tersebut layak atau tidak diproses lebih lanjut. Di samping itu, pengetahuan tentang kandungan senyawa kimia dan elektrolit plasma semen penting dalam menentukan komposisi bahan pengencer semen yang akan digunakan.

Sifat Fisik Semen Segar

Hasil penelitian diperoleh bahwa semua pejantan menghasilkan semen segar yang berkualitas baik serta tidak terdapat perbedaan antarpejantan pada seluruh peubah kualitas semen, kecuali pada peubah volume ejakulat pertama dan kedua (Tabel 2). Hal ini menunjukkan bahwa semen segar yang dihasilkan oleh seluruh domba percobaan layak diproses lebih lanjut, baik dalam bentuk semen cair maupun semen beku.
Tabel 2 Rata-rata karakteristik sifat fisik semen segar domba garut

<table>
<thead>
<tr>
<th>Peubah</th>
<th>Duta Rata-rata</th>
<th>Rangga</th>
<th>Boris</th>
<th>Warok</th>
<th>Lesan</th>
<th>Topi</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume (ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ejakulat</td>
<td>0.75 ± 0.04^a</td>
<td>0.92 ± 0.35^bc</td>
<td>1.10 ± 0.32^c</td>
<td>1.03 ± 0.22^bc</td>
<td>0.87 ± 0.12^bc</td>
<td>0.72 ± 0.12^c</td>
<td>0.90 ± 0.19</td>
</tr>
<tr>
<td>perlama</td>
<td>0.91 ± 0.07 ^a</td>
<td>1.11 ± 0.27^ab</td>
<td>1.53 ± 0.57^a</td>
<td>1.21 ± 0.41^ab</td>
<td>0.91 ± 0.30^a</td>
<td>0.90 ± 0.45^ab</td>
<td>0.36</td>
</tr>
<tr>
<td>Ejakulat</td>
<td>0.80 ± 0.04</td>
<td>0.90 ± 0.27</td>
<td>1.05 ± 0.16</td>
<td>0.98 ± 0.05</td>
<td>0.91 ± 0.39</td>
<td>0.77 ± 0.39</td>
<td>0.90 ± 0.02</td>
</tr>
<tr>
<td>kedua</td>
<td>0.05</td>
<td>0.30</td>
<td>0.35</td>
<td>0.23</td>
<td>0.27</td>
<td>0.20</td>
<td>0.23</td>
</tr>
<tr>
<td>Ketiga</td>
<td>0.05</td>
<td>0.30</td>
<td>0.35</td>
<td>0.23</td>
<td>0.27</td>
<td>0.20</td>
<td>0.23</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>0.82 ± 0.05</td>
<td>0.98 ± 0.30</td>
<td>1.23 ± 0.35</td>
<td>1.07 ± 0.23</td>
<td>0.90 ± 0.23</td>
<td>0.83 ± 0.23</td>
<td>0.97 ± 0.05</td>
</tr>
<tr>
<td>Warna</td>
<td>Krem</td>
<td>Krem</td>
<td>Krem</td>
<td>Krem</td>
<td>Krem</td>
<td>Krem</td>
<td>Krem</td>
</tr>
<tr>
<td>pH</td>
<td>7.04 ± 0.09</td>
<td>7.03 ± 0.12</td>
<td>7.05 ± 0.15</td>
<td>7.00 ± 0.08</td>
<td>7.10 ± 0.08</td>
<td>7.10 ± 0.12</td>
<td>7.05 ± 0.10</td>
</tr>
<tr>
<td>Konsistensi</td>
<td>Kental</td>
<td>Kental</td>
<td>Kental</td>
<td>Kental</td>
<td>Kental</td>
<td>Kental</td>
<td>Kental</td>
</tr>
<tr>
<td>Gerakan</td>
<td>2.88 ± 0.35</td>
<td>2.87 ± 0.31</td>
<td>2.93 ± 0.16</td>
<td>2.93 ± 0.17</td>
<td>2.89 ± 0.28</td>
<td>2.86 ± 0.22</td>
<td>2.89 ± 0.25</td>
</tr>
<tr>
<td>massa</td>
<td>4033.75 ± 514.22</td>
<td>3610.00 ± 242.24</td>
<td>3986.67 ± 1360.6</td>
<td>4162.30 ± 602.72</td>
<td>4083.33 ± 810.67</td>
<td>3848.25 ± 928.77</td>
<td>3954.05 ± 743.21</td>
</tr>
<tr>
<td>Konsentrasi</td>
<td>± 1360.6 ± 602.72</td>
<td>± 810.67 ± 928.77</td>
<td>± 4162.30 ± 3848.25</td>
<td>± 3986.67 ± 3954.05</td>
<td>± 4083.33 ± 3848.25</td>
<td>± 4162.30 ± 3986.67</td>
<td>± 3848.25 ± 3954.05</td>
</tr>
<tr>
<td>Persentase</td>
<td>Persentase</td>
<td>Persentase</td>
<td>Persentase</td>
<td>Persentase</td>
<td>Persentase</td>
<td>Persentase</td>
<td>Persentase</td>
</tr>
<tr>
<td>motilias (%)</td>
<td>75.91 ± 2.36</td>
<td>78.33 ± 2.16</td>
<td>78.75 ± 2.16</td>
<td>76.67 ± 2.16</td>
<td>76.25 ± 2.16</td>
<td>76.53 ± 2.31</td>
<td>77.07 ± 2.21</td>
</tr>
<tr>
<td>Spermatozoa</td>
<td>87.57 ± 2.06</td>
<td>87.00 ± 1.67</td>
<td>88.00 ± 2.12</td>
<td>89.00 ± 0.82</td>
<td>89.25 ± 2.68</td>
<td>88.50 ± 3.64</td>
<td>87.89 ± 2.16</td>
</tr>
<tr>
<td>hidup (%)</td>
<td>4.42 ± 1.40</td>
<td>4.20 ± 1.72</td>
<td>5.00 ± 1.58</td>
<td>5.80 ± 2.04</td>
<td>5.50 ± 1.12</td>
<td>5.67 ± 1.70</td>
<td>5.10 ± 1.59</td>
</tr>
<tr>
<td>Abnormalitas</td>
<td>3.94 ± 4.39</td>
<td>3.67 ± 2.49</td>
<td>3.50 ± 3.35</td>
<td>3.83 ± 1.63</td>
<td>3.83 ± 2.03</td>
<td>3.83 ± 1.88</td>
<td>3.83 ± 2.63</td>
</tr>
<tr>
<td>TAU (%)</td>
<td>87.67 ± 1.41</td>
<td>86.00 ± 1.25</td>
<td>86.67 ± 2.16</td>
<td>87.00 ± 1.70</td>
<td>87.33 ± 2.86</td>
<td>85.75 ± 2.86</td>
<td>86.74 ± 2.22</td>
</tr>
<tr>
<td>Persentase</td>
<td>88.31 ± 3.43</td>
<td>87.67 ± 2.49</td>
<td>87.50 ± 3.35</td>
<td>87.00 ± 1.63</td>
<td>88.83 ± 2.03</td>
<td>88.33 ± 1.88</td>
<td>87.94 ± 2.63</td>
</tr>
</tbody>
</table>

a,b,c dalam baris yang sama menunjukkan berbeda nyata (P<0.05).

Pejantan menghasilkan semen segar dengan kuantitas dan kualitas yang relatif sama diduga disebabkan oleh perlakuan manajemen yang sama untuk seluruh domba percobaan.

Volume semen: hasil penelitian ini didapatkan bahwa pejantan Boris dan Warok menghasilkan semen dengan volume yang relatif lebih besar daripada pejantan yang lain. Secara keseluruhan volume ejakulat domba-domba percobaan adalah rata-rata 0.97 ml (berkisar antara 0.5 dan 2.5 ml). Hasil yang diperoleh lebih tinggi dibandingkan dengan yang dilaporkan Inoue et al. (2001) bahwa volume semen domba garut rata-rata 0.76 ml.
(berkisar antara 0.3 dan 2 ml), rata-rata 0.78 ml (berkisar antara 0.68 dan 0.84 ml) pada domba priangan (Wuwuh 1990), 0.6 – 1.2 ml pada domba lokal Bogor (Toelihere 1993), dan 0.3 – 0.4 ml pada domba ekor gemuk di Jawa Timur (Pamungkas et al. 1996). Akan tetapi lebih rendah daripada volume semen domba st. croix rata-rata 1.66 ml (Feradis 1999), rata-rata 1.05 ml pada domba suffolk, 1.09 ml pada domba dorset horn, dan 1.14 ml pada domba texel (Boland et al. 1985), 0.9 – 1.2 ml pada domba (Langford et al. 1989), dan rata-rata 1.1 ml pada domba kanya merino (Kaya et al. 2002). Volume semen semen kambing boer rata-rata 0.5 ml (Sutama et al. 2001), serta 0.48 – 1.02 ml pada kambing verata dan 1.12 – 1.30 ml pada kambing malaquena (Perez dan Mateos 1996).

2.98 dan 3281.7 juta/ml pada domba suffolk, 2.55 dan 3123.3 juta/ml pada domba texel, serta 3.20 dan 3483.7 juta/ml pada domba dorset horn. Perez dan Mateos (1996) melaporkan konsentrasi spermatozoa sebanyak 3780 – 6863 juta/ml pada kambing verata dan 3971 – 5169 juta/ml pada kambing malaquena.

Persentase motilitas dan spermatozoa hidup: spermatozoa yang hidup ditandai oleh kepala yang berwarna putih, sedangkan yang mati ditandai oleh kepala yang berwarna merah setelah pewarnaan dengan eosin (Gambar 3). Hal ini terjadi karena pada spermatozoa yang mati permeabilitas membran plasma sel meningkat sehingga senyawa-senyawa kimia dapat dengan bebas melalui membran plasma masuk ke sel. Spermatozoa yang hidup memiliki membran plasma yang masih utuh sehingga pompa sodium dapat berfungsi dengan baik. Dengan demikian enzim Na⁺K⁺ ATP-ase yang terdapat pada membran plasma akan memompa kembali ion Na⁺ yang berikatan dengan pewarna eosin keluar dari sel. Ini terjadi karena secara alami konsentrasi ion Na⁺ di dalam sel jauh lebih rendah dibandingkan di luar sel. Hal seperti ini tidak terjadi pada spermatozoa yang mati, karena memori plasmanya sudah rusak yang berarti sistem pompa sodium pun sudah tidak lagi berfungsi dengan baik, sehingga ion Natrium yang berikatan dengan zat pewarna eosin masuk ke sel serta tetap tinggal di dalam dan memwarnai spermatozoa menjadi merah, terutama pada bagian kepala.

Gambar 3 Spermatozoa hidup dengan kepala berwarna putih (a) dan spermatozoa mati dengan kepala berwarna merah (b).
Hasil penelitian didapatkan persentase motilitas dan spermatozoa hidup cukup tinggi, yakni rata-rata 77.07% (berkisar antara 75 dan 80%) dan 87.89% (berkisar antara 80 dan 91%). Inouu et al. (2001) melaporkan persentase motilitas spermatozoa domba garut rata-rata 58.08% (berkisar antara 10 dan 80%) dan persentase spermatozoa hidup rata-rata 64.32% (berkisar antara 19 dan 95%). Persentase motilitas spermatozoa domba priangan sekitar 66 – 80% (Wuwuh 1990). Menurut Pamungkas et al. (1996) persentase motilitas dan spermatozoa hidup semen domba ekor gemuk umur 4 bulan di Jawa Timur adalah masing-masing 32.73 – 59.37% dan 87.44 – 96.04%. Persentase motilitas semen domba rata-rata 75% (Toelihere 1993), 59.4 – 70.8% (Langford et al. 1989), dan 60 – 80% (Hafez dan Hafez 2000). Hasil yang diperoleh lebih rendah dibandingkan dengan yang dilaporkan Wijono et al. (1995) bahwa persentase motilitas dan spermatozoa hidup domba ekor gemuk dewasa di Jawa Timur adalah masing-masing 84.44 – 86.87% dan 89.23 – 97.27%, rata-rata 81.67% dan 89% pada semen domba st. croix (Feradis 1999), serta 89.8% dan 94.2% pada semen domba kanya merino (Kaya et al. 2002). Akan tetapi lebih tinggi dibandingkan dengan pada semen kambing, yakni masing-masing rata-rata 72.50% dan 78.52% pada semen kambing boer (Sutama et al. 2001) serta 72.79% dan 82.54% pada kambing peranakan etawah (Tambing et al. 2001). Perez dan Mateos (1996) melaporkan persentase motilitas spermatozoa sebesar 67 – 79.2% pada kambing verata dan 74.3 – 76.2% pada kambing malaquena.

Persentase abnormalitas: persentase abnormalitas spermatozoa yang diperoleh rata-rata 5.10% (berkisar antara 3 dan 9%). Ini menunjukkan semen layak digunakan dalam program IB, karena menurut Toelihere (1993) semen domba yang baik memiliki spermatozoa yang abnormal tidak lebih dari 14%. Persentase abnormalitas spermatozoa semen domba rata-rata 10% (Toelihere 1993), 5 – 20% (Hafez dan Hafez 2000), 8.33% pada semen domba st. croix (Feradis 1999), dan 4.8% pada semen domba kanya merino (Kaya et al. 2002). Perez dan Mateos (1996) melaporkan persentase abnormalitas spermatozoa sebanya 4.9 – 19.4% pada kambing verata dan 2.6 – 6.7% pada kambing malaquena.

Persentase MPU dan TAU: membran plasma yang utuh merupakan hal yang mutlak harus dimiliki spermatozoa yang baik, karena membran plasma memegang peranan yang sangat sentral dalam mengatur seluruh proses biokemik yang terjadi di dalam sel. Selain berfungsi menjaga organel-organel sel secara fisik, membran plasma juga berperan dalam mengatur lalu lintas keluar masuk sel seluruh senyawa (substrat) dan
elektrolit yang dibutuhkan dalam proses biokemik di dalam sel. Keutuhan membran plasma menentukan hidup dan matinya spermatozoa, sehingga nilai persentase MPU seyogianya tidak jauh berbeda dari nilai persentase spermatozoa hidup. Sebaliknya nilai persentase spermatozoa hidup seharusnya lebih tinggi daripada persentase motilitas, karena tidak semua spermatozoa yang hidup dapat bergerak progresif ke depan (patokan motilitas), melainkan sebagian hanya bergerak di tempat, berputar-putar, atau mundur.

Spermatozoa yang memiliki membran plasma utuh ditandai oleh ekor yang melingkar atau menggembung, sedangkan membran plasma sel rusak ditandai oleh ekor yang tetap lurus (Gambar 4). Hal ini disebabkan oleh spermatozoa yang dipaparkan di dalam larutan dengan tekanan osmotik yang rendah akan mengakibatkan air masuk ke sel untuk menyeimbangkan perbedaan tekanan osmotik intra dan ekstraseluler. Pada penelitian ini digunakan larutan dengan tekanan osmotik sebesar 100 mOsmol, sedangkan tekanan osmotik sel mamalia termasuk sel spermatozoa sekitar 300 mOsmol. Apabila keadaan membran plasma sel utuh, air yang masuk akan tertahan di dalam sel sampai batas waktu tertentu. Ini menyebabkan tingginya tekanan mekanik di dalam sel sehingga mengakibatkan ekor melingkar atau menggembung. Sedangkan jika membran plasma sel sudah rusak (bocor), air yang masuk ke sel akan keluar kembali dan tidak menyebabkan peningkatan tekanan mekanik di dalam sel sehingga ekor tetap dalam keadaan lurus.

Demikian pula halnya dengan tudung akrosom yang harus tetap dipertahankan keutuhannya dalam proses pengolahan semen, karena di dalam vesikel akrosom terkandung enzim-enzim yang berperan dalam proses fertilisasi. Apabila akrosom rusak, enzim-enzim tersebut hilang sehingga spermatozoa akan kehilangan kemampuan untuk menembus barrier yang mengelilingi oosit dan fertilisasi pun tidak akan terjadi. Spermatozoa yang memiliki tudung akrosom utuh ditandai oleh bagian ujung kepala spermatozoa berwarna hitam tebal setelah semen dipaparkan di dalam larutan NaCl fisiologik yang mengandung 1% formalin, sedangkan tudung akrosom yang rusak pada bagian ujung kepala tidak terdapat warna hitam tebal tersebut (Gambar 5). Hal ini karena formalin yang terdapat di dalam larutan akan memfiksasi enzim-enzim yang terdapat di dalam vesikel akrosom pada bagian ujung kepala spermatozoa dan terkspresi dengan warna hitam tebal.
Gambar 4 Spermatozoa dengan membran plasma sel yang utuh ditandai oleh ekor melingkar (a) dan yang rusak ditandai oleh ekor lurus (b).

Gambar 5 Spermatozoa dengan tudung akrosom yang utuh ditandai oleh ujung kepala berwarna hitam pekat (a) dan yang rusak ditandai oleh ujung kepala tanpa warna hitam pekat (b).

Hasil penelitian didapatkan persentase TAU dan MPU masing-masing rata-rata 86.74% (berkisar antara 81 dan 92%) dan 87.94% (berkisar antara 81 dan 93%). Hasil yang diperoleh kurang lebih sama dengan yang dilaporkan oleh peneliti sebelumnya, persentase TAU dan MPU pada semen domba st. croix rata-rata 94% dan 86.33% (Feradis 1999), sedangkan pada semen kambing boer persentase TAU dan MPU rata-rata 78.79% dan 83.26% (Sutama et al. 2001). Persentase TAU spermatozoa kambing verata
sebesar 82.8 – 89.2% dan 90.1 – 94.9% pada kambing malaquena (Perez dan Mateos 1996). Menurut Revell dan Mrode (1994) nilai persentase MPU semen segar yang kurang dari 60% dikategorikan sebagai semen yang infertil.

Komposisi Kimiawi Plasma Semen

Hasil penelitian ini diperoleh karakteristik komposisi kimiawi plasma semen domba garut yang tidak terlalu berbeda dengan domba lain. Kandungan protein plasma semen domba-domba percobaan yang sebesar 4.14 g/100 ml (Tabel 3) lebih rendah dibandingkan dengan protein plasma semen domba yang dilaporkan Toelihere (1993) serta Hafez dan Hafez (2000) yakni sebanyak 5 g/100 ml.

<table>
<thead>
<tr>
<th>Unsur</th>
<th>Banyaknya (mg/100 ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>94510</td>
</tr>
<tr>
<td>Abu</td>
<td>310</td>
</tr>
<tr>
<td>Lemak</td>
<td>220</td>
</tr>
<tr>
<td>Protein</td>
<td>4140</td>
</tr>
<tr>
<td>Karbohidrat</td>
<td>800</td>
</tr>
<tr>
<td>Fruktoza</td>
<td>180</td>
</tr>
<tr>
<td>Glukosa</td>
<td>5.6</td>
</tr>
<tr>
<td>Manosa</td>
<td>2.8</td>
</tr>
<tr>
<td>Maltotriosa</td>
<td>40</td>
</tr>
<tr>
<td>Vitamin C (asam askorbat)</td>
<td>3.2</td>
</tr>
<tr>
<td>Vitamin E (α-tokoferol)</td>
<td>24</td>
</tr>
<tr>
<td>Mineral</td>
<td></td>
</tr>
<tr>
<td>Natrium (Na)</td>
<td>180</td>
</tr>
<tr>
<td>Kalium (K)</td>
<td>117</td>
</tr>
<tr>
<td>Kalsium (Ca)</td>
<td>9</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>6.12</td>
</tr>
<tr>
<td>Fosfor (P)</td>
<td>60</td>
</tr>
<tr>
<td>Klorida (Cl)</td>
<td>104</td>
</tr>
<tr>
<td>Mangan (Mn)</td>
<td>5</td>
</tr>
</tbody>
</table>

kandungan plasma semen domba konya merino adalah: natrium 240 – 360, kalium 55 – 70, kalsium 10 – 14, dan magnesium 2.5 – 3.1 mg/100 ml. Perbedaan hasil yang diperoleh dengan yang dilaporkan peneliti sebelumnya diduga karena perbedaan bangsa ternak serta jenis pakan yang diberikan pada hewan percobaan.

Komposisi beberapa senyawa kimia plasma semen kambing peranakan etawah adalah: protein 125.1, vitamin C 8.8, natrium 121.5, kalium 179, kalsium 8.6, dan magnesium 18 mg/100 ml (Tambing et al. 2001). Menurut Ali dan Mustafa (1986) kandungan fruktosa plasma semen kambing Nubian adalah rata-rata 213.5 mg/100 ml. Hasil penelitian Rizal et al. (1999) diperoleh komposisi kimia plasma semen kerbau lumpur dan sapi frisian holstein (FH) adalah: protein 3144 dan 6946, asam askorbat 10.7 dan 18.1, natrium 150.2 dan 136.2, kalium 60.1 dan 48.3, dan kalsium 39.3 dan 33.1 mg/100 ml.

Hasil analisis menunjukkan bahwa fruktosa merupakan karbohidrat yang paling dominan di dalam plasma semen domba garut, sehingga dapat dikatakan bahwa fruktosa merupakan substrat utama yang digunakan dalam proses metabolisme untuk menghasilkan energi berupa ATP bagi spermatozoa domba garut. Hal ini memberikan implikasi bahwa dalam upaya pengolahan semen domba garut, penyediaan substrat sumber energi di dalam pengencer semen sebaiknya adalah fruktosa.

Morfometrik Spermatozoa, Testis, dan Skrotum

Morfometrik Spermatozoa

Hasil penelitian diperoleh panjang, lebar, dan rasio lebar:panjang kepala, serta panjang ekor spermatozoa domba garut adalah masing-masing rata-rata 6.59 µm (berkisar antara 6 dan 7 µm), 3.99 µm (berkisar antara 3.5 dan 4.5 µm), 0.6, dan 42.65 µm (berkisar antara 40 dan 44 µm), sedangkan panjang seluruh spermatozoa rata-rata 49.19 µm (berkisar antara 47 dan 51 µm) (Tabel 4). Ini menunjukkan bahwa ukuran spermatozoa domba garut lebih kecil daripada spermatozoa domba yang dilaporkan Eliasson (1976), yakni panjang dan lebar kepala 8.2 dan 4.25 µm, panjang dan lebar bagian tengah (midpiece) 14 dan 0.8 µm, serta panjang dan lebar bagian ekor 40 – 45 µm dan 0.5 µm. Hal yang sama juga dilaporkan Evans dan Maxwell (1987) bahwa panjang, lebar, dan tebal kepala spermatozoa domba adalah masing-masing 8 – 10 µm, 4 µm, dan
1 μm, serta panjang ekor 50 – 52 μm dan panjang seluruh spermatozoa 60 μm. Perbedaan ukuran spermatozoa antara hasil penelitian ini dengan yang dilaporkan oleh beberapa peneliti sebelumnya diduga disebabkan oleh perbedaan bangsa dan spesies hewan percobaan yang ditemui. Hal lain yang juga dapat menyebabkan perbedaan hasil adalah penerapan manajemen yang berbeda terhadap pejantan-pejantan percobaan.

Tabel 4 Ukuran spermatozoa domba garut

<table>
<thead>
<tr>
<th>Unsur</th>
<th>Ukuran (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kepala</td>
<td></td>
</tr>
<tr>
<td>Panjang</td>
<td>6.59 ± 0.33</td>
</tr>
<tr>
<td>Lebar</td>
<td>3.99 ± 0.14</td>
</tr>
<tr>
<td>Rasio lebar:panjang</td>
<td>0.60 ± 0.04</td>
</tr>
<tr>
<td>Panjang ekor</td>
<td>42.65 ± 0.96</td>
</tr>
<tr>
<td>Panjang seluruh spermatozoa</td>
<td>49.19 ± 1.10</td>
</tr>
</tbody>
</table>

0.54 menjadi masing-masing 7.13 µm, 3.87 µm, dan 0.54 setelah pembekuan (Gravance et al. 1997). Data ini memperlihatkan bahwa terjadi penambahan ukuran setelah spermatozoa dibekukan.

Hasil penelitian diperoleh rasio antara lebar dan panjang kepala spermatozoa domba garut rata-rata 0.6, lebih tinggi dibandingkan dengan domba yang dilaporkan oleh peneliti sebelumnya, yakni 0.52 (Eliasson 1976) dan 0.5 (Evans dan Maxwell 1987) serta spermatozoa kuda yang hanya 0.43 (Ball dan Mohammed 1994), spermatozoa sapi yang sebesar 0.51 (Gravance et al. 1996b), dan spermatozoa kambing saanen yang sebesar 0.54 (Gravance et al. 1997). Hal ini menunjukkan bahwa spermatozoa domba sub tropik, sapi, kuda, dan kambing memiliki kepala yang relatif lebih langsing (lonjong) dibandingkan dengan spermatozoa domba garut. Namun belum diketahui apakah hal ini dapat menjelaskan tentang adanya hubungan antara parameter ini dan potensi genetik yang dimiliki atau daya tahan hidup spermatozoa yang bersangkutan. Tetapi menurut Toelihere (1993) spermatozoa yang memiliki ukuran lebih lebar daripada ukuran normal diduga memiliki kromosom yang diploid.

Morfometrik Testis dan Skrotum

Ukuran testis merupakan salah satu indikator yang dapat digunakan untuk memperkirakan kapasitas produksi spermatozoa hewan jantan. Dalam keadaan normal, terdapat hubungan positif antara ukuran testis dengan ukuran dan potensi substansi fungsional (tubuli seminiferi) yang terkandung di dalam testis.

Hasil penelitian menunjukkan ukuran panjang dan lebar testis kanan rata-rata 12.71 cm (berkisar antara 11 dan 14 cm) dan 6.5 cm (berkisar antara 6 dan 7 cm), sedangkan panjang dan lebar testis kiri sama persis seperti testis kanan (Tabel 5). Hal ini berarti bahwa kedua testis adalah simetris yang menandakan kenormalan testis tersebut (Toelihere 1993). Hasil penelitian diperoleh ukuran lingkar skrotum rata-rata 32.36 cm (berkisar antara 29.5 dan 34 cm) (Tabel 5).

