PENGARUH PEMBERIAN GULA, INSULIN DAN LAMA ISTIRAHAT SEBELUM PEMOTONGAN PADA DOMBA SETELAH PENGANGKUTAN TERHADAP KUALITAS DAGING

SRI HARTATI CANDRA DEWI

SEKOLAH PASCASARJANA
INSTITUT PERTANIAN BOGOR
2004
ABSTRAK

SRI HARTATI CANDRA DEWI. Pengaruh Pemberian Gula, Insulin dan Lama Istrirahat Sebelum Pemotongan pada Domba setelah Pengangkutan terhadap Kualitas Daging. Dibimbing oleh EDDIE GURNADI, RUDY PRIYANTO dan WASMEN MANALU.

Tujuan penelitian ini adalah untuk mempelajari pengaruh pemberian gula, insulin dan lama istirahat sebelum pemotongan pada domba setelah transportasi terhadap kualitas daging. Penelitian ini menggunakan 54 ekor domba betina dengan kisaran umur antara 10 dan 12 bulan dan bobot hidup antara 14 dan 17 kg. Domba yang digunakan berasal dari Pasirangan, Megamendung, Bogor. Penelitian ini menggunakan rancangan acak lengkap pola faktorial 2x3x3. Faktor pertama adalah pemberian gula dengan 2 level yaitu level 0 dan 6 g/kg dari bobot hidup. Faktor kedua adalah pemberian insulin dengan 3 level yaitu 0, 0,3 dan 0,6 IU per ekor. Faktor ketiga adalah lama istirahat sebelum pemotongan yang terdiri atas 3 level yaitu 2, 4 dan 6 jam. Masing-masing unit percobaan diulang 3 kali. Peubah yang diamati pada penelitian ini adalah suhu rektal dan denyut jantung, penurunan bobot hidup, persentase bobot karkas, kadar glukosa darah, kadar glikogene daging, kadar asam laktat daging, pH, keempukan, daya mengikat air, susut masak dan warna daging.

Hasil penelitian menunjukkan bahwa domba setelah mengalami pengangkutan suhu rektal, denyut jantung dan kadar glukosa meningkat, domba yang disuplemen dengan gula sesudah pengangkutan, kadar glikogene daging dan kadar asam laktat meningkat tetapi pH daging dan susut masak rendah. Pemberian insulin menurunkan kadar glukosa darah tetapi meningkatkan kadar glikogene daging. Lama istirahat sebelum pemotongan menurunkan berat hidup tetapi meningkatkan persentase karkas. Kadar glukosa darah menurun dengan adanya pengistirahatan sebelum pemotongan. Daya mengikat air, keempukan dan warna daging (L, a, b) tidak berbeda nyata.

Kesimpulan dari penelitian ini adalah pemberian gula, insulin dan lama istirahat sebelum pemotongan pada domba dapat mengurangi pengaruh negatif dari stres karena pengangkutan terhadap kualitas daging.

Kata kunci: gula, insulin, periode istirahat, pengangkutan, kualitas daging, domba
ABSTRACT

SRI HARTATI CANDRA DEWI. The Effects of Sucrose Supplementation, Insulin Injection, and Resting Period Prior to Slaughtering on Meat Quality in Sheep Exposed to Stressful Transportation. Under the direction of EDDIE GURNADI, RUDI PRIYANTO, and WASMEN MANALU.

An experiment was conducted to study the effects of sucrose supplementation, insulin injection, and resting period prior to slaughtering on meat quality in sheep exposed to stressful transportation. Fifty four female local sheep (10 to 12 months of age) with weight ranging from 14 to 17 kg. The experimental sheep were assigned into a completely randomized design with a 2x3x3 factorial arrangement with 3 replications. The first factor was sucrose supplementation with 2 levels (0 and 6 g/kg body weight). The second factor was insulin injection after transportation with 3 levels (0, 0.3 and 0.6 IU/kgBW). The third factor was the duration of resting period with 3 levels (2, 4 and 6 h prior to slaughtering). Parameters measured were rectal temperature and heart rate, live weight, carcass percentage, blood glucose concentration, meat glycogen concentration, meat lactate concentration, meat pH, water holding capacity, meat tenderness, cooking loss and meat color.

The results of the experiment indicated that sheep supplemented with sucrose after transportation had higher meat glycogen and lactate concentration but lower meat pH and cooking loss. Insulin injection decreased blood glucose concentration but increased meat glycogen and lactate concentration. The longer the resting period prior to slaughtering the lower the live weight but the higher carcass percentage. Blood glucose concentration decreased with the increased resting period prior to slaughtering. Water holding capacity, meat tenderness and meat colour did not show significant differences.

It was concluded that sucrose supplementation, insulin injection, and resting period prior to slaughtering in sheep exposed to stressful transportation could improve meat quality.

Key words: sucrose, insulin, resting period, transportation, meat quality, sheep.
SURAT PERNYATAAN

Dengan ini saya menyatakan bahwa karya berjudul "Pengaruh Pemberian Gula, Insulin dan Lama Istrahat sebelum Pemotongan pada Domba setelah Pengangkutan terhadap Kualitas Daging", belum pernah diajukan untuk memperoleh gelar doktor pada suatu perguruan tinggi. Dalam karya ini tidak pula memuat karya orang lain kecuali secara tertulis diacu dalam naskah dan dicantumkan dalam daftar pustaka.

Bogor, Mei 2004

Sri Hartati Candra Dewi
PENGARUH PEMBERIAN GULA, INSULIN DAN LAMA ISTIRAHAT SEBELUM PEMOTONGAN PADA DOMBA SETELAH PENGANGKUTAN TERHADAP KUALITAS DAGING

SRI HARTATI CANDRA DEWI

Disertasi sebagai salah satu syarat untuk memperoleh gelar Doktor pada Program Studi Ilmu Ternak

SEKOLAH PASCASARJANA
INSTITUT PERTANIAN BOGOR
2004
Judul Disertasi : Pengaruh Pemberian Gula, Insulin dan Lama Istirahat sebelum Pematangan pada Domba setelah Pengangkutan terhadap Kualitas Daging
Nama : Sri Hartati Candra Dewi
NRP : 985042
Program Studi : Ilmu Ternak

Menyatakan,

1. Komisi Pembimbing

[Signature]
Prof. Dr. H. R. Eddie Gurnadi
Ketua

[Signature]
Dr. Rudy Priyanto
Anggota

[Signature]
Prof. Dr. Wasman Manalu
Anggota

Mengetahui,

2. Ketua Program Studi Ilmu Ternak

[Signature]
Dr. Nahrowi, M.Sc.

[Perkenalan]
Prof. Dr. Syamida Manuwoto, M.Sc.

Tanggal Ujian : 18 Mei 2004
Tanggal Lulus : 25 AUG 2004
RIWAYAT HIDUP

Penulis dilahirkan di Jogjakarta pada tanggal 19 Mei 1962, sebagai anak ke-6 dari delapan bersaudara dari pasangan Harto Utomo (alm.) dan Wasiyah (almh.).

Penulis menikah dengan Sapto Amal Damandari dan telah dikaruniai dua orang putra/putri yaitu Dhito Megananto (15 tahun) dan Whita Ratnasari (11 tahun).
PRAKATA

Puji syukur penulis panjatkan ke Hadirat Allah SWT yang telah melimpahkan Rahmat dan Hidayah-Nya, sehingga disertasi ini berhasil diselesaikan. Tema yang dipilih dalam penelitian ini ialah penanganan domba setelah pengangkutan dengan judul “Pengaruh Pemberian Gula, Insulin dan Lama Istirahat sebelum Pemotongan pada Domba setelah Pengangkutan terhadap Kualitas Daging”

Penulis menyadari bahwa keberhasilan ini tidak terlepas dari kerjasama yang baik dari berbagai pihak, oleh sebab itu penulis mengucapkan terima kasih kepada Bapak Prof. Dr. H. R. Eddie Gurnadi selaku ketua komisi pembimbing, Bapak Dr. Rudy Priyanto dan Bapak Prof. Dr. Wasman Manalu, selaku anggota komisi pembimbing, yang telah banyak memberikan arahan dan tambahan ilmu sehingga disertasi ini dapat selesai.

Ucapan terima kasih juga penulis sampaikan kepada Rektor, Dekan Fakultas Pertanian dan Ketua Jurusan Peternakan beserta staf, Universitas Wangsa Manggala yang telah memberikan kesempatan dan bantuan dana penelitian, sehingga penulis dapat menyelesaikan pendidikan di program doktor. Penulis mengucapkan terima kasih kepada Rektor IPB, Dekan Sekolah Pascasarjana beserta staf, Ketua Program Studi Ilmu Ternak beserta staf yang ikut berperan dalam penyelesaian studi doktor ini. Ucapan terima kasih juga penulis sampaikan kepada Pengelola Beasiswa BPPS Dirjen Dikti yang telah memberikan beasiswa kepada penulis selama mengikuti pendidikan program doktor.

Penulis juga mengucapkan terima kasih kepada staf laboratorium ruminansia besar, Fakultas Peternakan dan staf laboratorium fisiologi FKH, IPB

Semoga Allah SWT mencatat amal bakti tersebut sebagai salah satu ibadah, dan semoga disertasi ini dapat memberikan informasi baru dalam pengembangan ilmu pengetahuan khususnya di dunia peternakan dan bermanfaat bagi pembaca. Amin.

Bogor, Mei 2004

Sri Hartati Candra Dewi
DAFTAR ISI

<table>
<thead>
<tr>
<th>DAFTAR TABEL</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAFTAR GAMBAR</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>xi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAFTAR LAMPIRAN</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>xiii</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PENDAHULUAN</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td>Tujuan Penelitian</td>
<td>3</td>
</tr>
<tr>
<td>Kegunaan Penelitian</td>
<td>3</td>
</tr>
<tr>
<td>Hipotesis Penelitian</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TINJAUAN PUSTAKA</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pengangkutan Ternak di Indonesia</td>
<td>5</td>
</tr>
<tr>
<td>Stres Pengangkutan pada Ternak</td>
<td>6</td>
</tr>
<tr>
<td>Penanganan Ternak sebelum Pemotongan</td>
<td>12</td>
</tr>
<tr>
<td>Metabolisme Glikogen dan Glukosa</td>
<td>15</td>
</tr>
<tr>
<td>Peranan Insulin dan Mobilisasi Glukosa</td>
<td>21</td>
</tr>
<tr>
<td>Sifat Fisik dan Kimia Daging</td>
<td>24</td>
</tr>
<tr>
<td>Warna Daging</td>
<td>25</td>
</tr>
<tr>
<td>Keempukan Daging</td>
<td>25</td>
</tr>
<tr>
<td>Daya Mengikat Air Daging</td>
<td>26</td>
</tr>
<tr>
<td>pH Daging</td>
<td>27</td>
</tr>
<tr>
<td>Susut Masak Daging</td>
<td>29</td>
</tr>
<tr>
<td>Daging DFD</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>METODE PENELITIAN</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waktu dan Tempat Penelitian</td>
<td>33</td>
</tr>
<tr>
<td>Materi</td>
<td>33</td>
</tr>
<tr>
<td>Metode</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HASIL DAN PEMBAHASAN</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suhu Rektal dan Denyut Jantung</td>
<td>47</td>
</tr>
<tr>
<td>Penurunan Bobot Hidup</td>
<td>48</td>
</tr>
<tr>
<td>Persentase Bobot Karkas</td>
<td>51</td>
</tr>
<tr>
<td>Kadar Glukosa Darah</td>
<td>52</td>
</tr>
<tr>
<td>Kadar Glikogen Daging</td>
<td>56</td>
</tr>
<tr>
<td>Kadar Asam Laktat Daging</td>
<td>58</td>
</tr>
<tr>
<td>pH Daging</td>
<td>60</td>
</tr>
<tr>
<td>Daya Mengikat Air</td>
<td>62</td>
</tr>
<tr>
<td>Keempukan Daging</td>
<td>64</td>
</tr>
<tr>
<td>Susut Masak</td>
<td>65</td>
</tr>
<tr>
<td>Warna Daging</td>
<td>66</td>
</tr>
<tr>
<td>Pembahasan Umum</td>
<td>71</td>
</tr>
</tbody>
</table>
DAFTAR TABEL

<table>
<thead>
<tr>
<th>No</th>
<th>Tabel Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Suhu rektal dan denyut jantung domba sebelum dan setelah pengangkutan</td>
<td>47</td>
</tr>
<tr>
<td>2</td>
<td>Rataan penurunan bobot badan domba selama pengangkutan dan istirahat (%)</td>
<td>49</td>
</tr>
<tr>
<td>3</td>
<td>Rataan persentase bobot karkas domba selama penelitian (%)</td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>Rataan kadar glukosa darah domba selama penelitian (mg/dl)</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>Rataan kadar glukosa darah domba sebelum dipotong (mg/dL)</td>
<td>54</td>
</tr>
<tr>
<td>6</td>
<td>Rataan kadar glikogen daging domba (%)</td>
<td>56</td>
</tr>
<tr>
<td>7</td>
<td>Rataan kadar asam laktat daging domba (µmol/g)</td>
<td>59</td>
</tr>
<tr>
<td>8</td>
<td>Rataan nilai pH daging domba</td>
<td>61</td>
</tr>
<tr>
<td>9</td>
<td>Rataan kadar air bebas daging domba (%)</td>
<td>63</td>
</tr>
<tr>
<td>10</td>
<td>Rataan nilai shear force daging domba (kg/cm²)</td>
<td>64</td>
</tr>
<tr>
<td>11</td>
<td>Rataan nilai susut masak daging domba (%)</td>
<td>65</td>
</tr>
<tr>
<td>12</td>
<td>Rataan nilai L warna daging domba</td>
<td>66</td>
</tr>
<tr>
<td>13</td>
<td>Rataan nilai a warna daging domba</td>
<td>68</td>
</tr>
<tr>
<td>14</td>
<td>Rataan nilai b warna daging domba</td>
<td>68</td>
</tr>
<tr>
<td>15</td>
<td>Rataan nilai warna daging domba hasil uji skoring dan uji hedonik</td>
<td>70</td>
</tr>
</tbody>
</table>
DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Gambar</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Diagram daur suplai energi di dalam otot</td>
<td>9</td>
</tr>
<tr>
<td>2 Daur proses pembagian energi untuk fungsi kontraksi otot</td>
<td>14</td>
</tr>
<tr>
<td>3 Gambaran umum metabolisme karbohidrat: hubungan antara hati, darah dan otot</td>
<td>16</td>
</tr>
<tr>
<td>4 Pembentukan Uridin difosfat + glukosa (UDPG) dari glukosa, melalui pembentukan glukosa 6-fosfat dan glukosa 1-fosfat</td>
<td>17</td>
</tr>
<tr>
<td>5 Glikogenesis (pembentukan glikogen oleh glikogen sintase)</td>
<td>18</td>
</tr>
<tr>
<td>6 Glikogenolisis (Penguraian glikogen menghasilkan glukosa 6-fosfat)</td>
<td>19</td>
</tr>
<tr>
<td>7 Jalan reaksi glikogenesis dan glikogenolisis</td>
<td>20</td>
</tr>
<tr>
<td>8 Siklus Cori atau siklus asam laktat dan glukosa</td>
<td>21</td>
</tr>
<tr>
<td>9 Urutan asam amino pada molekul insulin sari</td>
<td>21</td>
</tr>
<tr>
<td>10 Masuknya glukosa ke dalam sel-sel otot</td>
<td>22</td>
</tr>
<tr>
<td>11 Efek insulin pada masuknya glukosa ke dalam otot</td>
<td>23</td>
</tr>
<tr>
<td>12 Konsentrasi glukosa pada sari dara gemuk dan kurus sebelum dan sesudah pemberian insulin</td>
<td>24</td>
</tr>
<tr>
<td>13 Gugus hidrofilk bermuatan pada protein-protein otot pengikat air</td>
<td>27</td>
</tr>
<tr>
<td>14 Pengaruh pH pada jumlah air mobilisasi di dalam daging</td>
<td>28</td>
</tr>
<tr>
<td>15 Domba dalam mobil angkutan</td>
<td>34</td>
</tr>
<tr>
<td>16 Kondisi jalan selama pengangkutan domba</td>
<td>35</td>
</tr>
<tr>
<td>17 Pemberian larutan gula pada domba</td>
<td>36</td>
</tr>
<tr>
<td>18 Penyuntikan insulin pada domba</td>
<td>36</td>
</tr>
<tr>
<td>19 Penimbangan domba</td>
<td>37</td>
</tr>
<tr>
<td>20 Potongan bagian karkas domba</td>
<td>38</td>
</tr>
<tr>
<td>21 Potongan bagian paha belakang domba</td>
<td>38</td>
</tr>
</tbody>
</table>
22 Warna daging domba penelitian ... 69
23 Hubungan antara kadar glikogen dan asam laktat daging 73
24 Hubungan antara kadar glikogen dan pH daging domba 74
25 Hubungan antara asam laktat dan pH daging domba 75
26 Hubungan antara pH dan susu masak daging domba 76
<table>
<thead>
<tr>
<th>No.</th>
<th>Judul Laporan</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analisis ragam pengaruh perlakuan pada penurunan bobot badan domba</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>Analisis ragam pengaruh perlakuan pada persentase bobot karkas domba</td>
<td>87</td>
</tr>
<tr>
<td>3</td>
<td>Analisis ragam pengaruh perlakuan pada glukosa darah domba</td>
<td>88</td>
</tr>
<tr>
<td>4</td>
<td>Analisis ragam pengaruh perlakuan pada glukosa darah domba sebelum dipotong</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>Analisis ragam pengaruh perlakuan pada glikogen daging domba</td>
<td>88</td>
</tr>
<tr>
<td>6</td>
<td>Analisis ragam pengaruh perlakuan pada asam laktat daging domba</td>
<td>89</td>
</tr>
<tr>
<td>7</td>
<td>Analisis ragam pengaruh perlakuan pada nilai pH daging domba</td>
<td>89</td>
</tr>
<tr>
<td>8</td>
<td>Analisis ragam pengaruh perlakuan pada nilai daya mengikat air daging domba</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>Analisis ragam pengaruh perlakuan pada nilai keempukan daging domba</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>Analisis ragam pengaruh perlakuan pada nilai susut masak daging domba</td>
<td>91</td>
</tr>
<tr>
<td>11</td>
<td>Analisis ragam pengaruh perlakuan pada nilai kecerahan warna (L*) daging domba</td>
<td>91</td>
</tr>
<tr>
<td>12</td>
<td>Analisis ragam pengaruh perlakuan pada nilai kemencaran warna (a) daging domba</td>
<td>92</td>
</tr>
<tr>
<td>13</td>
<td>Analisis ragam pengaruh perlakuan pada nilai kekuningan (b) daging domba</td>
<td>92</td>
</tr>
</tbody>
</table>
PENDAHULUAN