Hasil yang diperoleh kurang lebih sama dengan yang dilaporkan oleh beberapa peneliti sebelumnya bahwa lingkar skrotum domba antara 32 dan 37 cm (Langford et al. 1989), 34.98 cm pada domba suffolk, 33.82 cm pada domba texel, dan 35.64 cm pada domba dorset horn (Boland et al. 1985), rata-rata 30 cm pada domba awassi berumur 17 bulan (Salhah et al. 2001). Ukuran lingkar skrotum domba ile-de-france rata-rata 28.8 cm (berkisar antara 25 dan 34 cm) pada umur 1 – 2 tahun, 28.5 cm (berkisar antara

<table>
<thead>
<tr>
<th>Tabel 5 Ukuran testis dan skrotum domba garut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uns</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Testis kanan</td>
</tr>
<tr>
<td>Panjang</td>
</tr>
<tr>
<td>Lebar</td>
</tr>
<tr>
<td>Testis kiri</td>
</tr>
<tr>
<td>Panjang</td>
</tr>
<tr>
<td>Lebar</td>
</tr>
<tr>
<td>Lingkar skrotum</td>
</tr>
</tbody>
</table>

Panjang testis domba garut lebih rendah dibandingkan dengan domba suffolk (19.42 cm), texel (17.93 cm), dan dorset horn (19.25 cm) (Boland et al. 1985). Akan tetapi lebih tinggi dibandingkan dengan panjang dan lebar testis domba awassi yang berumur 17 bulan yakni 11 cm dan 4.9 cm untuk testis kanan serta 11 cm dan 4.8 cm untuk testis kiri (Salhab et al. 2001), kambing malabari umur 11 bulan yakni rata-rata 7.58 cm dan 4.4 cm serta 7.45 cm dan 4.34 cm masing-masing untuk testis kanan dan kiri (Bilaspuri dan Singh 1992), panjang testis domba lokal Ethiopia yakni rata-rata 7.63 cm (Toe et al. 2000). Diameter testis domba romney antara 5.01 – 6.66 cm (Xu et al. 1993), rata-rata 4.62 cm pada domba lokal Ethiopia (Toe et al. 2000).
Kapasitas Pejantan dalam Menghasilkan Semen Beku

Untuk menentukan jumlah betina yang dapat diinseminasi dari setiap ejakulat menggunakan semen beku yang dikemas di dalam straw mini dan mengandung 200 juta spermatozoa motil, dihitung memakai persamaan berikut:

\[
\text{vol. semen x \% motilitas x konsentrasi} \\
\text{Jumlah pengencer} = \left(\frac{\text{vol. straw}}{\text{dosis IB}}\right) - \text{vol. semen} \\
= \left(\frac{0.97 \times 0.77 \times 3954 \times 10^6}{200 \times 10^6}\right) - 0.97 \\
= 2.72 \text{ ml.}
\]

Jumlah semen yang telah diencerkan adalah: 2.72 ml + 0.97 ml = 3.69 ml. Apabila semen yang telah diencerkan ini dikemas di dalam straw mini dengan volume sebesar 0.25 ml, akan diperoleh jumlah straw sebanyak rata-rata 3.69 \times 4 = 14.77. Jika setiap pejantan ditampung sebanyak tiga ejakulat, akan dihasilkan straw sebanyak rata-rata 3 \times 14.77 = 44.30, dan dapat diinseminasikan terhadap 44 ekor domba betina. Jika setiap pejantan secara rutin ditampung sememnya dua kali dalam satu minggu, maka produksi semen beku setiap bulan adalah rata-rata 2 \times 4 \times 44.30 = 354 straw mini atau rata-rata 4252 straw mini setiap tahun. Hal ini berarti bahwa setiap pejantan domba Garut yang digunakan dalam penelitian ini dapat melayani sekitar 4252 ekor betina dalam satu tahun melalui program IB.

Perhitungan tersebut di atas memberikan gambaran bahwa efisiensi suatu peternakan domba dapat ditingkatkan dengan menerapkan teknologi pengolahan semen dan IB. Apabila program IB menggunakan semen cair, kemampuan setiap pejantan untuk melayani betina dapat meningkat dua hingga empat kali lipat, karena dosis IB yang digunakan adalah hanya sekitar 50 – 100 juta spermatozoa motil per 0.2 ml (dosis sekalii inseminasi). Namun demikian semen cair yang disimpan di dalam lemari es (suhu antara 3 dan 5 °C) hanya layak dipakai dalam waktu sekitar empat hari saja, sedangkan semen beku dapat disimpan dan dipakai selama bertahun-tahun jika tetap selalu terendam di dalam nitrogen cair (suhu -196 °C). Semen yang telah dibekukan dapat dipakai seluruhnya, sedangkan semen cair yang tidak terpakai dalam waktu lebih dari empat hari terpaksa harus dibuang, karena umumnya tidak lagi memenuhi syarat kualitas minimal.
untuk digunakan dalam program IB. Dengan demikian pemanfaatan potensi bibit pejantan unggul akan lebih efisien dan maksimal jika semen beku yang dipakai dalam program IB. Peternak cukup memelihara beberapa ekor pejantan saja tetapi memiliki kualitas genetik yang unggul untuk melayani ratusan ekor betina. Efisiensi penggunaan semen beku dalam program IB dapat dicapai jika angka kebuteringan dan kelahiran yang diperoleh mencapai sekitar ±50%. Semua itu dapat dicapai apabila pada saat yang bersamaan dilakukan juga perbaikan manajemen petemakan secara keseluruhan, serta meningkatkan jumlah kepemilikan temak oleh petemak-petemak tradisional. Hal ini dapat tercapai apabila petemak-petemak tradisional dihimpun dalam suatu wadah semacam kelompok tani yang benar-benar fungsional, dan adanya kebijakan pemerintah yang berpihak pada kemajuan petemakan secara keseluruhan.

KESIMPULAN

Berdasarkan hasil penelitian dapat disimpulkan sebagai berikut:
1. Libido pejantan domba garut yang digunakan dalam penelitian ini adalah tinggi.
2. Kuantitas dan kualitas semen segar yang dihasilkan baik, dan memenuhi syarat diproses menjadi semen cair dan beku untuk digunakan dalam program IB.
3. Morfometrik spermatozoa dan skrotum domba-domba percobaan masuk dalam kategori yang normal.
4. Setiap pejantan dalam sekali penampungan semen dengan tiga kali ejakulasi mampu melayani rata-rata 44 ekor betina melalui program IB menggunakan semen beku yang dikemas di dalam straw mini dan mengandung 200 juta spermatozoa motil.

DAFTAR PUSTAKA

EFEKTIVITAS BERBAGAI KONSENTRASI LAKTOSA
DAN GLISEROL TERHADAP KUALITAS
SEMEN BEKU DOMBA GARUT

ABSTRAK

Tujuan penelitian ini adalah menguji kombinasi berbagai konsentrasi laktosa sebagai krioprotectan ekstraseluler dan gliserol sebagai krioprotectan intraseluler di dalam pengencer Tris untuk meningkatkan kualitas semen beku domba garut. Semen ditampung dari enam pejantan domba garut satu kali dalam satu minggu menggunakan vagina buatan. Segera setelah evaluasi, semen dibagi ke dalam sembilan buah tabung reaksi dan masing-masing diencerkan sesuai dengan perlakuan yang dicobakan, yakni pengencer Tris + 0 mM laktosa + 3% gliserol (LoG3), Tris + 0 mM laktosa + 5% gliserol (LoGe5), Tris + 0 mM laktosa + 7% gliserol (LoGe7), Tris + 60 mM laktosa + 3% gliserol (LoGe6), Tris + 60 mM laktosa + 5% gliserol (LoGe5), Tris + 60 mM laktosa + 7% gliserol (LoGe7), Tris + 120 mM laktosa + 3% gliserol (L120G3), Tris + 120 mM laktosa + 5% gliserol (L120Ge5), dan Tris + 120 mM laktosa + 7% gliserol (L120Ge7). Semen dikemas di dalam straw mini (0.25 ml) dengan dosis 200 juta spermatozoa motil. Semen diekuilibrasi pada suhu 5°C selama tiga jam. Kualitas spermatozoa meliputi persentase motilitas, spermatozoa hidup, tudung akrosom utuh (TAU), dan membran plasma utuh (MPU) dievaluasi setelah tahap pengenceran, ekuilibrasi, dan thawing. Data dianalisis dengan analisis ragam dalam bentuk rancangan acak longkap pola faktorial 3 x 3 dan enam kali ulangan. Hasil penelitian menunjukkan bahwa tidak terdapat interaksi antara laktosa dan gliserol dalam meningkatkan kualitas semen pada tahap setelah pengenceran, ekuilibrasi, dan thawing. Pada perlakuan laktosa, rata-rata persentase motilitas dan spermatozoa hidup tahap setelah thawing perlakuan Lo (43.33% dan 53.61%) nyata (P<0.05) lebih tinggi dibandingkan dengan Lo (35.83% dan 48.05%) dan L120 (38.33% dan 48.50%). Hasil yang sama juga ditunjukkan pada parameter persentase TAU dan MPU. Pada tahap setelah thawing, rata-rata persentase TAU dan MPU perlakuan Lo (44.94% dan 44.22%) nyata (P<0.05) lebih tinggi dibandingkan dengan perlakuan Lo (38.94% dan 40.39%) dan L120 (39.83% dan 38.55%). Pada perlakuan gliserol, rata-rata persentase motilitas dan spermatozoa hidup tahap setelah thawing perlakuan Gs (42.78% dan 52.55%) nyata (P<0.05) lebih tinggi dibandingkan dengan Gs (37.50% dan 48.78%) dan G7 (39.17% dan 48.39%). Hasil yang sama juga ditunjukkan pada parameter rata-rata persentase TAU dan MPU. Pada tahap setelah thawing, rata-rata persentase TAU dan MPU perlakuan Gs (44.78% dan 44.22%) nyata (P<0.05) lebih tinggi dibandingkan dengan perlakuan Gs (38.94% dan 39.50%) dan G7 (39.61% dan 39.44%). Dapat disimpulkan bahwa penambahan 60 mM laktosa dan 5% gliserol di dalam pengencer Tris merupakan kombinasi terbaik dalam menghasilkan semen beku domba garut.

ABSTRACT

The purpose of this research was to examine the combination of various concentrations of lactose (as extracellular cryoprotectant) and glycerol (as intracellular
cryoprotectant) in Tris extender to improve the quality of frozen semen of garut ram. Semen was collected using artificial vagina weekly from six mature garut rams. Immediately after initial evaluation, semen was divided into nine parts and diluted with Tris extender + 0 mM lactose + 3% glycerol (LoG3), Tris extender + 0 mM lactose + 5% glycerol (LoG5), Tris extender + 0 mM lactose + 7% glycerol (LoG7), Tris extender + 60 mM lactose + 3% glycerol (LoG3), Tris extender + 60 mM lactose + 5% glycerol (LoG5), Tris extender + 60 mM lactose + 7% glycerol (LoG7), Tris extender + 120 mM lactose + 3% glycerol (L120G3), Tris extender + 120 mM lactose + 5% glycerol (L120G5), and Tris extender + 120 mM lactose + 7% glycerol (L120G7), respectively. Semen was loaded in 0.25 ml mini straw with the concentration of 200 million motile sperm, and then equilibrated at 5°C for three hours. Quality of processed semen including percentages of motility, live sperm, intact acrosomal cap (IAC), and intact plasma membrane (IPM) were evaluated after diluted, equilibrated, and thawed, respectively. Data were analyzed as completely randomized design 3 x 3 and six replicates. Results of this research showed that there was no interaction between lactose and glycerol on improving quality of sperm after diluted, equilibrated, and thawing. Percentages of post thawing motility and live sperm for Lo (43.33% and 53.61%) were significantly (P<0.05) higher than L3 (35.83% and 48.05%) and L120 (38.33% and 48.50%). Percentages of post thawing IAC and IPM for Lo (44.94% and 44.22%) were significantly (P<0.05) higher than L3 (38.94% and 40.39%) and L120 (39.83% and 38.55%). Percentages of post thawing motility and live sperm for G5 (42.78% and 52.55%) were significantly (P<0.05) higher than G3 (37.50% and 48.78%) and G7 (39.17% and 48.39%). Percentages of post thawing IAC and IPM for G5 (44.78% and 44.22%) were significantly (P<0.05) higher than G3 (38.91% and 39.50%) and G7 (38.61% and 39.44%). In conclusion, addition of 60 mM lactose and 5% glycerol is the best combination in Tris extender to produce frozen semen of garut rams.

PENDAHULUAN

Hingga saat ini keberhasilan program IB yang menggunakan semen bekas pada temak termasuk domba belum sesuai dengan yang diharapkan. Salah satu faktor yang menyebabkan belum optimumnya angka kebuntingan ini adalah karena rendahnya kualitas semen bekas yang digunakan. Hal ini karena dalam proses pembuatan semen bekas terdapat beberapa perlakuan yang sebenarnya tidak menguntungkan bagi upaya mempertahankan kualitas spermatozoa. Hasil beberapa percobaan pada temak rumiania kecil (kambing dan domba) didapatkan tingkat keberhasilan IB yang masih rendah karena faktor teknis penelusuran semen saat melakukan inseminasi serta kualitas semen beku.

Dalam proses kriopreservasi semen, akibat perlakuan suhu yang sangat rendah (-196 °C) akan terbentuk kristal-kristal es dan perubahan konsentrasi elektrolit yang akan menyebabkan terjadinya kerusakan pada set. Untuk mengurangi efek yang tidak

Namun demikian penggunaan gliserol harus memperhatikan konsentrasi yang tepat, agar dapat berfungsi dengan baik. Apabila konsentrasi kurang, daya protektif gliserol tidak akan optimal, sebaliknya bila berlebih akan menjadi toksik bagi spermatozoa. Konsentrasi gliserol yang ditambahkan di dalam pengencer untuk pembekuan semen domba dibatasi oleh sifat toksiknya yang bergantung pada tingkat pendinginan dan pembekuan, komposisi pengencer, metode penambahan (Fahy 1986) dan jenis spermatozoa (Holt 2000b).

Demikian pula dengan penambahan laktosa sebagai krioprotektan ekstraseluler di dalam pengencer dimaksudkan untuk melindungi membran plasma sel dari pengaruh buruk proses kriopreservasi semen. Diharapkan dengan kombinasi antara laktosa dan gliserol pada konsentrasi yang optimal akan tercipta sinergi yang baik dalam upaya memberikan perlindungan yang lebih sempurna terhadap spermatozoa selama proses kriopreservasi semen. Menurut Singh et al. (1995) penambahan laktosa sampai 180 mM di dalam pengencer Tris nyata meningkatkan persentase mobilitas dan persentase spermatozoa hidup semen beku kambing dibandingkan dengan penambahan 120 mM, 60 mM, dan 0 mM (kontrol).

Pada penelitian ini diocba beberapa konsentrasi laktosa (0, 60, dan 120 mM) dan gliserol (3, 5, dan 7%) di dalam pengencer Tris untuk menguji kombinasi dosis yang optimum kedua jenis krioprotektan tersebut dalam proses kriopreservasi semen domba garut.
BAHAN DAN METODE

Tempat dan Waktu Penelitian

Bahan Penelitian

Hewan Percobaan

Hewan percobaan yang digunakan adalah enam ekor pejantan domba garut dewasa kelamin dengan kondisi tubuh dan kesehatan yang baik, berat badan rata-rata 83.17 ± 9.80 kg (berkisar antara 70.50 dan 97.50 kg) dan umur sekitar tiga hingga lima tahun sebagai sumber semen yang diuji kualitasnya. Pejantan dikandangkan secara individu dan diberikan pakan berupa rumput dan leguminosa seger sekitar 7 – 9 kg dan 250 g ampas tahu atau tempe per ekor per hari. Untuk menjaga kesehatan, pejantan dimandikan setiap minggu.

Bahan dan Peralatan

Bahan-bahan penelitian yang digunakan adalah: semen segar domba garut, bahan pengencer dasar (Tabel 6), laktosa-monohidrat, gliserol, formaldehid, NaCl fisiologik, NaCl 3%, larutan hipoosmotik (tekanan osmotik 100 mOsmol), pewarna eosin B, alkohol 70%, nitrogen cair, KY jelly (Johnson and Johnson, Indonesia), dan lain-lain.

<table>
<thead>
<tr>
<th>Bahan</th>
<th>Jumlah</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris(hydroxymethyl)aminomethane (g)</td>
<td>3.32</td>
</tr>
<tr>
<td>Asam sitrat-monohidrat (g)</td>
<td>1.86</td>
</tr>
<tr>
<td>D(-)Fruktosa (g)</td>
<td>1.37</td>
</tr>
<tr>
<td>Kuning telur ayam ras (ml, v/v)</td>
<td>20</td>
</tr>
<tr>
<td>Penisilin-G (IU/ml)</td>
<td>1000</td>
</tr>
<tr>
<td>Streptomisin sulfat (µg/ml)</td>
<td>1000</td>
</tr>
<tr>
<td>Akuabestilata ad (ml)</td>
<td>100</td>
</tr>
</tbody>
</table>
Alat-alat yang digunakan adalah: vagina buatan, tabung spermatozoa, tabung reaksi, gelas erlenmeyer, gelas piala, gelas ukur, termometer, mikroskop cahaya, gelas objek, gelas penutup, pipet teles, hemositometer, pH meter, bunsen, timbangan mikro, kontainer N₂ cair dan perlengkapanya, straw mini (0.25 ml), rak straw, penangas air, lemari es, styrofoam, dan lain-lain.

Metode Penelitian

Penampungan Semen

Pengenceran dan Ekuilibrasi Semen

Semen segar yang memenuhi syarat (persentase motilitas ≥70%, konsentrasi ≥2000 juta sel per ml, gerakan massa ++ atau ++++, dan persentase abnormalitas <15%) diencerkan sesuai dengan perlakuan yang dicobakan. Untuk mengetahui jumlah pengencer yang dibutuhkan dihitung dengan persamaan berikut:

\[
\text{vol semen} \times \% \text{motilitas} \times \text{konsentrasi} \\
\text{Jumlah pengencer (ml)} = \frac{\text{vol semen x % motilitas x konsentrasi}}{200 \text{ juta (dosis IB)}} - \text{vol semen}
\]

Perlakuan penambahan krioprotektan yang dicobakan adalah sebagai berikut:

1. Krioprotektan ekstraseluler berupa laktosa dalam tiga tingkat konsentrasi, yakni: 0 mM (Lo, kontrol), 60 mM (L60), dan 120 mM (L120).
2. Krioprotektan intraseluler berupa gliserol dalam tiga tingkat konsentrasi, yakni: 3% (G3), 5% (G5), dan 7% (G7).

Dengan demikian terdapat sembilan kombinasi perlakuan, yakni: LoG3, LoG5, LoG7, LeoG3, LeoG5, LeoG7, L120G3, L120G5, dan L120G7.
Semen diencerkan dengan cara menambahkan semen segar secara perlahan ke dalam masing-masing sembilan buah tabung reaksi yang telah diisi dengan pengencer sesuai dengan perlakuan. Tabung reaksi digoyang-goyang perlahan agar semen tercampur homogen dengan larutan pengencer.

Semen yang telah diencerkan masing-masing perlakuan dikemas di dalam straw mini (0.25 ml) dengan konsentrasi 200 juta spermatozoa motil per straw, kemudian diequilibrasi di dalam lemari es pada suhu 3 – 5 °C selama tiga jam.

Pembekuan dan Pencairan Kembali (Thawing) Semen

Pembekuan semen diawali dengan meletakkan straw 10 cm di atas permukaan nitrogen cair (suhu sekitar –130 °C) selama 15 menit di dalam styrofoam yang ditutup rapat. Kemudian straw dimasukkan ke dalam nitrogen cair (suhu sekitar –196 °C) dan disimpan di dalam kontainer nitrogen cair. Setelah disimpan selama satu minggu, setiap sampel straw masing-masing perlakuan dicairkan kembali untuk dinilai kualitasnya. Semen beku dicairkan kembali dengan cara memasukkan straw ke dalam air hangat (di dalam penangas air) bersuhu 37°C selama 30 detik.

Peubah yang Diamati

Peubah kualitas semen yang diamati adalah: persentase motilitas, persentase spermatozoa hidup, persentase TAU, dan persentase MPU spermatozoa masing-masing setelah tahap pengenceran, ekuilibrai, dan thawing.

Analisis Data

Data dianalisis dengan analisis ragam dalam bentuk rancanganacak lengkap polafaktorial dengan sembilan kombinasi perlakuan dan jumlah penampungan semen sebanyak enam kali sebagai ulangan. Perbedaan antarperlakuan diuji dengan uji beda nyata terkecil (Steel dan Torrie 1993).
HASIL DAN PEMBAHASAN

Persentase Motilitas dan Spermatozoa Hidup

Hasil penelitian ini menunjukkan bahwa penambahan laktosa sebanyak 60 mM (L60) menghasilkan semen beku dengan rata-rata persentase motilitas dan spermatozoa hidup (43.33% dan 53.61%) yang lebih tinggi dibandingkan dengan penambahan sebanyak 120 mM (L120) (38.33% dan 48.50%) dan tanpa penambahan laktosa.
(Lo) (35.83% dan 48.05%) (P<0.05). Hal yang sama terjadi untuk perlakuan gliserol, rata-rata persentase motilitas dan spermatozoa hidup setelah thawing perlakuan penambahan 5% gliserol (Gs) (42.78% dan 52.55%) nyata (P<0.05) lebih tinggi dibandingkan dengan penambahan 3% gliserol (G3) (37.50% dan 48.78%) dan penambahan 7% gliserol (G7) (39.17% dan 48.39%) (Tabel 7 dan 8). Hasil ini didukung oleh nilai penurunan persentase motilitas dan spermatozoa hidup dari tahap setelah pengenceran ke tahap setelah thawing perlakuan Lø (33.34% dan 31.61%) lebih rendah dibandingkan dengan perlakuan Lo (40.84% dan 36.39%) dan perlakuan L120 (38.33% dan 35.50%). Demikian juga pada perlakuan penambahan gliserol, rata-rata penurunan persentase motilitas dan spermatozoa hidup dari tahap setelah pengenceran ke tahap setelah thawing perlakuan Gs (33.89% dan 32.39%) lebih rendah dibandingkan dengan perlakuan G3 (39.17% dan 35.63%) dan perlakuan G7 (37.50% dan 36.05%). Uji statistik menunjukkan tidak terdapat interaksi antara laktosa dan gliserol dalam meningkatkan persentase motilitas dan spermatozoa hidup pada ketiga tahap pengolahan semen. Perlakuan laktosa dan gliserol memperlihatkan pengaruh yang tidak nyata (P>0.05) terhadap persentase motilitas dan spermatozoa hidup pada tahap pengenceran dan ekullibrasi (Tabel 7 dan 8).

Tabel 7 Pengaruh berbagai konsentrasi laktosa dan gliserol terhadap persentase motilitas spermatozoa domba garut

<table>
<thead>
<tr>
<th>Tahap</th>
<th>Perlakuan laktosa (L)</th>
<th>Perlakuan gliserol (G)</th>
<th>Rataan L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>G3</td>
<td>G5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Setelah pengenceran</td>
<td>Lø</td>
<td>76.67 ± 2.36</td>
<td>76.67 ± 2.36</td>
</tr>
<tr>
<td></td>
<td>Løø</td>
<td>76.67 ± 2.36</td>
<td>76.67 ± 2.36</td>
</tr>
<tr>
<td></td>
<td>L120</td>
<td>76.67 ± 2.36</td>
<td>76.67 ± 2.36</td>
</tr>
<tr>
<td></td>
<td>Rataan G</td>
<td>76.67 ± 2.36a</td>
<td>76.67 ± 2.36a</td>
</tr>
<tr>
<td>Setelah ekullibrasi</td>
<td>Lø</td>
<td>64.17 ± 4.49</td>
<td>66.67 ± 2.36</td>
</tr>
<tr>
<td></td>
<td>Løø</td>
<td>65.00 ± 2.89</td>
<td>68.33 ± 2.36</td>
</tr>
<tr>
<td></td>
<td>L120</td>
<td>65.00 ± 2.89</td>
<td>65.00 ± 2.89</td>
</tr>
<tr>
<td></td>
<td>Rataan G</td>
<td>64.72 ± 3.52a</td>
<td>66.67 ± 2.89a</td>
</tr>
<tr>
<td>Setelah thawing</td>
<td>Lø</td>
<td>32.50 ± 2.50</td>
<td>40.00 ± 2.89</td>
</tr>
<tr>
<td></td>
<td>Løø</td>
<td>40.83 ± 4.49</td>
<td>47.50 ± 2.50</td>
</tr>
<tr>
<td></td>
<td>L120</td>
<td>38.33 ± 4.71</td>
<td>40.83 ± 5.33</td>
</tr>
<tr>
<td></td>
<td>Rataan G</td>
<td>37.50 ± 5.59a</td>
<td>42.78 ± 5.06b</td>
</tr>
</tbody>
</table>

a, b dalam kolom atau baris yang sama setiap tahap menunjukkan berbeda nyata (P<0.05)

L0, Løø, L120 = penambahan laktosa sebanyak 0, 50, dan 120 mM
G3, G5, G7 = penambahan gliserol sebanyak 3, 5, dan 7%.
Hasil yang diperoleh berbeda dengan yang dilaporkan Singh et al. (1995) bahwa penambahan laktosa hingga 180 mM nyata meningkatkan motilitas dan jumlah spermatozoa hidup semen bekut kambing dibandingkan dengan penambahan 120 mM, 60 mM, dan 0 mM (kontrol). Persentase motilitas dan spermatozoa hidup setelah thawing untuk perlakuan 180 mM (51.08% dan 56.75%) lebih tinggi dibandingkan dengan perlakuan 120 mM (47.72% dan 52.81%), perlakuan 60 mM (46.36% dan 50.89%), dan perlakuan 0 mM (45.49% dan 49.34%). Perbedaan ini diduga disebabkan oleh adanya respons yang berbeda antara spermatozoa domba dan kambing terhadap laktosa.

Tabel 8 Pengaruh berbagai konsentrasi laktosa dan gliserol terhadap persentase spermatozoa hidup domba garut

<table>
<thead>
<tr>
<th>Tahap</th>
<th>Perlakuan laktosa (L)</th>
<th>Perlakuan gliserol (G)</th>
<th>Rataan L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>G3</td>
<td>G5</td>
</tr>
<tr>
<td>Setelah pengenceran</td>
<td>L0</td>
<td>84.50 ± 2.36</td>
<td>84.00 ± 2.77</td>
</tr>
<tr>
<td></td>
<td>L60</td>
<td>84.67 ± 2.49</td>
<td>85.67 ± 2.98</td>
</tr>
<tr>
<td></td>
<td>L120</td>
<td>84.67 ± 2.49</td>
<td>84.17 ± 2.91</td>
</tr>
<tr>
<td></td>
<td>Rataan G</td>
<td>84.61 ± 2.45a</td>
<td>84.94 ± 2.78b</td>
</tr>
<tr>
<td>Setelah ekuitlbras</td>
<td>L0</td>
<td>77.83 ± 1.57</td>
<td>77.83 ± 1.86</td>
</tr>
<tr>
<td></td>
<td>L60</td>
<td>75.83 ± 2.47</td>
<td>78.00 ± 3.51</td>
</tr>
<tr>
<td></td>
<td>L120</td>
<td>75.83 ± 3.62</td>
<td>77.33 ± 3.81</td>
</tr>
<tr>
<td></td>
<td>Rataan G</td>
<td>76.50 ± 3.00a</td>
<td>77.72 ± 3.19b</td>
</tr>
<tr>
<td>Setelah thawing</td>
<td>L0</td>
<td>45.33 ± 5.59</td>
<td>50.50 ± 4.35</td>
</tr>
<tr>
<td></td>
<td>L60</td>
<td>53.17 ± 4.22</td>
<td>56.83 ± 2.34</td>
</tr>
<tr>
<td></td>
<td>L120</td>
<td>48.50 ± 6.85</td>
<td>50.33 ± 5.70</td>
</tr>
<tr>
<td></td>
<td>Rataan G</td>
<td>48.78 ± 6.80a</td>
<td>52.55 ± 5.30b</td>
</tr>
</tbody>
</table>

a,b dalam kolom atau baris yang sama setiap tahap menunjukkan berbeda nyata (P<0.05).
L0, L60, L120 = penambahan laktosa sebanyak 0, 60, dan 120 mM
G3, G5, G7 = penambahan gliserol sebanyak 3, 5, dan 7%.

Sebagai salah satu jenis gula dari golongan disakarida, laktosa mengandung dua unit monosakarida, yakni glukosa dan galaktosa. Dengan demikian setelah laktosa diurai oleh enzim laktase menjadi glukosa dan galaktosa, keduanya dapat dimanfaatkan oleh spermatozoa sebagai salah satu substrat penghasil energi berupa ATP melalui jalur fruktolisis dan siklus asam sitrat (siklus Krebs), sehingga mampu menjaga daya gerak (motilitas) dan daya hidup spermatozoa. Tambang et al. (2003) melaporkan modifikasi pengencer Tris dengan penambahan laktosa efektif menghasilkan semen bekut kambing.
saanen yang berkualitas baik dibandingkan dengan penambahan fruktosa dan natrium sitrat. Sementara Tris dan asam sitrat yang terkandung di dalam pengencer Tris memiliki fungsi sebagai senyawa penyaring yang baik untuk mempertahankan derajat keasaman (pH) dan osmolaritas pengencer karena mengandung garam dan asam amino. Mathew et al. (1984) menyatakan Tris sebagai penyaring amina telah digunakan secara efektif untuk mempertahankan pH fisiologik. Sedangkan fruktosa yang juga menjadi salah satu komponen penyusun pengencer Tris berperan sebagai substrat penghasil energi berupa ATP, sehingga menyebabkan spermatozoa dapat bergerak.

Upaya memperbaiki kualitas semen beku dengan cara menambahkan beberapa jenis gula juga dilaporkan oleh beberapa peneliti, seperti 210 mM glukosa di dalam pengencer Tris pada semen beku domba, dan didapatkan persentase motilitas setelah thawing sebesar 46.20% (Molina et al. 1993) dan 184.96 mM glukosa di dalam pengencer Tris pada semen beku babi, didapatkan persentase motilitas setelah thawing sebesar 58% (de los Reyes 2000). Kualitas semen beku kambing peranakan etawah meningkat dengan menambahkan 9% w/v rafinosa (Suwargo 1999), sedangkan pada semen beku domba pamplinta (friesian x corriedale) diperoleh persentase motilitas sebesar 64% dan 52.10% masing-masing untuk semen yang diencerkan dengan penambahan trehalosa dan EDTA (Aisen et al. 2000, 2002). Hal yang sama dilaporkan bahwa penambahan gula berupa sukrosa atau trehalosa di dalam pengencer nyata meningkatkan motilitas spermatozoa semen beku sapi (Woelders et al. 1997), rafinosa atau trehalosa pada semen beku mencit (Storey et al. 1998), serta trehalosa pada semen beku anjing (Yildiz et al. 2000) dan pada semen beku kambing (Aboagla dan Terada 2003). Dilaaporkan bahwa gula yang ditambahkan di dalam pengencer Tris mampu meningkatkan motilitas spermatozoa setelah thawing karena berfungsi sebagai krioprotekan ekstraseluler, sehingga mengurangi kerusakan membran plasma sel selama proses pengolahan semen, terutama saat pembekuan dan thawing. Hal ini karena gula-gula tersebut dapat meningkatkan fluiditas membran plasma sel spermatozoa sebelum pembekuan. Akan tetapi penambahan jenis gula yang lain seperti adonitol, inositol, mannitol, sorbitol, dan xylitol di dalam pengencer Tris menurunkan motilitas semen beku domba (Molina et al. 1994a).

Keberadaan gula di dalam pengencer semen akan membuat membran plasma sel spermatozoa tidak mudah mengalami kerusakan akibat penganuh buruk dengan adanya perubahan kimia dan fisik yang terjadi selama proses pembekuan karena pengeluaran air yang cepat dari dalam sel. Ini menyebabkan membran plasma sel menjadi lebih stabil.

Perlakuan gliserol dalam konsentrasi yang tepat juga menghasilkan persentase motilitas dan spermatozoa hidup yang baik pada tahap setelah thawing. Hal ini menunjukkan bahwa gliserol berperan dalam menjaga kualitas spermatozoa pada saat pembekuan dan thawing semen beku. Ini dapat dipahami karena pada saat pembekuan, akibat perlakuan suhu yang sangat rendah terjadi pengeluaran molekul air secara besar-besaran dari dalam sel spermatozoa sehingga menyebabkan peningkatan konsentrasi elektrolit intraseluler dan terbentuknya kristal-kristal es, yang kesemuanya dapat menyebabkan kerusakan dan kematian sel. Pada kondisi seperti ini gliserol dapat mengurangi efek negatif tersebut dengan cara masuk ke sel spermatozoa untuk menyimbangkan osmolaritas intra dan ekstraseluler, dan itu bergantung pada ketepatan dosis yang diberikan. Menurut Leibo (1992) serta Supriatna dan Pasanibu (1992) gliserol akan menggantikan air yang keluar dari dalam sel saat pembekuan berlangsung, sehingga keseimbangan konsentrasi elektrolit intra dan ekstraseluler tetap terjaga. Gliserol juga menurunkan titik beku larutan, sehingga memberikan kesempatan kepada sel mengeluarkan air dan memperpanjang aklimatisasi sel terhadap perubahan suhu yang drastis sehingga memperkecil jumlah air yang membelu intraseluler. Selain itu, gliserol juga mengubah secara fisik kristal-kristal es yang terbentuk menjadi lebih lembut dan ikut melindungi membran plasma sel spermatozoa.

Persentase Tudung Akrosom Utuh dan Membran Plasma Utuh

Membran plasma sel yang utuh merupakan hal yang mutlak harus dimiliki spermatozoa yang baik, karena membran plasma sel memegang peranan yang sangat sentral dalam seluruh proses biokemik yang terjadi di dalam sel. Selain berfungsi menjaga organel-organel sel secara fisik, membran plasma sel juga berperan dalam mengatur lalu lintas keluar masuk sel seluruh substrat dan elektrolit yang dibutuhkan dalam proses biokemik di dalam sel. Demikian pula halnya dengan tudung akrosom yang harus tetap dipertahankan keutuhannya, karena di dalam vesikel akrosom terkandung enzim-enzim yang berperan dalam proses fertilisasi. Apabila tudung akrosom rusak, enzim-enzim yang terkandung di dalam vesikel akrosom akan hilang (keluar) sehingga spermatozoa akan kehilangan kemampuan untuk menembus *barier* yang mengelilingi oosit dan fertilisasi pun tidak akan terjadi.

Hasil penelitian menunjukkan bahwa rata-rata persentase TAU dan MPU semen beku setelah *thawing* perlakuan penambahan laktosa sebanyak 60 mM (Lo) (44.94% dan 44.22%) lebih tinggi dibandingkan dengan perlakuan L0 (38.94% dan 40.39%) dan perlakuan L100 (39.83% dan 38.55%) (P<0.05). Rata-rata persentase TAU dan MPU setelah *thawing* pada perlakuan penambahan 5% gliserol (Gs) (44.78% dan 44.22%) nyata (P<0.05) lebih tinggi dibandingkan dengan perlakuan G3 (38.94% dan 39.50%) dan
perlakuan G7 (39.61% dan 39.44%) (Tabel 9 dan 10). Hasil tersebut didukung oleh rata-rata penurunan persentase TAU dan MPU spermatozoa dari tahap setelah pengenceran ke tahap setelah thawing perlakuan L0 (37.11% dan 36.89%) lebih rendah dibandingkan dengan perlakuan L0 (43.23% dan 41.39%) dan perlakuan L120 (42.45% dan 42.56%). Demikian pula halnya dengan perlakuan penambahan gliserol, rata-rata penurunan persentase TAU dan MPU spermatozoa dari tahap setelah pengenceran ke tahap setelah thawing perlakuan Gs (37.16% dan 37.39%) lebih rendah dibandingkan dengan perlakuan G3 (42.81% dan 41.72%) dan perlakuan G7 (42.50% dan 41.73%). Uji statistik menunjukkan tidak terdapat interaksi antara laktosa dan gliserol dalam meningkatkan nilai persentase TAU dan MPU spermatozoa pada ketiga tahap pengolahan semen. Perlakuan laktosa dan gliserol memperlihatkan pengaruh yang tidak nyata (P>0.05) terhadap persentase TAU dan MPU spermatozoa pada tahap setelah pengenceran dan ekuilibrasi (Tabel 9 dan 10).

<table>
<thead>
<tr>
<th>Tahap</th>
<th>Perlakuan laktosa (L)</th>
<th>Perlakuan gliserol (G)</th>
<th>Rataan L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>G3</td>
<td>G5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Setelah pengenceran</td>
<td>L0</td>
<td>82.00 ± 1.82</td>
<td>82.17 ± 2.11</td>
</tr>
<tr>
<td></td>
<td>L60</td>
<td>82.17 ± 1.95</td>
<td>82.00 ± 1.63</td>
</tr>
<tr>
<td></td>
<td>L120</td>
<td>81.67 ± 3.35</td>
<td>81.67 ± 2.36</td>
</tr>
<tr>
<td>Rataan G</td>
<td></td>
<td>81.75 ± 2.56a</td>
<td>81.94 ± 2.07a</td>
</tr>
<tr>
<td>Setelah ekuilibrasi</td>
<td>L0</td>
<td>71.50 ± 2.99</td>
<td>73.17 ± 3.24</td>
</tr>
<tr>
<td></td>
<td>L60</td>
<td>73.67 ± 4.11</td>
<td>73.67 ± 3.86</td>
</tr>
<tr>
<td></td>
<td>L120</td>
<td>73.00 ± 2.71</td>
<td>72.67 ± 2.21</td>
</tr>
<tr>
<td>Rataan G</td>
<td></td>
<td>72.72 ± 3.44a</td>
<td>73.17 ± 3.20a</td>
</tr>
<tr>
<td>Setelah thawing</td>
<td>L0</td>
<td>38.17 ± 3.02</td>
<td>42.67 ± 2.87</td>
</tr>
<tr>
<td></td>
<td>L60</td>
<td>43.17 ± 3.39</td>
<td>49.00 ± 3.11</td>
</tr>
<tr>
<td></td>
<td>L120</td>
<td>39.00 ± 4.83</td>
<td>42.67 ± 3.38</td>
</tr>
<tr>
<td>Rataan G</td>
<td></td>
<td>38.94 ± 4.86a</td>
<td>44.78 ± 4.68a</td>
</tr>
</tbody>
</table>

a,b dalam kolom atau baris yang sama setiap tahap menunjukkan berbeda nyata (P<0.05).
L0, L60, L120 = penambahan laktosa sebanyak 0, 60, dan 120 mM
G3, G5, G7 = penambahan gliserol sebanyak 3, 5, dan 7%.

Laktosa mampu mempertahankan kualitas semen beku karena sebagai salah satu senyawa krioprotektan ekstraseluler, laktosa mampu memperkecil tingkat kerusakan
membran plasma sel spermatozoa selama proses pembekuan dan thawing semen yang merupakan periode paling kritis dari rangkaian proses kriopreservasi semen. Dengan demikian membran vesikel akrosom yang berada tepat di bawah membran plasma sel juga terlindungi (tetap utuh) sehingga enzim-enzim lisis yang terkandung di dalamnya tidak keluar, dan berakibat meningkatnya nilai TAU. Hasil yang diperoleh mendukung pendapat Aboagla dan Terada (2003) bahwa penambahan gula berupa trehalosa di dalam pengencer Tris nyata meningkatkan persentase akrosom utuh spermatozoa kambing.

Tabel 10 Pengaruh berbagai konsentrasi laktosa dan gliserol terhadap persentase MPU spermatozoa domba garut

<table>
<thead>
<tr>
<th>Tahap</th>
<th>Perlakuan laktosa (L)</th>
<th>Perlakuan gliserol (G)</th>
<th>Rataan L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>G3</td>
<td>G5</td>
</tr>
<tr>
<td>Setelah pengenceran</td>
<td>L0</td>
<td>82.17 ± 3.93</td>
<td>81.50 ± 4.07</td>
</tr>
<tr>
<td></td>
<td>L60</td>
<td>81.83 ± 4.35</td>
<td>81.83 ± 2.61</td>
</tr>
<tr>
<td></td>
<td>L120</td>
<td>80.83 ± 2.27</td>
<td>81.50 ± 4.57</td>
</tr>
<tr>
<td></td>
<td>Rataan G</td>
<td>81.22 ± 3.69³</td>
<td>81.61 ± 3.85³</td>
</tr>
<tr>
<td>Setelah ekuilibrasi</td>
<td>L0</td>
<td>72.83 ± 1.86</td>
<td>73.17 ± 2.85</td>
</tr>
<tr>
<td></td>
<td>L60</td>
<td>72.00 ± 2.89</td>
<td>72.67 ± 3.73</td>
</tr>
<tr>
<td></td>
<td>L120</td>
<td>72.50 ± 2.14</td>
<td>73.00 ± 2.71</td>
</tr>
<tr>
<td></td>
<td>Rataan G</td>
<td>72.44 ± 2.36³</td>
<td>72.94 ± 3.13³</td>
</tr>
<tr>
<td>Setelah thawing</td>
<td>L0</td>
<td>38.17 ± 1.07</td>
<td>43.17 ± 2.97</td>
</tr>
<tr>
<td></td>
<td>L60</td>
<td>42.67 ± 5.76</td>
<td>48.50 ± 5.06</td>
</tr>
<tr>
<td></td>
<td>L120</td>
<td>37.67 ± 3.94</td>
<td>41.00 ± 5.13</td>
</tr>
<tr>
<td></td>
<td>Rataan G</td>
<td>39.50 ± 4.66³</td>
<td>44.22 ± 5.49³</td>
</tr>
</tbody>
</table>

a, b dalam kolom atau baris yang sama setiap tahap menunjukkan berbeda nyata (P<0.05)
L0, L60, L120 = penambahan laktosa sebanyak 0, 60, dan 120 mM
G3, G5, G7 = penambahan gliserol sebanyak 3, 5, dan 7%.

Laktosa dapat melindungi membran plasma sel spermatozoa karena pada bagian luar membran plasma terdapat karbohidrat yang berikatan dengan lipida (glikolipida) atau protein (glikoprotein) yang disebut selubung sel atau glikokaliks (Subowo 1995). Diasumsikan bahwa laktosa yang ditambahkan di dalam pengencer akan berasosiasi dengan karbohidrat tersebut sehingga terlindungi dari kerusakan secara mekanik selama proses kriopreservasi bertanggung. Kalau pun karbohidrat yang ada pada membran plasma sel tersebut rusak selama proses kriopreservasi, diharapkan laktosa yang ditambahkan dapat menjadi pengganti sehingga struktur selubung sel tetap utuh.

Demikian pula halnya dengan gliserol, sebagai krioprotetkan intraseluler, dapat dengan mudah memasuki sel melalui membran plasma sel melalui cara difusi bebas untuk menggantikan posisi air yang keluar (sebagian molekul air memang harus dikeluarkan dari dalam sel agar tidak membeku intraseluler) saat pembekuan sehingga tidak terjadi efek solusi (solution effect). Namun demikian, gliserol juga mampu mengikat molekul air karena memiliki tiga gugus hidroksil, sehingga molekul air tidak keluar semua dari dalam sel. Menurut Supriatna dan Pasaribu (1992) apabila sel kehilangan molekul air sebanyak lebih dari 65%, sel akan mengalami proses kekeringan dan berakibat kematian sel. Kelebihan gliserol yang mampu mengikat molekul air, secara langsung juga mencegah molekul air yang membeku intraseluler bersatu untuk membentuk suatu kristal es yang besar dan memiliki daya rusak yang besar terhadap sel. Selanjutnya dinyatakan bahwa dalam keadaan beku, gliserol memiliki permukaan yang relatif lebih halus dibandingkan dengan molekul air, sehingga tidak rusak sel secara fisik. Menurut Parks dan Graham (1992) gliserol juga bekerja pada membran plasma sel dengan cara mengikat gugus pusat fosfolipida sehingga menurunkan ketidakstabilan membran plasma sel spermatozoa. Selanjutnya dinyatakan bahwa gliserol mampu berinteraksi dengan membran plasma sel spermatozoa untuk mengikat protein dan glikoprotein.

Pengaruh positif perlakuan penambahan laktosa dan gliserol yang nyata hanya terjadi pada tahap setelah thawing diduga karena pada saat pembekuan dan thawing, terjadi tekanan yang berat terhadap sel spermatozoa akibat penurunan suhu yang drastis saat pembekuan dan peningkatan suhu yang juga drastis saat thawing. Dalam keadaan seperti ini, penambahan laktosa dan gliserol dengan dosis yang tepat akan mampu memberikan perlindungan yang optimum terhadap integritas membran plasma sel spermatozoa. Dengan baiknya kondisi membran plasma sel akan berpengaruh baik pula terhadap proses metabolisme yang pada akhirnya dapat mempertahankan motilitas dan daya hidup spermatozoa. Selain itu, membran plasma sel juga mampu melindungi membran vesikel akrosom dari perusakan secara mekanik sehingga nilai persentase TAU meningkat. Pada tahap pengenceran dan ekulibrasi, spermatozoa belum mendapatkan tekanan berat seperti yang terjadi saat pembekuan dan thawing. Hal ini membuktikan bahwa dalam proses kriopreservasi semen, laktosa atau jenis gula lainnya yang ditambahkan di dalam pengencer, lebih berperan sebagai krioprotetkan ekstraseluler daripada sebagai sumber energi. Laktosa dapat dipakai sebagai substrat sumber energi bagi spermatozoa hanya jika di dalam plasma semen atau larutan pengencer tersedia.
enzim laktase yang memecahnya menjadi dua unit monosakarida, yakni glukosa dan galaktosa, sehingga dapat ditembok ke dalam sel sperma tozoa.

Perlakuan Gs memberikan hasil yang terbaik menunjukkan bahwa pada semen domba garut konsentrasi 5% gliserol di dalam pengencer Tris adalah dosis yang paling optimum dalam mempertahankan motilitas, daya hidup, serta keutuhan tudung akrosom dan membran plasma sel spermatozoa. Sebaliknya yang dilaporkan Tambing (1999) bahwa konsentrasi 6% gliserol dalam pengencer Tris lebih efektif mempertahankan motilitas, daya hidup, dan keutuhan membran plasma sel spermatozoa kambing peranakan etawah dibandingkan dengan konsentrasi 5% dan 7%. Perbedaan ini diduga disebabkan oleh adanya perbedaan respons spermatozoa terhadap gliserol dari masing-masing spesies hewan.

Konsentrasi gliserol optimum dalam proses pembekuan semen domba adalah 4 – 6% (Fiser dan Fairfull 1986) dan 4 – 7% pada kambing (Leboeuf et al. 2000). Beberapa peneliti yang lain juga melaporkan bahwa konsentrasi gliserol yang optimal dalam pembekuan semen domba dengan metode pembekuan konvensional adalah 6 – 8% (First et al. 1961; Salamon dan Maxwell 1995a, 1995b; Oiler et al. 1998; Holt 2000a), sedangkan Curry (1995) melaporkan konsentrasi gliserol sekitar 3 – 4%. Menurut Molinia et al. (1994b) motilitas setelah thawing semen domba yang dikriopreservasi dengan pengencer Tris yang mengandung 6% gliserol sebesar 51.70%, nyata lebih tinggi dibandingkan dengan konsentrasi 3% dan 1.5% gliserol yang hanya sebesar 44.60% dan 40.90%. Hasil penelitian El-Alamy (2001) didapatkan motilitas setelah thawing sebesar 41% pada semen domba finn dan 47% pada semen domba dorset yang diencerkan dengan pengencer Tris yang mengandung 7% gliserol.

Perlakuan LeaG5 merupakan kombinasi perlakuan yang terbaik. Ini menunjukkan bahwa penambahan sebanyak 60 mM laktosa dan 5% gliserol di dalam pengencer Tris merupakan dosis yang optimum untuk mempertahankan keutuhan memran plasma sel dan tudung akrosom spermatozoa domba garut selama proses kriopreservasi semen berlangsung. Dengan banyaknya spermatozoa yang memiliki memran plasma utuh, proses metabolisme pun dapat berjalan dengan baik sehingga motilitas dan daya hidup spermatozoa tetap tinggi. Laktosa dan gliserol akan berinteraksi dengan memran plasma sel spermatozoa, sehingga stabilitas dan fluiditas fosofolipida serta karbohidrat yang menyusun memran plasma sel tetap terjaga dengan baik saat proses kriopreservasi semen berlangsung. Hal yang sama dikemukakan Molinia et al. (1994b) bahwa jumlah spermatozoa semen domba yang memiliki akrosom utuh setelah thawing dan dikriopreservasi dengan pengencer Tris yang mengandung 6% gliserol rata-rata 58.50%, nyata lebih tinggi dibandingkan dengan konsentrasi 3% dan 1.5% gliserol yang hanya sebesar 53.00% dan 44.50%.

Nilai persentase TAU dan MPU yang diperoleh kurang lebih sama dengan yang dilaporkan Feradis (1999) pada semen beku domba st. croix yakni sebesar 52.30% dan 43.20%. Akan tetapi lebih tinggi dibandingkan dengan yang dilaporkan Tambing et al. (2001) pada semen beku kambing peranakan etawah yang hanya sebesar 38.84% dan 41.73%.

KESIMPULAN

Berdasarkan hasil penelitian ini dapat disimpulkan sebagai berikut:
1. Penambahan 60 Mm laktosa dan 5% gliserol di dalam pengencer Tris merupakan kombinasi terbaik, dan mampu meningkatkan semua peubah kualitas semen beku domba garut.
2. Tidak terdapat interaksi antara laktosa dan gliserol dalam meningkatkan kualitas spermatozoa pada semua tahap pengolahan semen.

DAFTAR PUSTAKA

Storey BT, Noiles EE, Thompson KA. 1998. Comparison of glycerol, other polyols, trehalose, and raffinose to provide a defined cryoprotectant medium for mouse sperm cryopreservation. *Cryobiology* 37:46-58.

EFEKTIVITAS BERBAGAI KONSENTRASI GLUTATION DAN β-KAROTEN TERHADAP KUALITAS SEMEN BEKU DOMBA GARUT

ABSTRAK

Tujuan penelitian ini adalah menguji berbagai konsentrası glutation dan β-karoten di dalam pengencer Tris untuk meningkatkan kualitas semen beku domba garut. Semen ditampung dari enam ekor pejantan domba garut menggunakan vagina buatan satu kali dalam satu minggu. Segera setelah dievaluasi, semen dibagi ke dalam tujuh buah tabung reaksi dan masing-masing diencerkan dengan pengencer Tris yang mengandung 5% gliserol + 0% (kontrol), 0.05% (Gio.o5), 0.10% (Gio.10), dan 0.15% (Gio.15) glutation, serta 0.001% (Kto.001), 0.002% (Kto.002), dan 0.003% (Kto.003) β-karoten. Semen dikemas di dalam straw mini (0.25 ml) dengan konsentrasi 200 juta spermatozoa moti. Semen diekuiubisasi pada suhu 5°C selama tiga jam kemudian dibekukan dan disimpan di dalam kontainer nitrogen cair selama 7 hari. Kualitas semen meliputi persentase motilias, spermatozoa hidup, tudung akrosom utuh (TAU), dan memban plasma utuh (MPU) diamati masing-masing setelah tahap pengenceran, ekuiubisasi, dan thawing. Konsentrasi malondialdehyde (MDA) dievaluasi setelah tahap thawing. Data dianalisis dengan rancangan acak lengkap dengan tujuh perlakuan dan sembilan kali ulangan. Perbedaan antarperlakuan diuji dengan uji beda nyata terkecil. Hasil penelitian menunjukkan bahwa rata-rata persentase motilias dan spermatozoa hidup setelah thawing perlakuan Gio.o5 (52.78% dan 58.78%), Gio.10 (53.33% dan 59.67%) dan Kto.002 (50.55% dan 56.78%) nyata (P<0.05) lebih tinggi dibandingkan dengan perlakuan Gio.15 (49.44% dan 55.22%), Kto.001 (46.11% dan 52.89%), Kto.003 (46.67% dan 53.33%), dan kontrol (46.67% dan 52.33%). Pada tahap setelah thawing, rata-rata persentase TAU dan MPU spermatozoa perlakuan Gio.o5 (54.22% dan 56.22%), Gio.10 (54.00% dan 56.44%), Gio.15 (51.22% dan 53.11%), dan Kto.002 (51.00% dan 53.78%) nyata (P<0.05) lebih tinggi dibandingkan dengan Kto.001 (49.00% dan 50.00%), Kto.003 (48.89% dan 49.67%), dan kontrol (47.11% dan 48.44%). Konsentrasi MDA semen beku setelah thawing perlakuan Gio.o5 (2.69 mg/kg), Gio.10 (2.92 mg/kg), Gio.15 (2.74 mg/kg), Kto.001 (3.37 mg/kg), Kto.002 (3.80 mg/kg), dan Kto.003 (4.61 mg/kg) nyata (P<0.05) lebih rendah dibandingkan dengan kontrol (5.24 mg/kg). Dapat disimpulkan bahwa penambahan 0.05% glutation atau 0.10% glutation atau 0.002% β-karoten di dalam pengencer Tris merupakan dosis yang optimum dalam meningkatkan kualitas semen beku domba garut.