Latar Belakang

Meningkatnya daya beli konsumen dan berkembangnya segmen pasar daging, mendorong permintaan daging berkualitas semakin tinggi. Kualitas daging yang dihasilkan dari seekor ternak selain ditentukan oleh faktor on farm seperti penggunaan mutu bibit ternak dan penggunaan teknologi pakan, juga dipengaruhi oleh faktor off farm terutama penanganan ternak pascapanen. Penanganan ternak pascapanen antara lain meliputi transportasi, penyediaan pakan dan minum selama transportasi dan sebelum pemotongan ternak, pengistirahatan ternak dan penanganan ternak sebelum pemotongan. Penanganan ternak pascapanen yang tidak baik merupakan faktor penyebab stres yang potensial bagi ternak yang pada akhirnya dapat menurunkan kualitas daging yang dihasilkan.

Pengangkutan ternak dilakukan karena adanya jarak yang cukup jauh antara sentra produksi ternak dengan rumah potong hewan (RPH) yang ada di lokasi konsumen. Hal ini disebabkan oleh kondisi wilayah dan geografi Indonesia, daerah-daerah sentra produksi ternak umumnya memiliki lokasi yang berjauhan dengan konsumen. Sebagai contoh permintaan daging sapi, DKI Jakarta merupakan daerah konsumen dengan permintaan daging yang tinggi, namun tidak dapat menunjang usaha produksi ternak. Oleh sebab itu pemerintah daerah harus mendatangkan ternak hidup dari daerah lain seperti Lampung, Jawa Tengah, Jawa Timur bahkan dari Sulawesi, Nusa Tenggara Barat dan Nusa Tenggara Timur, yang menyebabkan ternak harus mengalami pengangkutan yang cukup jauh dan melelahkan dengan waktu yang cukup lama.
Selama pengangkutan, ternak berada dalam posisi berdiri dan tidak bebas bergerak, sehingga akan mengalami stres. Kondisi ini menjadi semakin parah oleh kekurangan air minum dan atau pakan selama transportasi. Ternak yang resisten terhadap stres mampu mempertahankan temperatur normal tubuh dan kondisi homeostatik dalam otot-ototnya, dengan mengorbankan cadangan glikogen.

Menurut Aberle et al. (2001), defisiensi glikogen terjadi apabila ternak yang mengalami stres, seperti yang berkaitan dengan kelelahan, latihan, puasa dan gelisah, atau yang langsung dipotong sebelum mendapat istirahat yang cukup untuk memulihkan cadangan glikogen ototnya. Defisiensi glikogen otot pada ternak dapat menyebabkan proses glikolisis pascamati yang terbatas dan lamban, sehingga daging yang dihasilkan mempunyai pH yang tinggi dengan warna merah gelap atau dikenal dengan istilah daging DFD (Dark Firm and Dry). Kasus daging DFD di luar negeri cukup banyak yaitu lebih dari 20% terjadi pada sapi jantan muda, dan merupakan masalah yang penting dalam produksi daging. Daging DFD sangat merugikan karena dengan pH akhir yang tinggi dan penampakan yang kurang bagus akan menurunkan harga daging. Harga daging DFD dapat turun sampai 25-30% dari harga daging normal, sehingga sangat merugikan produsen daging. Apabila sudah dikategorikan sebagai daging DFD, daging itu akan dijual sebagai daging afkir yang tidak laku dijual sebagai daging segar, tetapi dijual sebagai daging olahan antara lain sosis kering, daging asap asin maupun diolah sebagai pakan hewan. Kasus daging DFD di Indonesia kemungkinan terjadi cukup banyak mengingat iklim yang tropis dan kondisi pengangkutan ternak yang belum memadai, tetapi belum ada data tentang seberapa besar terjadinya kasus daging DFD di negara ini.
Penanganan ternak setelah pengangkutan dimaksudkan untuk memberi kesempatan ternak dalam memulihkan cadangan glikogen ototnya, antara lain dengan mengistirahatkan ternak sebelum dipotong. Selain itu, untuk mempercepat pemulihan kondisi tubuh ternak tersebut adalah memberikan larutan gula. Menurut Schaefer et al. (1990), sapi yang diberi larutan glukosa setelah transportasi mempunyai hasil karkas 3-4% lebih tinggi daripada sapi yang hanya diberi air minum maupun yang tanpa air minum. Selama transportasi ternak mengalami stres dan berupaya untuk mempertahankan kondisi fisiologis tubuhnya, sehingga otot berkontraksi lebih cepat. Keadaan ini memerlukan laju aliran darah yang meningkat dalam otot, kondisi ini menyebabkan peningkatan mobilisasi glukosa. Hormon insulin merangsang pemasukan glukosa darah ke dalam sel-sel target, yang dalam hal ini kembali ke otot (Turner-Bagnara, 1976).

Berdasarkan masalah tersebut di atas telah dilakukan penelitian tentang pemberian gula dan insulin, serta lama istirahat untuk pemulihan kondisi domba setelah mengalami pengangkutan sehingga daging yang dihasilkan berkualitas baik.

Tujuan Penelitian

Berdasarkan masalah tersebut di atas, tujuan penelitian ini adalah untuk mempelajari pengaruh gula, insulin dan lama istirahat pada kualitas daging domba yang mengalami pengangkutan.

Kegunaan Penelitian

Hasil penelitian ini dapat digunakan sebagai informasi dalam penanganan ternak setelah mengalami pengangkutan, untuk menghasilkan daging berkualitas baik.
Hipotesis Penelitian

1. Pemberian gula pada domba setelah pengangkutan akan menghasilkan kualitas daging yang baik.

2. Pemberian insulin pada domba setelah mengalami pengangkutan akan mempercepat waktu pemulihan sehingga menghasilkan daging dengan kualitas yang baik.

3. Lama periode istirahat akan mempengaruhi kualitas daging domba.

4. Terdapat interaksi pengaruh antara pemberian gula, insulin dan lama istirahat pada domba yang mengalami pengangkutan, untuk menghasilkan daging yang berkualitas baik.
TINJAUAN PUSTAKA

Pengangkutan Ternak di Indonesia

Tata niaga ternak potong di Indonesia dari daerah produsen ke daerah konsumen memiliki jarak yang cukup jauh. Oleh karena itu pengangkutan

Stres Pengangkutan pada Ternak

Selama dalam pengangkutan, ternak pada umumnya berdiri dan tidak bebas bergerak. Kondisi tersebut dapat menyebabkan stres pada ternak. Stres dapat didefinisikan sebagai respons fisiologis, biokimia dan tingkah laku ternak.
terhadap berbagai faktor fisik, kimia dan lingkungan biologis (Yousef 1985). Stres menunjukkan besarnya pengaruh luar terhadap sistem tubuh yang cenderung menggantikan sistem tersebut dari istirahat atau keadaan basal. Pada ternak yang diangkat dari ladang ternak untuk dipotong, penyebab stres merupakan gabungan oleh ketiadaan air minum dan atau pakan, stres psikologi, fisiologi dan fisik, atau gabungan dari faktor-faktor tersebut (Shorthose dan Whytes 1988).

dari cekaman dan penyesuaian metabolik yang terkait akan mengakibatkan peningkatan kontraksi otot. Selama kontraksi otot yang intensif, sistem sirkulasi darah tidak dapat membawa oksigen dan glukosa ke otot dengan kecepatan yang cukup untuk memenuhi kebutuhan otot yang tinggi untuk sintesis ATP (Aberle et al. 2001; Lehninger 1994a). Dalam hal ini, glikogen otot dipergunakan sebagai bahan bakar cadangan dan dengan cepat diuraikan melalui glikolisis untuk membentuk laktat dan menghasilkan ATP, yang merupakan sumber energi bagi kontraksi otot.

Pada keadaan pasokan oksigen tidak mencukupi, ion hidrogen yang dilepaskan dalam glikolisis dan siklus asam trikarboksilat tidak dapat bergabung dengan oksigen dengan kecepatan yang cukup. Dengan demikian, ion hidrogen cenderung berakumulasi dalam otot. Kelebihan hidrogen ini kemudian digunakan untuk mengkonversi asam piruvat menjadi asam laktat yang memberi peluang bagi glikolisis untuk berlangsung pada kecepatan tinggi (Gambar 1). Setiap glukosa menghasilkan 3 molekul ATP dalam glikolisis, sehingga metabolisme anaerob dapat memasok energi untuk otot (Aberle et al. 2001).

Fernandez et al. (1996) menyatakan bahwa pengaruh lama pengangkutan 11 jam pada kehilangan bobot hidup pedet adalah sebesar 3,64%. Domba yang mengalami pengangkutan selama 14 jam mengalami penurunan bobot badan rata-rata sebesar 6,7% per ekor (Knowles et al. 1993). Menurut Knowles et al. (1995) domba yang ditransportasikan selama 15 jam mengalami penurunan bobot badan rata-rata sebesar 8%. Sapi Bali jantan yang mengalami pengangkutan selama lebih kurang 48 jam dengan jarak tempuh lebih kurang 1200 km, mengalami penurunan bobot badan 8,33-12% dengan rata-rata 9,77% per ekor (Mas’ud 1999).

Penurunan bobot badan sapi Bali jantan setelah pengangkutan terutama disebabkan oleh terjadinya urinasi dan defekasi selama perjalanan, sehingga isi saluran pencernaan dan kantung kemih berkurang. Di samping itu, penurunan
bobot badan tidak hanya disebabkan oleh kehilangan cairan tubuh akibat sering urinasi tetapi juga karena kehilangan cairan tubuh melalui pernapasan dan keringat (Gortel et al. 1992).

Hood dan Joseph (1989) menyatakan bahwa domba yang diangkut melalui daratan di Australia dengan jarak tempuh lebih dari 1000 km menghasilkan kualitas daging yang lebih baik apabila domba diistirahatkan selama 120 jam sebelum pemotongan, dengan disediakan ransum dan air minum, dibandingkan dengan domba yang dipotong setelah istirahat hanya selama 18 jam. Shorthose dan Wythes (1988) menyatakan bahwa domba yang mengalami transportasi

Kirton et al. (1972) mencatat penyusutan yang jauh lebih besar (5%) pada bobot karkas panas pedet (bobot hidup < 45 kg, bobot karkas > 10 kg) pada pemusaasann 24 jam prapotong. Gortel et al. (1992) menyatakan bahwa bobot karkas panas lebih tinggi pada sapi yang diberi larutan elektrolit selama pengurangan setelah pengangkutan, dibandingkan dengan sapi yang hanya diberi air saja, sedangkan Schaefer et al. (1990) menyatakan bahwa pemberian glukosa dan larutan elektrolit tampak mengurangi jumlah pencaiutan karkas sampai 3%. Pengangkutan dalam waktu yang lama, meskipun menyebabkan peningkatan persentase karkas, menimbulkan pengaruh merugikan terhadap hasil keseluruhan (Fernandez et al. 1996).

daging yang dihasilkan tidak akan memenuhi standar mutu yang baik pula. Oleh karena itu ternak yang akan dipotong perlu cukup istirahat, tidak mengalami stres yang berlebihan pada waktu dipotong dan ditangani dengan baik setelah dipotong. Penanganan tersebut dilakukan untuk mencegah terjadinya penyimpangan kualitas daging seperti kasus daging yang pucat, lembek dan basah (Pale, Soft and Exudative = PSE) maupun daging yang warnanya gelap, keras dan kering (Dark, Firm and Dry = DFD).

Penanganan Ternak sebelum Pemotongan

Dalam rangka pemulihan kondisi tubuh ternak akibat stres dan kelelahan selama pengangkutan diperlukan waktu istirahat yang cukup di tempat penampungan sebelum dipotong (Lawrie 1991; Gunardi 1993). Pada umumnya RPH yang besar mempunyai fasilitas kandang penampungan, yang digunakan
untuk mengistirahatkan ternak sebelum dipotong. Periode istirahat pada ternak sebelum dipotong merupakan salah satu prosedur penanganan ternak di RPH. Lama istirahat yang diterapkan bervariasi antara 8 sampai 24 jam sebelum ternak dipotong. Namun demikian, ada beberapa RPH Daerah Tingkat II dan pemotongan ternak di luar RPH yang belum menerapkan periode istirahat sebelum ternak dipotong meskipun RPH tersebut mempunyai fasilitas kandang penampungan. RPH yang belum menerapkan periode istirahat antara lain RPH Surakarta (Sudjajanto 1999) dan RPH Tasikmalaya (Supriyadi 2003), karena ternak sampai di RPH beberapa saat menjelang waktu pemotongan dimulai.

Ternak setelah mengalami pengangkutan, sesampainya di RPH mengalami kelelahan dan otot-otot berkontraksi cepat. Aberle et al. (2001) menyatakan bahwa apabila terjadi kontraksi otot yang cepat, sedangkan pasokan oksigen tidak mencukupi, maka ion hidrogen (H+) yang dilepaskan dalam proses glikolisis dan siklus TCA tidak dapat bergabung dengan oksigen (O2) pada kecepatan yang cukup sehingga ion hidrogen cenderung berakumulasi dalam otot. Kelebihan hidrogen ini kemudian digunakan untuk mengkonversi asam piruvat menjadi asam laktat. Akumulasi asam laktat dalam otot ini akan mengakibatkan kelelahan berkembang dengan cepat. Oleh karena itu diperlukan waktu pemulihan kondisi otot dari kelelahan. Pada saat pemulihan ini asam laktat diangkut keluar dari otot melalui aliran darah dan dikonversi lagi menjadi glukosa di dalam hati (Gambar 2). Proses pemulihan kembali ini berlangsung dengan cepat untuk kelelahan ringan, namun dapat memerlukan periode waktu yang panjang apabila kelelahan itu cukup berat. Glikogen dapat disimpan kembali dalam otot (sekitar 1% dari bobot otot), apabila waktu dan nutrisi yang tersedia cukup memadai.

Menurut Shorthose dan Wythes (1988), transportasi pada terna yang diikuti dengan istirahat yang tidak cukup sebelum pemotongan, akan menurunkan kadar glikogen otot yang cukup untuk meningkatkan nilai pH akhir dari otot domba. Kondisi penampungan dan penanganan prapotong yang baik, memperpanjang periode istirahat dengan menyediakan air minum, atau pakan...

Metabolisme Glikogen dan Glukosa

Glikogen merupakan bentuk simpanan karbohidrat yang utama di dalam tubuh hewan. Glikogen terutama terdapat di dalam hati sekitar 6% dan di dalam otot sekitar 1% (Mayes 1999), sedangkan menurut Preston dan Leng (1987) glikogen hati sekitar 5 g/100 g dan pada otot 1-2 g/100 g. Setelah proses
penyerapan melalui dinding usus halus, sebagian besar monosakarida dibawa oleh aliran darah ke hati (Wirahadikusumah 1985; Aberle et al. 2001). Di dalam hati, monosakarida mengalami proses sintesis menghasilkan glikogen, oksidasi menjadi CO₂ dan H₂O atau dilepaskan untuk dibawa melalui aliran darah ke bagian tubuh yang memerlukan.

<table>
<thead>
<tr>
<th>HATI</th>
<th>DARAH</th>
<th>OTOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glikogen</td>
<td>Fruktosa</td>
<td>Glikogen</td>
</tr>
<tr>
<td></td>
<td>Galaktosa</td>
<td></td>
</tr>
<tr>
<td>Glukosa</td>
<td></td>
<td>Glukosa</td>
</tr>
<tr>
<td>ATP</td>
<td></td>
<td>ATP</td>
</tr>
<tr>
<td>Piruvat</td>
<td></td>
<td>Piruvat</td>
</tr>
<tr>
<td>Lipida</td>
<td></td>
<td>CO₂ + H₂O</td>
</tr>
<tr>
<td>Sterol kolesterol</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Glikogen disintesis dari prekursor glukosa lainnya melalui lintasan glikogenesis, Proses glikogenesis terjadi di dalam otot dan hati (Mayes 1995; Lehninger 1994a). Glukosa akan mengalami fosforilasi menjadi glukosa 6-fosfat yang dikatalisis oleh enzim heksokinase di dalam otot dan enzim glukokinase di dalam hati. Selanjutnya glukosa 6-fosfat diubah menjadi glukosa 1-fosfat dalam
reaksi yang dikatalisis oleh enzim fosfoglukomutase. Glukosa 6-fosfat dan glukosa 1-fosfat merupakan senyawa antara proses glikogenesis (Wirahadikusumah 1985).

\[
\text{Glukosa 6-fosfat} \xrightarrow{\text{Heksokinase}} \text{Glukosa 1-fosfat}
\]

Gambar 4. Pembentukan uridin difosfat + glukosa (UDPG) dari glukosa, melalui pembentukan glukosa 6-fosfat dan glukosa 1-fosfat (Wirahadikusumah 1985).

Selanjutnya senyawa glukosa 1-fosfat bereaksi dengan uridin trifosfat (UTP) untuk membentuk uridin difosfat glukosa (UDP-glukosa). Reaksi antara glukosa 1-fosfat dan uridin trifosfat dikatalisisi oleh enzim UDP-glukosa pirofosforilase (Wirahadikusumah 1985; Lehninger 1994).

\[
\text{UTP + glukosa 1-fosfat} \longrightarrow \text{UDP-glukosa + Ppi}
\]
Gambar 4 menyajikan lintasan pembentukan uridin difosfat dari UDP-glukosa yang merupakan donor langsung residu glukosa di dalam pembentukan enzimatik glikogen oleh kerja glikogen sintase, yang menggiatkan pemindahan residu glukosi dari UDP-glukosa ke ujung nonreduksi molekul glikogen bercabang.

Gambar 5. Glikogenesis (pembentukan glikogen oleh glikogen sintase)
(Lehninger 1994a, Wirahadikusumah 1985)

Glikogen yang terbentuk melalui lintasan glikogenesis (Gambar 5) kemudian disimpan di dalam hati maupun di dalam otot, yang digunakan sebagai bahan bakar cadangan dan diuraikan melalui proses glikogenolisis. Pada kondisi ternak stres, sistem sirkular tidak dapat membawa oksigen dan glukosa ke otot kerangka dengan kecepatan yang cukup untuk memenuhi kebutuhan otot yang
demikian tinggi terhadap ATP (Lehninger 1994a; Aberle et al. 2001). Dalam keadaan tersebut glikogen dengan cepat diuraikan melalui proses glikolisis untuk membentuk asam laktat dan menghasilkan ATP, sebagai sumber energi tinggi.

Pada reaksi glikogenolisis (Gambar 6), terjadi proses pemecahan (fosforolisis) ikatan-1-4 glikogen untuk menghasilkan glukosa 1-fosfat (Mayes 1999). Dengan dikatalisis oleh enzim fosfo-glukomutase, glukosa 6-fosfat dapat dibentuk dari glukosa 1-fosfat. Glukosa 6-fosfat diubah menjadi glukosa dengan dikatalisis enzim fosfatase sehingga memudahkan difusi glukosa dari sel ke dalam darah yang menyebabkan kenaikan kadar glukosa daarah.

Secara ringkas proses glikogenesis dan glikogenolisis beserta enzim-enzim yang berperan dalam kedua proses tersebut dapat dilihat pada Gambar 7.

![Diagram glikogenesis dan glikogenolisis](image.png)

Keterangan:
- Enzim: $E_1 = \text{fosforilase}$, $E_4 = \text{glukokinase}$, $P_i = \text{fosfat anorganik}$
- $E_2 = \text{fosfoglikomutase}$, $E_5 = \text{pirovosforilase}$, $PP_i = \text{asam pirovosfat}$
- $E_3 = \text{fosfataze}$, $E_6 = \text{glikogen sintetase}$

Gambar 7. Jalan Reaksi glikogenesis dan glikogenolisis (Wirahadikusumah 1985).

Glukosa darah tidak hanya berasal dari proses glikogenolisis saja, tetapi dapat berasal dari berbagai senyawa glukogenik (Lehninger 1994a; Mayes 1999). Senyawa glukogenik antara lain adalah asam laktat hasil dari oksidasi glukosa di dalam otot. Mayes (1999) menyatakan bahwa laktat dibawa ke hati melalui aliran darah untuk disintesis menjadi glukosa, sehingga glukosa tersedia lagi lewat sirkulasi bagi oksidasi di dalam jaringan, proses ini dikenal sebagai siklus Cori (Gambar 8).

Pemanfaatan Insulin dan Mobilisasi Glukosa

Insulin merupakan hormon yang dihasilkan oleh pankreas, yaitu sel-sel B pulau Langerhans (Turner-Bagnara 1976; Frandson 1993; Lehninger 1994a; Ganong 1995).

Ditinjau dari struktur kimianya, insulin termasuk hormon protein (Djojosoebagio 1990) dan terdiri dari rantai A yang mengandung 20-21 asam amino serta rantai B yang mengandung 29-31 asam amino (lihat Gambar 9).

Insulin mempunyai pengaruh pada transportasi lintas membran (Murray et al. 1997), yaitu penambahan insulin meningkatkan masuknya glukosa ke dalam sel-sel otot (Gambar 10).

Lebih lanjut dinyatakan bahwa di dalam hati dan otot, insulin merangsang konversi glukosa menjadi glukosa-6-fosfat (dengan kerja enzim glukokinase) yang kemudian mengalami isomerasi menjadi glukosa-1-fosfat dan disatukan ke dalam glikogen oleh enzim glikogen sintetase yang aktivitasnya dirangsang oleh
insulin. Insulin disekresi oleh sel-sel B pada pulau-pulau Langerhans ke dalam darah, terutama ditentukan oleh konsentrasi glukosa dalam darah (Lehninger 1994b).

Sitat Fisik dan Kimia Daging

Daging didefinisikan sebagai semua jaringan hewan yang dapat digunakan sebagai bahan makanan (Lawrie 1995; Aberle et al. 2001). Definisi daging tersebut sering diperluas dengan memasukkan organ-organ, seperti hati, ginjal, otot dan jaringan lain yang dapat dimakan di samping urat daging (Lawrie 1995). Kualitas daging dipengaruhi oleh faktor sebelum dan sesudah pemotongan (Soeparno 1994).

Bagaimanapun baiknya mutu dan kondisi sapi potong, jika penanganan sebelum dipotong, pada waktu dipotong dan setelah dipotong kurang memadai maka daging yang dihasilkan tidak akan memenuhi standar mutu yang baik (Gurnadi 1993). Menurut Aberle et al. (2001), kualitas daging ditentukan oleh warna, keempukan, daya mengikat air oleh protein, pH dan susut masak.
Warna Daging

Keempukan Daging

Keempukan daging dapat diuji berdasarkan sensory test dan shear test. Sensory test atau uji organoleptik adalah uji mengunyah sampel daging yang dikontrol dengan sangat hati-hati yang dilakukan dengan uji panel. Shear test adalah keempukan yang dinyatakan sebagai besarnya tekanan yang dibutuhkan untuk memotong sampel daging dengan alat Warner-Bratzler Shear. Keempukan daging dipengaruhi oleh dua faktor, yaitu keliatan serat otot dan keliatan jaringan ikat. Keliatan jaringan otot terutama berhubungan dengan tingkat kontraksi otot, sedangkan keliatan jaringan ikat berhubungan dengan umur ternak (Whthes dan

Daya Mengikat Air Daging

Air terikat adalah air yang terikat secara kimiawi oleh protein daging. Air diam adalah air terikat agak lemah sebagai lapisan kedua dari molekul air terhadap grup hidrofilik. Air bebas adalah molekul air yang berada diantara

pH Daging

Aberle et al. (2001) menyatakan bahwa pada pH akhir daging mencapai titik isoelektik (5,2-5,4) jumlah gugus reaktif dari protein otot yang dimuati secara positif dan negatif sama, sehingga gugus tersebut cenderung saling menarik dan hanya gugus yang tersisa yang tersedia untuk mengikat air (lihat Gambar 14).

Susut Masak Daging

Pada umumnya susut masak bervariasi dengan kisaran 15-40% (Soeparno 1994). Wahyuni (1998) menyebutkan bahwa sapi yang tidak
diistirahkan setelah transportasi cenderung mempunyai susut masak yang lebih tinggi daripada sapi yang diistirahkan 12 jam sebelum pemotongan. Aryogi (2000) menyarankan bahwa susut masak antara daging dari sapi yang stres dan daging dari sapi yang diberi gula aren setelah transportasi berbeda tidak nyata.

Daging DFD

Tujuan utama dalam industri ternak potong adalah menghasilkan daging dengan kualitas baik. Usaha-usaha yang dilakukan oleh industri ternak potong dalam rangka mencapai tujuan tersebut antara lain adalah perbaikan pakan, bibit ternak, kesehatan dan juga manajemen pemeliharaan serta pemasaran. Penanganan ternak pascapanen merupakan faktor yang cukup penting dalam menghasilkan daging kualitas baik. Penanganan ternak pasca panen meliputi antara lain pengangkutan, penanganan sebelum pemotongan di kandang penampungan yaitu penyediaan pakan dan air minum, kondisi kandang dan lama istirahat sebelum dipotong.

Penanganan ternak sebelum dipotong yang kurang baik dapat menyebabkan kualitas daging yang dihasilkan rendah yaitu daging yang pucat, lemah dan basah (Pale, Soft and Exudative = PSE) maupun daging yang merah gelap, keras dan kering (Dark, Firm and Dry = DFD). Aberle *et al.* (2001) menyatakan bahwa daging PSE lebih banyak terjadi pada babi, yang disebabkan oleh produksi asam laktat post-mortem yang sangat cepat dan tak terkendali sehingga mengakibatkan pH daging yang sangat rendah dalam waktu singkat, sementara temperatur otot masih relatif tinggi.

Penyimpangan kualitas daging dari ternak ruminansia sebagian besar adalah kasus daging dengan warna merah gelap, keras dan kering atau dikenal

Kasus DFD di beberapa negara telah banyak diteliti, baik pada sapi muda maupun sapi dewasa. Di Swedia, kasus DFD terjadi sebanyak 32,2% jika tidak dilakukan stimulasi listrik dan 7,3% jika dilakukan stimulasi listrik (Fabianson et al. 1984), sedangkan di Finlandia kasus DFD terjadi sebanyak 22% (Poulanne dan Aalto 1981). Tarrant (1981) menyatakan bahwa 1-5% kasus DFD terjadi pada sapi jantan kastrasi dan betina muda, 6-10% pada sapi betina dewasa dan 11-15% pada sapi jantan muda. Negara yang tertinggi frekuensi kasus DFD > 20% adalah Finlandia, kemudian Australia dan Wyoming (AS) sebesar 6-10% dan 1-5% di Maryland (AS), Illinois (AS), Missouri (AS), Perancis, Belgia, Denmark dan Polandia.

Kualitas daging berhubungan dengan nilai ekonomis, dimana daging dengan kualitas baik mempunyai nilai jual yang lebih tinggi daripada kualitas yang lebih rendah. Daging DFD mempunyai penampilan kurang menarik, dengan

Di Indonesia belum didapatkan data seberapa banyak kasus daging DFD. Namun, ditinjau dari segi iklim, kondisi RPH dan manajemen pemasaran ternak, kemungkinan terjadi kasus daging DFD lebih besar daripada negara-negara yang sudah maju di bidang industri daging. Di sisi lain, konsumen sudah mengutamakan kualitas pada saat membeli daging. Darmawan (2002) menyatakan bahwa sebagian besar konsumen di supermarket (80,1%) mengutamakan kualitas dalam membeli daging dan 16,7% konsumen mengutamakan harga. Dengan demikian, kualitas daging di Indonesia sudah merupakan hal yang sangat penting sehingga kasus daging DFD juga harus dicegah.
MATERI DAN METODE

Waktu dan Tempat

Materi

Penelitian ini menggunakan 54 ekor domba lokal betina, dengan kisaran umur antara 10-12 bulan dengan bobot hidup antara 14-17 kg. Domba yang digunakan berasal dari Pasirangin, Megamendung, Bogor. Gula pasir yang digunakan sebanyak 3 kg, kristal insulin produksi SIGMA (SIGMA I-5500) dan 2 liter larutan natrium fisiologis.

Peralatan yang digunakan dalam penelitian ini meliputi timbangan, tali, jarum suntik, jarum dan tabung venoject, satu set pisau untuk menyembelih dan penyediaan sampel, plastik dan peralatan untuk analisis sampel darah dan daging.

Metode

A. Perlakuan yang Digunakan

Penelitian menggunakan rancangan acak lengkap pola factorial 2x3x3. Faktor pertama adalah pemberian gula dengan 2 level, yaitu level 0 dan 6 g/kg bobot badan. Faktor kedua adalah pemberian insulin dengan 3 level yaitu 0, 0,3
dan 0,6 IU/ekor. Faktor ketiga adalah lama istirahat yang terdiri atas 3 level yaitu 2 jam, 4 jam dan 6 jam dan masing-masing diulang 3 kali.

Transportasi dilakukan selama 4 jam (dari 07.00 sampai 11.00 WIB) dengan menggunakan mobil bak Hijet 1000, setiap pengangkutan sebanyak 9 ekor (Gambar 15). Di dalam mobil domba dibiarkan berdiri dengan kepadatan 0,145 m²/ekor. Sebelum diangkut, domba ditimbang, sampel darah diambil serta denyut nadi dan temperatur rektal diukur.