ABSTRACT

The purpose of this research was to examine of various concentrations of glutathione and β-carotene in Tris extender to improve the quality of frozen-thawed semen of garut rams. Semen was collected from six garut rams using artificial vagina once a week. Immediately after initial evaluation, semen was divided into seven parts and diluted with Tris extender (control), Tris extender + 0.05% (Gio.o5), Tris extender + 0.10% (Gio.10), Tris extender + 0.15% (Gio.15) glutathione, Tris extender + 0.001% (Kto.001), Tris extender
+ 0.002% (Kto.ox), and Tris extender + 0.003% (Kto.ox) β-carotene, respectively. Semen was loaded in 0.25 ml mini straw with the concentration of 200 million motile spermatozoa. Semen was equilibrated at 5°C for three hours, then frozen and stored in liquid nitrogen container for 7 days. Quality of processed semen including percentages of motility, live sperm, intact acrosome cap (IAC), and intact plasma membrane (IPM) were evaluated after diluted, equilibrated, and thawed, respectively. Concentration of malondialdehyde (MDA) of frozen-thawed semen were evaluated. Data were analyzed as completely randomized design with seven treatments and nine replicates. Means were compared by least significant difference test at 0.05 significant level. Results of this research showed that mean percentages of post thawing motility and live spermatozoa for Glo.ox (52.78% and 58.78%), Glo.10 (53.33% and 59.67%), and Kto.ox2 (50.55% and 56.78%) were significantly (P<0.05) higher than Glo.15 (49.44% and 55.22%), Kto.ox1 (46.11% and 52.89%), Kto.ox (46.67% and 53.33%), and control (46.67% and 52.33%). Mean percentages of post thawing IAC and IPM for Glo.ox (54.22% and 56.22%), Glo.10 (54.00% and 56.44%), Glo.15 (51.22% and 53.11%), and Kto.ox2 (51.00% and 53.78%) were significantly (P<0.05) higher than Kto.ox1 (49.00% and 50.00%), Kto.ox (48.89% and 49.67%), and control (47.11% and 48.44%). MDA concentration of frozen-thawed semen for Glo.ox (2.69 mg/kg), Glo.10 (2.92 mg/kg), Glo.15 (2.74 mg/kg), Kto.ox1 (3.37 mg/kg), Kto.ox (3.80 mg/kg), and Kto.ox2 (4.61 mg/kg) were significantly (P<0.05) lower than control (5.24 mg/kg). In conclusion, addition of 0.05% glutathione, 0.10% glutathione, or 0.002% β-carotene in Tris extender are the optimum dose in improving frozen semen quality of garut ram.

PENDAHULUAN

Rendahnya kualitas semen beku domba umumnya disebabkan oleh kerusakan spermatozoa yang ditimbulkan karena pengaruh buruk pembekuan. Bagian paling kritis dari proses pembekuan semen adalah saat pembekuan itu sendiri dan thawing. Pada saat pembekuan, terjadi pengeluaran molekul air secara besar-besaran dari dalam sel yang mengakibatkan meningkatnya konsentrasi elektrolit intraseluler, juga terbentuk kristal-kristal es. Sedangkan pada saat thawing, semen mengalami tekanan yang berat akibat peningkatan suhu yang drastis dan kontak dengan oksigen. Semua dampak negatif ini akan mengakibatkan kerusakan pada organel-organel dan membran plasma sel yang menyebabkan rendahnya motilitas dan daya hidup spermatozoa.

Akibat meningkatnya suhu yang drastis saat thawing, terjadi peningkatan metabolisme yang juga berarti meningkatkan konsentrasi radikal bebas sebagai salah satu produk metabolisme. Radikal bebas sangat berbahaya bagi kelangsungan hidup spermatozoa. Hal ini disebabkan oleh radikal bebas memiliki sifat yang sangat reaktif untuk memperoleh elektron dari senyawa-senyawa lain. Radikal bebas akan menyerang dan mengambil elektron dari asam lemak tak jenuh fosfolipida membran plasma sel, yang

Upaya memperbaiki kualitas semen beku dengan menambahkan senyawa antioksidan di dalam pengencer semen telah banyak dilaporkan, seperti vitamin C pada semen beku sapi (Beconi et al. 1993), vitamin E dan butylated hydroxytoluene (BHT) pada semen beku domba st. croix (Feradis 1999), α-tokoferol pada semen beku kambing peranakan etawah (Werdhany et al. 2000), dan pada semen beku domba garut (Herdis et al. 2002), serta vitamin C dan E pada semen kelinci (Yousef et al. 2003).

Informasi tentang penggunaan glutation dan β-karoten dalam pengencer semen beku domba ganut belum pernah dilaporkan, sehingga memerlukan upaya penelitian dan pengkajian yang lebih mendalam.

BAHAN DAN METODE

Tempat dan Waktu Penelitian

Bahan Penelitian

Hewan Percobaan

Hewan percobaan yang digunakan adalah enam ekor pejantan domba garut dewasa kelamin dengan kondisi tubuh dan kesehatan yang baik, berat badan rata-rata 83.17 ± 9.80 kg (berkisar antara 70.50 dan 97.50 kg) dan umur sekitar tiga hingga lima tahun sebagai sumber semen yang diuji kualitasnya. Pejantan dikandangkan secara individu dan diberikan pakan berupa rumput dan leguminosa segar sekitar 7 – 9 kg dan 250 g ampas tahu atau tempe per ekor per hari. Untuk menjaga kesehatan, pejantan dimandikan setiap minggu.
Bahan dan Peralatan

Bahan-bahan penelitian yang digunakan adalah: semen segar domba garut, bahan modifikasi pengencer Tris (Tabel 11), glutation, β-karoten, formaldehid, NaCl fisiologik, NaCl 3%, larutan hipoosmotik (tekanan osmotik 100 mOsmol/l), pewarna eosin B, nitrogen cair, alkohol 70%, KY jelly, dan lain-lain. Bahan-bahan kimia yang digunakan produksi Merck (Jerman).

Tabel 11 Komposisi modifikasi pengencer Tris

<table>
<thead>
<tr>
<th>Bahan</th>
<th>Jumlah</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris(hydroxymethyl)aminomethane (g)</td>
<td>3.32</td>
</tr>
<tr>
<td>Asam sitrat-monohidrat (g)</td>
<td>1.86</td>
</tr>
<tr>
<td>D(-)-Fructosa (g)</td>
<td>1.37</td>
</tr>
<tr>
<td>Laktosa-monohidrat 60 mM (g)</td>
<td>2.16</td>
</tr>
<tr>
<td>Glicerol (ml, v/v)</td>
<td>5</td>
</tr>
<tr>
<td>Kuning telur ayam ras (ml, v/v)</td>
<td>20</td>
</tr>
<tr>
<td>Penisilin-G (IU/ml)</td>
<td>1000</td>
</tr>
<tr>
<td>Streptomisin sulfat (µg/ml)</td>
<td>1000</td>
</tr>
<tr>
<td>Akuabidestilata ad (ml)</td>
<td>100</td>
</tr>
</tbody>
</table>

Keterangan: merupakan komposisi pengencer terbaik pada percobaan kedua.

Alat-alat yang digunakan adalah: vagina buatan, tabung spermatozoa, tabung reaksi, gelas erlenmeyer, gelas piala, gelas ukur, termometer, mikroskop cahaya, gelas objek, gelas penutup, pipet tetes, hemositometer, pH meter, bunsen, timbangan mikro, konteiner N₂ cair dan perlengkapannya, straw mini (0.25 ml), rak straw, penangas air, lemari es, styrofoam, dan lain-lain.

Metode Penelitian

Penampungan Semen

Semen ditampung menggunakan vagina buatan satu kali dalam satu minggu. Segera setelah ditampung, semen dinilai secara makroskopik dan mikroskopik. Penilaian makroskopik meliputi: volume, warna, konsistensi (kekentalan), dan derajat keasaman (pH). Penilaian mikroskopik meliputi: gerakan massa, persentase motilitas, persentase
spermatozoa hidup, konsentrasi, persentase abnormalitas, persentase tudung akrosom utuh (TAU), dan persentase membran plasma utuh (M PU).

Pengenceran dan Ekuilibrasi Semen

Semen segar yang memenuhi syarat (persentase motilitas ≥70%, konsentrasi ≥2000 juta sel per ml, gerakan massa ++ atau ++++, dan persentase abnormalitas <15%) diencerkan sesuai dengan perlakuan yang dicobakan. Untuk mengetahui jumlah pengencer yang dibutuhkan dihitung dengan persamaan seperti pada percobaan kedua. Proses pengenceran semen dilakukan dengan cara menambahkan semen sedikit demi sedikit ke dalam tabung reaksi yang telah diisi pengencer sesuai perlakuan, kemudian tabung reaksi digoyang perlahan agar semen tercampur homogen dengan pengencer.

Perlakuan penambahan antioksidan yang dicobakan adalah sebagai berikut:
1. Pengencer Tris tanpa antioksidan (kontrol).
2. Pengencer Tris ditambahkan glutation dengan tiga tingkat konsentrasi, yakni: 0.05% (Glo.05), 0.10% (Glo.10), dan 0.15% (Glo.15).
3. Pengencer Tris ditambahkan β-karoten dengan tiga tingkat konsentrasi, yakni: 0.001% (Kto.001), 0.002% (Kto.002), dan 0.003% (Kto.003).

Sehingga terdapat tujuh perlakuan yang dicobakan, yakni kontrol, Glo.05, Glo.10, Glo.15, Kto.001, Kto.002, dan Kto.003.

β-karoten yang akan ditambahkan di dalam pengencer Tris, terlebih dahulu dilarutkan dengan 0.05 ml etanol. Semen yang telah diencerkan dikemas ke dalam straw mini (0.25 ml) dengan konsentrasi 200 juta spermatozoa motil per straw kemudian diekuilibrasikan di dalam lemari es pada suhu 3 – 5 °C selama tiga jam.

Pembekuan dan Pencairan Kembali (Thawing) Semen

Pembekuan semen diawali dengan meletakkkan straw 10 cm di atas permukaan nitrogen cair (suhu sekitar −130 °C) selama 15 menit di dalam styrofoam yang ditutup rapat. Kemudian straw dimasukkan ke dalam nitrogen cair (suhu sekitar −196 °C) dan disimpan di dalam kontainer nitrogen cair. Setelah disimpan selama satu minggu, setiap sampel straw masing-masing perlakuan dicairkan kembali untuk dinilai kualitasnya. Semen beku dicairkan kembali dengan cara memasukkan straw ke dalam air bersuhu 37 °C (di dalam penangkas air) selama 30 detik.
Peubah yang Diamati

Peubah kualitas semen yang diamati adalah persentase motilitas, persentase spermatozoa hidup, persentase TAU, dan persentase MPU spermatozoa masing-masing setelah tahap pengenceran, ekuitibrasi, dan thawing. Konsentrasi malondialdehida (MDA) setiap perlakuan diukur pada tahap setelah thawing.

Konsentrasi MDA: konsentrasi MDA empat buah sampel semen beku masing-masing perlakuan. Dianalisis dengan metode penetapan bilangan asam tiobarbiturat (thiobarbituric acid atau TBA) menggunakan alat spektrofotometer. Konsentrasi MDA dinyatakan dalam mg/kg bahan.

Analisis Data

Data dianalisis dengan analisis ragam dalam bentuk rancangan acak lengkap tujuh perlakuan dan jumlah penampungan semen sebanyak sembilan kali sebagai ulangan. Perbedaan antarperlakuan diuji dengan uji beda nyata terkecil (Steel dan Torrie 1993).

HASIL DAN PEMBAHASAN

Persentase Motilitas dan Spermatozoa Hidup

Hasil penelitian menunjukkan bahwa perlakuan penambahan glutation atau β-karoten dengan konsentrasi yang tepat dapat meningkatkan kualitas semen beku domba garut. Pada tahap setelah thawing, rata-rata persentase motilitas dan spermatozoa hidup perlakuan penambahan glutation sebanyak 0.05% (Glo:os) (52.78% dan 58.78%), glutation sebanyak 0.10% (Glo:io) (53.33% dan 59.67%), dan β-karoten sebanyak 0.002% (Kt:os) (50.55% dan 56.78%) lebih tinggi dibandingkan dengan perlakuan kontrol (46.67% dan 52.33%), Glo:is (49.44% dan 55.22%), Kt:oi (46.11% dan 52.89%), dan Kt:oio (46.67% dan 53.33%) (P<0.05) (Tabel 12 dan 13). Hal ini didukung dengan rata-rata penurunan persentase motilitas dan spermatozoa hidup dari tahap setelah pengenceran ke tahap setelah thawing perlakuan Glo:os (23.89% dan 24.11%) dan Glo:io (23.34% dan 23.22%) lebih rendah dibandingkan dengan perlakuan Kt:os (26.12% dan 27.00%), kontrol (30.00% dan 29.78%), Glo:is (27.23% dan 27.00%), Kt:oi (30.56% dan 30.55%), dan Kt:oio (30.00% dan 30.00%). Perlakuan penambahan glutation dan
β-karoten berpengaruh tidak nyata (P>0.05) terhadap rata-rata persentase motilitas dan spermatozoa hidup pada tahap setelah pengenceran dan ekuilibrasi (Tabel 12 dan 13).

<table>
<thead>
<tr>
<th>Tabel 12 Penganrual berbagai konsentrasi glutation dan β-karoten terhadap persentase motilitas spermatozoa domba garut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>Kontrol 76.67 ± 2.36^a</td>
</tr>
<tr>
<td>Glo0.05 76.67 ± 2.36^a</td>
</tr>
<tr>
<td>Glo10 76.67 ± 2.36^a</td>
</tr>
<tr>
<td>Glo15 76.67 ± 2.36^a</td>
</tr>
<tr>
<td>Kto0.01 76.67 ± 2.36^a</td>
</tr>
<tr>
<td>Kto0.02 76.67 ± 2.36^a</td>
</tr>
<tr>
<td>Kto0.03 76.67 ± 2.36^a</td>
</tr>
</tbody>
</table>

a,b,c,d dalam kolom yang sama menunjukkan berbeda nyata (P<0.05) Glo0.05, Glo10, Glo15 = penambahan glutation sebanyak 0.05%, 0.10%, dan 0.15% Kto0.01, Kto0.02, Kto0.03 = penambahan β-karoten sebanyak 0.001%, 0.002%, dan 0.003%.

Hal ini menunjukkan bahwa penambahan glutation dan β-karoten dengan dosis yang tepat di dalam pengencer Tris memberikan efek yang positif terhadap motilitas dan daya hidup spermatozoa pada suhu yang rendah. Hasil yang diperoleh mendukung pendapat Slaweta dan Laskowska (1987) bahwa terjadi peningkatan motilitas spermatozoa semen beku sapi dari 30.30% menjadi 33.10% dengan penambahan 5 mM (0.154%) glutation di dalam pengencer susu. Sinha et al. (1996) melaporkan bahwa persentase motilitas spermatozoa semen beku kambing rata-rata 47.80% pada semen yang diencerkan dengan pengencer Tris tanpa glutation lebih rendah dibandingkan dengan rata-rata 48.90% pada semen yang diencerkan dengan pengencer Tris + 2 mM (0.061%) glutation dan rata-rata 53.64% pada semen yang diencerkan dengan pengencer Tris + 5 mM (0.154%) glutation. Menurut Uckun et al. (2002) penambahan glutation ke dalam medium pengencer semen manusia efektif memproteksi motilitas prosesif spermatozoa. Rajmakers et al. (2003) melaporkan bahwa konsentrasi glutation di dalam plasma semen laki-laki fertii lebih tinggi dibandingkan dengan laki-laki subfertii (kurang fertii). Selanjutnya dinyatakan bahwa konsentrasi glutation yang lebih tinggi dapat meningkatkan atau menjaga kualitas morfologi dan motilitas spermatozoa manusia.
<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Tahap pengolahan semen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Setelah pengenceran</td>
<td>Setelah ekulibrasi</td>
<td>Setelah thawing</td>
<td></td>
</tr>
<tr>
<td>Kontrol</td>
<td>82.11 ± 2.88(a)</td>
<td>75.22 ± 2.90(a)</td>
<td>52.33 ± 3.46(a)</td>
<td></td>
</tr>
<tr>
<td>Glo.05</td>
<td>82.89 ± 3.35(a)</td>
<td>77.00 ± 2.98(a)</td>
<td>58.78 ± 1.47(c)</td>
<td></td>
</tr>
<tr>
<td>Glo.10</td>
<td>82.89 ± 2.60(a)</td>
<td>76.44 ± 2.75(a)</td>
<td>59.67 ± 3.40(c)</td>
<td></td>
</tr>
<tr>
<td>Glo.15</td>
<td>82.22 ± 2.70(a)</td>
<td>75.55 ± 3.17(a)</td>
<td>55.22 ± 2.53(ab)</td>
<td></td>
</tr>
<tr>
<td>Kto.001</td>
<td>83.44 ± 1.71(a)</td>
<td>76.33 ± 3.68(a)</td>
<td>52.89 ± 3.14(ab)</td>
<td></td>
</tr>
<tr>
<td>Kto.002</td>
<td>83.78 ± 1.75(a)</td>
<td>76.89 ± 2.73(abc)</td>
<td>56.78 ± 3.64(bc)</td>
<td></td>
</tr>
<tr>
<td>Kto.003</td>
<td>83.33 ± 1.63(a)</td>
<td>78.11 ± 2.60(b)</td>
<td>53.33 ± 3.26(a)</td>
<td></td>
</tr>
</tbody>
</table>

a,b,c,d dalam kolom yang sama menunjukkan berbeda nyata \(P<0.05\)
Glo.05, Glo.10, Glo.15 = penambahan glutation sebanyak 0.05%, 0.10%, dan 0.15%
Kto.001, Kto.002, Kto.003 = penambahan β-karoten sebanyak 0.001%, 0.002%, dan 0.003%.

Persentase motilitas dan spermatozoa hidup semen yang dibekukan dengan penambahan glutation atau β-karoten dalam konsentrasi yang tepat lebih tinggi dibandingkan dengan kontrol disebabkan oleh kedua senyawa antioksidan tersebut berfungsi menjaga keutuhan membran plasma sel spermatozoa selama proses pengolahan semen. Dengan demikian spermatozoa yang memiliki membran plasma utuh mampu dengan baik mengatur laju lintas keluar masuk sel semua substrat dan elektrolit, sehingga proses metabolisme termasuk fruktolisis dan siklus Krebs dapat berlangsung dengan baik. Proses metabolisme ini menghasilkan ATP yang mengandung energi sehingga motilitas dan daya hidup spermatozoa tetap dapat dipertahankan.

Hasil yang diperoleh menunjukkan bahwa penambahan 0.15% glutation dan 0.003% β-karoten menghasilkan persentase motilitas dan spermatozoa hidup semen beku yang lebih rendah. Hal ini diduga karena penambahan senyawa antioksidan dalam jumlah lebih banyak akan semakin meningkatkan tekanan osmotik lanjut pengencer dan kurang dapat diadaptasi dengan baik oleh spermatozoa, sehingga berakibat buruk terhadap berlangsungnya proses metabolisme spermatozoa. Proses metabolisme yang terganggu mengakibatkan menurunnya produksi energi berupa ATP, sehingga menurunnya pula persentase motilitas dan spermatozoa hidup. Menurut Schweigert dan Zucker (1988) kandungan β-karoten di dalam sel cukup rendah, dan dapat bersifat toksik jika
konsentrasiya berlebihan. Sebagai perbandingan, hasil penelitiannya diperoleh bahwa konsentrasi β-karoten di dalam folikel sapi hanya sebesar 2.44μg/ml atau 0.00244 mg/ml.

Persentase Tudung Akrosom Utuh dan Membran Plasma Utuh

Hasil penelitian menunjukkan bahwa penambahan glutation dan β-karoten dalam dosis yang tepat mampu mempertahankan integritas membran plasma sel spermatozoa domba garut. Rata-rata persentase TAU dan MPU spermatozoa pada perlakuan penambahan glutation sebanyak 0.05% (Glo.ο) (54.22% dan 56.22%) dan sebanyak 0.10% (Glo.ο) (54.00% dan 56.44%) lebih tinggi dibandingkan dengan perlakuan kontrol (47.11% dan 48.44%), penambahan glutation sebanyak 0.15% (Glo.ο) (51.22% dan 53.11%), β-karoten sebanyak 0.001% (Kто.ο) (49.00% dan 50.00%), β-karoten sebanyak 0.002% (Kто.ο) (51.00% dan 53.78%) dan β-karoten sebanyak 0.003% (Kто.ο) (48.89% dan 49.67%) (P<0.05) (Tabel 14 dan 15). Hal ini juga didukung oleh nilai penurunan persentase TAU dan MPU spermatozoa dari tahap setelah pengenceran ke tahap setelah thawing. Rata-rata penurunan persentase TAU dan MPU perlakuan Glo.ο (30.56% dan 27.33%) dan Glo.ο (31.00% dan 27.45%) lebih rendah dibandingkan dengan perlakuan Kто.ο (32.00% dan 29.11%), Glo.ο (33.89% dan 30.67%), Kто.ο (33.22% dan 32.11%), Kто.ο (33.55% dan 32.11%), dan kontrol (37.67% dan 34.78%). Perlakuan penambahan glutation dan β-karoten berpengaruh tidak nyata (P>0.05) terhadap persentase TAU dan MPU spermatozoa pada tahap setelah pengenceran dan ekuilibrasi (Tabel 14 dan 15).

Hasil yang diperoleh untuk peubah persentase TAU dan MPU selaras dengan yang dihasilkan pada evaluasi parameter persentase motilitas dan spermatozoa hidup, yakni semakin tinggi dosis penambahan glutation dan β-karoten semakin menurunkan nilai TAU dan MPU. Penambahan glutation dan β-karoten dengan dosis yang tepat akan meningkatkan persentase spermatozoa yang memiliki membran plasma utuh (Tabel 15). Ini disebabkan oleh glutation dan β-karoten berfungsi sebagai senyawa antioksidan yang mampu mencegah atau memutus rantai reaksi peroksida lipida pada membran plasma sel, sehingga mencegah atau mengurangi kerusakan yang terjadi membran plasma sel spermatozoa. Membran plasma sel yang utuh akan menyebabkan proses metabolisme dapat berlangsung dengan baik, sehingga produksi energi berupa ATP tidak terganggu yang berakibat dipertahankannya motilitas dan daya hidup spermatozoa. Membran plasma sel yang utuh juga akan melindungi vesikel akrosom yang berada tepat di bawah
membran plasma sel di bagian ujung kepala spermatozoa dari perusakan secara mekanik, sehingga vesikel akrosom tetap utuh dan nilai TAU pun meningkat.

Tabel 14 Pengaruh berbagai konsentrasi glutation dan β-karoten terhadap persentase TAU spermatozoa domba garut

<table>
<thead>
<tr>
<th>Perлаkuаn</th>
<th>Tahap pengolahan semen</th>
<th>Setelah pengenceran</th>
<th>Setelah ekullibrasi</th>
<th>Setelah thawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol</td>
<td>84.78 ± 1.81a</td>
<td>72.56 ± 2.06a</td>
<td>47.11 ± 3.03a</td>
<td></td>
</tr>
<tr>
<td>Glo.05</td>
<td>84.78 ± 1.87a</td>
<td>74.67 ± 1.63a</td>
<td>54.22 ± 2.39d</td>
<td></td>
</tr>
<tr>
<td>Glo.10</td>
<td>85.00 ± 1.70a</td>
<td>75.00 ± 1.25a</td>
<td>54.00 ± 3.80dc</td>
<td></td>
</tr>
<tr>
<td>Glo.15</td>
<td>85.11 ± 1.10a</td>
<td>74.78 ± 1.55a</td>
<td>51.22 ± 3.32bc</td>
<td></td>
</tr>
<tr>
<td>Kto.001</td>
<td>82.22 ± 1.31a</td>
<td>75.00 ± 1.70a</td>
<td>49.00 ± 2.31ab</td>
<td></td>
</tr>
<tr>
<td>Kto.002</td>
<td>83.00 ± 1.49a</td>
<td>75.55 ± 2.01a</td>
<td>51.00 ± 2.75b</td>
<td></td>
</tr>
<tr>
<td>Kto.003</td>
<td>82.44 ± 1.42a</td>
<td>73.00 ± 1.56a</td>
<td>48.89 ± 1.45ab</td>
<td></td>
</tr>
</tbody>
</table>

a,b,c,d dalam kolom yang sama menunjukkan berbeda nyata (P<0.05)
Glo.05, Glo.10, Glo.15 = penambahan glutation sebanyak 0.05%, 0.10%, dan 0.15%
Kto.001, Kto.002, Kto.003 = penambahan β-karoten sebanyak 0.001%, 0.002%, dan 0.003%.

Saat penampungan dan pengolahan semen, terjadi kontak antara semen dan udara luar yang mengandung oksigen. Hal ini menyebabkan meningkatnya aktivitas metabolisme oksidatif, yang disertai dengan peningkatan produksi radikal bebas sebagai salah satu produk metabolisme oksidatif normal. Pada kondisi seperti ini senyawa antioksidan berperan meredam daya rusak radikal bebas dengan cara mencegah terjadinya atau memutus rantai reaksi peroksidaion lipida pada membran plasma sel spermatozoa. Kalaupun pada pengamatan setelah tahap pengenceran dan ekullibrasi perilaku penambahan senyawa antioksidan belum memperlihatkan pengaruh yang nyata, diduga karena dengan pengamatan yang hanya menggunakan mikroskop cahaya belum mampu mendeteksi kerusakan yang terjadi. Pengaruh positif perilaku penambahan glutation atau β-karoten yang nyata hanya pada tahap setelah thawing diduga karena selama proses pembekuan, membran plasma dan sel secara keseluruhan mengalami degradasi akibat pengaruh buruk pembekuan. Hal ini menyebabkan membran plasma sel sangat rentan terhadap serangan radikal bebas, sehingga mudah terjadi reaksi peroksidaion lipida (pada saat thawing terjadi peningkatan suhu semen yang drastis, sehingga metabolisme meningkat yang berarti produk radikal bebas pun meningkat).
Pada kondisi yang kurang menguntungkan seperti pada tahap setelah thawing inilah, glutation atau β-karoten yang ditambahkan dengan konsentrasi yang tepat di dalam pengencer memainkan peranan mencegah timbunnya dan memutus reaksi rantai peroksidasi lipida yang berlebihan pada membran plasma sel spermatozoa. Dengan demikian semen buku yang dihasilkan memiliki kualitas yang lebih baik daripada semen buku yang diencerkan dengan tanpa penambahan glutation atau β-karoten. Semua keadaan yang tidak menguntungkan pada tahap thawing seperti tersebut di atas, belum dialami spermatozoa pada tahap pengenceran dan ekulibrasi.

<table>
<thead>
<tr>
<th>Pertakuan</th>
<th>Tahap pengolahan semen</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Setelah pengenceran</td>
<td>Setelah ekulibrasi</td>
</tr>
<tr>
<td>Kontrol</td>
<td>83.22 ± 1.47<sup>a</sup></td>
<td>72.89 ± 2.47<sup>a</sup></td>
</tr>
<tr>
<td>Glo.05</td>
<td>83.55 ± 1.83<sup>a</sup></td>
<td>74.44 ± 2.31<sup>a</sup></td>
</tr>
<tr>
<td>Glo.10</td>
<td>83.89 ± 1.37<sup>a</sup></td>
<td>74.78 ± 2.39<sup>a</sup></td>
</tr>
<tr>
<td>Glo.15</td>
<td>83.78 ± 1.81<sup>a</sup></td>
<td>74.44 ± 2.71<sup>a</sup></td>
</tr>
<tr>
<td>Kto.001</td>
<td>82.11 ± 1.10<sup>a</sup></td>
<td>75.89 ± 2.23<sup>a</sup></td>
</tr>
<tr>
<td>Kto.002</td>
<td>82.89 ± 1.37<sup>a</sup></td>
<td>74.44 ± 2.63<sup>a</sup></td>
</tr>
<tr>
<td>Kto.003</td>
<td>81.78 ± 0.92<sup>a</sup></td>
<td>74.67 ± 2.62<sup>a</sup></td>
</tr>
</tbody>
</table>

^{a,b,c,d} dalam kolom yang sama menunjukkan berbeda nyata (P<0.05)
Glo.05, Glo.10, Glo.15 = penambahan glutation sebanyak 0.05%, 0.10%, dan 0.15%
Kto.001, Kto.002, Kto.003 = penambahan β-karoten sebanyak 0.001%, 0.002%, dan 0.003%.