Gambar 15. Domba dalam mobil angkutan

Setelah selesai penimbangan, domba dinaikkan ke dalam mobil angkutan. Rute transportasi adalah dimulai dari Pasirangin menuju Gunung Geulis, Tapos, Ciawi, Empang, Gunungbatu dan berakhir di Fakultas Peternakan Institut Pertanian Bogor Darmaga, dengan kondisi jalan seperti tampak pada Gambar 16.
Gambar 16. Kondisi jalan selama pengangkutan domba

Setelah domba-domba sampai di kandang pengurungan, sampel darah diambil serta denyut nadi dan temperatur rektal diukur kemudian domba percobaan dibagi sesuai perlakuan. Sampel darah diambil sebanyak 10 ml dari bagian vena jugularis, dengan menggunakan jarum dan tabung venoject.

Pemberian gula pasir dilakukan dengan menimbang sejumlah gula sesuai perlakuan, kemudian dilarutkan dalam 200 ml air. Larutan gula tersebut diminumkan dengan menggunakan botol sampai habis. Larutan gula diminumkan kepada domba dalam keadaan berdiri dan dipegang pada bagian depan, kemudian larutan gula dalam botol dimasukkan ke dalam mulut dan domba meminumnya sampai habis (Gambar 17). Insulin yang digunakan adalah berbentuk kristal dan diperoleh dari pankreas sapi (SIGMA I-5500). Kristal insulin tersebut dilarutkan dalam larutan garam fisiologis. Setelah disiapkan dalam alat suntik sesuai perlakuan, disuntikkan pada bagian paha belakang (lihat Gambar 18).
Gambar 17. Pemberian larutan gula pada domba

Gambar 18. Penyuntikan insulin pada domba
Setelah pemberian larutan gula dan penyuntikan insulin (Gambar 18) selesai, domba diistirahatkan selama 2 jam, 4 jam dan 6 jam kemudian dipotong. Sebelum dipotong domba ditimbang (Gambar 19) dan sampel darah diambil.

Gambar 19. Penimbangan Domba

Pembah yang diamati pada penelitian ini meliputi penurunan bobot hidup, persentase karkas, kadar glukosa darah, kadar glikogen daging, kadar asam laktat daging, pH, keempukan, daya mengikat air, susut masak dan warna daging.

B. Metode Pengukuran Parameter

1. Penurunan Bobot Hidup

Penurunan bobot hidup diperoleh dari hasil pengurangan bobot hidup sebelum pengangkutan dan bobot hidup sebelum dipotong yang dinyatakan dalam persen, yang dapat ditulis dengan rumus sebagai berikut:
Penurunan bobot hidup (%) = \frac{(A - B)}{A} \times 100

dimana:
A = bobot hidup sebelum pengangkutan (kg)
B = bobot hidup sebelum dipotong (kg)

2. Persentase Karkas

Persentase karkas diperoleh dari bobot karkas dibagi dengan bobot hidup
dan dikalikan 100 atau dapat dituliskan dengan rumus sebagai berikut:

\frac{A}{B} \times 100

dimana:
A = bobot karkas (kg)
B = bobot hidup (kg)

3. Kadar Glukosa Darah

Analisis kadar glukosa darah dilakukan dengan menggunakan metode
GOD-PAP dari Randox. Ke dalam tabung sentrifus dipipet 0,1 ml plasma dan
1 ml urac kemudian diaduk dan disentrifus pada kecepatan 2500 rpm selama
15 menit. Supernatant yang jernih diambil sebanyak 0,1 ml untuk dianalisis.

Larutan reagen dibuat dengan mencelupkan satu batang reagen strip ke
dalam larutan penyangga selama 5 menit, setelah itu reagen strip dikeluarkan dan
dibuang.

Larutan standard sebanyak 0,1 ml dimasukkan ke dalam kuvet berdiameter
1 cm dan ditambahkan 2 ml larutan reagen, kemudian dicampur sampai homogen
dan dibiaran selama 30 menit pada suhu kamar (27 °C). Setelah itu dimasukkan
ke dalam spectrophotometer dan absorbasi diukur.
Larutan sampel (supernatant) sebanyak 0,1 ml dimasukkan ke dalam kuvet berdiameter 1 cm dan ditambahkan 2 ml larutan reagen, kemudian dicampur sampai homogen dan dibiarkan selama 30 menit pada suhu kamar (27°C). Kuvet dimasukkan ke dalam spectrophotometer dan absorbansi diukur pada panjang gelombang 510 nm. Kadar glukosa darah diperoleh dengan membandingkan nilai absorbansi sampel dengan nilai absorbansi standar dikali 100 (Mannheim 1998), yang dapat dituliskan sebagai berikut:

\[C = \frac{A_{sampel}}{A_{standar}} \times 100 \]

Dimana:
- \(C \) = kadar glukosa darah
- \(A_{sampel} \) = nilai absorbansi sampel
- \(A_{standar} \) = nilai absorbansi standar

4. Kadar Glikogen Daging

Kadar glikogen daging dianalisis dengan metode Seifter et al. (1950), menggunakan bahan-bahan sebagai berikut:

- 95% asam sulfat (sulfuric acid = SA) yaitu 5 ml H₂O ditambah 95 ml SA.
- 0,2% anthrone (0,2 g anthrone ditambah 95% SA sehingga mencapai volume 100 ml).
- 30% KOH (30 g KOH ditambah H₂O sampai mencapai volume 100 ml).
- 95% etanol (ethyl alkohol).

Prosedur analisisnya yaitu KOH 30% sebanyak 1 ml ditambahkan pada sampel sebanyak 25 mg dalam tabung reaksi, kemudian dipanaskan dalam penangas air selama 20 menit. Setelah itu ditambahkan dengan etanol dan kemudian disentrifus selama 20 menit pada kecepatan 2500 rpm.
Endapan yang tersisa dipisahkan dari larutan (supernatan) hasil sentrifus yang ada di atas, kemudian ditambahkan 2,5 ml H₂O dan 3 ml larutan anthrone lalu dihomogenkan dengan vorteks. Setelah itu dibaca dengan spektrofotometer pada panjang gelombang (λ) 620 nm. Kurva standar untuk glikogen:

\[
\begin{align*}
250 & : 250 \mu g \text{ dari standar} + 750 \mu l \text{ H}_2\text{O} \\
200 & : 200 \mu g \text{ dari standar} + 800 \mu l \text{ H}_2\text{O} \\
150 & : 150 \mu g \text{ dari standar} + 850 \mu l \text{ H}_2\text{O} \\
100 & : 100 \mu g \text{ dari standar} + 900 \mu l \text{ H}_2\text{O} \\
75 & : 75 \mu g \text{ dari standar} + 925 \mu l \text{ H}_2\text{O} \\
50 & : 50 \mu g \text{ dari standar} + 950 \mu l \text{ H}_2\text{O} \\
25 & : 25 \mu g \text{ dari standar} + 975 \mu l \text{ H}_2\text{O}
\end{align*}
\]

5. Kadar Asam Laktat Daging

Analisis kadar asam laktat daging dilakukan dengan menggunakan kromatografi cairan model 510 Waters (HPLC atau High Performance Liquid Chromatography) yang dilengkapi dengan UV Spectrophotometric Detector model 440 absorbance, integrator model Waters Data Module tipe 740.

Prosedur analisisnya yaitu asam perklorat (HClO₄) 6% sebanyak 10 ml ditambahkan pada sampel daging sebanyak 2 gram dalam beaker glass, kemudian diekstraksi. Larutan diambil dan dinetralisasi dengan menambahkan KOH 10% sampai pH larutan netral (pH 7,0) dan terbentuk endapan warna putih. Larutan dimasukkan ke dalam gelas ukur dan ditambahkan aquades sampai mencapai 20 ml. Setelah itu disaring, kemudian filtrat sebanyak 20 mikroliter dimasukkan ke dalam jarum injeksi dan diinjeksikan dalam alat HPLC.
6. pH Daging

Pengukuran pH daging dilakukan dengan menggunakan alat pH meter. Sampel daging yang sudah dihaluskan sebanyak 10 gram dimasukkan ke dalam beaker glass, dan diencerkan dengan akuades sampai 100 ml, kemudian dicampur dengan menggunakan blender selama 1 menit. Setelah itu diukur pHnya dengan pH meter yang telah dikalibrasi.

7. Keempukan Daging

Pengukuran keempukan daging dilakukan secara obyektif, dengan menggunakan alat Warner-Bratzler Shear, yaitu 200 gram sampel daging dengan panjang 7 cm ditancapkan pada termometer bimetal sampai bagian tengah daging kemudian dimasukkan ke dalam air mendidih. Sampel daging harus terendam semua dalam air sampai termometer mencapai angka 81 °C, lalu diangkat. Setelah sampel daging didinginkan selama kurang lebih 60 menit, kemudian dicetak dengan alat pengebor (corer), dengan diameter 1,27 cm sehingga diperoleh potongan daging dengan panjang 4-5 cm. Potongan-potongan daging tersebut dinilai keempukannya dengan mengukur tekanan gaya pada alat Warner-Bratzler Shear yang dinyatakan dalam satuan kg/cm².

8. Daya Mengikat Air (Water-Holding Capacity = WHC)

Pengukuran daya mengikat air dilakukan dengan metode penekanan (press method) dari Hammi (1972), yaitu dengan membebani 0,3 gram sampel daging pada suatu kertas saring di antara dua plat dengan beban 35 kg. Setelah 5 menit, daerah yang tertutup sampel daging yang telah pipih dan luas daerah basah di sekitarnya ditandai dan diukur. Daerah basah diperoleh dengan mengurangkan
daerah yang tertutup sampel daging dari luas total (luas daerah basah dan luas daerah yang tertutup sampel daging). Kandungan air daging dapat dihitung dengan menggunakan rumus sebagai berikut:

\[\text{Mg H}_2\text{O} = \frac{\text{Daerah basah (cm}^2\text{)}}{0,0948} - 8,0 \]

Nilai kandungan air yang diperoleh berdasarkan rumus, selanjutnya dipersentasekan terhadap bobot sampel yaitu 0,3 gram.

9. Susut Masak Daging (Cooking Loss)

Susut masak adalah perbedaan antara bobot daging sebelum dan sesudah dimasak, dinyatakan dalam persen (%). Sampel daging sebanyak 100 gram yang telah ditancapkan pada termometer bimetal sampai menembus bagian tengah sampel daging, dimasukkan ke dalam air mendidih. Setelah termometer bimetal mencapai angka 81 °C, sampel daging diangkat dan didinginkan selama 60 menit dan ditimbang setiap 30 menit sampai bobotnya konstan.

10. Warna Daging

Pengujian warna daging dilakukan secara obyektif menggunakan alat Chromameter (R-20, Minolta Camera Co, Japan) untuk menentukan L, a dan b.

Nilai L berhubungan dengan derajat kecerahan yang berkisar antara nol dan 100. Kecerahan dinyatakan meningkat dengan meningkatnya nilai L. Nilai a menggambarkan tingkat kemerahan dan kehijauan, yang berkisar antara –80 dan 100. Nilai a negatif menunjukkan warna kehijauan, sedangkan nilai a positif menunjukkan warna kemerahan. Selanjutnya nilai b menunjukkan tingkat kekuningan dan kebiruan, nilai b berkisar antara –80 dan 70. Nilai b positif
menunjukkan warna kekuningan, sedangkan nilai b negatif menunjukkan warna kebiruan.

Pengujian warna juga dilakukan dengan uji organoleptik yaitu dengan uji skoring dan uji hedonik (Soekarto 1985). Uji skoring adalah memberikan nilai angka atau menempatkan nilai mutu sensori terhadap bahan yang diuji pada jenjang mutu atau tingkat skala mutu. Tingkat skala mutu dapat dinyatakan dalam ungkapan skala mutu yang telah baku.

Tujuan uji skoring adalah untuk memberikan suatu nilai atau skor tertentu terhadap suatu karakteristik mutu, jumlah skala mutu bergantung pada tingkat kelas yang dikehendaki seperti yang tercantum pada format uji. Panelis yang digunakan adalah panelis semiterlatih sebanyak 54 orang.

Uji hedonik merupakan salah satu jenis uji penerimaan. Pada uji ini panelis diminta untuk mengungkapkan tanggapan pribadinya tentang tingkat kesukaan atau ketidaksukaan. Tingkat-tingkat kesukaan ini disebut sebagai skala hedonik. Panelis yang digunakan panelis tidak terlatih sebanyak 102 orang. Skala hedonik sebanyak 7 skala kesukaan dari sangat suka (nilai 1) sampai dengan sangat tidak suka (nilai 7), seperti yang tercantum pada format uji.

Sampel daging pada uji organoleptik disajikan pada piring saji, tiap sampel diberi kode masing-masing. Panelis diminta untuk memberikan skor dari warna daging pada format uji skoring dan penilaian tingkat kesukaan pada format uji hedonik. Selanjutnya format pengumpulan data uji skoring dan uji hedonik disusun sebagai berikut:
1. Format Uji Skoring Warna Daging Domba Mentah

Nama Panelis:

Tgl. Pengujian:

Uji : Skoring

Jenis sampel : Daging domba mentah

Instruksi : Nyatakan penilaian dengan tanda (✓) terhadap warna pada tabel

<table>
<thead>
<tr>
<th>Skor</th>
<th>Penilaian</th>
<th>Kode Sampel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>205</td>
</tr>
<tr>
<td>1.</td>
<td>Merah tua</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Merah</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Merah cerah</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Merah muda</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Pucat</td>
<td></td>
</tr>
</tbody>
</table>

2. Format Uji Hedonik Warna Daging Domba Mentah

Nama Panelis:

Tgl. Pengujian:

Uji : Hedonik

Jenis sampel : Daging domba mentah

Instruksi : Nyatakan penilaian dengan tanda (✓) terhadap warna pada tabel

<table>
<thead>
<tr>
<th>Skor</th>
<th>Penilaian</th>
<th>Kode Sampel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>205</td>
</tr>
<tr>
<td>1.</td>
<td>Sangat suka</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Suka</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Agak suka</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Netral</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Agak tidak suka</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Tidak suka</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Sangat tidak suka</td>
<td></td>
</tr>
</tbody>
</table>

Data yang diperoleh dianalisis dengan uji Kruskal-Wallis (Gibbons 1975), apabila terdapat perbedaan dilakukan uji lanjut yang dikembangkan oleh Gibbons.
C. Analisis Data

Percobaan disusun berdasarkan rancangan acak lengkap pola faktorial 2x3x3. Faktor pertama adalah pemberian gula dengan 2 level yaitu 0 dan 6 g/kg bobot badan. Faktor kedua adalah pemberian insulin dengan 3 level yaitu 0, 0,3 dan 0,6 IU/ekor. Faktor ketiga adalah lama istirahat dengan 3 level yaitu 2 jam, 4 jam dan 6 jam. Masing-masing unit percobaan diulang 3 kali. Data yang diperoleh dianalisis dengan analisis sidik ragam (Steel dan Torrie, 1991). Perbedaan antar perlakuan diuji berdasarkan nilai kuadrat tengah terkecil (least square mean, SAS, 1999).

Model matematik rancangan tersebut adalah sebagai berikut:

\[Y_{ijkl} = \mu + A_i + B_j + C_k + (AB)_{ij} + (AC)_k + (BC)_{jk} + (ABC)_{ijk} + \varepsilon_{ijkl} \]

Dimana:
- \(Y_{ijkl} \) = Respon karena pengaruh perlakuan pemberian gula ke-i, insulin ke-j, lama istirahat ke-k dan ulangan ke-l
- \(\mu \) = Rataan umum
- \(A_i \) = Pengaruh perlakuan pemberian gula ke-i
- \(B_j \) = Pengaruh pemberian insulin ke-j
- \(C_k \) = Pengaruh perlakuan lama istirahat ke-k
- \((AB)_{ij} \) = Pengaruh interaksi perlakuan pemberian gula ke-i dan insulin ke-j
- \((AC)_k \) = Pengaruh interaksi perlakuan pemberian gula ke-i dan lama istirahat ke-k
- \((BC)_{jk} \) = Pengaruh interaksi perlakuan pemberian insulin ke-j dan lama istirahat ke-k
- \((ABC)_{ijk} \) = Pengaruh interaksi perlakuan pemberian gula ke-i, insulin ke-j dan lama istirahat ke-k
- \(\varepsilon_{ijkl} \) = Galat
HASIL DAN PEMBAHASAN

Suhu Rektal dan Denyut Jantung

Suhu rektal dan denyut jantung domba sebelum dan setelah pengangkutan disajikan pada Tabel 1. Hasil penelitian ini menunjukkan bahwa suhu rektal dan denyut jantung domba setelah pengangkutan meningkat sangat nyata (P<0,01).

Tabel 1. Suhu rektal dan denyut jantung domba sebelum dan setelah pengangkutan

<table>
<thead>
<tr>
<th>Penabah</th>
<th>Rataan</th>
<th>tجر</th>
<th>tظب</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suhu rektal (°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sebelum pengangkutan</td>
<td>38,85 a</td>
<td>19,71**</td>
<td>2,66</td>
</tr>
<tr>
<td>Setelah pengangkutan</td>
<td>39,59 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denyut jantung (kati/ menit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sebelum pengangkutan</td>
<td>100,07 a</td>
<td>35,17**</td>
<td>2,66</td>
</tr>
<tr>
<td>Setelah pengangkutan</td>
<td>133,63 b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: Superskrip berbeda pada kolom yang sama menunjukkan beda sangat nyata (P<0,01)

Suhu rektal pada penelitian ini lebih rendah dari hasil penelitian Hernawan (2001), yang menyatakan bahwa suhu rektal domba setelah mengalami pengangkutan meningkat dari 39,46 °C menjadi 39,72 °C. Perbedaan hasil ini karena pada penelitian Hernawan (2001) pengangkutan domba dilaksanakan pada siang hari (13.00-14.00 WIB), sedang pada penelitian ini dilaksanakan pada pagi sampai siang (07.30-11.30 WIB). Peningkatan suhu tubuh juga disebabkan oleh suhu lingkungan yang meningkat, yaitu domba mulai diangkut pada pagi hari (07.30 WIB) dimana rataan suhu lingkungan sebesar 22,7 °C dan sampai di kandang penampungan pada siang hari (11.30 WIB) dimana rataan suhu lingkungan sebesar 32,2 °C dan bak mobil pengangkut terbuka sebagian. Oleh karena itu domba mengalami cekaman panas sehingga suhu tubuh meningkat untuk mengurangi beban panas tersebut.

Hernawan (2001) menyatakan bahwa domba yang mengalami pengangkutan denyut jantung meningkat dari 133 kali/ menit menjadi 144 kali/ menit.

Penurunan Bobot Hidup

Rataan penurunan bobot badan domba dapat dilihat pada Tabel 2. Penurunan bobot badan selama transportasi dan istirahat menunjukkan perbedaan yang nyata (P<0,01) dipengaruhi oleh lama istirahat (lihat Lampiran 1). Pada lama istirahat 6 jam terjadi penurunan bobot badan sebesar 7,6%, penurunan ini nyata lebih besar dibandingkan dengan yang lama istirahat 4 jam dan 2 jam. Periode
istirahat yang lebih lama akan terjadi urinasi dan defekasi yang lebih banyak sehingga bobot badannya lebih banyak berkurang.

Tabel 2. Rataan penurunan bobot badan domba selama selama pengangkutan dan istirahat (%)

<table>
<thead>
<tr>
<th>Insulin (IU)</th>
<th>Waktu Istirahat (Jam)</th>
<th>Gula (g/kg bb)</th>
<th>Rataan</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5,68</td>
<td>3,96</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7,84</td>
<td>4,74</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6,67</td>
<td>6,62</td>
</tr>
<tr>
<td>0,3</td>
<td>2</td>
<td>4,04</td>
<td>3,80</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7,48</td>
<td>6,16</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5,96</td>
<td>9,24</td>
</tr>
<tr>
<td>0,6</td>
<td>2</td>
<td>4,89</td>
<td>4,55</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6,02</td>
<td>6,76</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8,61</td>
<td>8,48</td>
</tr>
<tr>
<td>Rataan</td>
<td>6,35</td>
<td>6,00</td>
<td></td>
</tr>
<tr>
<td>Rataan</td>
<td>4</td>
<td>4,44 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6,50 b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7,60 c</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: Superskrip yang berbeda pada kolom yang sama menunjukkan beda nyata (P<0,01).

jarak yang ditempuh. Hasil penelitian ini lebih kecil dari hasil penelitian Sutedja (1981) yang menyatakan bahwa domba yang mengalami pengangkutan sejauh 120 km dan 400 km dengan truk tanpa penyekat dan tanpa air minum rata-rata penyusutan bobot badan sebesar 9,77 dan 19,57%. Pengangkutan domba dengan truk yang diberi penyekat dan tanpa air minum rata-rata penyusutan bobot badan sebesar 9,03 dan 15,37%, dan yang menggunakan truk diberi penyekat dan air minum rata-rata penyusutan bobot badan sebesar 7,2 dan 12,9%. Mantra (1986) menyatakan bahwa kambing jantan yang mengalami pengangkutan sejauh 100 km selama 2 jam, bobot badan menurun sebanyak 3,5% dari bobot awal. Namun, hasil penelitian ini lebih besar dari hasil penelitian Knowles et al. (1993) yang menyebutkan bahwa selama transportasi domba mengalami penurunan bobot hidup sebesar 6,7% dan yang hanya dipuaskan saja mengalami penurunan sebesar 1,5%.

Fernandez et al. (1996) menyatakan bahwa selama pengangkutan mengalami penurunan bobot hidup sebesar 3,64%. Perbedaan antara hasil penelitian ini dengan penelitian-penelitian sebelumnya disebabkan karena penurunan bobot badan pada penelitian ini merupakan penurunan bobot badan selama pengangkutan sampai sebelum dipotong, juga adanya perbedaan kondisi jalan yang ditempuh. Pada jarak tempuh yang sama tetapi kondisi jalan berbeda, maka waktu tempuh berbeda sehingga stres yang dialami ternak juga berbeda.

Hasil penelitian ini menunjukkan bahwa penurunan bobot badan selama transportasi dan istirahat hanya dipengaruhi oleh lama istirahat (P<0,01), sedangkan pemberian gula dan insulin tidak mempengaruhi penurunan bobot badan domba. Shorthose dan Wythes (1988) menyatakan bahwa susut bobot
hidup dan bobot karkas dipengaruhi oleh lamanya periode pemruasaan dalam perjalanan (tanpa diberi air minum dan atau pakan).

Persentase Bobot Karkas

Hasil penelitian menunjukkan bahwa bobot karkas nyata \((P<0,05)\) dipengaruhi oleh lama istirahat (lihat Lampiran 2). Pada Tabel 3 terlihat bahwa persentase bobot karkas tertinggi dicapai oleh domba yang lama istirahat 6 jam yaitu sebesar 47,32%, kemudian diikuti lama istirahat 4 jam \((44,04\%)\) dan lama istirahat 2 jam \((43,15\%)\).

<table>
<thead>
<tr>
<th>Insulin (IU)</th>
<th>Waktu Istirahat (Jam)</th>
<th>Gula (g/kg bb)</th>
<th>Rataan</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>44,27</td>
<td>43,14</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>43,97</td>
<td>43,79</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>46,30</td>
<td>46,44</td>
</tr>
<tr>
<td>0,3</td>
<td>2</td>
<td>43,75</td>
<td>42,18</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>41,27</td>
<td>43,65</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>51,15</td>
<td>47,69</td>
</tr>
<tr>
<td>0,6</td>
<td>2</td>
<td>43,73</td>
<td>42,06</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>46,62</td>
<td>44,92</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>45,30</td>
<td>47,03</td>
</tr>
<tr>
<td>Rataan</td>
<td></td>
<td>45,15</td>
<td>44,54</td>
</tr>
</tbody>
</table>

Keterangan: Superskrip yang berbeda pada kolom yang sama menunjukkan beda nyata \((P<0,05)\).

Pada lama istirahat 6 jam bobot badan mengalami susut yang paling banyak, sehingga sebagai unsur pembagi menjadi lebih kecil dibanding yang 4 jam maupun 2 jam dan hasilnya persentasenya menjadi lebih besar. Aryogi (2000) menyatakan bahwa selama ternak mengalami stres karena pengangkutan, akan terjadi perubahan fisiologis tubuh seperti peningkatan respirasi, pengeluaran urin dan feses. Dengan demikian akan menyebabkan penyesutan bobot badan dan
akan berpengaruh pada persentase karkas. Hasil persentase karkas ini sesuai dengan hasil penurunan bobot badan, di mana pada lama istirahat 6 jam penurunan bobot badannya lebih besar, sehingga menghasilkan persentase karkas yang lebih tinggi, dan hal ini sesuai dengan pendapat Berg dan Butterfield (1976) yang menyatakan bahwa persentase karkas dipengaruhi oleh bobot potong dan bobot karkas.

Kadar Glukosa Darah

Hasil penelitian pada Tabel 5 menunjukkan bahwa terjadi peningkatan glukosa setelah domba ditransportasi dan kembali turun selama istirahat (P<0,05).

Tabel 4. Rataan kadar glukosa darah domba selama penelitian (mg/dl)

<table>
<thead>
<tr>
<th>Waktu</th>
<th>Kadar Glukosa Darah (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sebelum Pengangkutan</td>
<td>50,51 a</td>
</tr>
<tr>
<td>Setelah Pengangkutan</td>
<td>68,94 c</td>
</tr>
<tr>
<td>Sebelum Pemotongan</td>
<td>57,76 b</td>
</tr>
</tbody>
</table>

Keterangan: Superskrip yang berbeda pada kolom yang sama menunjukkan beda nyata (P<0,05).

Kadar glukosa setelah transportasi (68,94 mg/dl) nyata lebih tinggi (P<0,05) dibandingkan dengan kadar glukosa sebelum transportasi (50,51 mg/dl) dan sebelum dipotong (57,76 mg/dl). Peningkatan kadar glukosa darah setelah transportasi terjadi karena kondisi stres yang dialami domba selama perjalanan. Stres selama perjalanan membuat domba berusaha mempertahankan kondisi fisiologisnya untuk mengatasi stres tersebut. Aberle et al. (2001) menyebutkan bahwa penyesuaian dalam metabolisme yang terjadi selama periode cekaman dibantu dengan pelepasan hormon epinefrin dan norepinefrin dari medulla adrenal. Knowles et al. (1995) menyatakan bahwa glukosa darah meningkat setelah domba mengalami pengangkutan selama 4 jam pertama dan menurun

Kadar glukosa darah domba hasil penelitian ini (Tabel 5) nyata dipengaruhi oleh lama istirahat (P<0,05), di mana kadar glukosa darah turun setelah istirahat 4 jam. Pada lama istirahat 4 jam kadar glukosa darah (56,45 mg/dl) tidak berbeda dengan lama istirahat 6 jam (54,80 mg/dl). Pada lama istirahat 2 jam (62,01 mg/dl), kondisi stres yang dialami domba tersebut belum pulih sehingga mobilisasi glukosa masih terus berlangsung. Lama istirahat 2 jam

<table>
<thead>
<tr>
<th>Insulin (IU)</th>
<th>Waktu Istirahat (Jam)</th>
<th>Gula (g/kg bb) 0</th>
<th>Gula (g/kg bb) 6</th>
<th>Rataan</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>68,01</td>
<td>69,28</td>
<td>61,20 a</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>60,66</td>
<td>53,16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>58,64</td>
<td>57,48</td>
<td></td>
</tr>
<tr>
<td>0,3</td>
<td>2</td>
<td>53,95</td>
<td>60,61</td>
<td>56,19 b</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>57,78</td>
<td>56,26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>53,55</td>
<td>55,06</td>
<td></td>
</tr>
<tr>
<td>0,6</td>
<td>2</td>
<td>61,02</td>
<td>59,22</td>
<td>55,86 b</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>56,38</td>
<td>54,47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>52,96</td>
<td>51,14</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: Superskrip yang berbeda pada kolom yang sama menunjukkan beda nyata (P<0,05)

Kadar glukosa darah domba hasil penelitian ini juga nyata dipengaruhi oleh pemberian insulin. Kelompok domba yang tidak diberi insulin mempunyai kadar glukosa darah sebesar 61,20 mg/dl yang nyata lebih tinggi (P<0,05) dari pada kelompok domba yang diberi insulin (56,19 mg/dl dan 55,86 mg/dl).

Namun, kadar glukosa darah kelompok domba yang disuntik insulin 0,3 IU tidak berbeda dengan yang disuntik 0,6 IU. Insulin adalah hormon yang dihasilkan oleh
pancreas, yang memudahkan memakaian glukosa oleh sel dan mencegah pemecahan glikogen hati dan otot secara berlebihan. Domba yang diberi suntikan insulin mempunyai kadar glukosa darah yang lebih rendah, karena aktivitas insulin memudahkan glukosa masuk ke dalam sel dan disimpan dalam bentuk glikogen melalui proses glikogenesis. Menurut Genuth (1988), hormon insulin akan meningkatkan masuknya glukosa darah ke dalam sel otot, yang mengakibatkan menurunnya kadar glukosa darah. McCann dan Reimers (1985) menyatakan bahwa pemberian insulin pada sapi dara gemuk dan kurus, mengakibatkan glukosa darah mengalami penurunan sebesar 20 mg/dl setelah 40 menit dari pemberian insulin. Setelah lebih kurang 60 menit dari pemberian insulin, glukosa darah akan meningkat kembali (Gambar 12). Pada penelitian ini pemberian insulin hanya menurunkan glukosa darah sebesar 5 mg/dl, bahkan peningkatan dosis insulin tidak memberikan pengaruh yang nyata. Rendahnya penurunan kadar glukosa darah dapat disebabkan karena pengambilan sampel darah dilakukan 2, 4 dan 6 jam setelah pemberian insulin, sehingga pengaruh insulin sudah tidak terlalu nampak karena efek kerja insulin mulai menurun. Oleh karena itu pengaruh interaksi pun tidak berbeda nyata.

Pemberian gula 6 g/kg bb tidak memberikan pengaruh yang nyata pada glukosa darah. Pada ternak ruminansia, gula yang diberikan melalui mulut setelah masuk ke dalam rumen mengalami perubahan menjadi asam lemak volatil yaitu asam asetat, asam butirat dan asam propionat, kemudian asam propionat yang diabsorpsi dan masuk ke dalam aliran darah menuju hati yang kemudian dikonversi menjadi glukosa. Oleh karena itu glukosa darah tidak berbeda nyata dengan adanya pemberian gula pada domba. Berbeda dengan ternak

Kadar Glikogen Daging

Kadar glikogen daging hasil penelitian ini nyata dipengaruhi oleh pemberian gula setelah pengangkutan (P<0,01), yaitu kelompok domba yang diberi gula sebanyak 6 g/kg bb ternyata mempunyai kadar glikogen daging yang lebih tinggi (Tabel 6).

<table>
<thead>
<tr>
<th>Insulin (IU)</th>
<th>Waktu Istirahat (Jam)</th>
<th>Gula (g/kg bb)</th>
<th>Rataan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>4,819</td>
<td>0,849</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0,793</td>
<td>0,834</td>
</tr>
<tr>
<td>0,3</td>
<td>2</td>
<td>0,693</td>
<td>1,035</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0,839</td>
<td>0,959</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0,954</td>
<td>0,992</td>
</tr>
<tr>
<td>0,6</td>
<td>2</td>
<td>0,775</td>
<td>1,030</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0,857</td>
<td>0,998</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0,884</td>
<td>1,142</td>
</tr>
<tr>
<td>Rataan</td>
<td></td>
<td>0,811</td>
<td>0,962</td>
</tr>
<tr>
<td>Rataan</td>
<td>2</td>
<td>0,845</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0,882</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0,933</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: Superskrip berbeda pada baris yang sama menunjukkan beda sangat nyata (P≤0,01) dan kolom yang sama menunjukkan beda nyata (P≤0,05).
Kadar glikogen daging domba yang diberi gula adalah sebesar 0,962% dan yang tidak diberi gula adalah sebesar 0,811%. Domba yang diberi gula dapat memproduksi asam propionat lebih banyak, yang kemudian di dalam hati diubah menjadi glukosa dan akan disimpan sebagai glikogen di dalam hati dan otot. Glikogen merupakan bentuk simpanan karbohidrat yang utama dalam tubuh ternak dan dijumpai terutama di dalam hati dan otot.