Radikal bebas seperti hidroksi dan singlet oksigen dapat merusak tiga jenis senyawa yang penting untuk mempertahankan integritas sel. Ketiya senyawa itu adalah asam lemak, khususnya asam lemak tak jenuh yang merupakan komponen utama fosfolipida penyusun membran plasma sel; DNA, yang merupakan perangkat genetik sel; dan protein, yang memegang berbagai peranan penting sebagai enzim, reseptor, antibodi, pembentuk matriks, dan sitoskeleton (Suryohudoyo 2000). Selanjutnya dinyatakan bahwa reaksi rantai peroksidasi lipida pada membran plasma sel dapat dicegah timbunnya atau diputus rantai reaksinya dengan cara menambahkan senyawa antioksidan seperti glutation, sistein, katalase, glutation peroksidase, β-karoten, vitamin E (tokoferol), dan vitamin C (asam askorbat) di dalam medium atau makanan.
Menurut Suryochudoyo glutation (GSH) mencegah reaksi peroksidasi lipida pada membran plasma sel dengan mekanisme sebagai berikut:

- Jika glutation menonaktifkan hidrogen peroksida (H_2O_2), akan terjadi reaksi sebagai berikut: $GSH + H_2O_2 \rightarrow GSSG + 2H_2O$. Hidrogen peroksida memang bukan radikal bebas, akan tetapi sebagai salah satu zat oksidan, dia juga dapat menimbulkan akibat yang sama dengan akibat yang ditimbulkan oleh radikal bebas.

- Jika glutation menonaktifkan radikal bebas hidroksil (OH) yang dikenal sebagai salah satu senyawa oksigen reaktif yang paling berbahaya, akan terjadi reaksi sebagai berikut: $GSH + OH \rightarrow H_2O + GS−$ (radikal glutation) dan $GS− + GS− \rightarrow GSSG$ (glutation teroksidasi). Reaksi yang ditimbulkan oleh radikal bebas pada membran plasma sel (terutama pada asam lemak tak jenuh) akan membentuk radikal baru, yang jika bertemu dengan molekul lain akan terjadi lagi reaksi dan membentuk radikal baru juga. Demikian seterusnya sehingga terjadi reaksi berantai (chain reaction), dan apabila ini terjadi pada membran plasma sel, reaksi itu akan berhenti jika seluruh membran plasma sel telah mengalami kerusakan atau dihentikan dengan cara menambahkan senyawa antioksidan. Pada bagian tersebut di atas terlihat bahwa reaksi akan berhenti karena dua radikal glutation (GS−) akan bereaksi membentuk glutation teroksidasi (GSSG).

Hasil beberapa penelitian pada manusia menunjukkan bahwa β-karoten memiliki kemampuan kerja sebagai senyawa antioksidan yang baik. Ini ditunjukkan dengan percoobaan terapi β-karoten yang dapat menurunkan kadar lipid peroksida serum, malondialdehida serum, low-density lipoprotein (LDL) yang diinduksi oleh ion Cu, kerusakan DNA, dan pirimidin teroksidasi (Pryor et al. 2000). Menurut Oshima et al. (1993) β-karoten memiliki kemampuan memproteksi liposom (suatu vesikel yang memiliki fosfolipida bilayer tunggal) dari kerusakan akibat serangan singlet oksigen.

Singlet oksigen merupakan salah satu jenis senyawa oksigen reaktif yang dihasilkan dari proses biologik aerobik yang terjadi secara alamiah dan berbahaya terhadap kelangsungan hidup sel. Singlet oksigen mampu merusak sel karena dapat menimbulkan reaksi rantai peroksidasi lipida pada membran plasma sel dan sekaligus juga mampu merusak organel-organel sel lainnya (Oshima et al. 1993). Selanjutnya dinyatakan bahwa daya rusak singlet oksigen terhadap sel dapat dicacah oleh β-karoten dengan mekanisme kerja sebagai berikut: $O_2^+ + ^1Car \rightarrow ^3O_2 + ^3Car^*$ dan $^3Car^* \rightarrow ^1Car +
panas. β-karoten (\(^1\)Car) meredam daya rusak singlet oksigen (\(^1\)O₂) melalui mekanisme fisikal, dengan cara mentransfer energi dari singlet oksigen ke β-karoten yang memiliki struktur kaya elektron. β-karoten menjadi lebih aktif setelah mendapat tambahan energi dengan berubah struktur menjadi bentuk triplet (\(^3\)Car\(^*\)), setelah itu β-karoten triplet tersebut akan melepaskan sebagian energi dalam bentuk panas dan selanjutnya kembali ke struktur semula (\(^1\)Car). Karena mekanisme kerjanya berlangsung secara fisik, maka struktur β-karoten tidak mengalami perubahan setelah bekerja, sehingga masih memiliki kemampuan memproteksi sel dari serangan singlet oksigen berikutnya.

Konsentrasi Malondialdehida (MDA)

Hasil penelitian menunjukkan bahwa penambahan glutation dan β-karoten di dalam pengencer Tris mampu menurunkan konsentrasi MDA di dalam semen beku dibandingkan dengan tanpa penambahan antioksidan. Rata-rata konsentrasi MDA semen beku pada perlakuan penambahan glutation sebanyak 0.05% (Glo\(^8\)) (2.89 mg/kg), glutation sebanyak 0.10% (Glo\(^10\)) (2.92 mg/kg), dan glutation sebanyak 0.15% (Glo\(^15\)) (2.74 mg/kg) lebih rendah dibandingkan dengan perlakuan penambahan β-karoten sebanyak 0.001% (Klo\(^1\)) (3.37 mg/kg), β-karoten sebanyak 0.002% (Klo\(^2\))
(3.80 mg/kg), β-karoten sebanyak 0.003% (Klo.05) (4.61 mg/kg), dan kontrol (5.24 mg/kg) (P<0.05) (Tabel 16). Ini sejalan dengan hasil yang diperoleh pada pengukuran peubah persentase MPU (Tabel 15), yakni dengan penambahan glutation dan β-karoten di dalam pengencer Tris nyata meningkatkan jumlah spermatozoa yang memiliki membran plasma sel yang utuh dibandingkan dengan kontrol. Hal ini menunjukkan bahwa glutation dan β-karoten efektif menurunkan terjadinya reaksi peroksidasi lipida pada membran plasma sel spermatozoa selama proses pengolahan semen, terutama pada tahap thawing, sehingga produksi MDA pun nyata lebih sedikit dibandingkan dengan kontrol.

| Tabel 16 Rata-rata konsentrasi MDA semen beku domba garet setelah thawing |
|---------------------------------|-----------------|
| Perlakuan | Banyaknya (mg/kg) |
| Kontrol | 5.24 ± 0.05* |
| Glo.05 | 2.69 ± 0.16* |
| Glo.10 | 2.92 ± 0.22* |
| Glo.15 | 2.74 ± 0.23* |
| Klo.001 | 3.37 ± 0.06b |
| Klo.002 | 3.80 ± 0.09b |
| Klo.003 | 4.61 ± 0.11d |

a, b, c, d, e menunjukkan berbeda nyata (P<0.05).

Menurut Suryohudoyo (2000) serta Hemachand dan Shaha (2003) malondialdehida (MDA), 9-hidroksi-nonenal (HNE), etana (C_{2}H_{4}), dan pentana (C_{5}H_{12}) merupakan senyawa-senyawa aldehida yang bersifat toksik terhadap sel. Senyawa-senyawa ini terbentuk karena terpusatnya rantai asam lemak sebagai akibat dari reaksi rantai peroksidasi lipida yang terjadi pada membran plasma sel. Dengan demikian, semakin tinggi konsentrasi MDA, HNE, etana, atau pentana di dalam suatu sampel semen menunjukkan semakin tinggi tingkat kerusakan asam lemak tak jenuh fosfolipida membran plasma sel spermatozoa, yang diakibatkan oleh reaksi rantai peroksidasi lipida.

Hasil yang diperoleh sama dengan yang dilaporkan Feradis (1999) bahwa konsentrasi MDA semen beku domba st. croix yang ditambahkan senyawa antioksidan vitamin E (α-tokoferol) sebanyak 0.1% (2.63 nmol MDA/ml) dan 0.2% (2.50 nmol MDA/ml) nyata lebih rendah dibandingkan dengan kontrol (3.30 nmol MDA/ml). Sedangkan menurut Hemachand dan Shaha (2003) aktivitas sitotoksik HNE pada spermatozoa dapat dihambat dengan menambahkan 1 mM glutation di dalam medium pengencer. Hal yang sama juga dilaporkan Slaweta dan Laskowska (1987) serta Sinha et al. (1996) bahwa terjadi penurunan konsentrasi aspartat aminotransferase (AST), alanin aminotransferase (ALT), dan laktat dehidrogenase (LDH) pada semen beku sapi dan kambing yang ditambahkan 2 mM dan 5 mM glutation dibandingkan dengan tanpa penambahan glutation (kontrol). AST, ALT, dan LDH merupakan enzim-enzim yang keluar dari kepala sel spermatozoa akibat rusaknya akrosom, yang berarti semakin tinggi konsentrasi enzim-enzim tersebut di dalam sampel semen, menunjukkan semakin banyak spermatozoa yang mengalami kerusakan pada bagian akrosomnya. Membran vesikel akrosom sangat rentan mengalami kerusakan yang berakibat keluarnya enzim-enzim tersebut di atas, apabila membran plasma sel sebagai pelindung bagian paling luar sel spermatozoa mengalami kerusakan. Hal ini terjadi karena membran plasma sel berfungsi sebagai pelindung membran vesikel akrosom dari perusakan secara mekanik.

KESIMPULAN

Berdasarkan hasil penelitian ini, dapat disimpulkan sebagai berikut:
1. Penambahan glutation sebanyak 0.05% dan 0.10% di dalam pengencer Tris menghasilkan semen beku domba garut dengan kualitas terbaik.
2. Konsentrasi terbaik β-karoten yang ditambahkan di dalam pengencer Tris dalam menghasilkan semen beku domba garut adalah sebanyak 0.002%.
3. Glutation dan β-karoten mampu menurunkan konsentrasi malondialdehida (MDA) semen beku domba garut.
DAFTAR PUSTAKA

EFEKTIVITAS WAKTU PENYIMPANAN EPIDIDIMIS TERHADAP KUALITAS SPERMATOZOA EPIDIDIMIS YANG TELAH DIBEKUKAN PADA DOMBA GARUT

ABSTRAK

Tujuan penelitian ini adalah menguji kualitas spermatozoa cauda epididimis domba garut yang dikoleksi dari epididimis segar (H0) atau epididimis yang telah disimpan di dalam lemari es (suhu 5 °C) selama satu (H1), dua (H2), dan tiga (H3) hari. Spermatozoa dikoleksi dengan cara membuat sayatan-sayatan pada cauda epididimis kemudian dibилас-tekan dengan larutan pengencer terbaik hasil percobaan ketiga (modifikasi pengencer Tris dengan laktosa dan glutation). Spermatozoa hasil koleksi disentrifugasi dengan kecepatan 3000 rpm selama 20 menit, supernatan dibuang dan spermatozoa diencerkan lagi dengan konsentrasi 200 juta spermatozoa motil. Semen dikemas di dalam straw mini (0.25 ml) dan diekualibrasi di dalam lemari es (suhu 5 °C) selama tiga jam, kemudian dibekukan dan disimpan di dalam kontainer nitrogen cair. Kualitas spermatozoa meliputi persentase motilitas, persentase spermatozoa hidup, persentase tubung akrosom utuh (TAU), dan persentase membran plasma utuh (MPU) dievaluasi setelah dikoleksi serta setelah tahap ekuilibrasi dan thawing. Data dianalisis dengan analisis ragam dalam bentuk rancangan acak lengkap dengan empat perlakuan dan enam kali ulangan. Hasil penelitian didapatkan konsentrasi spermatozoa rata-rata sebanyak 13993.33 juta/ml. Rata-rata persentase motilitas dan spermatozoa hidup setelah pengenceran perlakuan H0 (71.25% dan 82.83%) dan H1 (70.00% dan 79.17%) nyata (P<0.05) lebih tinggi dibandingkan dengan H2 (61.25% dan 69.83%) dan H3 (51.67% dan 66.17%). Tidak terdapat perbedaan antarperlakuan pada peubah persentase abnormalitas dan butiran sitoplasma. Rata-rata persentase TAU dan MPU perlakuan H0 (85.83% dan 81.33%) nyata (P<0.05) lebih tinggi dibandingkan dengan perlakuan H1 (83.67% dan 79.5%), H2 (78.83% dan 78.17%), dan H3 (74.5% dan 71.67%). Pada tahap setelah ekuilibrasi, kualitas spermatozoa perlakuan H0 dan H1 nyata (P<0.05) lebih tinggi dibandingkan dengan perlakuan H2 dan H3. Pada tahap setelah thawing, rata-rata persentase motilitas dan spermatozoa hidup perlakuan H0 (45.00% dan 54.50%) nyata (P<0.05) lebih tinggi dibandingkan dengan H1 (38.67% dan 47.33%), H2 (20.83% dan 25.00%), dan H3 (20.00% dan 28.83%). Rata-rata persentase TAU dan MPU spermatozoa setelah thawing perlakuan H0 (47.83% dan 48.83%) nyata (P<0.05) lebih tinggi dibandingkan dengan H1 (42.67% dan 38.50%), H2 (27.17% dan 26.50%), dan H3 (24.67% dan 25.00%). Dapat disimpulkan bahwa spermatozoa bekuk yang dikoleksi dan diolah dari cauda epididimis segar domba garut yang telah disebabhi memenuhi persyaratan kualitas untuk digunakan dalam program inseminasi buatan (IB) dan produksi embrio in vitro.
ABSTRACT

The purpose of this research was to examine the quality of garut ram epididymal sperm collected from fresh cauda epididymis (H0) or after storage in low temperature (5 °C, in refrigerator) for one (H1), two (H2), and three (H3) days. Collected sperm were diluted with modified Tris extender as the best extender at third experiment then centrifuged at 3,000 rpm for 20 minutes. The supernatant was removed and pellet was diluted with modified Tris extender to 200 motile sperm per 0.25 ml. Extended-sperm was loaded in mini straw (0.25 ml) and equilibrated in refrigerator at 5 °C for three hours, and then stored in liquid nitrogen container. Quality of collected sperm including concentration, motility, live sperm, abnormality, cytoplasmic droplet, intact acrosomal cap (IAC), and intact plasma membrane (IPM) were evaluated. Data were analyzed as completely randomized design with four treatments and six replicates. Means were compared by least significant difference test at 0.05 significant level. Results of this research showed that mean sperm concentration was 13,993.33 million/ml. Mean percentages of sperm motility and live for H0 (71.25% and 82.83%) and H1 (70% and 79.17%) were significantly (P<0.05) higher than H2 (61.25% and 69.83%) and H3 (51.67% and 66.17%), nevertheless it was still higher than minimum requirement. There was no significantly (P>0.05) difference between treatment for mean sperm abnormality and cytoplasmic droplet parameters. Mean sperm IAC for H0 (85.83% and 81.33%) were significantly (P<0.05) higher than H1 (83.67% and 79.5%), H2 (78.83% and 78.17%), and H3 (74.5% and 71.67%). Sperm quality of post equilibration for H0 and H1 were significantly (P<0.05) higher than H2 and H3. Mean percentages of post thawing sperm motility and live for H0 (45.00% and 54.50%) were significantly (P<0.05) higher than H1 (36.67% and 47.33%), H2 (20.83% and 25.00%), and H3 (20.00% and 28.83%). Mean percentages of post thawing sperm IAC and IPM for H0 (47.83% and 48.83%) were significantly (P<0.05) higher than H1 (42.67% and 38.50%), H2 (27.17% and 26.50%), and H3 (24.67% and 25.00%). In conclusion, freeze-thawed ram epididymal spermatozoa collected from fresh cauda epididymis after slaughter can be used for artificial insemination (AI) or in vitro embryo production programs.

PENDAHULUAN

Penerapan teknologi reproduksi khususnya inseminasi buatan (IB) dan produksi embri secara in vitro hingga saat ini masih populer dengan menggunakan spermatozoa dalam bentuk semen cair dan beku yang diolah dari hasil koleksi semen melalui ejakulasi. Sumber spermatozoa yang lain seperti epididimis hewan atau temak yang telah disembelih belum banyak mendapat perhatian, sehingga biasanya terbuang begitu saja. Padahal spermatozoa yang berasal dari bagian cauda epididimis memiliki kemampuan membhuahi oosit yang sama baiknya dengan spermatozoa hasil ejakulasi (Hafez dan Hafez 2000). Hal ini karena spermatozoa yang ada di bagian cauda epididimis telah melewati proses pematangan, yakni proses berpindahnya posisi butiran sitoplasma dari
daerah proksimal ke arah distal atau hilang sama sekali dari akor spermatozoa selama spermatozoa berada di bagian caput dan corpus epididimis (Axner et al. 1999).

Upaya pengolahan spermatozoa yang dikoleksi dari cauda epididimis dalam bentuk semen cair dan beku untuk keperluan aplikasi berbagai teknologi reproduksi, menjadi metode alternatif yang dapat diterapkan pada ternak atau hewan yang memiliki kualitas genetik yang unggul, tetapi tidak dapat ditampung semennya karena berbagai alasan, seperti tidak bersedia melayani vagina buatan, tidak respons terhadap elektroejakulator dan masase, pincang, atau sebab-sebab lain yang menyebabkan hewan tersebut tidak mau melakukan aktivitas kawin. Metode ini juga akan sangat membantu dalam upaya menyelamatkan plasma nutfah ternak atau hewan jantan yang mati secara mendadak, serta terhadap hewan-hewan langka, buas atau liar yang sedang ditangkarkan tetapi tidak dapat melakukan aktivitas kawin secara normal karena kondisi tempat penangkaran yang tidak sesuai dengan kondisi habitat aslinya.

Sering terjadi kematian ternak jantan unggul atau hewan langka di daerah yang jauh dari tempat pengolahan semen, sehingga sumberdaya genetik berupa spermatozoa tidak dapat diselamatkan. Pada percobaan ini dilakukan penyimpanan epididimis di dalam larutan NaCl fisiologik dan disimpan pada suhu 5 °C dengan maksud untuk mengetahui kemampuan adaptasi epididimis dalam mempertahankan daya hidup spermatozoa. Hal ini juga dimaksudkan sebagai model untuk antisipasi di daerah-daerah terpencil yang tidak memungkinkan dilakukan pengolahan semen, sehingga epididimis harus ditranspor ke tempat pengolahan yang mungkin membutuhkan waktu beberapa hari. Spermatozoa yang memenuhi syarat kualitas dibukukan sebagai upaya untuk memperpanjang dayaguna material genetik tersebut.

Percobaan ini bertujuan menguji pengaruh lama penyimpanan epididimis pada suhu 5 °C terhadap kualitas spermatozoa cauda epididimis sebelum dan setelah pengolahan. Hasil percobaan diharapkan dapat menjadi bagian dari solusi dalam upaya mengoptimalkan pemanfaatan potensi genetik temak atau hewan jantan unggul yang mati secara mendadak, pejantan yang tidak dapat melakukan aktivitas kawin secara normal, hewan jantan yang tidak memberikan respons terhadap upaya penampungan semen dengan menggunakan alat bantu, dan sebagai model terhadap upaya pelestarian sumberdaya genetik hewan jantan liar atau hewan langka melalui pendekatan di bidang teknologi reproduksi.
BAHAN DAN METODE

Tempat dan Waktu Penelitian

Bahan Penelitian

Pengambilan dan Penyimpanan Epididimis

Epididimis domba (Gambar 6 bagian A) beserta testis diperoleh dari rumah pemotongan hewan (RPH) tradisional di Ciampea, Bogor. Epididimis dipisahkan dari testis dan dibilas dengan larutan NaCl fisiologik kemudian dimasukkan ke dalam tabung gelas berisi larutan NaCl fisiologik yang ditutup rapat dan dibawa ke laboratorium pada suhu lingkungan. Sebagian epididimis dikoleksi spermatozoanya dari bagian cauda, sedangkan yang lain dimasukkan ke dalam tabung gelas berisi larutan NaCl fisiologik dan ditutup rapat, kemudian disimpan di dalam lemari es pada suhu 5 °C (Gambar 6 bagian B).

Gambar 6 A. Epididimis domba garut setelah dipisahkan dari testis, caput (a), corpus (b), cauda (c), dan vas deferens (d). B. Penyimpanan epididimis di dalam lemari es.
Perkakasan lama penyimpanan epididimis yang dicobakan adalah: spermatozoa langsung dikeluarkan segera setelah epididimis tiba di laboratorium, sekitar tiga jam setelah hewan disembelih (H0), serta spermatozoa dikeluarkan setelah epididimis disimpan selama satu hari (H1), dua hari (H2), dan tiga hari (H3) di dalam lemari es pada suhu 5 °C.

Bahan dan Peralatan

Bahan-bahan penelitian yang digunakan adalah: epididimis, modifikasi pengencer Tris (Tabel 17), formaldehid, NaCl fisiologik, NaCl 3%, larutan hipoosmotik (tekanan osmotik 100 mOsmol/l), pewarna eosin B, alkohol, nitrogen cair, dan lain-lain.

<table>
<thead>
<tr>
<th>Bahan</th>
<th>Jumlah</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris(hydroxymethyl)aminomethane (g)</td>
<td>3.32</td>
</tr>
<tr>
<td>Asam sitrat-monohidrat (g)</td>
<td>1.86</td>
</tr>
<tr>
<td>D(-)Fruktosa (g)</td>
<td>1.37</td>
</tr>
<tr>
<td>Laktosa-monohidrat 60 mM (g)</td>
<td>2.16</td>
</tr>
<tr>
<td>Glutation (g)</td>
<td>0.05</td>
</tr>
<tr>
<td>Gliserol (ml, v/v)</td>
<td>5</td>
</tr>
<tr>
<td>Kuning telur ayam ras (ml, v/v)</td>
<td>20</td>
</tr>
<tr>
<td>Penisilin-G (IU/ml)</td>
<td>1000</td>
</tr>
<tr>
<td>Streptomisin sulfat (µg/ml)</td>
<td>1000</td>
</tr>
<tr>
<td>Akuabestilata ad (ml)</td>
<td>100</td>
</tr>
</tbody>
</table>

Keterangan: merupakan komposisi pengencer terbaik pada percobaan ketiga.

Alat-alat yang digunakan adalah: guntting stainless steel steril, syringe, cawan petri, tabung reaksi, gelas erlenmeyer, gelas piala, gelas ukur, termometer, mikroskop Cahaya, gelas objek, gelas penutup, pipet tetes, sentrifus, bunsen, hamositometer, pH meter, timbangan mikro, kontainer N2 cair dan perlengkapannya, straw mini (0.25 ml), rak straw, penangas air, lemari es, styrofoam, dan lain-lain.

Metode Penelitian

Koleksi dan Kriopreservasi Spermatozoa

Spermatozoa dikoleksi dengan cara membuat sayatan-sayatan pada cauda epididimis menggunakan guntting stainless steel steril kemudian dibias-tekkan dengan
larutan pengencer Tris tanpa gliserol sebanyak 2 ml (Gambar 7). Spermatozoa dikoleksi pada kondisi suhu kamar, baik untuk epididimis segar (pertakuan H0) maupun untuk epididimis yang telah disimpan pada suhu 5 °C (pertakuan H1, H2, dan H3). Spermatozoa segar hasil koleksi dievaluasi kualitasnya meliputi persentase motilitas, persentase spermatozoa hidup, konsentrasi, persentase abnormalitas, persentase butiran sitoplasma, persentase tudung akrosom utuh (TAU), dan persentase membran plasma utuh (MPU). Spermatozoa hasil koleksi disentrifugasi dengan kecepatan 3000 rpm selama 20 menit pada suhu kamar dan supematan dibuang. Sedimen (spermatozoa) diencerkan kembali dengan pengencer Tris yang mengandung gliserol. Untuk mengetahui jumlah pengencer yang dibutuhkan dihitung dengan persamaan seperti pada percobaan kedua.

Gambar 7 Cauda epididimis yang telah disayat dan dibias-tekan dengan pengencer Tris.

Spermatozoa yang telah diencerkan dikemas di dalam straw mini (0.25 ml) dengan konsentrasi 200 juta spermatozoa motil per straw kemudian diekuilibrasikan di dalam lemari es pada suhu 5 °C selama tiga jam. Setelah ekualibrasi, setiap sampel semen masing-masing pertakuan dievaluasi kualitas spermatozoanya.

Pembekuan spermatozoa diawali dengan meletakkan straw 10 cm di atas permukaan nitrogen cair (suhu sekitar –130 °C) selama 15 menit di dalam styrofoam yang ditutup rapat. Kemudian straw dimasukkan ke dalam nitrogen cair (suhu sekitar –196 °C) dan disimpan di dalam kantong nitrogen cair. Setelah disimpan selama satu minggu, setiap sampel straw masing-masing pertakuan dicairkan kembali (thawing) untuk dievaluasi kualitasnya. Semen beku dicairkan kembali dengan cara memasukkan straw ke dalam air bersuhu 37 °C (di dalam penangas air) selama 30 detik.
Peubah yang Diamati

Peubah kualitas semen yang diamati adalah:
1. Kuantitas dan kualitas spermatozoa segar setelah koleksi, meliputi konsentrasi, persentase motilitas, persentase spermatozoa hidup, persentase abnormalitas, persentase butiran sitoplasma, persentase TAU, dan persentase MPU.
2. Kualitas spermatozoa meliputi persentase motilitas, persentase spermatozoa hidup, persentase TAU, dan persentase MPU masing-masing setelah tahap ekulibrasi dan thawing.

Peubah konsentrasi spermatozoa dihitung menggunakan sampel spermatozoa hasil koleksi sebelum dan setelah diencerkan dengan 2 ml pengencer Tris tanpa gliserol. Peubah kualitas spermatozoa segar yang lain dievaluasi setelah spermatozoa diencerkan dengan pengencer Tris tanpa gliserol.

Analisis Data

Data yang diperoleh dianalisis dengan analisis ragam dalam bentuk rancangan acak lengkap dengan empat perlakuan dan enam kali ulangan. Perbedaan antarperlakuan diuji dengan uji beda nyata terkecil (Steel dan Torrie 1993).

HASIL DAN PEMBAHASAN

Pengaruh Waktu Penyimpanan Epididimis Terhadap Kualitas Spermatozoa Segar Hasil Koleksi

Hasil penelitian juga didapatkan bahwa konsentrasi spermatozoa satu buah cauda epididimis hasil koleksi setelah diencerkan dengan 2 ml pengencer modifikasi Tris tanpa gliserol adalah rata-rata 2730 juta/ml (berkisar antara 2080 dan 3460 juta/ml). Dengan demikian spermatozoa yang dikoleksi dari satu buah cauda epididimis dapat diolah dan dikemas di dalam rata-rata 19 buah straw mini yang mengandung 200 juta spermatozoa motil. Angka tersebut diperoleh dengan perhitungan berikut: (volume x persentase motilitas x konsentrasi) dibagi 200 juta, yakni (2 x 0.7 x 2730 juta)/200 juta = 19.11.

Perbedaan hasil yang diperoleh dengan yang dilaporkan oleh beberapa peneliti diduga karena perbedaan jenis hewan percobaan yang digunakan dan metode pengoleksian spermatozoa. Feradis et al. (2001) mengoleksi spermatozoa dengan cara aspirasi menggunakan spuit jarum suntik langsung pada cauda epididimis hewan yang masih hidup, sehingga spermatozoa yang teraspirasi jumlahnya terbatas. Spermatozoa yang dikoleksi dengan cara aspirasi akan diperoleh hasil penghitungan konsentrasi yang jauh lebih rendah daripada konsentrasi spermatozoa cauda epididimis yang sesungguhnya. Hal ini karena pada saat aspirasi, spermatozoa bercampur dengan medium pengencer (medium aspirasi) yang terdapat di dalam spuit jarum suntik. Volume spermatozoa yang teraspirasi tidak diketahui, menyebabkan kadar pengenceran terhadap spermatozoa tidak diketahui, sehingga hasil penghitungan konsentrasi spermatozoa pun tidak akan sesuai dengan konsentrasi sesungguhnya.

Hasil penelitian menunjukkan bahwa penyimpanan epididimis pada suhu 5 °C hingga tiga hari masih mampu mempertahankan kualitas spermatozoa cauda epididimis dalam batas minimal yang dipersyaratkan untuk dapat digunakan dalam penerapan berbagai teknologi reproduksi, seperti IB dan produksi embrio secara in vitro, karena masih memiliki rata-rata persentase motilitas yang cukup tinggi, yakni berkisar antara 51.67% (perlakuan Ho) dan 70.83% (perlakuan Ho) (Tabel 18). Menurut Toelihere (1993) serta Hafez dan Hafez (2000) semen yang memenuhi syarat digunakan dalam program IB harus memiliki persentase motilitas paling sedikit 40%.

Waktu penyimpanan epididimis pada suhu 5 °C masih optimal hingga satu hari (H1), ditandai dengan nilai persentase motilitas dan spermatozoa hidup (70.00% dan 79.17%) yang tidak berbeda dengan spermatozoa yang dikoleksi dari epididimis segar
(perlakuan Ho) yakni 70.83% dan 62.83% (Tabel 18). Berbeda dengan penyimpanan selama dua dan tiga hari terjadi penurunan persentase motilitas yang cukup tinggi, yakni sekitar 10%. Dari hasil beberapa penelitian juga dilaporkan bahwa persentase motilitas spermatozoa asal cauda epididimis setelah diencerkan sebesar 50 – 80% pada domba (Senger 1999), 70 – 75% pada badak (Lubbe et al. 1999), 38 – 77% pada kuda (Squires et al. 2000), rata-rata 64% pada monyet ekor panjang (Feradis et al. 2001), dan rata-rata 57.6% pada rusa merah (Soler et al. 2003). Persentase MPU yang diperoleh berkisar antara 70% dan 88%, lebih rendah dibandingkan dengan yang dilaporkan Soler et al. (2003) pada rusa merah yakni lebih dari 90%, tetapi lebih tinggi dibandingkan dengan pada monyet ekor panjang yang hanya rata-rata 63.50% (Feradis et al. 2001).

<table>
<thead>
<tr>
<th>Tabel 18 Pengaruw waktu penyimpanan epididimis terhadap kualitas spermatozoa asal cauda epididimis domba garut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peubah</td>
</tr>
<tr>
<td>Kualitas spermatozoa</td>
</tr>
<tr>
<td>Motilitas (%)</td>
</tr>
<tr>
<td>Spermatozoa hidup (%)</td>
</tr>
<tr>
<td>Abnormalitas (%)</td>
</tr>
<tr>
<td>Butiran sitoplmasa (%)</td>
</tr>
<tr>
<td>TAU (%)</td>
</tr>
<tr>
<td>MPU (%)</td>
</tr>
</tbody>
</table>

a,b,c,d dalam baris yang sama, menunjukkan berbeda nyata (P<0.05)
Ho, H1, H2, H3 = penyimpanan epididimis selama 0, 1, 2, dan 3 hari.

Terjadi penurunan kualitas spermatozoa seiring dengan bertambahnya waktu penyimpanan epididimis pada suhu 5 °C. Hal ini diduga disebabkan oleh kondisi lingkungan mikro cauda epididimis mengalami perubahan dari kondisi alami seperti yang terjadi pada hewan hidup. Kondisi lingkungan mikro yang dimaksud bukan hanya faktor suhu, tetapi seluruh kondisi fisiologik di dalam epididimis akan mengalami perubahan. Semakin lama penyimpanan epididimis akan semakin menurunkan kualitas seluruh senyawa-senyawa kimia yang ada di dalamnya, yang pada akhirnya menurunkan daya preservasinya terhadap spermatozoa yang terkandung di dalam cauda epididimis. Dengan demikian spermatozoa akan mengalami proses degenerasi, baik morfologi maupun fungsional selama berada di dalam epididimis setelah hewan tersebut mati. Menurut Bearden dan Fuquay (1997) kondisi ideal yang terjadi di dalam cauda epididimis
pada hewan yang masih hidup merupakan perpaduan dari hasil kerja sekian banyak mekanisme yang kompleks, yang tidak mungkin dapat dipenuhi pada perlakuan penyimpanan epididimis secara in vitro.

Evaluasi terhadap parameter persentase abnormalisitas dan butiran sitoplasma menunjukkan hasil yang tidak berbeda nyata antarperlakuan. Hal ini diduga karena perlakuan penyimpanan epididimis memang tidak memberikan dampak terhadap kedua

Fenomena yang menunjukkan bahwa daya hidup spermatozoa masih mampu dipertahankan selama tiga hari penyimpanan epididimis pada suhu 5 °C walaupun terjadi penurunan kualitas, diduga karena di dalam cairan cauda epididimis terdapat senyawa-senyawa seperti lecitin (fosfatidil kolin) yang mampu menghambat terjadinya kejutan dingin pada spermatozoa. Fosfatidil kolin merupakan fosfolipida utama yang menyusun lipida bilayer membran plasma sel spermatozoa. Dengan demikian, fosfatidil kolin yang ada di dalam cairan cauda epididimis akan menjadi pelindung (semacam "jaket") fosfatidil kolin membran plasma sel spermatozoa, sehingga kerusakan membran plasma sel spermatozoa yang terjadi baik saat penyimpanan epididimis maupun saat koleksi dan pengolahan spermatozoa dapat diperkecil. Dengan menyimpan epididimis pada suhu rendah (5 °C), akan membuat senyawa-senyawa kimia yang terkandung di dalam cairan cauda epididimis dan berfungsi mendukung kelangsungan hidup spermatozoa lebih awet dibandingkan jika epididimis disimpan pada suhu yang lebih tinggi, misalnya pada suhu kamar, sehingga memiliki kesempatan yang lebih panjang untuk melindungi spermatozoa. Menurut Soler et al. (2003) kualitas spermatozoa yang dikoleksi dari cauda epididimis yang telah disimpan selama empat hari pada suhu 5 °C nyata lebih tinggi dibandingkan dengan spermatozoa yang dikoleksi dari epididimis yang telah disimpan pada suhu kamar.

Kualitas Spermatozoa Setelah Proses Pengolahan

Hasil penelitian ini diperoleh bahwa perlakuan Ho menghasilkan spermatozoa dengan kualitas terbaik pada tahap setelah ekulibrasi dan thawing, dan layak digunakan
untuk keperluan IB atau produksi embrio secara in vitro. Semakin lama waktu penyimpanan epididdimis pada suhu 5 °C semakin menurunkan seluruh parameter kualitas spermatozoa cauda epididdimis yang dievaluasi, baik pada tahap setelah ekulibrasi maupun setelah thawing. Rata-rata persentase motilitas, spermatozoa hidup, TAU, dan MPU setelah tahap thawing perlakuan H0 (45.00%, 54.50%, 47.83%, dan 48.83%) lebih tinggi dibandingkan dengan perlakuan H1 (36.67%, 47.33%, 42.67%, dan 38.50%), H2 (20.83%, 25.00%, 27.17%, dan 26.50%), dan H3 (20.00%, 28.83%, 24.67%, dan 25.00%) (P<0.05) (Tabel 19). Hal ini juga didukung oleh penurunan persentase motilitas, spermatozoa hidup, TAU, dan MPU dari tahap setelah pengenceran ke tahap setelah thawing. Penurunan persentase motilitas, spermatozoa hidup, TAU, dan MPU perlakuan H0 (25.83%, 28.33%, 36.00%, dan 32.50%) lebih rendah dibandingkan dengan perlakuan H1 (33.33%, 31.84%, 41.00%, dan 41.00%), H2 (40.00%, 44.83%, 51.66%, dan 51.67%), dan H3 (31.67%, 37.34%, 49.83%, dan 46.67%).

<table>
<thead>
<tr>
<th>Peubah kualitas</th>
<th>Tahap pengolahan</th>
<th>Perlakuan waktu penyimpanan epididdimis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>H0</td>
</tr>
<tr>
<td>Motilitas (%)</td>
<td>Ekuilibrasi</td>
<td>58.33 ± 2.36°</td>
</tr>
<tr>
<td></td>
<td>Thawing</td>
<td>45.00 ± 4.08°</td>
</tr>
<tr>
<td>Spermatozoa</td>
<td>Ekuilibrasi</td>
<td>70.50 ± 2.87°</td>
</tr>
<tr>
<td>hidup (%)</td>
<td>Thawing</td>
<td>54.50 ± 2.14°</td>
</tr>
<tr>
<td>TAU (%)</td>
<td>Ekuilibrasi</td>
<td>67.17 ± 1.77°</td>
</tr>
<tr>
<td></td>
<td>Thawing</td>
<td>47.83 ± 2.27°</td>
</tr>
<tr>
<td>MPU (%)</td>
<td>Ekuilibrasi</td>
<td>68.33 ± 1.50°</td>
</tr>
<tr>
<td></td>
<td>Thawing</td>
<td>48.83 ± 2.19°</td>
</tr>
</tbody>
</table>

a,b,c,d dalam baris yang sama, menunjukkan berbeda nyata (P<0.05) H0, H1, H2, H3 = penyimpanan epididdimis selama 0, 1, 2, dan 3 hari.

Secara umum terjadi penurunan kualitas spermatozoa baik setelah ekulibrasi maupun setelah thawing seiring dengan bertambahnya waktu penyimpanan epididdimis. Hal ini terjadi karena kualitas spermatozoa sebelum dilakukan proses pengolahan telah mengalami perbedaan yang cukup besar antarpelatuan. Kualitas spermatozoa sebelum proses pengolahan pada perlakuan H0 lebih baik dibandingkan dengan perlakuan H1, H2, dan H3 (Tabel 18). Ini menyebabkan spermatozoa pada perlakuan H0 memiliki
kemampuan yang lebih baik dalam menghadapi tekanan yang berat selama proses pengolahan, terutama terhadap perubahan suhu yang drastis turun saat pembekuan dan drastis meningkat saat thawing, dibandingkan dengan spermatozoa pada perlakuan H1, H2, dan H3.

Integritas membran plasma sel spermatozoa (nilai persentase MPU) setelah thawing perlakuan H1, H2, dan H3 nyata lebih rendah dibandingkan dengan perlakuan Ho, walaupun pengencer telah ditambahkan antioksidan berupa glutation. Tidak mampunya glutation bekerja secara maksimal dalam menjaga integritas membran plasma sel selama proses pembekuan dan thawing karena spermatozoa pada perlakuan H1, H2, dan H3 sebelum proses pengolahan telah mengalami kerusakan membran plasma sel yang nyata lebih tinggi dibandingkan dengan perlakuan Ho. Nilai persentase MPU spermatozoa perlakuan H1, H2, dan H3 yang nyata lebih rendah dibandingkan dengan perlakuan Ho (Tabel 18), menjadi indikator bahwa telah terjadi kerusakan membran plasma sel spermatozoa pada perlakuan H1, H2, dan H3 yang tinggi akibat berbagai sebab, seperti peroksidasi lipida, dibandingkan dengan spermatozoa yang terdapat pada perlakuan Ho sebelum spermatozoa memasuki tahap pengenceran, ekullibrasi, pembekuan, dan thawing. Padahal menurut Salamon dan Maxwell (2000) periode yang paling kritis dalam upaya mempertahankan kualitas spermatozoa selama proses pengolahan semen adalah pada tahap pembekuan dan thawing. Menurut Beconi et al. (1993) senyawa antioksidan efektif mencegah terjadinya peroksidasi lipida hanya jika semen memiliki kualitas yang baik sebelum pengolahan. Apabila membran plasma sel mengalami kerusakan, proses metabolisme di dalam sel akan terganggu sehingga produksi energi berupa ATP menurun yang berakibat menurunnya motilitas dan daya hidup spermatozoa. Rusaknya membran plasma sel juga akan berpangaruh buruk terhadap keutuhan membran plasma vesikel akrosom, yang menyebabkan rendahnya nilai persentase TAU.

Dari hasil penelitian ini diperoleh bahwa kualitas spermatozoa cauda epididimis yang telah dibekukan lebih rendah dibandingkan dengan spermatozoa hasil ejakulasi. Sebagai perbandingan, persentase motilitas, spermatozoa hidup, TAU, dan MPU semen beku domba garut (hasil ejakulasi) adalah masing-masing sebesar 52.78%, 58.78%, 54.22% dan 56.22% (penelitian tahap ketiga), sedangkan pada spermatozoa cauda epididimis hanya masing-masing sebesar 45.00%, 54.50%, 47.83%, dan 48.83%. Fenomena rendahnya kualitas spermatozoa yang diikoleksi dari bagian cauda epididimis dan telah dibekukan dibandingkan dengan spermatozoa hasil ejakulasi juga dilaporkan
oleh peneliti sebelumnya. Garde et al. (2000) melaporkan persentase motilitas dan persentase spermatozoa yang memiliki akrosom utuh hasil ejakulasi rusa merah iberian sebesar masing-masing 51.70% dan 50.00%, lebih tinggi dibandingkan dengan spermatozoa cauda epididimis yang hanya sebesar 45.00% dan 49.00%. Hasil serupa juga dilaporkan Squires et al. (2000) bahwa persentase motilitas spermatozoa kuda setelah thawing adalah 5% dan 23% masing-masing untuk spermatozoa cauda epididimis dan semen hasil ejakulasi.

Rendahnya kualitas spermatozoa asal cauda epididimis setelah pengolahan diduga karena tidak seperti pada spermatozoa hasil ejakulasi, membran plasma sel spermatozoa cauda epididimis tidak mendapatkan perlindungan berupa glikoprotein yang disintesis oleh kelenjar vesikularis hewan jantan dan disekresikan ke dalam plasma semen. Glikoprotein ini sangat penting peranannya dalam melindungi membran plasma sel spermatozoa dari kerusakan akibat pengaruh kejutan dingin dan serangan radikal bebas akibat kontak spermatozoa dengan oksigen saat spermatozoa dikoleksi dan selama proses pengolahan. Menurut Situmorang et al. (1995), glikoprotein tersebut bersifat khas

Hasil yang diperoleh menunjukkan bahwa spermatozoa yang dikoleksi dari cauda epididimis segar domba garut (perlakuan Ho) baik dalam bentuk segar (setelah diencerkan) maupun setelah dibekukan, layak digunakan dalam program IB dan produksi embrio secara in vitro karena memiliki persentase motilitas, TAU, dan MPU masing-masing lebih dari 40%, 30%, dan 60%. Semen beku yang layak digunakan dalam program IB harus memiliki persentase motilitas paling sedikit 40% (Toelihure 1993; Hafez dan Hafez 2000), persentase TAU lebih dari 30% (Evans dan Maxwell 1987), dan persentase MPU semen segar lebih dari 60% (Revell dan Mrode 1994).

KESIMPULAN

Berdasarkan hasil penelitian ini, dapat disimpulkan sebagai berikut:
1. Penyimpanan epididimis di dalam larutan NaCl fisiologik pada suhu 5 °C hingga tiga hari masih mampu mempertahankan kualitas spermatozoa cauda epididimis segar, dan memenuhi syarat digunakan dalam program IB atau produksi embrio in vitro.
2. Spermatozoa cauda epididimis hasil kriopreservasi yang dikoleksi dari epididimis segar (perlakuan Ho) memenuhi syarat digunakan dalam program IB atau produksi embrio in vitro.
3. Kualitas spermatozoa cauda epididimis baik segar maupun setelah pengolahan (pengenceran, ekualibras, pembekuan, dan thawing) menurun seiring dengan bertambahnya waktu penyimpanan epididimis pada suhu 5 °C.
DAFTAR PUSTAKA

FERTILITAS SPERMATOZOA EJAKULAT DAN EPIDIDIMIS YANG TELAH DIBEKUKAN PADA DOMBA GARUT

ABSTRAK

Tujuan penelitian ini adalah menguji dan membandingkan daya fertilitas antara spermatozoa domba garut hasil ejakulasi yang telah dibekukan (Gloes) dan spermatozoa cauda epididimis domba garut yang telah dibekukan (Ho) melalui inseminasi buatan (IB). Domba-domba betina yang akan diinseminasi sebelumnya disinkronkan estrusnya dengan mengimplan CIDR-G® di dalam vagina selama 13 hari. Inseminasi dilakukan secara transcervical 53 jam setelah pelepasan implan CIDR-G® dan diulangi 7 jam kemudian masing-masing dengan satu dosis. Pengamatan dilakukan untuk mengetahui gejala-gejala estrus, persentase estrus, persentase kebuntingan, dan persentase kelahiran. Kebersihan ditentukan dengan pemeriksaan menggunakan ultrasonografi (USG) 35, 83, dan 120 hari setelah IB. Hasil penelitian menunjukkan bahwa rata-rata 95.24\% betina memperlihatkan gejala utama estrus, yakni betina diam saat dinaiki pejantan pengusik (teaser). Persentase estrus yang diperoleh adalah 100\%, sedangkan waktu awal munculnya (onset) estrus adalah rata-rata 33.67 jam setelah pelepasan implan CIDR-G®. Persentase kebuntingan dan kelahiran perlakuan Gloes (58.33\% dan 58.33\%) nyata (P<0.05) lebih tinggi dibandingkan dengan perlakuan Ho (44.44\% dan 33.33\%). Dapat disimpulkan bahwa spermatozoa hasil ejakulasi dan yang dikoleksi dari cauda epididimis domba garut dan telah dibekukan layak digunakan dalam program IB secara intracervical serta menghasilkan angka kebuntingan dan kelahiran yang cukup tinggi.

ABSTRACT

The purpose of this research was to examine and compare the fertility between frozen semen from ejaculation (Gloes) and frozen spermatozoa from cauda epididymis (Ho) by artificial insemination. Before insemination, estrus of ewes were synchronized using intravaginal administration of CIDR-G® for 13 days. Artificial insemination by intracervical was carried out 53 hours after release of CIDR-G® and repeated 7 hours later with one dose, respectively. Symptom of estrus, onset of estrus, percentage of estrus, pregnancy and lambing rate were observed. Pregnancy was determined with ultrasonography (USG) 35, 83, and 120 days after insemination. Results of this research indicated that 95.24\% ewes showed standing heat as the main symptom of estrus. Percentage of estrus was 100\%, and onset of estrus was 33.67 hours after release of CIDR-G®. Pregnancy and lambing rate for Gloes (58.33\% and 58.33\%) was significantly (P<0.05) higher than Ho (44.44\% and 33.33\%). In conclusion, frozen semen from ejaculation and frozen sperm from cauda epididymis of garut ram are suitable for use in artificial insemination by intracervical method.
PENDAHULUAN

Keberhasilan kebuntingan temak yang dikawinkan dengan metode IB ditentukan oleh beberapa faktor. Kualitas semen yang digunakan, kondisi betina, dan keterampilan inseminator merupakan faktor utama yang menentukan tingkat keberhasilan IB. Khusus pada temak kecil seperti domba, terdapat faktor pembatas lainnya yang tidak dijumpai pada temak besar seperti sapi. Faktor pembatas yang dimaksud adalah kesulitan mendeposisi semen sejauh mungkin melalui cervix saat IB seperti yang dapat dilakukan pada temak sapi. Ini menyebabkan tingkat keberhasilan IB dengan metode intracervical pada temak domba lebih rendah dibandingkan dengan pada temak sapi, sehingga menjadi kendala berkembangnya secara luas penerapan teknologi tersebut pada temak domba khususnya dan temak ruminansia kecil pada umumnya. Angka kebuntingan hasil IB pada temak ruminansia kecil sebenarnya dapat ditingkatkan dengan menggunakan metode pendeposisian semen secara intrauterine melalui teknik pembedahan atau dengan bantuan alat laparoskopi, akan tetapi metode ini tidak aplikatif diterapkan secara luas di lapang. Merujuk pada kendala-kendala tersebut di atas, untuk dapat meningkatkan angka kebuntingan pada domba, maka alternatif yang paling memungkinkan untuk ditingkatkan adalah memperbaiki kualitas semen, baik semen cair maupun semen beku, meningkatkan konsentrasi spermatozoa yang diinseminasikan, melakukan inseminasi tepat waktu (hal ini memerlukan penelitian khusus tentang waktu terjadinya ovulasi domba Indonesia, sehingga dapat ditentukan waktu yang tepat untuk melakukan inseminasi), serta merancang alat inseminasi yang dapat menembus cervix sejauh mungkin tanpa menimbulkan perlukaan (walaupun hal ini sukar mengingat struktur morfologi saluran cervix domba yang kecil dan tidak beraturan).

Hingga saat ini penerapan teknologi IB pada temak masih populer dengan menggunakan spermatozoa dalam bentuk semen cair dan semen beku yang diolah dari semen hasil ejakulasi. Sumber alternatif spermatozoa yang lain seperti epididimis hewan atau temak yang telah disembelih belum banyak mendapat perhatian, sehingga sering terbuang begitu saja. Padahal spermatozoa yang berasal dari bagian cauda epididimis telah memiliki kemampuan memfertilisasi oosit yang sama baiknya dengan spermatozoa hasil ejakulasi (Hafez dan Hafez 2000).

Metode ini akan sangat membantu dalam upaya mengoptimalkan potensi genetik temak atau hewan jantan unggul yang mengalami masalah dalam melakukan ejakulasi
secara alamiah, serta tidak memberikan respons terhadap upaya penampungan semen menggunakan alat bantu. Koleksi spermatozoa dapat dilakukan dengan cara aspirasi menggunakan spuit jarum suntik langsung pada bagian cauda epididimis temak atau hewan hidup. Teknologi ini juga dapat membantu dalam upaya menyelamatan plasma nutfah temak atau hewan jantan yang mati secara mendadak, serta terhadap hewan hewan langska yang sedang ditangkarkan tetapi tidak dapat kawin secara normal karena kondisi tempat penangkaran yang tidak sesuai dengan kondisi habitat aslinya.

Pada penelitian ini dicoba menguji dan membandingkan tingkat keberhasilan kebuntingan dan kelahiran antara semen beku hasil ejakulasi dan spermatozoa epididimis yang telah dibekukan melalui IB secara intracervical.

BAHAN DAN METODE

Tempat dan Waktu Penelitian

Bahan Penelitian

Hewan Percobaan

Hewan percobaan yang digunakan adalah 21 ekor domba garut betina dewasa kelamin dengan kondisi tubuh dan kesehatan yang baik, berat badan sekitar 30 – 50 kg
dan umur sekitar tiga hingga empat tahun sebagai resipien yang diinseminasi. Domba-domba tersebut dikandangkan secara kelompok, masing-masing kandang berisi empat ekor. Temak diberikan pakan berupa rumput dan leguminosa segar sebanyak 3 – 5 kg dan ampas tahu atau tempe sebanyak 250 g per ekor per hari.

Bahan dan Peralatan

Bahan-bahan penelitian yang digunakan adalah: CIDR-G® (Eazi-Breed, New Zealand) yang mengandung 0.3 g progesteron, semen beku, spermatozoa epididimis beku, alkohol 70%, KY jelly (Johnson and Johnson, Indonesia), dan lain-lain.

Alat-alat yang digunakan adalah: aplikator CIDR-G®, alat inseminasi buatan (hasil modifikasi menggunakan jarum suntik ukuran 18 G), penangas air, spekulum (cocor bebek), kandang jepit khusus, ultrasonografi (USG), gunting, lampu senter, apron, dan lain-lain.

Metode Penelitian

Implan CIDR-G®

CIDR-G® diimplan di dalam vagina seluruh betina yang akan diinseminasi menggunakan aplikator khusus selama 13 hari. Sebelum digunakan, aplikator disterilkan lebih dahulu dengan menyemprotkan alkohol 70% kemudian diolesi dengan jeli. Vulva dibersihkan dengan tusi yang telah dibasahi dengan alkohol 70%. Setelah 13 hari diimplan di dalam vagina, CIDR-G® dicabut.

Pengamatan Estrus

Pengamatan estrus dilakukan 24 jam setelah pencabutan CIDR-G® untuk mengetahui waktu awal munculnya estrus (onset estrus) dengan menggunakan pejantan pengusik (teaser) yang telah dipasangi apron. Gejala-gejala estrus yang diamati meliputi: kondisi vulva (warna dan pembengkakan), ada tidaknya lendir dan betina diam saat dinaiki pejantan pengusik.
Inseminasi Buatan dan Diagnosis Kebuntingan

Inseminasi diakukan secara intracervical 53 jam setelah pencabutan CIDR-G®. Inseminasi diulangi tujuh kemudian, masing-masing dengan satu dosis (satu buah straw).