Kandungan glikogen otot hasil penelitian juga nyata dipengaruhi oleh pemberian insulin (P<0,05). Insulin akan mempercepat masuknya glukosa ke otot (Turner-Bagnara 1976 dan Genth 1988). Dengan demikian kelompok domba yang diberi insulin akan lebih dapat memanfaatkan glukosa hasil pencernaan dan hati melalui aliran darah memasuki otot. Glukosa yang masuk diubah menjadi glikogen melalui proses glikogenesis, yaitu glukosa diubah menjadi

Tarrant dan Lacourt (1984) menyatakan bahwa sapi jantan yang stres diikuti pemberian larutan glukosa mempunyai glikogen otot yang lebih tinggi dari pada sapi jantan stres yang tidak diberi larutan glukosa. Pemberian insulin setelah transportasi meningkatkan kandungan glikogen otot. Hormon insulin mempercepat pemasukan glukosa darah ke otot, sehingga domba yang diberi insulin mempunyai kandungan glikogen yang lebih tinggi dari yang tidak diberi insulin.

Kadar glikogen daging tidak dipengaruhi oleh lama istirahat maupun interaksi antar perlakuan, meskipun perlakuan gula dan insulin memberikan pengaruh yang nyata. Pengaruh pemberian insulin sudah kurang efektif lagi setelah 1 jam dari pemberian, sehingga lama istirahat tidak mempengaruhi glikogen otot. Interaksi antara perlakuan pemberian gula dan insulin tidak nyata.

Kadar Asam Laktat Daging

Kadar asam laktat daging hasil penelitian yang disajikan pada Tabel 7 menunjukkan bahwa secara nyata dipengaruhi oleh pemberian gula ($P<0.01$) dan pemberian insulin ($P<0.05$), sedangkan perlakuan lama istirahat dan interaksinya tidak nyata mempengaruhi kadar asam laktat daging.

Pemberian gula 6 g/kg bb secara sangat nyata ($P<0.01$) meningkatkan kadar asam laktat daging. Kadar asam laktat daging dipengaruhi oleh jumlah cadangan glikogen daging pada saat pemotongan. Stres pengangkutan pada
domba menyebabkan penurunan jumlah cadangan glikogen, karena glikogen yang tersimpan di dalam otot digunakan untuk memelihara suplai energi yang diperlukan untuk mengatasi stres yang dialami selama pengangkutan. Namun, cadangan glikogen tersebut dapat dipulihkan apabila domba setelah mengalami pengangkutan diistirahatkan dan atau diberikan perlakuan selama di dalam kandang penampungan sebelum dipotong.

Tabel 7. Rataan kadar asam laktat daging domba (μmol/g)

<table>
<thead>
<tr>
<th>Insulin (IU)</th>
<th>Waktu Istirahat (Jam)</th>
<th>Gula (g/kg bb)</th>
<th>Rataan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>41,29</td>
<td>52,25</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>38,96</td>
<td>58,25</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>44,99</td>
<td>63,54</td>
</tr>
<tr>
<td>0,3</td>
<td>2</td>
<td>48,80</td>
<td>62,42</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>43,53</td>
<td>68,98</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>43,66</td>
<td>64,31</td>
</tr>
<tr>
<td>0,6</td>
<td>2</td>
<td>38,40</td>
<td>69,23</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>38,31</td>
<td>64,46</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>47,09</td>
<td>66,24</td>
</tr>
<tr>
<td>Rataan</td>
<td>42,78 a</td>
<td>63,30 b</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: Superskrip berbeda pada baris yang sama menunjukkan beda sangat nyata (P<0,01) dan kolom yang sama menunjukkan beda nyata (P<0,05).

Pemberian gula 6 g/kg bb dalam penelitian ini meningkatkan kadar glikogen daging, karena kadar glikogen daging meningkat maka kadar asam laktat juga meningkat. Asam laktat daging dihasilkan dari proses glikogenolisis dan glikolisis post-mortem yang berlangsung secara anaerobik. Aberlee et al. (2001) menyatakan bahwa ternak setelah dipotong, pasokan oksigen yang tersimpan di dalam otot akan habis setelah eksanguinasi sehingga metabolisme energi berlangsung secara anaerob.
Pada kondisi anaerobik konversi piruvat menjadi asam laktat akan mensuplai NAD⁺ untuk berlangsungnya glikogenolisis dan glikolisis anaerobik di dalam sitosol. Penimbunan asam laktat akan berhenti setelah cadangan glikogen otot habis atau setelah pH cukup rendah untuk menghentikan aktivitas enzim-enzim glikolitik di dalam proses glikolisis anaerob.

Dalam penelitian ini domba yang diberi gula sebanyak 6 g/kg bb mempunyai kadar asam laktat yang lebih tinggi daripada yang tidak diberi gula, karena kadar glikogen daging juga lebih tinggi. Hasil ini didukung oleh Chrystall et al. (1981) dan Warriss et al. (1984), yang menyatakan bahwa jumlah cadangan glikogen yang tinggi akan menghasilkan asam laktat daging yang tinggi juga. Leheska et al. (2003) menyatakan bahwa jumlah glikogen, glukosa dan glukosa-6-fosfat yang rendah, asam laktat daging juga rendah.

Kadar asam laktat daging juga dipengaruhi oleh pemberian insulin (P<0,05). Pemberian insulin sebanyak 0,3 IU nyata meningkatkan kadar asam laktat daging, sedangkan pemberian insulin sebanyak 0,6 IU kadar asam laktat daging berbeda tidak nyata dengan yang tanpa diberi insulin.

pH Daging

Nilai pH daging domba hasil penelitian yang disajikan pada Tabel 8, dipengaruhi secara nyata oleh pemberian gula (P<0,05), sedangkan perlakuan lama istirahat dan pemberian insulin maupun interaksinya tidak mempengaruhi nilai pH daging domba. Nilai pH daging domba yang diberi gula lebih rendah (5,81) daripada pH daging domba yang tidak diberi gula (6,1).

Aryogi (2000) menyebutkan bahwa nilai pH daging sapi Bali yang mengalami stres pengangkutan (6,01) berbeda tidak nyata dengan sapi yang diberi
gula aren 5 g/kg berat badan setelah pengangkutan (5,96), tetapi pada daging sapi yang tidak diberi gula aren lebih mudah ditumbuh bakteri sehingga lebih cepat busuk. Hal yang sama juga dikemukakan oleh Crystall et al. (1981), yang menyebutkan bahwa nilai pH akhir daging domba (6,38) yang mengalami pengangkutan tanpa diistirahatkan lebih tinggi daripada pH daging domba (5,90) yang diistirahatkan selama 4 jam setelah domba mengalami pengangkutan. Stres yang meningkat menyebabkan penurunan cadangan glikogen sehingga produksi asam laktat rendah.

Tabel 8. Rataan nilai pH daging domba

<table>
<thead>
<tr>
<th>Insulin (IU)</th>
<th>Waktu Istirahat (Jam)</th>
<th>Gula (g/kg bb)</th>
<th>Rataan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>6,03</td>
<td>5,72</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6,27</td>
<td>5,89</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6,09</td>
<td>5,99</td>
</tr>
<tr>
<td>0,3</td>
<td>2</td>
<td>5,97</td>
<td>5,72</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6,11</td>
<td>5,78</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6,14</td>
<td>5,76</td>
</tr>
<tr>
<td>0,6</td>
<td>2</td>
<td>6,10</td>
<td>5,76</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6,09</td>
<td>5,85</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6,15</td>
<td>5,79</td>
</tr>
<tr>
<td>Rataan</td>
<td></td>
<td>6,10 a</td>
<td>5,81 b</td>
</tr>
</tbody>
</table>

Keterangan: Superskrip yang berbeda pada baris yang sama menunjukkan beda nyata (P<0,05).

et al. (1990) stres akibat transportasi dapat d kurangi melalui pemberian larutan glukosa, sehingga akan mendapatkan hasil daging yang berkualitas baik.

Daya Mengikat Air

Rataan persentase air bebas daging domba hasil penelitian dapat dilihat pada Tabel 9. Hasil analisis stastistik persentase air bebas daging domba menunjukkan bahwa tidak ada pengaruh perlakuan terhadap persentase air bebas. Persentase air bebas yang rendah menunjukkan nilai daya mengikat air daging

Tabel 9. Rataan kadar air bebas daging domba (%)

<table>
<thead>
<tr>
<th>Insulin (IU)</th>
<th>Waktu Istirahat (Jam)</th>
<th>Gula (g/kg bb)</th>
<th>Rataan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>34,00</td>
<td>33,37</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>32,57</td>
<td>28,83</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>32,40</td>
<td>37,00</td>
</tr>
<tr>
<td>0,3</td>
<td>2</td>
<td>29,20</td>
<td>28,97</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>28,10</td>
<td>30,90</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>33,93</td>
<td>31,43</td>
</tr>
<tr>
<td>0,6</td>
<td>2</td>
<td>26,23</td>
<td>30,43</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>34,40</td>
<td>27,43</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>35,17</td>
<td>29,07</td>
</tr>
<tr>
<td>Rataan</td>
<td>31,78</td>
<td>30,84</td>
<td></td>
</tr>
<tr>
<td>Rataan</td>
<td>2</td>
<td>30,38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>30,37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>33,17</td>
<td></td>
</tr>
</tbody>
</table>

Hasil penelitian ini sejalan dengan hasil penelitian Aryogi (2000), bahwa daya mengikat air daging tidak nyata dipengaruhi oleh kondisi stres yang dialami ternak saat dipotong. Sapi yang dipotong langsung setelah pengangkutan dan sapi yang diberi larutan gula aren setelah pengangkutan mempunyai nilai daya mengikat air yang berbeda tidak nyata.
Keempukan Daging

Tabel 10. Rataan nilai shear force daging domba (kg/cm²)

<table>
<thead>
<tr>
<th>Insulin (IU)</th>
<th>Waktu Istirahat (Jam)</th>
<th>Gula (g/kg bb)</th>
<th>Rataan</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5,56</td>
<td>6,38</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6,02</td>
<td>6,03</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6,84</td>
<td>7,80</td>
</tr>
<tr>
<td>0,3</td>
<td>2</td>
<td>6,04</td>
<td>5,39</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5,17</td>
<td>6,91</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5,37</td>
<td>7,28</td>
</tr>
<tr>
<td>0,6</td>
<td>2</td>
<td>6,47</td>
<td>5,86</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6,68</td>
<td>7,26</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5,87</td>
<td>6,14</td>
</tr>
<tr>
<td>Rataan</td>
<td></td>
<td>6,00</td>
<td>6,56</td>
</tr>
<tr>
<td>Rataan</td>
<td>2</td>
<td>5,95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6,34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6,55</td>
<td></td>
</tr>
</tbody>
</table>

Susut Masak

Nilai rataan susut masak daging domba hasil penelitian dapat dilihat pada Tabel 11. Hasil analisis statistik menunjukkan bahwa nilai susut masak daging dipengaruhi oleh pemberian larutan gula (P<0,05). Domba yang diberi larutan gula mempunyai susut masak yang lebih rendah (26,19%) daripada domba yang tidak diberi larutan gula (29,76%). Sedangkan pemberian insulin dan lama istirahat tidak menunjukkan perbedaan yang nyata. Hasil penelitian ini berbeda dengan hasil penelitian Aryogi (2000) yang menyatakan bahwa nilai susut masak daging sapi yang stres tidak berbeda nyata dengan sapi yang diberi larutan gula aren dan diistirahatkan.

Tabel 11. Rataan nilai susut masak daging domba (%)

<table>
<thead>
<tr>
<th>Insulin (IU)</th>
<th>Waktu Istirahat (Jam)</th>
<th>Gula (g/kg bb)</th>
<th>Rataan</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>33,11</td>
<td>27,03</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>27,38</td>
<td>22,74</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>26,37</td>
<td>24,44</td>
</tr>
<tr>
<td>0,3</td>
<td>2</td>
<td>33,56</td>
<td>24,33</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>28,75</td>
<td>27,76</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>29,92</td>
<td>25,96</td>
</tr>
<tr>
<td>0,6</td>
<td>2</td>
<td>31,87</td>
<td>27,99</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>26,62</td>
<td>26,73</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>30,25</td>
<td>27,63</td>
</tr>
<tr>
<td>Rataan</td>
<td>29,76 a</td>
<td>26,19 b</td>
<td></td>
</tr>
<tr>
<td>Rataan</td>
<td>29,83</td>
<td>26,66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27,43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: Superskrip yang berbeda pada baris yang sama menunjukkan beda nyata (P<0,05).

Menurut Soeparno (1994) besarnya susut masak bervariasi antara 15% dan 40%. Daging dengan susut masak yang lebih rendah mempunyai kualitas yang relatif lebih baik daripada daging dengan susut masak yang lebih tinggi, karena kehilangan nutrisi selama pemasakan akan lebih sedikit. Dengan demikian daging domba yang diberi larutan gula mempunyai kualitas yang lebih baik.
karena susut masak lebih rendah yaitu 26,19%, daripada daging domba yang
tidak diberi larutan gula dengan susut masak 29,76%.

Warna Daging

Warna daging domba hasil penelitian meliputi nilai kecerahan (L), nilai
kemerahan (a) dan nilai kekuningan (b). Warna daging adalah hasil gabungan
beberapa faktor, dimana setiap warna tertentu memiliki tiga ciri yaitu hue (corak
warna), chroma (intensitas warna) dan value (nilai suatu kecermelangan warna)
(Aberle et al. 2001). Warna daging dipengaruhi oleh perbedaan spesies, bangsa,
jenis kelamin, umur, jenis urat daging dan latihan (Lawrie 1995), pakan, stres, pH
dan oksigen (Soeparno 1994).

Tabel 12. Rataan nilai L warna daging domba

<table>
<thead>
<tr>
<th>Insulin (IU)</th>
<th>Waktu Istirahat (Jam)</th>
<th>Gula (g/kg bb)</th>
<th>Rataan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>36,14</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>35,33</td>
<td>40,89</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>37,35</td>
<td>35,33</td>
</tr>
<tr>
<td></td>
<td>3,6</td>
<td>2</td>
<td>35,42</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>36,60</td>
<td>36,83</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>37,15</td>
<td>38,19</td>
</tr>
<tr>
<td></td>
<td>0,6</td>
<td>2</td>
<td>36,20</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>35,18</td>
<td>36,78</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>36,25</td>
<td>37,77</td>
</tr>
<tr>
<td>Rataan</td>
<td></td>
<td>36,18</td>
<td>37,47</td>
</tr>
<tr>
<td>Rataan</td>
<td>2</td>
<td>36,53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>36,93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>37,01</td>
<td></td>
</tr>
</tbody>
</table>

Nilai rataan kecerahan (L) daging domba hasil penelitian dapat dilihat
pada Tabel 12. Hasil analisis statistik menunjukkan bahwa nilai L tidak
dipengaruhi perlakuan pemberian gula, insulin maupun lama istirahat.
Pada babi yang mengalami stres yang lebih berat daging yang dihasilkan mempunyai pH yang lebih tinggi dan warna daging yang lebih gelap dengan nilai L yang rendah, dibanding babi yang mengalami stres yang lebih ringan (Martoccia et al. 1995; Leheska et al. 2003). Wulf et al. (2002) menyatakan bahwa daging sapi yang mempunyai pH akhir tinggi mempunyai warna yang lebih gelap dengan nilai L yang lebih rendah dibanding daging sapi normal yang mempunyai nilai L yang lebih tinggi atau lebih cerah.

Schaefer et al. (1990) menyatakan bahwa pemberian elektrolit dan glukosa tampak memberikan pengaruh positif pada koordinat kromatisitas warna yaitu lebih kemerah-merahan, namun berpengaruh kecil pada kecerahan. Pada penelitian ini tidak terdapat pengaruh yang nyata dari perlakuan pada kecerahan daging. Meskipun pengaruh pemberian gula 6 g/kg bb menurunkan pH akhir daging, tetapi tidak sampai mempengaruhi kecerahan warna daging.