Uji fertilitas semen beku dilakukan terhadap dua perlakuan, yakni semen hasil ejakulasi yang dibekukan dengan pengencer perlakuan terbaik pada percobaan ketiga, yaitu pengencer Tris + 60 mM laktosa + 0.05% glutation (Gluos) terhadap 12 ekor betina dan spermatozoa cauda epididimis yang dibekukan dengan pengencer Tris + 60 mM laktosa + 0.05% glutation sebagai perlakuan terbaik percobaan keempat (Ho) terhadap sembilan ekor betina. Konsentrasi spermatozoa sebelum dibekukan adalah 200 juta spermatozoa motil setiap straw. Semen beku dithawing dengan cara memasukkan straw ke dalam air bersuhu 37 °C (di dalam penangas air) selama 30 detik. Semen beku yang telah dithawing dimasukkan ke dalam tabung reaksi, kemudian disedot ke dalam alat inseminasi hasil modifikasi menggunakan jarum suntik dan diinseminasikan di dalam lubang cervix betina sejauh mungkin yang dapat ditembus.

Diagnosis kebuntingan dilakukan dengan ultrasonografi (USG) pada hari ke-35, 83, dan 120 setelah inseminasi. Data persentase kelahiran dan jumlah anak yang dilahirkan setiap induk juga dikoleksi.

Peubah yang Diamati

Peubah yang diamati adalah:
1. Gejala-gejala estrus, yakni pengamatan terhadap kondisi vulva (warna, pembengkakan, suhu, lendir), diam saat betina dinaiki pejantan pengusik, waktu awal munculnya estrus (onset estrus), dan persentase betina yang estrus.
 Waktu awal munculnya estrus (onset estrus): waktu yang dibutuhkan mulai dari saat pencabutan CIDR-G® hingga munculnya gejala-gejala estrus pertama kali.
 Persentase estrus: jumlah betina yang estrus dibagi dengan jumlah keseluruhan betina yang disinkronkan estrusnya (diimplan CIDR-G®) dikali 100%.
Persentase kebuntingan: jumlah betina yang bunting dibagi dengan jumlah betina yang diinseminasi dikali 100%.

Persentase kelahiran: jumlah betina yang melahirkan dibagi dengan jumlah betina yang diinseminasi dikali 100%.

Analisis Data

Data persentase kebuntingan dan kelahiran dianalisis dengan uji t (Steel dan Torrie 1993), sedangkan data yang lain disajikan secara deskriptif.

HASIL DAN PEMBAHASAN

Gejala-gejala Estrus

Hasil penelitian menunjukkan bahwa seluruh (100%) domba betina yang telah dilipat dengan CIDR-G® selama 13 hari memperlihatkan gejala-gejala estrus yang sering ditunjukkan hewan betina yang lain seperti sapi, kecuali gejala saling menaik antara sesama betina (Tabel 20). Fenomena diam bila dinaiki pejantan pengusik (standing heat) adalah gejala utama estrus pada temak betina.

<table>
<thead>
<tr>
<th>Peubah gejala estrus</th>
<th>Jumlah (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kondisi vulva</td>
<td></td>
</tr>
<tr>
<td>Warna merah</td>
<td>21/21 (100)</td>
</tr>
<tr>
<td>Bengkak</td>
<td>21/21 (100)</td>
</tr>
<tr>
<td>Suhu hangat</td>
<td>21/21 (100)</td>
</tr>
<tr>
<td>Berlendir</td>
<td>21/21 (100)</td>
</tr>
<tr>
<td>Diam saat dinaiki teaser</td>
<td>20/21 (95.24)</td>
</tr>
</tbody>
</table>

Timbulnya estrus setelah pencabutan implan CIDR-G® disebabkan oleh domba betina kembali memasuki siklus estrus yang baru. Implan CIDR-G® yang mengandung hormon progesteron akan mengakibatkan terjadinya efek umpan balik negatif terhadap sekresi gonadotropin, yakni follicle stimulating hormone (FSH) dan luteinizing hormone (LH). Penghambatan sekresi gonadotropin tidak disertai dengan penghambatan sintesis,

Gejala-gejala estrus yang ditunjukkan hewan betina merupakan manifestasi dari meningkatnya kadar hormon estrogen di dalam darah yang disintesis dan disekresikan oleh folikel setelah pencabutan CIDR-G®. Menurut Toelihere (1993) meningkatnya sekresi hormon estrogen ke dalam darah akan mengakibatkan hewan betina menjadi estrus yang ditandai oleh gejala-gejala seperti vulva bengkak, berwama merah, hangat, dan berlendir; vagina mengeluarkan lendir; saling menaiki sesama betina; dan diam saat dinaiki pejantan.

Khusus pada ternak domba, salah satu gejala khas yang ditunjukkan domba betina saat estrus adalah mengangkat sambil mengibaskan ekor secara perlahan jika pangkal ekor disentuh atau vulva dicium jantan, yang menjadi pertanda agar vulva dapat terlihat dengan jelas dan dapat dipenetrasi penis jantan dengan mudah. Pada domba yang tidak sedang estrus, ekor akan dibiarkan menutupi vulva sehingga jantan mengalami kesulitan melakukan penetrasi, di samping akan lari menjauh apabila didekati jantan.

Waktu Awal Munculnya Estrus (Onset Estrus)

Hasil penelitian menunjukkan terdapat perbedaan antarindividu dalam merespons perlakuan yang diberikan. Ini ditunjukkan dari onset estrus yang cukup beragam antara 28 dan 37 jam setelah pencabutan CIDR-G®. Sebanyak masing-masing satu ekor betina yang memperlihatkan onset estrus 28, 30, dan 37 jam, serta masing-masing enam ekor memperlihatkan onset estrus 32, 34, dan 36 jam setelah pencabutan CIDR-G®. Perbedaan respons ini disebabkan oleh setiap individu hewan dan bangsa ternak memiliki kemampuan yang berbeda dalam memberikan respons terhadap perlakuan yang dikenakan terhadapnya, sesuai dengan potensi genetik yang dimilikinya.

Persentase Betina yang Estrus

Hasil penelitian diperoleh bahwa seluruh (100%) betina yang diimplan CIDR-G® memberikan respons estrus. Ini menunjukkan bahwa perlakuan implan CIDR-G® di dalam vagina selama 13 hari pada domba garut memberikan pengaruh yang efektif untuk menimbulkan estrus dalam waktu yang relatif serentak pada sekelompok ternak.

persentase estrus sebesar 95% dengan menggunakan kombinasi spons yang mengandung 60 mg medroxyprogesterone acetate (MAP) dan 330 IU PMSG segera setelah spons dicabut. Davies dan Beck (1992) melaporkan persentase estrus sebesar 97.6% dengan menggunakan spons yang mengandung 60 mg MAP, serta Quispe et al. (1994) memperoleh persentase estrus sebesar 96.2% dengan menggunakan melengestrol acetate (MGA) secara oral.

Persentase Kebuntingan dan Kelahiran

Pemeriksaan kebuntingan pada domba memberikan hasil yang akurat jika dilakukan dengan menggunakan USG, karena embrio yang ada di dalam uterus tampak di monitor USG (Gambar 8), sehingga sangat memudahkan mendiagnosis apakah induk dalam keadaan bunting atau tidak. Hasil penelitian ini didapatkan bahwa persentase kebuntingan dan kelahiran perlakuan Gluos (58.33% dan 58.33%) nyata (P<0.05) lebih tinggi dibandingkan dengan perlakuan Ho (44.44% dan 33.33%) (Tabel 21). Hasil persentase kebuntingan yang diperoleh pada perlakuan Gluos kurang lebih sama dengan yang dilaporkan Wuwuh (1990) bahwa angka kebuntingan domba priangan yang diinseminasi dengan semen beku adalah 60% dan 46% masing-masing untuk estrus alam dan sinkronisasi estrus menggunakan preparat MAP. Semen diencerkan dengan pengencer Tris dan dosis 150 juta spermatozoa motil per straw (0.25 ml). Domba-domba betina diinseminasi sebanyak tiga kali, dua dosis pada inseminasi pertama dengan selang waktu 30 menit dan diinseminasi kembali satu dosis 12 jam kemudian. Sistem pemeriksaan kebuntingan hanya dengan pengamatan dua kali siklus estrus setelah inseminasi, tanpa pemeriksaan kadar hormon progesteron dan pemeriksaan menggunakan USG. Feradis (1999) melaporkan angka kebuntingan sebesar 60% pada domba st. croix yang diinseminasi dengan semen yang dibekuk dengan pengencer susu skim ditambahkan 0.2% α-tokoferol pada pemeriksaan kadar hormon progesteron 16 hari dan 60 hari setelah inseminasi menggunakan USG. McPhie et al. (2000) melaporkan angka kebuntingan sebesar 60.50% dan 51% pada domba merino masing-masing untuk inseminasi metode intruterine dan intracervical pada pemeriksaan kebuntingan 55 hari setelah IB menggunakan USG. Hunton et al. (1987) melaporkan angka kebuntingan sebesar 55% pada domba yang diinseminasi dengan semen beku secara intruterine.
Tabel 21 Persentase kebuntingan dan kelahiran hasil IB menggunakan semen beku

<table>
<thead>
<tr>
<th>Sumber spermatozoa</th>
<th>Kebuntingan (%)</th>
<th>Kelahiran (%)</th>
<th>Jumlah anak yang lahir (ekor)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tunggal</td>
</tr>
<tr>
<td>Ejakulat (Glose)</td>
<td>7/12 (58.33)</td>
<td>7/12 (58.33)</td>
<td>5</td>
</tr>
<tr>
<td>Epididimis (Ho)</td>
<td>4/9 (44.44)</td>
<td>3/9 (33.33)</td>
<td>3</td>
</tr>
</tbody>
</table>

a,b dalam kolom yang sama menunjukkan berbeda nyata (P<0.05).

Gambar 8 A. Embrio (bulatan putih) umur 35 hari, B. Fetus umur 120 hari, dan C. Kotiledon umur kebuntingan 83 hari.

Persentase kebuntingan yang diperoleh lebih tinggi dibandingkan dengan yang dilaporkan Gil et al. (2002) bahwa angka kebuntingan pada domba Corriedale yang diinseminasi dengan semen beku yang diencerkan memakai pengencer susu skim adalah 30.80% dan 28.50% masing-masing pada pemeriksaan hari ke-21 dan 36 setelah inseminasi. Gil et al. (2003) juga melaporkan angka kebuntingan yang lebih rendah pada domba Corriedale yang diinseminasi dengan semen yang dibekukan dengan pengencer komersial Bioexcell® yakni sebesar 35.90%, 34.80%, dan 28.40% masing-masing pada pemeriksaan hari ke-21, 36, dan 50 menggunakan USG. Akan tetapi hasil yang diperoleh lebih rendah dibandingkan dengan yang dilaporkan Fukui et al. (1994) bahwa angka kebuntingan pada domba Suffolk yang diinseminasi dengan semen beku adalah sebesar 91.20% pada pemeriksaan hari ke-21 dan 85.30% pada pemeriksaan hari ke-61 menggunakan USG. Hasil yang dilaporkan Fukui et al. (1994) lebih tinggi diduga karena perbedaan metode IB yang digunakan. Fukui et al. (1994) menggunakan metode deposisi
semen pada tanduk uterus (metode intrauterine) dengan bantuan laparoskopi, sedangkan penelitian ini menggunakan metode deposisi semen secara intracervical. Metode IB dengan deposisi semen di tanduk uterus akan lebih memudahkan spermatozoa untuk mencapai tempat fertilisasi, sehingga lebih banyak spermatozoa dalam kondisi yang lebih segar yang mencapai tempat fertilisasi dibandingkan dengan metode intracervical. Hal ini karena pada metode intracervical, spermatozoa akan mengalami seleksi yang sangat ketat di daerah cervix, sehingga hanya sedikit spermatozoa (hanya spermatozoa yang memiliki kondisi prima) yang mampu mencapai daerah tempat fertilisasi.

Persentase kelahiran tertinggi dicapai oleh perlakuan Glucos yakni sebesar 58.33% (tujuh ekor melahirkan dari 12 ekor yang diinseminasi) (Tabel 21). Jumlah anak yang dilahirkan ketujuh ekor induk tersebut sebanyak sembilan ekor, terdiri atas enam ekor jantan dan tiga ekor betina (lima ekor induk melahirkan anak tunggal dan dua ekor induk melahirkan anak kembar dua) (Gambar 9 bagian A). Hasil persentase kelahiran yang diperoleh lebih tinggi dibandingkan dengan yang dilaporkan Gil et al. (2002) bahwa angka kelahiran pada domba corridorale yang diinseminasi dengan semen beku adalah sebesar 21.90%. Akan tetapi lebih rendah dibandingkan dengan yang dilaporkan Fukui et al. (1994) bahwa angka kelahiran pada domba suffolk sebesar 85.30%. Hasil yang diperoleh Fukui et al. (1994) lebih tinggi diduga karena metode IB yang digunakan adalah metode deposisi semen di daerah tanduk uterus (metode intrauterine) dengan bantuan alat laparoskopi.

Persentase kebuntingan yang dicapai pada perlakuan spermatozoa cauda epididimis yang telah dibebakan (perlakuan Ht) berdasarkan pemeriksaan menggunakan USG adalah sebesar 44.44%. Selama periode akhir kebuntingan terjadi keguguran pada satu ekor induk, sehingga hanya tiga ekor induk (33.33%) dari sembilan ekor yang diinseminasi yang berhasil melahirkan anak dengan selamat (Tabel 21). Jumlah anak yang dilahirkan ketiga induk tersebut sebanyak tiga ekor terdiri atas satu ekor jantan dan dua ekor betina (semua induk melahirkan anak tunggal) (Gambar 9 bagian B). Hasil yang diperoleh lebih tinggi dibandingkan dengan yang dilaporkan Bravo et al. (2000) bahwa
persentase kebuntingan pada pemeriksaan 21 hari setelah IB sebesar 37.50% pada hewan llama dan alpaca yang diinseminasi dengan spermatozoa asal cauda epididimis yang telah dibekukan.

Gambar 9 A. Anak domba hasil IB dari semen beku (Glōs) dan B. Anak domba hasil IB dari spermatozoa epididimis yang telah dibekukan (Ho).

Perlakuan Glōs menghasilkan angka kebuntingan dan kelahiran yang lebih tinggi dibandingkan dengan perlakuan Ho karena semen beku perlakuan Glōs memiliki kualitas yang lebih baik. Persentase motilitas, spermatozoa hidup, TAU, dan MPU semen beku hasil ejakulasi perlakuan Glōs masing-masing 52.78%, 58.78%, 54.22%, dan 56.22% lebih tinggi dibandingkan dengan spermatozoa epididimis yang telah dibekukan (perlakuan Ho) masing-masing 45.00%, 54.50%, 47.83%, dan 48.83%. Perbedaan kualitas semen beku ini akan berakibat pada perbedaan kemampuan spermatozoa melewati seleksi ketat dan perjalanan panjang saat semen dideposikan di dalam cervix saat IB, sekaligus terjadi perbedaan kemampuan spermatozoa dalam upaya menembus barrier oosit selama proses fertilisasi bertanggung. Sebagai contoh, nilai persentase motilitas dan TAU semen beku perlakuan Glōs yang lebih tinggi dibandingkan dengan spermatozoa epididimis yang telah dibekukan (perlakuan Ho), akan menyebabkan kemampuan spermatozoa ejakulat lebih baik dalam proses penembusan sel-sel pelindung oosit. Motilitas (daya gerak) dan sudut akrosom yang utuh merupakan parameter kualitas spermatozoa yang memegang peranan sangat penting dalam menentukan keberhasilan proses fertilisasi. Motilitas dibutuhkan spermatozoa sebagai sarana dalam upaya mencapai daerah tempat terjadinya fertilisasi dari tempat pendeposisian pada saat inseminasi, dan dalam upaya penembusan
barier pelindung oosit, khususnya cumulus oophorus. Sedangkan tudung akrosom yang utuh sangat penting karena di dalamnya terdapat enzim-enzim lisis (akrosin atau zona lisin) yang dikeluarkan saat reaksi akrosom bertanggung. Enzim-enzim tersebut berfungsi melisis bagian tertentu zona pellucida (tempat spermatozoa terikat dan berlangsungnya reaksi akrosom) yang akan menjadi tempat masuknya spermatozoa ke dalam sitoplasma oosit untuk kemudian membentuk pronukleus jantan, dan dilanjutkan dengan penyatuan material genetik yang dibawa spermatozoa dan oosit (singami) serta terbentuknya embrio.

Persentase kebuntingan yang cukup tinggi pada kedua perlakuan diduga karena penambahan glutation di dalam pengencer semen, yang berfungsi sebagai senyawa antioksidan dan mampu meningkatkan kualitas spermatozoa yang telah dibekukan. Upaya meningkatkan persentase kebuntingan dengan menambahkan glutation di dalam pengencer semen beku telah dilaporkan pada beberapa jenis hewan temak oleh beberapa peneliti. Slaweta dan Laskowska (1987) melaporkan persentase kebuntingan hasil IB semen beku sapi yang diencerkan dengan pengencer susu meningkat dari 54.10% menjadi 60.40% setelah pengencer ditambahkan 5 mM glutation. Hal yang sama dilaporkan Sinha et al. (1996) yang mendapatkan persentase kebuntingan semen beku kambing hasil IB sebesar 49.23% untuk perlakuan kontrol (pengencer Tris), 51.67% untuk perlakuan pengencer Tris + 2 mM glutation, dan 59.18% untuk perlakuan pengencer Tris + 5 mM glutation. Gadea et al. (2000) melaporkan terjadi peningkatan angka penetrasi spermatozoa terhadap oosit dan pembentukan pronukleus jantan dalam percobaan FIV pada semen beku babi yang telah dithawing dan ditambahkan 1 mM dan 5 mM glutation dibandingkan dengan yang tidak ditambahkan glutation.

Menurut Toelihere (1997) nilai persentase kebuntingan hasil IB yang optimum pada temak ruminansia besar seperti sapi adalah 65 – 70%. Jika didasarkan pada nilai tersebut, maka hasil yang diperoleh masih belum optimum, walaupun untuk ukuran temak ruminansia kecil dengan metode IB secara intra-cervical sudah cukup tinggi. Rendahnya angka kebuntingan hasil IB pada domba dibandingkan dengan pada sapi salah satunya disebabkan oleh kesulitan melakukan deposisi semen sejauh mungkin menembus cervix. Ukuran lubang cervix domba sangat kecil dan memiliki struktur yang tidak beraturan (Gambar 10). Dari beberapa kali percobaan pada penelitian ini, diperoleh bahwa lubang cervix yang dapat ditembus insemination gun hasil modifikasi jarum suntik ukuran 18 G hanya sejauh sekitar 1.5 cm, padahal panjang cervix domba lebih dari 5 cm.
Gambar 10 Saluran reproduksi domba garut betina (A) dan cervix (B).

Hasil persentase kebuntingan yang diperoleh mungkin masih dapat ditingkatkan jika pelaksanaan IB didasarkan pada waktu terjadinya onset estrus dan ovulasi. Pada penelitian ini, pelaksanaan IB didasarkan pada waktu yang telah ditentukan sebelumnya yakni 53 jam setelah pelepasan implan CIDR-G dan diulangi 7 jam kemudian serentak untuk semua betina, bukan berdasarkan pada onset estrus. Karena tingkat keserentakan estrus yang masih bervariasi, maka beberapa betina mengalami keseuaian antara waktu terjadinya ovulasi dan waktu IB yang terkait dengan waktu yang dibutuhkan oleh spermatozoa untuk menjalani proses kapasitasi di dalam uterus dan tube fallopian sebelum membuahi oosit, sementara yang lainnya tidak sesuai.

Hasil penelitian ini didapatkan bahwa seluruh betina yang berhasil bunting adalah yang onset estrusnya terjadi pada jam ke-32, 34, dan 36 setelah pelepasan implan CIDR-G®. Diduga bahwa betina-betina yang diinseminasi pada waktu-waktu tersebut masih memiliki oosit hasil ovulasi yang baik untuk dibuahi, dan spermatozoa pun telah merampungkan proses kapasitasinya sehingga sudah memiliki kemampuan yang sempurna untuk membuahi oosit. Betina-betina yang onset estrusnya terjadi lebih cepat dari 32 jam setelah pelepasan CIDR-G®, diduga ovulasinya terjadi lebih awal sehingga pada saat fertilisasi berlangsung oosit telah mengalami proses penuaan, dan proses fertilisasi pun tidak terjadi dengan sempurna atau gagal (IB yang dilakukan tidak tepat waktu karena terlambat). Sebaliknya pada betina yang onset estrusnya terjadi lebih dari 36 jam setelah pelepasan CIDR-G®, spermatozoa tidak memiliki waktu yang cukup untuk menjalani proses kapasitasi dengan sempurna, yang berarti spermatozoa belum memperoleh kemampuannya yang sempurna untuk membuahi oosit, dan berakibat gagalnya fertilisasi (waktu pelaksanaan IB terlalu cepat). Dengan demikian, jika

Pelaksanaan IB dapat dilakukan cukup satu kali saja jika telah diketahui dengan pasti waktu terjadinya ovulasi setelah onset estrus pada domba garut betina, dan ini memerlukan penelitian khusus untuk mengetahui hal tersebut. Akan tetapi, jika waktu pelaksanaan IB tetap didasarkan pada onset estrus, maka pengerjaannya tidak akan serentak untuk jumlah betina yang banyak, walaupun telah diupayakan mensinkronkan estrusnya dengan perlakuan pemberian hormon. Hal ini disebabkan oleh adanya respons setiap betina berbeda terhadap perlakuan pemberian hormon, sehingga waktu terjadinya onset estrus pun cukup beragam antarindividu. Pada penelitian ini, pelaksanaan IB didasarkan pada waktu pelepasan implan CIDR-G®, yang diadopsi dari hasil beberapa penelitian pada jenis domba yang hidup di daerah sub tropik. Hal ini dilakukan dengan pertimbangan agar secara teknis dapat mempermudah pelaksanaan IB, dan diharapkan dapat menjadi rekomendasi untuk diterapkan pada tingkat lapang dengan jumlah betina yang lebih banyak.
KESIMPULAN

Berdasarkan hasil penelitian ini dapat disimpulkan sebagai berikut:

1. Implan CIDR-G® selama 13 hari mampu menimbulkan estrus pada seluruh domba uji dan berlangsung dalam waktu yang relatif serentak.

2. Angka kebuntingan dan kelahiran betina yang diinseminasi dengan spermatozoa hasil ejakulasi yang telah dibekukan lebih tinggi dibandingkan dengan yang diinseminasi memakai spermatozoa epididimis yang telah dibekukan.

3. Spermatozoa asal cauda epididimis domba garut yang telah dibekukan mampu menghasilkan angka kebuntingan dan kelahiran yang cukup tinggi melalui IB secara intracervical.

4. Pelaksanaan IB secara intracervical pada domba garut akan menghasilkan angka fertilitas yang baik jika dilakukan antara 17 dan 21 jam setelah onset estrus, dan diulangi tujuh jam kemudian.

DAFTAR PUSTAKA

PEMBAHASAN UMUM

Hubungan Antarpertemperatur terhadap Karakteristik Penampilan Reproduksi Domba Garut Jantan

Hasil penelitian menunjukkan bahwa semua pejantan yang digunakan dalam serangkaian percobaan memiliki libido yang tinggi serta mampu menghasilkan semen dengan kuantitas dan kualitas baik. Hal ini diduga karena seluruh pejantan yang digunakan memiliki berat badan dan ukuran testis yang besar. Fenomena keterkaitan antara berat badan dengan ukuran testis, tingkat libido, serta kuantitas dan kualitas semen dapat dijelaskan sebagai berikut: peningkatan berat badan juga akan diikuti oleh perkembangan bagian-bagian tubuh yang lain, termasuk organ-organ reproduksi seperti testis, epididimis, dan kelenjar-kelenjar pelengkap. Semakin besar ukuran testis juga menunjukkan semakin besar ukuran dan potensi substansi fungsional (tubuli seminiferi) yang terkandung di dalamnya.

Tubuh pejantan yang besar diperoleh karena faktor genetik dan manajemen perternakan yang baik, terutama pemberian pakan yang cukup, baik kuantitas maupun kualitas. Pakan yang cukup dalam jumlah dan kualitas selain digunakan untuk membentuk otot, juga menjadi bahan baku utama dalam proses sintesis senyawa-senyawa yang diperlukan untuk kegiatan reproduksi, termasuk dalam proses produksi spermatozoa (spermatogenesis).

peredaran darah menuju ke organ sasaran. Boland et al. (1985) melaporkan volume semen serta gerakan massa dan konsentrasi spermatozoa domba suffolk tertinggi didapatkan dalam bulan Juni hingga Agustus, yakni masing-masing 0.97 – 1.50 ml, 3.01 – 3.16 (skala 0 – 5), dan 3203.80 – 3531.60 juta sel spermatozoa/ml. Pada bulan Juni hingga September juga didapatkan ukuran panjang testis dan lingkar skrotum yang terbesar serta konsentrasi hormon testosteron di dalam plasma darah mencapai jumlah tertinggi, yakni masing-masing 18.83 – 20.59 cm, 34.57 – 37.19 cm, dan 8 – 16 ng/ml. Dengan demikian dapat disimpulkan bahwa dalam bulan Juni hingga Agustus, domba suffolk memiliki kemampuan menghasilkan semen dengan kuantitas dan kualitas terbaik karena pada saat itu ukuran testis serta sintesis dan sekresi hormon testosteron dalam keadaan maksimum.

Fenomena paling sahih yang dapat menjelaskan peranan penting hormon testosteron dalam fase akhir proses spermatogenesis terjadi pada hewan rusa jantan. Pada rusa jantan, saat periode rangga velvet (periode lepasnya rangga atau tanduk keras) proses spermatogenesis berlangsung dengan tidak sempurna. Apabila mengoleksi semen pada periode tersebut, hampir tidak dijumpai adanya spermatozoa dalam bentuk yang sempurna, tetapi umumnya masih dalam fase spermatid. Hasil beberapa penelitian menunjukkan bahwa konsentrasi hormon testosteron di dalam peredaran darah pada periode rangga velvet nyata sangat rendah dibandingkan dengan periode rangga keras, yang merupakan periode di mana dapat dikoleksi spermatozoa yang hampir seluruhnya sudah dalam bentuk sempurna.

Kelenjar-kelenjar pelengkap yang terdiri atas kelenjar vesikularis, kelenjar prostat, dan kelenjar bulbouretralis (kelenjar cowper) berfungsi mensintesis dan mensekresikan plasma semen yang merupakan bagian tak terpisahkan dari semen itu sendiri. Plasma semen merupakan media kehidupan bagi spermatozoa karena di dalamnya terkandung senyawa-senyawa yang dibutuhkan untuk berlangsungnya proses metabolisme dan proses-proses biokemik lainnya. Selain itu, menurut Tomes et al. (1979) testosteron juga berperan dalam merangsang perkembangan dan berfungsiya epididimis. Epididimis memegang peranan yang sangat sentral dalam proses perkembangan akhir spermatozoa, yakni proses pematangan sebelum spermatozoa memiliki kemampuan bergerak (motil) dan membuahi oosit.
Sinergi Antara Senyawa Krioprotektan dan Antioksidan dalam Mempertahankan Kualitas dan Fertilitas Semen Beku Domba Garut

Penggunaan krioprotektan intraseluler seperti gliserol dan krioprotektan ekstraseluler seperti laktosa sebagai salah satu komponen pengencer semen, merupakan suatu hal yang mutlak dalam upaya mempertahankan kualitas dan daya fertilitas spermatozoa selama proses kriopreservasi semen. Tanpa krioprotektan, terutama gliserol, hampir seluruh spermatozoa yang telah dibekukan akan mengalami kematian setelah dithawing. Penambahan kedua jenis krioprotektan ini secara bersamaan di dalam pengencer semen diharapkan akan memberikan perlindungan yang lebih sempurna terhadap spermatozoa selama proses kriopreservasi berlangsung.