Nilai kemerahan (a) daging domba hasil penelitian dapat dilihat pada Tabel 13. Hasil analisis statistik menunjukkan bahwa tidak ada pengaruh perlakuan pada nilai kemerahan (a) daging.

Tabel 13. Rataan nilai a warna daging domba

<table>
<thead>
<tr>
<th>Insulin (IU)</th>
<th>Waktu Istirahat (Jam)</th>
<th>Gula (g/kg bb)</th>
<th>Rataan</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>12,24</td>
<td>11,71</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>11,65</td>
<td>13,86</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>11,84</td>
<td>12,10</td>
</tr>
<tr>
<td>0,3</td>
<td>2</td>
<td>11,81</td>
<td>12,46</td>
</tr>
<tr>
<td>0,3</td>
<td>4</td>
<td>12,14</td>
<td>12,72</td>
</tr>
<tr>
<td>0,3</td>
<td>6</td>
<td>12,53</td>
<td>13,21</td>
</tr>
<tr>
<td>0,6</td>
<td>2</td>
<td>11,46</td>
<td>11,79</td>
</tr>
<tr>
<td>0,6</td>
<td>4</td>
<td>12,07</td>
<td>12,51</td>
</tr>
<tr>
<td>0,6</td>
<td>6</td>
<td>11,89</td>
<td>12,38</td>
</tr>
<tr>
<td>Rataan</td>
<td></td>
<td>11,96</td>
<td>12,53</td>
</tr>
<tr>
<td>Rataan</td>
<td>2</td>
<td>11,91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>12,49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>12,33</td>
<td></td>
</tr>
</tbody>
</table>

Nilai kekuningan (b) daging domba hasil penelitian dapat dilihat pada Tabel 14. Hasil analisis statistik menunjukkan bahwa nilai kekuningan (b) daging tidak dipengaruhi oleh pemberian gula, insulin maupun lama istirahat.

Tabel 14. Rataan nilai b warna daging domba

<table>
<thead>
<tr>
<th>Insulin (IU)</th>
<th>Waktu Istirahat (Jam)</th>
<th>Gula (g/kg bb)</th>
<th>Rataan</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>4,40</td>
<td>5,38</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>3,47</td>
<td>4,88</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>4,29</td>
<td>3,95</td>
</tr>
<tr>
<td>0,3</td>
<td>2</td>
<td>3,62</td>
<td>3,79</td>
</tr>
<tr>
<td>0,3</td>
<td>4</td>
<td>4,33</td>
<td>4,17</td>
</tr>
<tr>
<td>0,3</td>
<td>6</td>
<td>4,28</td>
<td>3,97</td>
</tr>
<tr>
<td>0,6</td>
<td>2</td>
<td>3,70</td>
<td>5,53</td>
</tr>
<tr>
<td>0,6</td>
<td>4</td>
<td>3,61</td>
<td>3,76</td>
</tr>
<tr>
<td>0,6</td>
<td>6</td>
<td>3,96</td>
<td>4,00</td>
</tr>
<tr>
<td>Rataan</td>
<td></td>
<td>3,97</td>
<td>4,38</td>
</tr>
<tr>
<td>Rataan</td>
<td>2</td>
<td>4,40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4,04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4,08</td>
<td></td>
</tr>
</tbody>
</table>

Nilai kekuningan daging disebabkan lemak marbling (Soeparno 1994). Domba yang digunakan dalam penelitian ini masih berumur 10-12 bulan sehingga belum
banyak lemak, oleh karena umurnya relatif sama maka nilai kekuningan daging tidak berbeda.

Berdasarkan hasil uji organoleptik dengan melakukan uji skoring dan uji hedonik terhadap warna daging dapat dilihat pada Gambar 22 dan Tabel 15. Uji skoring menilai warna daging dari skor 1 = warna merah tua, skor 2 = merah, skor 3 = merah cerah, skor 4 = merah muda dan skor 5 = pucat. Uji hedonik menilai dari tingkat kesukaan terhadap warna daging yaitu nilai 1 = sangat suka, nilai 2 = suka, nilai 3 = agak suka, nilai 4 = netral, nilai 5 = agak tidak suka, nilai 6 = tidak suka dan nilai 7 = sangat tidak suka.

![Gambar 22. Warna daging domba penelitian](image)

Hasil analisa statistik menunjukkan bahwa warna daging dipengaruhi oleh perlakuan pemberian gula dan insulin (P<0,05). Warna daging dari domba yang diberi perlakuan pemberian gula 6 g/kg bb dan insulin 0,6 IU berbeda nyata dengan warna daging dari domba yang diberi gula), 6 g/kg bb dan tanpa insulin. Daging dari domba yang diberi gula 6 g/kg bb dan insulin 0,6 IU berwarna merah muda, sedangkan daging dari domba yang diberi gula 6 g/kg bb dan tanpa insulin berwarna merah. Namun dari hasil uji hedonik ternyata menunjukkan bahwa
penerimaan panelis terhadap warna daging domba dari penelitian ini tidak ada perbedaan yang nyata, artinya panelis agak menyukai warna daging yang merah sampai merah cerah.

<table>
<thead>
<tr>
<th>Gula (g/kg bb)</th>
<th>Insulin (IU)</th>
<th>Nilai rataan warna</th>
<th>Warna</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Uji skoring</td>
<td>Uji Hedonik</td>
</tr>
<tr>
<td>0</td>
<td>0,0</td>
<td>2,74 bc</td>
<td>3,24</td>
</tr>
<tr>
<td>0</td>
<td>0,3</td>
<td>2,98 abc</td>
<td>3,28</td>
</tr>
<tr>
<td>0</td>
<td>0,6</td>
<td>3,22 ab</td>
<td>3,59</td>
</tr>
<tr>
<td>6</td>
<td>0,0</td>
<td>3,56 a</td>
<td>3,43</td>
</tr>
<tr>
<td>6</td>
<td>0,3</td>
<td>3,28 ab</td>
<td>3,27</td>
</tr>
<tr>
<td>6</td>
<td>0,6</td>
<td>2,29 c</td>
<td>3,13</td>
</tr>
</tbody>
</table>

Keterangan: Superskrip yang berbeda dalam kolom yang sama menunjukkan beda nyata (P<0,05).
Pembahasan Umum

Di negara yang mempunyai industri daging yang sudah maju penyimpanan kualitas daging merupakan masalah yang penting, karena merugikan dari segi ekonominya dengan penurunan harga antara 25 dan 30% dari harga daging normal. Di Indonesia belum ada data tentang kejadian penyimpangan kualitas daging. Kejadian penyimpanan kualitas daging dapat lebih tinggi daripada di negara yang mempunyai industri daging yang sudah maju, karena kondisi iklim tropis dan cara pengangkutan ternak yang kurang memenuhi syarat untuk kesejahteraan ternak.

Penanganan ternak setelah pengangkutan dilakukan untuk memberi kesempatan pada ternak untuk memulihkan cadangan glikogen otot. Penanganan ternak setelah pengangkutan dalam penelitian ini dilakukan dengan cara memberi gula dan insulin serta mengistirahatkan ternak sebelum dipotong. Dalam penelitian ini ternyata pemberian gula sebanyak 0,6% dari bobot badan dapat meningkatkan kadar glikogen daging dan kadar asam laktat daging, menurunkan nilai pH akhir dan susut masak. Pemberian insulin sebanyak 0,3 dan 0,6 IU memurunkan kadar glukosa darah, meningkatkan kadar glikogen dan asam laktat daging. Sedang periode lama istirahat menurunkan kadar glukosa darah.

Kadar glikogen daging meningkat karena pemberian gula 0,6% dan insulin. Peningkatan kadar glikogen daging diduga disebabkan karena adanya proses glukoneogenesis dari hasil pencernaan yaitu asam propionat, asam laktat maupun asam amino glukogenik dan gliserol. Kadar glikogen akan mempengaruhi kadar asam laktat daging yang dihasilkan selama proses konversi otot menjadi daging. Pearson dan Young (1989) menyatakan bahwa peran utama glikogen dalam otot post-mortem adalah melepaskan glukosa, yang dapat dipakai untuk
mengisi senyawa fosfat energi tinggi (ATP). Glikogen dirombak secara besar-besaran dan sangat bertanggung jawab dalam pembentukan asam laktat daging, yang menimbulkan penurunan pH yang terjadi dalam otot post-mortem. Oleh karena itu glikogen pada akhirnya bertanggung jawab terhadap perubahan-perubahan dalam sifat-sifat daging yang menyertai penurunan pH dengan berlanjutnya glikolisis. Pada penelitian ini kadar glikogen otot yang tinggi akan menghasilkan asam laktat yang tinggi pula, yang terbukti bahwa terdapat korelasi yang nyata antara glikogen dan asam laktat dengan koefisien korelasi sebesar 0,69 (Gambar 23).

![Gambar 23. Hubungan antara kadar glikogen dan asam laktat daging domba](image)

Pada gambar 23, nampak bahwa kadar asam laktat daging mempunyai korelasi yang erat dengan kadar glikogen daging, dengan nilai koefisien korelasi \(r = 0.69 \). Persamaan \(Y = 65.09X - 4.69 \) menunjukkan bahwa dengan meningkatnya kadar glikogen daging sebesar 1%, maka kadar asam laktat meningkat sebesar 65.09 μmol/g. Warriss et al. (1984) menyatakan bahwa pada otot longissimus dorsi dari sapi yang mempunyai kadar glikogen otot yang lebih
tinggi, maka kadar asam laktat juga tinggi. Selain itu, kadar glikogen daging juga mempengaruhi nilai pH akhir daging yang dihasilkan. Pada penelitian ini antara kadar glikogen dan pH daging terdapat korelasi yang nyata dengan koefisien korelasi sebesar -0,57 dengan persamaan Y=-0,81X+6,67 (Gambar 24). Koefisien korelasi yang negatif menunjukkan bahwa semakin tinggi kadar glikogen maka semakin rendah pH dagingnya, dan dengan meningkatnya kadar glikogen daging sebesar 1% maka pH turun sebesar 0,81 poin. Sanz et al. (1996) menyatakan bahwa daging sapi dengan kadar glikogen yang tinggi maka nilai pH akhir dibawah 6,0, sedang daging yang mempunyai kadar glikogen rendah maka nilai pH akhir di atas 6,0.

Gambar 24. Hubungan antara kadar glikogen dan pH daging domba.

Asam laktat daging sangat mempengaruhi nilai pH daging, dimana daging dengan asam laktat yang tinggi mempunyai pH yang rendah. Pada Gambar 25, nampak bahwa nilai pH berbanding terbalik dengan kadar asam laktat daging domba, dengan koefisien korelasi (r) =-0,83 dan persamaan garis Y=-0,01X+ 6,63. Koefisien korelasi yang negatif menunjukkan bahwa jika kadar asam laktat
daging tinggi maka nilai pH akhir daging rendah, dimana apabila kadar asam laktat meningkat sebesar 1 μmol/g maka pH turun sebesar 0,01 poin. Chrystall et al. (1981) menyatakan bahwa domba-domba yang diistirahatkan memiliki nilai pH akhir yang rendah dan kandungan asam laktat yang tinggi yang mencerminkan cadangan awal glikogen yang tinggi. Warriss et al. (1984) menyatakan bahwa pH daging dipengaruhi oleh kadar glikogen dan kadar asam laktat daging, dimana jika kadar glikogen tinggi maka kadar asam laktat juga tinggi sehingga pH akhir daging rendah.

![Graph](image)

Gambar 25. Hubungan antara kadar asam laktat daging dan pH daging domba

Penurunan nilai pH daging ditentukan oleh kadar glikogen dan kadar asam laktat daging. Setelah hewan dipotong maka selama konversi otot menjadi daging akan berlangsung proses glikolisis dalam keadaan anaerob. Pada proses glikolisis anaerob, akan terjadi perombakan glikogen menjadi asam laktat untuk menghasilkan energi yang dibutuhkan dengan cepat. Proses ini akan berlangsung terus sampai cadangan glikogen otot habis atau sampai pH cukup rendah untuk menghentikan aktivitas enzim-enzim glikolitik. Apabila cadangan glikogen
banyak maka asam laktat yang dihasilkan dari proses glikolisis anaerob juga banyak, sehingga cukup untuk menurunkan pH sampai mencapai titik isoelektrik pada pH 5,4 – 5,6.

Nilai pH akhir daging juga berhubungan dengan susut masak daging, dimana pada pH daging yang rendah mempunyai susut masak yang rendah. Meskipun korelasinya tidak begitu besar dengan koefisien korelasi sebesar \(r = 0,35 \). Pada Gambar 26, nampak bahwa nilai susut masak dan pH menunjukkan adanya hubungan linier, dengan persamaan garis \(Y = 5,87X - 7,00 \) dan nilai koefisien korelasi 0,35. Peningkatan nilai pH daging 1 poin akan meningkatkan susut masak sebesar 5,87%. Wahyuni (1998) menyatakan bahwa daging dari sapi yang tidak diistirahatkan setelah transportasi cenderung mempunyai nilai pH lebih tinggi dan susut masak yang lebih tinggi juga.

Gambar 26. Hubungan antara pH dan susut masak daging domba

Lama periode istirahat mempengaruhi penurunan bobot badan, persentase karkas yang dihasilkan dan kadar glukosa darah sebelum pemotongan. Dari hasil penelitian ini berarti bahwa lama periode istirahat dapat dipersingkat waktunya

Fabianson et al. (1984) mengemukakan bahwa lamanya istirahat tergantung dari keadaan lingkungan dan kondisi ternak saat diistirahatkan.

Dari hasil penelitian ini dapat diperoleh gambaran penanganan ternak setelah pengangkutan, bahwa pemberian gula 0,6% dari bobot badan dapat menurunkan pH akhir daging. Pemberian insulin sebanyak 0,3 IU dapat memperbaiki kadar glikogen daging. Lama periode istirahat 2 jam setelah domba mengalami pengangkutan selama 4 jam dapat diterapkan. Istirahat selama 2 jam dengan pemberian gula 0,6% baik dengan insulin maupun tidak, pH dagingnya paling rendah yaitu 5,72 (Tabel 8). Meskipun interaksinya tidak nyata, tetapi pH
daging pada kombinasi perlakuan pemberian gula 0,6% dan 2 jam istirahat paling rendah di antara kombinasi perlakuan. Pada lama istirahat 4 dan 6 jam cenderung lebih tinggi, berarti penambahan waktu istirahat tidak memberikan efek yang menguntungkan.
SIMPULAN DAN SARAN

Simpulan

Dari hasil penelitian pendahuluan dapat diketahui pengangkutan selama 4 jam sudah menimbulkan stres pada domba. Hal ini ditunjukkan dengan adanya peningkatan suhu rektal, denyut jantung dan kadar glukosa darah.

Pemberian gula dan insulin dapat meningkatkan kandungan glikogen dan asam laktat daging. Pemberian gula, insulin dan lama istirahat sebelum pemotongan pada domba dapat mengurangi pengaruh negatif stres pengangkutan terhadap kualitas daging.

Lama istirahat 2 jam menghasilkan penurunan bobot badan dan persentase karkas yang paling rendah, tetapi parameter yang lain tidak berbeda dengan lama istirahat 4 jam dan 6 jam. Pemberian insulin dapat menurunkan kandungan glukosa darah, meningkatkan kandungan glikogen dan asam laktat daging. Pemberian gula 6 g/kg bb dapat meningkatkan kandungan glikogen dan asam laktat daging, serta menurunkan pH daging di atas titik isoelektrik. Dengan demikian dapat mencegah terjadinya daging yang DFD.