Dalam penelitian ini, perbaikan kualitas semen beku dengan penambahan kedua jenis krioprotektan tersebut dalam konsentrasi yang tepat dapat dibuktikan. Kombinasi penambahan 5% gliserol dan 60 mM laktosa di dalam pengencer Tris menjadi perlakuan terbaik dalam menghasilkan semen beku domba garut pada percobaan pengujian penggunaan senyawa krioprotektan. Perlakuan ini mampu meningkatkan nilai seluruh peubah kualitas spermatozoa yang diamati setelah tahap thawing dibandingkan dengan perlakuan tanpa penambahan laktosa (kontrol). Persentase motilitas, spermatozoa hidup, TAU, dan MPU meningkat masing-masing sebesar rata-rata 7.50%, 8.33%, 6.33%, dan 5.33% (diolah dari Tabel 7, 8, 9, dan 10).

Peningkatan nilai kualitas spermatozoa menurun dengan meningkatnya konsentrasi gliserol dan laktosa. Perlakuan kombinasi 7% gliserol dan 60 mM laktosa menghasilkan peningkatan persentase motilitas, spermatozoa hidup, TAU, dan MPU masing-masing hanya sebesar rata-rata 2.50%, 3.16%, 5.00%, dan 1.67%. Bahkan pada perlakuan kombinasi 7% gliserol dan 120 mM laktosa terjadi penurunan nilai semua peubah kualitas spermatozoa yang diamati setelah thawing (diolah dari Tabel 7, 8, 9, dan 10). Hal ini diduga karena dengan kombinasi masing-masing senyawa dalam jumlah yang terlalu banyak akan meningkatkan tekanan osmotik larutan pengencer yang tidak mampu diadaptasi dengan baik oleh sel spermatozoa, sehingga mengganggu jalannya sebagian atau seluruh proses biokemik yang terjadi di dalam sel, dan pada akhirnya menurunkan daya hidup spermatozoa. Menurut Curry dan Watson (1994) walaupun integritas membran plasma sel spermatozoa manusia dapat dipertahankan jika dipaparkan di dalam larutan bertekanan osmotik hingga 2.50 Osm dan spermatozoa domba pada tekanan
osmotik hingga 1 Osm, akan tetapi spermatozoa domba hampir mengalami kehilangan motilitas yang bersifat irreversible jika dipaparkan di dalam larutan bertekanan osmotik lebih dari 600 mOsm. Selanjutnya dinyatakan bahwa spermatozoa sangat mudah mengalami kerusakan apabila dipaparkan di dalam larutan hiperosmotik dan kemudian dipindahkan ke dalam larutan isoosmotik, dan spermatozoa domba lebih rentan mengalami kerusakan dibandingkan dengan spermatozoa manusia.

Penambahan senyawa antioksidan di dalam pengencer pada proses pengolahan semen dimaksudkan sebagai upaya meminimumkan terjadinya reaksi oksidasi dan peroksida lipida pada membran plasma sel spermatozoa. Pada penelitian ini dicoba menambahkan senyawa glutation dan β-karoten secara terpisah di dalam pengencer Tris yang telah ditambahkan 5% gliserol dan 60 mM laktosa sebagai pengencer terbaik pada percobaan sebelumnya. Diharapkan dengan penambahan glutation atau β-karoten dalam konsentrasi yang tepat, keutuhan membran plasma dan sel secara keseluruhan selama proses kriopreservasi dapat lebih ditingkatkan.

Secara umum penambahan 0.05%, 0.10%, dan 0.15% glutation serta 0.002% β-karoten mampu meningkatkan semua peubah kualitas spermatozoa yang diamati setelah thawing dibandingkan dengan tanpa penambahan senyawa antioksidan (kontrol). Terjadi peningkatan persentase motilitas dan spermatozoa hidup yang cukup besar, yakni rata-rata 6.11% dan 6.45% untuk perlakuan 0.05% glutation, 6.66% dan 7.34% untuk perlakuan 0.10% glutation, 2.77% dan 2.99% untuk perlakuan 0.15% glutation, serta 3.88% dan 4.45% untuk perlakuan 0.002% β-karoten (diolah dari Tabel 12 dan 13). Hal yang sama juga terjadi pada peubah persentase TAU dan MPU yang meningkat sebesar rata-rata 7.11% dan 7.78% untuk perlakuan 0.05% glutation, 6.89% dan 8.00% untuk perlakuan 0.10% glutation, 4.11% dan 4.67% untuk perlakuan 0.15% glutation, serta 3.89% dan 5.34% untuk perlakuan 0.002% β-karoten (diolah dari Tabel 14 dan 15). Kecenderungan terjadinya penurunan nilai seluruh peubah kualitas spermatozoa dengan bertambahnya konsentrasi senyawa yang ditambahkan juga tampak pada perlakuan penambahan glutation dan β-karoten. Walaupun secara statistik umumnya tidak berbeda nyata (kecuali untuk peubah persentase motilitas), penambahan 0.15% glutation menyebabkan peningkatan nilai persentase spermatozoa hidup, TAU, dan MPU yang menurun dibandingkan dengan penambahan 0.05% dan 0.10%. Demikian pula dengan
penambahan 0.001% dan 0.003% β-karoten secara statistik tidak nyata meningkatkan semua parameter kualitas spermatozoa (Tabel 12, 13, 14, dan 15).

Meningkatnya kualitas spermatozoa dengan penambahan glutation dan β-karoten dalam dosis yang tepat disebabkan oleh glutation dan β-karoten mampu menurunkan kerusakan membran plasma sel spermatozoa dengan cara meminimunkan terjadinya reaksi rantai peroksidasi lipida. Hal ini ditandai oleh menurunnya konsentrasi malondialdehida (MDA) di dalam semen beku yang telah dithawing. Konsentrasi MDA perlakuan 0.05%, 0.10%, dan 0.15% glutation serta 0.001%, 0.002%, dan 0.003% β-karoten menunjukkan masing-masing sebesar rata-rata 2.55, 2.32, 2.50, 1.87, 1.44, dan 0.63 mg/kg sampel dibandingkan dengan perlakuan tanpa penambahan senyawa antioksidan (diolah dari Tabel 16). Menurut Rajmakers (2003) MDA merupakan salah satu produk akhir yang ditimbulkan akibat terjadinya reaksi rantai peroksidasi lipida pada membran plasma sel spermatozoa. Dengan demikian dapat disimpulkan bahwa semakin tinggi konsentrasi MDA di dalam semen, berarti semakin tinggi tingkat kerusakan yang terjadi pada membran plasma sel spermatozoa akibat reaksi rantai peroksidasi lipida. Dengan meningkatnya jumlah membran plasma sel yang utuh akan berpengaruh positif terhadap proses metabolisme di dalam sel yang pada akhirnya akan meningkatkan persentase motilitas, spermatozoa hidup, tudung akrosom yang utuh, dan fertilitas spermatozoa.

Dari serangkaian percobaan diperoleh modifikasi pengencer Tris terbaik untuk semen domba garut, yakni dengan penambahan 5% gliserol, 60 mM laktosa, dan 0.05% glutation atau 0.10% glutation atau 0.002% β-karoten. Uji fertilitas semen beku yang diencerkan dengan modifikasi pengencer Tris, yakni penambahan 5% gliserol, 60 mM laktosa, dan 0.05% glutation melalui IB secara intracervical menghasilkan persentase kebuntingan dan kelahiran yang cukup tinggi, yakni sebesar 58.33%. Kombinasi perlakuan (gliserol, laktosa, dan glutation) diduga memberikan perlindungan yang lebih sempurna terhadap spermatozoa dari kerusakan selama proses kriopreservasi bertangsur, terutama pada periode-periode kritis, yakni saat pembekuan dan thawing semen beku. Hal ini dibuktikan dari meningkatnya seluruh peubah kualitas spermatozoa semen beku. Dengan meningkatnya kualitas semen beku yang dihasilkan dari kombinasi perlakuan tersebut, maka kemampuan spermatozoa untuk mencapai tempat fertilisasi dan kemampuan spermatozoa dalam upaya menembus oosit saat proses fertilisasi serta
proses-proses lain yang berlangsung kemudian, seperti pembentukan pronukleus, singami, dan lain-lain tetap terjaga dengan baik.

Paket modifikasi pengencer Tris terbaik (penambahan 5% gliserol, 80 mM laktosa, dan 0.05% glutation) hasil percobaan pada semen hasil ejakulasi juga menunjukkan hasil yang baik pada kriopreservasi spermatozoa yang dikoleksi dari cauda epididimis domba garut yang telah disembeilih. Spermatozoa yang dibekukan dengan modifikasi pengencer Tris tersebut, khusus untuk pertakuan Ho memiliki kualitas yang memenuhi syarat digunakan dalam program IB (Tabel 19), karena memiliki persentase motilitas lebih dari 40% dan persentase TAU lebih dari 30%. Uji fertilitas pertakuan Ho melalui IB secara intracervical diperoleh persentase kebuntingan yang cukup tinggi, yakni sebesar 44.44% pada umur kebuntingan 120 hari, dan persentase kelahiran sebesar 33.33%. Hasil ini lebih tinggi dibandingkan dengan yang dilaporkan Bravo et al. (2000) bahwa persentase kebuntingan pada peneriksaaan hari ke-21 hewan lama dan alpaca yang diinseminasi dengan spermatozoa cauda epididimis yang telah dibekukan sebesar 37.50%.

Secara umum kualitas spermatozoa hasil ejakulasi lebih baik dibandingkan dengan spermatozoa cauda epididimis baik pada tingkat semen segar maupun setelah pengolahan (stelah pengenceran, ekulibrasi, dan thawing). Perbedaan kualitas spermatozoa juga dipertegas oleh kemampuan fertilitas semen bekas melalui IB. Persentase kebuntingan dan kelahiran semen bekas hasil ejakulasi (58.33% dan 58.33%) lebih tinggi dibandingkan dengan spermatozoa cauda epididimis yang telah dibekukan (44.44% dan 33.33%). Hal ini diduga karena tidak seperti pada spermatozoa hasil ejakulasi, membran plasma sel spermatozoa cauda epididimis tidak mendapatkan perlindungan berupa glikoprotein yang disintesis oleh kelenjar vesikularis hewan jantan dan disekresikan ke dalam plasma semen. Glikoprotein ini sangat penting dalam melindungi membran plasma sel spermatozoa dari kerusakan akibat pengaruh kejutan dingin dan serangan radikal bebas akibat kontak spermatozoa dengan oksigen saat spermatozoa dikoleksi dan selama proses pengolahan. Menurut Situmorang et al. (1995) glikoprotein tersebut bersifat khas dan peranannya dalam melindungi membran plasma sel spermatozoa tidak dapat sepenuhnya digantikan oleh glikoprotein eksogen yang ditambahkan di dalam pengencer semen. Dengan demikian kualitas spermatozoa cauda epididimis domba garut atau hewan lain yang akan dibekukan memungkinkan untuk ditingkatkan dengan cara menambahkan plasma semen ke dalam spermatozoa hasil
koleksi sebelum dilakukan pengenceran, seperti yang dilaporkan Squires et al. (2000) pada spermatozoa cauda epididimis kuda.

Hal yang sama juga dilaporkan Rizal et al. (1999) bahwa kualitas semen beku kerbau lumpur dapat ditingkatkan melalui penggantian plasma semen kerbau lumpur dengan plasma semen sapi Frisian Holstein (FH) sebelum semen diencerkan. Selanjutnya dilaporkan bahwa kandungan protein plasma semen sapi FH sebanyak 6946 mg/100 ml nyata lebih tinggi dibandingkan dengan plasma semen kerbau lumpur sebanyak 3144 mg/100 ml, yang diduga sebagai salah satu penyebab meningkatnya kualitas semen beku kerbau lumpur. Plasma semen yang ditambahkan dapat dikoleksi dari domba-domba jantan sejenis atau berbeda jenis yang tidak digunakan sebagai pemacek karena secara genetik tidak unggul. Plasma semen dapat dikumpulkan dalam jumlah banyak dan disimpan dalam bentuk beku atau kering beku serta dicairkan kembali saat akan digunakan.

Hasil penelitian ini menunjukkan bahwa terdapat korelasi yang positif antara keempat peubah kualitas spermatozoa yang diamati. Tingkat korelasi antara peubah persentase motilitas dan persentase MPU sangat tinggi dengan nilai r sebesar 0.95 (n = 441). Hal ini menunjukkan bahwa motilitas spermatozoa sangat dipengaruhi oleh tingkat keutuhan membran plasma sel. Semakin tinggi nilai persentase MPU semakin tinggi pula nilai persentase motilitas. Hal ini terjadi karena apabila membran plasma sel spermatozoa dapat dipertahankan keutuhannya selama proses kriopreservasi dan thawing akan memberikan efek yang baik pula terhadap motilitas, daya hidup, dan keutuhan tudung akrosom spermatozoa. Motilitas (daya gerak) spermatozoa sangat bergantung pada suplai energi berupa ATP hasil metabolisme. Metabolisme sendiri akan berlangsung dengan baik jika membran plasma sel berada dalam keadaan yang utuh, sehingga mampu dengan baik mengatur lalu lintas masuk dan keluar dari sel semua senyawa (substrat) dan elektrolit yang dibutuhkan dalam proses metabolisme. Ini terjadi karena di dalam membran plasma sel terdapat banyak makromolekul berupa protein, lipoprotein, glikoprotein, dan lain-lain yang dapat berfungsi sebagai enzim, reseptor, saluran, atau pembawa (carrier) yang memfasilitasi lalu lintas masuk dan keluar dari sel seluruh substrat dan elektrolit yang dibutuhkan dalam berlangsungnya semua proses biokemik di dalam sel, termasuk metabolisme. Substrat dan elektrolit harus difasilitasi oleh senyawa-senyawa tertentu yang terdapat di dalam membran plasma sel untuk masuk dan keluar dari sel karena substrat dan elektrolit tersebut tidak dapat menembus secara difusi bebas.
membran plasma sel yang bersifat semipermeabel. Selain itu, membran plasma sel juga berfungsi melindungi organel-organel yang terdapat di dalam sel dari perusakan secara mekanik, termasuk vesikel akrosom yang berada tepat di bawah membran plasma sel di daerah ujung kepala spermatozoa.

Serangkaian seri percobaan yang telah dilakukan didapatkan hasil konsisten bahwa dari keempat parameter kualitas spermatozoa yang diamati, persentase motilitas merupakan peubah dengan angka yang terkecil dibandingkan dengan peubah persentase spermatozoa hidup, TAU, dan MPU baik pada tahap semen segar maupun setelah tahap pengolahan semen (pengenceran, ekuilibrasi, dan thawing). Fenomena ini menunjukkan bahwa apabila terjadi suatu gangguan pada spermatozoa yang disebabkan oleh adanya perubahan lingkungan, maka yang pertama kali terpengaruh adalah proses metabolisme, yang berarti terganggunya proses produksi ATP dan berakibat terhadap penurunan motilitas spermatozoa. Artinya metabolisme suatu sel dapat saja terganggu walaupun kondisi membran plasma sel tetap utuh. Hal ini dapat dijelaskan sebagai berikut: berlangsungnya proses metabolisme dengan baik tidak hanya ditentukan oleh keutuhan membran plasma sel, akan tetapi juga dapat disebabkan oleh berbagai faktor, seperti tidak tersedianya substrat penghasil energi dalam jumlah yang cukup di dalam larutan pengencer, terjadinya perubahan lingkungan larutan pengencer yang menyebabkan terhambatnya proses transpor substrat dan elektrolit masuk dan keluar dari sel, dan sebab-sebab lain yang pada kondisi seperti itu belum berpengaruh terhadap keutuhan membran plamsa sel. Walaupun demikian dijumpai suatu fenomena fisiologik yang berlangsung secara terbalik (berlawanan dengan kaidah seperti tersebut di atas), yakni peningkatan motilitas yang sangat drastis (hiperaktivitas) yang justru diakibatkan oleh rusaknya membran plasma sel di bagian tertentu spermatozoa. Fenomena yang dimaksud adalah hiperaktivitas spermatozoa yang terjadi saat berlangsungnya proses kapasitas dan reaksi akrosom. Pada kedua proses fisiologik ini, terjadi kerusakan membran plasma sel di bagian ujung kepala spermatozoa, dan perubahan konsentrasi senyawa-senyawa kimia yang menyusun membran plasma sel seperti menurunnya kadar kolesterol. Hiperaktivitas spermatozoa terjadi karena dengan adanya perubahan morfologi dan kimia pada membran plasma sel, mengakibatkan permeabilitas membran plasma sel meningkat, sehingga ion-ion seperti ion Ca²⁺ dapat dengan bebas menembus membran plasma memasuki sel yang berakibat meningkatnya aktivitas metabolisme (termasuk fruktolisis dan siklus asam trikarboksilat atau siklus Krebs) yang berarti
mengingkatnya produksi energi berupa ATP. Ion Ca²⁺ merupakan salah satu ion yang keberadaannya dibutuhkan oleh banyak enzim yang terdapat di dalam sitoplasma dan mitokondria agar dapat berfungsi dalam mengkatalisis reaksi-reaksi biokemik yang terjadi di dalam sel, termasuk proses metabolisme. Akan tetapi hiperaktivitas spermatozoa yang terjadi saat proses kapasitasi dan reaksi akrosom tersebut hanya bersifat sementara dan berlangsung dalam waktu yang singkat, karena setelah itu spermatozoa akan mati. Dengan demikian fenomena tersebut semakin mengkokohkan teori yang menyatakan bahwa rusaknya membran plasma sel merupakan awal dari proses kematian sel itu sendiri, termasuk pada sel spermatozoa.

Hasil penelitian yang menunjukkan bahwa nilai motilitas selalu lebih rendah dibandingkan dengan nilai peubah kualitas spermatozoa yang lain memberikan implikasi yang lebih luas dalam aplikasi praktis pada tingkat lapang. Dengan hasil ini dapat disimpulkan bahwa pada aplikasi tingkat lapang, pemeriksaan kualitas semen yang akan digunakan dalam pelaksanaan program IB, atau bahkan mungkin dalam proses produksi semen beku secara besar-besaran dengan peralatan laboratorium yang terbatas, cukup dengan pengamatan terhadap motilitas spermatozoa saja. Akan tetapi dalam proses produksi semen beku yang hanya mengandalkan pada pemeriksaan motilitas saja, harus ditangani oleh tenaga-tenaga yang sudah terampil dan berpengalaman di bidang pengolahan dan pemeriksaan kualitas semen, karena penilaian motilitas spermatozoa bersifat sangat subjektif jika penilaiannya tidak menggunakan alat khusus.

Prospek Penerapan Teknologi IB pada Domba Secara Luas

Upaya percepatan peningkatan produktivitas ternak domba yang dilakukan secara simultan dengan perbaikan mutu genetik tidak akan dapat dicapai jika hanya mengandalkan pada kondisi fisiologik ternak yang terjadi secara alamiah. Apabila menginginkan suatu peternakan yang modern dengan visi bisnis yang kuat, maka dalam serangkaian proses produksi tidak dapat dilepaskan dari penerapan teknologi-teknologi di bidang peternakan yang telah mengalami perkembangan begitu pesat. Dewasa ini telah tersedia begitu banyak teknologi di bidang peternakan yang dapat menjadi pilihan, mulai dari teknologi pakan hingga reproduksi.

Khusus untuk penerapan teknologi reproduksi secara luas pada tingkat peternak domba di Indonesia saat ini, pada tahap awal, teknologi IB merupakan pilihan yang tepat
karena sesuai dengan kondisi objektif petemak yang belum mampu menerima teknologi reproduksi yang lebih canggih dan mahal. Dengan teknologi IB, petemak cukup memelihihara beberapa ekor pejantan saja tetapi memiliki kualitas genetik yang unggul untuk melayani ratusan ekor betina. Efisiensi penerapan teknologi IB tersebut dapat ditingkatkan jika persentase kebuntingan dan kelahiran mencapai sekitar 50%. Ini dapat dicapai jika kualitas semen yang digunakan baik, serta pelaksanaan IB yang tepat waktu dan dosis.

Akan tetapi, sebab apapun penerapan teknologi IB tidak akan mampu memberikan hasil yang optimum jika pada saat bersamaan tidak dilakukan upaya perbaikan manajemen petemakan secara menyeluruh, serta upaya meningkatkan jumlah kepemilikan temak oleh petemak-petemak tradisional. Faktor penting lain yang dapat meningkatkan efektivitas dan efisiensi penerapan teknologi IB adalah dengan menghdidupkan kembali kelembagaan yang menghimpun petemak-petemak tradisional dalam suatu wadah semacam kelompok petani-petemak yang benar-benar fungsional. Peranan instansi terkait seperti Dinas Petemakan Daerah sangat penting dalam menciptakan iklim yang kondusif bagi upaya memajukan petemakan. Demikian pula dengan lembaga-lembaga penelitian diharapkan menghasilkan suatu teknologi-teknologi tepat guna yang dapat dengan mudah diaplikasikan di tingkat lapang. Jika dirangkum, upaya percepatan kemajuan petemakan di Indonesia hanya dapat dicapai apabila seluruh pihak yang terkait langsung atau tidak langsung dengan dunia petemakan memiliki komitmen yang kuat untuk bekerja secara bersama-sama dalam menghasilkan suatu solusi yang komprehensif, dan tentu harus didukung oleh kebijakan pemerintah yang berpihak pada kemajuan petemakan secara keseluruhan.

Pencapaian penelitian ini yang menghasilkan persentase kebuntingan dan kelahiran melalui IB secara intraovinal sebesar 58.33% dan 44.44% masing-masing untuk semen buku hasil ejakulasi dan spermatozooa cauda epididimis yang telah dibekukan memunculkan harapan besar dalam upaya aplikasi teknologi IB tersebut pada temak domba secara luas di tingkat petemak. Penerapan teknologi pengolahan semen dan IB, secara bertahap diharapkan akan menggantikan sistem perkawinan alamiah yang umumnya dilakukan petemak domba selama ini. Sistem perkawinan yang diterapkan selama ini adalah dengan cara menggabungkan seekor pejantan dan lima ekor betina di dalam kandang berukuran kecil (sempit) selama sekitar 40 hari. Selama proses perkawinan berlangsung, pejantan kehilangan berat badan yang cukup besar hingga
sekitar 15 kg, sehingga setelah masa kawin berakhir keadaan pejantan sangat kurus dan lemah, kontras dengan keadaan sebelum masa kawin. Padahal untuk menaikkan kembali berat badan ke posisi semula dibutuhkan waktu dan biaya yang tidak sedikit. Selain itu, metode perkawinan semacam ini sangat tidak efisien dalam upaya mengoptimumkan pemanfaatan potensi genetik pejantan unggul, dan peternak akan kehilangan waktu produktif yang cukup banyak.

Daftar Pustaka

KESIMPULAN UMUM DAN SARAN

Kesimpulan Umum

Berdasarkan rangkaian lima percobaan yang telah dilakukan, secara umum dapat disimpulkan sebagai berikut:

1. Semua domba percobaan memiliki libido yang baik serta menghasilkan semen segar yang baik dari segi sifat fisik dan kimia, sehingga memenuhi syarat untuk diolah menjadi semen cair atau semen beku. Domba-domba percobaan juga memiliki morfometrik spermatozoa dan testis normal.

2. Didapatkan modifikasi pengencer Tris yang baik untuk proses kriopreservasi semen domba garut, yakni satu paket kombinasi yang terdiri atas: 75% pengencer dasar Tris, 20% kuning telur ayam ras, dan 5% gliserol serta ditambahkan 60 mM (2.16%) laktosa, dan 0.05% glutation.

3. Spermatozoa yang dikoleksi dari cauda epididimis domba yang telah dipotong dapat dibekukan, serta memiliki kualitas dan kemampuan fertilitas yang baik dengan menggunakan metode IB secara intracervical.

4. Implan CIDR-G® selama 13 hari di dalam vagina efektif merangsang estrus domba garut betina.

5. Fertilitas semen beku yang diencerkan dengan modifikasi pengencer Tris yang terdiri atas gliserol, laktosa, dan glutation lebih tinggi dibandingkan dengan spermatozoa cauda epididimis hasil kriopreservasi.

6. Pada aplikasi praktis tingkat lapang, pemeriksaan kualitas semen yang akan digunakan dalam pelaksanaan program IB cukup dengan pengamatan terhadap motilitas spermatozoa.
Saran

Berdasarkan hasil serangkaian percobaan yang telah dilakukan, untuk lebih mempercepat peningkatan produktivitas dan perbaikan mutu genetik temak domba, maka disarankan beberapa hal, yakni:

1. Sudah saatnya menggalakkan pelaksanaan program IB secara luas pada temak domba yang disertai dengan perbaikan manajemen petemakan domba rakyat secara menyeluruh dan simultan. Agar program IB dapat berjalan dengan baik, efektif, dan efisien perlu dihidupkan dan difungsikan kembali kelompok-kelompok petani petemakan yang benar-benar fungsional.

2. Dalam proses produksi semen beku domba garut telah ditemukan satu paket pengencer semen yang baik dalam mempertahankan kualitas dan fertilitas spermatozoa, yakni modifikasi pengencer Tris dengan penambahan 5% gliserol, 60 mM laktosa, dan 0.05% glutation. Temuan ini mungkin dapat diaplikasikan dalam proses produksi semen beku pada jenis temak domba yang lain, atau mungkin juga pada temak ruminansia kecil dan besar secara umum.

3. Manfaatkan potensi sumber spermatozoa alternatif yakni cauda epididimis temak atau hewan yang bermasalah dalam melakukan aktivitas kawin secara normal atau mati mendadak, serta dalam upaya konservasi dan pelestarian sumberdaya genetik hewan-hewan langka, liar, atau buas. Pemanfaatan spermatozoa tersebut bisa dalam keadaan segar atau yang telah diolah (cair dan beku) melalui metode IB dan produksi embrio secara in vitro.

4. Agar dapat diketahui waktu IB yang tepat dan cukup dilakukan satu kali saja sehingga lebih efisien, perlu dilakukan penelitian tentang waktu terjadinya ovulasi setelah onset estrus pada domba garut dan domba lokal Indonesia lainnya.