Saran

Salah satu penanganan ternak setelah pengangkutan adalah dengan pemberian gula, insulin dan diistirahatkan. Tujuannya untuk mengurangi pengaruh negatif stres pengangkutan, terutama untuk menghasilkan daging yang berkualitas tinggi baik yang dipasarkan ke hotel, restoran, pasar swalayan maupun pasar tradisional.
DAFTAR PUSTAKA

Lampiran 1. Analisis ragam pengaruh perlakuan pada penurunan bobot badan domba

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F<sub>hit</sub></th>
<th>F<sub>tab</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gula</td>
<td>1</td>
<td>1,68540</td>
<td>1,68540</td>
<td>0,71</td>
<td>4,09</td>
</tr>
<tr>
<td>Insulin</td>
<td>2</td>
<td>4,34591</td>
<td>2,17296</td>
<td>0,92</td>
<td>3,23</td>
</tr>
<tr>
<td>Waktu</td>
<td>2</td>
<td>92,79763</td>
<td>46,39882</td>
<td>19,60**</td>
<td>3,23</td>
</tr>
<tr>
<td>Gula*ins</td>
<td>2</td>
<td>13,22253</td>
<td>6,61127</td>
<td>2,79</td>
<td>3,23</td>
</tr>
<tr>
<td>Gula*waktu</td>
<td>2</td>
<td>13,26721</td>
<td>6,63361</td>
<td>2,80</td>
<td>3,23</td>
</tr>
<tr>
<td>Insulin*waktu</td>
<td>4</td>
<td>9,86872</td>
<td>2,46718</td>
<td>1,04</td>
<td>2,61</td>
</tr>
<tr>
<td>Gulainswaktu</td>
<td>4</td>
<td>22,08338</td>
<td>2,76042</td>
<td>1,17</td>
<td>2,61</td>
</tr>
<tr>
<td>Galat</td>
<td>36</td>
<td>85,22967</td>
<td>2,36749</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td>232,63173</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: ** = berbeda sangat nyata (P<0,01)

Lampiran 2. Analisis ragam pengaruh perlakuan pada persentase bobot karkas domba

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F<sub>hit</sub></th>
<th>F<sub>tab</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gula</td>
<td>1</td>
<td>5,04778</td>
<td>5,04778</td>
<td>0,25</td>
<td>4,09</td>
</tr>
<tr>
<td>Insulin</td>
<td>2</td>
<td>1,00849</td>
<td>0,50425</td>
<td>0,02</td>
<td>3,23</td>
</tr>
<tr>
<td>Waktu</td>
<td>2</td>
<td>171,50794</td>
<td>85,75397</td>
<td>4,23*</td>
<td>3,23</td>
</tr>
<tr>
<td>Gula*ins</td>
<td>2</td>
<td>0,56967</td>
<td>0,28484</td>
<td>0,01</td>
<td>3,23</td>
</tr>
<tr>
<td>Gula*waktu</td>
<td>2</td>
<td>6,08003</td>
<td>3,04001</td>
<td>0,15</td>
<td>3,23</td>
</tr>
<tr>
<td>Insulin*waktu</td>
<td>4</td>
<td>74,42693</td>
<td>18,60673</td>
<td>0,92</td>
<td>2,61</td>
</tr>
<tr>
<td>Gulainswaktu</td>
<td>4</td>
<td>33,71211</td>
<td>8,42803</td>
<td>0,42</td>
<td>2,61</td>
</tr>
<tr>
<td>Galat</td>
<td>36</td>
<td>729,25380</td>
<td>20,25705</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td>1,021,60674</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: * = berbeda nyata (P<0,05)
Lampiran 3. Analisis ragam pengaruh perlakuan pada glukosa darah domba

<table>
<thead>
<tr>
<th></th>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F<sub>hit</sub></th>
<th>F<sub>lab</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perlakuan</td>
<td>2</td>
<td>9.311,490</td>
<td>4.655,745</td>
<td>109,95**</td>
<td>3,08</td>
<td>4,80</td>
</tr>
<tr>
<td>Galat</td>
<td>159</td>
<td>6.732,997</td>
<td>42,346</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>161</td>
<td>16.044,487</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: ** = berbeda sangat nyata (P<0,01)

Lampiran 4. Analisis ragam pengaruh perlakuan pada glukosa darah domba sebelum dipotong

<table>
<thead>
<tr>
<th></th>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F<sub>hit</sub></th>
<th>F<sub>lab</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gula</td>
<td>1</td>
<td>6,60590</td>
<td>6,60590</td>
<td>0,17</td>
<td>4,09</td>
<td>7,31</td>
</tr>
<tr>
<td>Insulin</td>
<td>2</td>
<td>322,08712</td>
<td>161,04356</td>
<td>4,15*</td>
<td>3,23</td>
<td>5,18</td>
</tr>
<tr>
<td>Waktu</td>
<td>2</td>
<td>513,95029</td>
<td>256,97515</td>
<td>6,62**</td>
<td>3,23</td>
<td>5,18</td>
</tr>
<tr>
<td>Gula*ins</td>
<td>2</td>
<td>58,21870</td>
<td>29,10935</td>
<td>0,75</td>
<td>3,23</td>
<td>5,18</td>
</tr>
<tr>
<td>Gula*waktu</td>
<td>2</td>
<td>72,93961</td>
<td>36,46980</td>
<td>0,94</td>
<td>3,23</td>
<td>5,18</td>
</tr>
<tr>
<td>Insulin*waktu</td>
<td>4</td>
<td>217,99420</td>
<td>54,49855</td>
<td>1,40</td>
<td>2,61</td>
<td>3,83</td>
</tr>
<tr>
<td>Gulainswaktu</td>
<td>4</td>
<td>39,79000</td>
<td>9,99475</td>
<td>0,26</td>
<td>2,61</td>
<td>3,83</td>
</tr>
<tr>
<td>Galat</td>
<td>36</td>
<td>1,397,47105</td>
<td>38,81714</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td>2,629,00289</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: * = berbeda nyata (P<0,05)
** = berbeda sangat nyata (P<0,01)

Lampiran 5. Analisis ragam pengaruh perlakuan pada glikogen daging domba

<table>
<thead>
<tr>
<th></th>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F<sub>hit</sub></th>
<th>F<sub>lab</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gula</td>
<td>1</td>
<td>0,30842</td>
<td>0,30842</td>
<td>14,9**</td>
<td>4,09</td>
<td>7,31</td>
</tr>
<tr>
<td>Insulin</td>
<td>2</td>
<td>0,21023</td>
<td>0,10512</td>
<td>5,08*</td>
<td>3,23</td>
<td>5,18</td>
</tr>
<tr>
<td>Waktu</td>
<td>2</td>
<td>0,07040</td>
<td>0,03520</td>
<td>1,70</td>
<td>3,23</td>
<td>5,18</td>
</tr>
<tr>
<td>Gula*ins</td>
<td>2</td>
<td>0,05163</td>
<td>0,02581</td>
<td>1,25</td>
<td>3,23</td>
<td>5,18</td>
</tr>
<tr>
<td>Gula*waktu</td>
<td>2</td>
<td>0,07036</td>
<td>0,03518</td>
<td>1,70</td>
<td>3,23</td>
<td>5,18</td>
</tr>
<tr>
<td>Insulin*waktu</td>
<td>4</td>
<td>0,01665</td>
<td>0,00416</td>
<td>0,20</td>
<td>2,61</td>
<td>3,83</td>
</tr>
<tr>
<td>Gulainswaktu</td>
<td>4</td>
<td>0,03703</td>
<td>0,00926</td>
<td>0,45</td>
<td>2,61</td>
<td>3,83</td>
</tr>
<tr>
<td>Galat</td>
<td>36</td>
<td>0,74431</td>
<td>0,02068</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td>1,50926</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: * = berbeda nyata (P<0,05)
** = berbeda sangat nyata (P<0,01)
Lampiran 6. Analisis ragam pengaruh perlakuan pada asam laktat daging domba

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F_{hit}</th>
<th>F_{tab}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gula</td>
<td>1</td>
<td>3787.910</td>
<td>3787.910</td>
<td>155.75**</td>
<td>4.41</td>
</tr>
<tr>
<td>Insulin</td>
<td>2</td>
<td>190.285</td>
<td>95.143</td>
<td>3.91*</td>
<td>3.55*</td>
</tr>
<tr>
<td>Waktu</td>
<td>2</td>
<td>67.172</td>
<td>33.587</td>
<td>1.38</td>
<td>3.55</td>
</tr>
<tr>
<td>Gula*ins</td>
<td>2</td>
<td>126.001</td>
<td>63.000</td>
<td>2.59</td>
<td>3.55</td>
</tr>
<tr>
<td>Gula*waktu</td>
<td>2</td>
<td>45.072</td>
<td>22.536</td>
<td>0.93</td>
<td>3.55</td>
</tr>
<tr>
<td>Insulin*waktu</td>
<td>4</td>
<td>121.570</td>
<td>30.393</td>
<td>1.25</td>
<td>2.93</td>
</tr>
<tr>
<td>Gulainswaktu</td>
<td>4</td>
<td>137.250</td>
<td>34.313</td>
<td>1.41</td>
<td>2.93</td>
</tr>
<tr>
<td>Galat</td>
<td>18</td>
<td>437.776</td>
<td>24.321</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 35 4913.037

Keterangan: * = berbeda nyata (P<0.05)
** = berbeda sangat nyata (P<0.01)

Lampiran 7. Analisis ragam pengaruh perlakuan pada nilai pH daging domba

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F_{hit}</th>
<th>F_{tab}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gula</td>
<td>1</td>
<td>1,200046</td>
<td>1,200046</td>
<td>39.44**</td>
<td>4.09</td>
</tr>
<tr>
<td>Insulin</td>
<td>2</td>
<td>0,068478</td>
<td>0,034239</td>
<td>1.13</td>
<td>3.23</td>
</tr>
<tr>
<td>Waktu</td>
<td>2</td>
<td>0,137878</td>
<td>0,068939</td>
<td>2.27</td>
<td>3.23</td>
</tr>
<tr>
<td>Gula*ins</td>
<td>2</td>
<td>0,008581</td>
<td>0,004291</td>
<td>0.14</td>
<td>3.23</td>
</tr>
<tr>
<td>Gula*waktu</td>
<td>2</td>
<td>0,003226</td>
<td>0,001613</td>
<td>0.05</td>
<td>3.23</td>
</tr>
<tr>
<td>Insulin*waktu</td>
<td>4</td>
<td>0,044711</td>
<td>0,011178</td>
<td>0.37</td>
<td>2.61</td>
</tr>
<tr>
<td>Gulainswaktu</td>
<td>4</td>
<td>0,086963</td>
<td>0,021741</td>
<td>0.71</td>
<td>2.61</td>
</tr>
<tr>
<td>Galat</td>
<td>36</td>
<td>1,095467</td>
<td>0,030430</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total: 53 2,645350

Keterangan: ** = berbeda sangat nyata (P<0.01)
Lampiran 8. Analisis ragam pengaruh perlakuan pada nilai DMA daging domba

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F<sub>hit</sub></th>
<th>F<sub>tab</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,05</td>
</tr>
<tr>
<td>Gula</td>
<td>1</td>
<td>11,94741</td>
<td>11,94741</td>
<td>0,46</td>
<td>4,09</td>
</tr>
<tr>
<td>Insulin</td>
<td>2</td>
<td>79,93370</td>
<td>39,96685</td>
<td>1,53</td>
<td>3,23</td>
</tr>
<tr>
<td>Waktu</td>
<td>2</td>
<td>93,33593</td>
<td>46,66796</td>
<td>1,78</td>
<td>3,23</td>
</tr>
<tr>
<td>Gula*ins</td>
<td>2</td>
<td>26,50926</td>
<td>13,25463</td>
<td>0,51</td>
<td>3,23</td>
</tr>
<tr>
<td>Gula*waktu</td>
<td>2</td>
<td>33,15148</td>
<td>16,57574</td>
<td>0,63</td>
<td>3,23</td>
</tr>
<tr>
<td>Insulin*waktu</td>
<td>4</td>
<td>48,65741</td>
<td>12,16435</td>
<td>0,47</td>
<td>2,61</td>
</tr>
<tr>
<td>Gulainswaktu</td>
<td>4</td>
<td>159,20850</td>
<td>39,80213</td>
<td>1,52</td>
<td>2,61</td>
</tr>
<tr>
<td>Galat</td>
<td>36</td>
<td>941,69333</td>
<td>261,58148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td>1,394,43703</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 9. Analisis ragam pengaruh perlakuan pada nilai keempuan daging domba

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F<sub>hit</sub></th>
<th>F<sub>tab</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,05</td>
</tr>
<tr>
<td>Gula</td>
<td>1</td>
<td>4,228002</td>
<td>4,228002</td>
<td>2,29</td>
<td>4,09</td>
</tr>
<tr>
<td>Insulin</td>
<td>2</td>
<td>1,796515</td>
<td>0,898257</td>
<td>0,49</td>
<td>3,23</td>
</tr>
<tr>
<td>Waktu</td>
<td>2</td>
<td>3,341670</td>
<td>1,670835</td>
<td>0,91</td>
<td>3,23</td>
</tr>
<tr>
<td>Gula*ins</td>
<td>2</td>
<td>1,904470</td>
<td>0,952235</td>
<td>0,52</td>
<td>3,23</td>
</tr>
<tr>
<td>Gula*waktu</td>
<td>2</td>
<td>3,531293</td>
<td>1,765646</td>
<td>0,96</td>
<td>3,23</td>
</tr>
<tr>
<td>Insulin*waktu</td>
<td>4</td>
<td>7,999707</td>
<td>1,999927</td>
<td>1,08</td>
<td>2,61</td>
</tr>
<tr>
<td>Gulainswaktu</td>
<td>4</td>
<td>4,535019</td>
<td>1,133755</td>
<td>0,61</td>
<td>2,61</td>
</tr>
<tr>
<td>Galat</td>
<td>36</td>
<td>66,405333</td>
<td>1,844593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td>93,742009</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 10. Analisis ragam pengaruh perlakuan pada nilai susut masak daging domba

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F<sub>hat</sub></th>
<th>F<sub>lsb</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gula</td>
<td>1</td>
<td>172,19898</td>
<td>172,19898</td>
<td>6,63*</td>
<td>4,09 7,31</td>
</tr>
<tr>
<td>Insulin</td>
<td>2</td>
<td>24,43259</td>
<td>12,21630</td>
<td>0,47</td>
<td>3,23 5,18</td>
</tr>
<tr>
<td>Waktu</td>
<td>2</td>
<td>98,08963</td>
<td>49,04481</td>
<td>1,89</td>
<td>3,23 5,18</td>
</tr>
<tr>
<td>Gula*ins</td>
<td>2</td>
<td>15,78499</td>
<td>7,89250</td>
<td>0,30</td>
<td>3,23 5,18</td>
</tr>
<tr>
<td>Gula*waktu</td>
<td>2</td>
<td>43,24078</td>
<td>21,62039</td>
<td>0,83</td>
<td>3,23 5,18</td>
</tr>
<tr>
<td>Insulin*waktu</td>
<td>4</td>
<td>54,33755</td>
<td>13,58439</td>
<td>0,52</td>
<td>2,61 3,83</td>
</tr>
<tr>
<td>Gulainswaktu</td>
<td>4</td>
<td>29,88246</td>
<td>7,47062</td>
<td>0,41</td>
<td>2,61 3,83</td>
</tr>
<tr>
<td>Galat</td>
<td>36</td>
<td>935,68813</td>
<td>25,99134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td>1,373,65512</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: * = berbeda nyata (P<0.05)

Lampiran 11. Analisis ragam pengaruh perlakuan pada kecerahan warna (L) daging domba

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F<sub>hat</sub></th>
<th>F<sub>lsb</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gula</td>
<td>1</td>
<td>22,38802</td>
<td>22,38802</td>
<td>1,22</td>
<td>4,09 7,31</td>
</tr>
<tr>
<td>Insulin</td>
<td>2</td>
<td>1,88606</td>
<td>0,94303</td>
<td>0,05</td>
<td>3,23 5,18</td>
</tr>
<tr>
<td>Waktu</td>
<td>2</td>
<td>2,39145</td>
<td>1,19572</td>
<td>0,07</td>
<td>3,23 5,18</td>
</tr>
<tr>
<td>Gula*ins</td>
<td>2</td>
<td>4,64938</td>
<td>2,32469</td>
<td>0,13</td>
<td>3,23 5,18</td>
</tr>
<tr>
<td>Gula*waktu</td>
<td>2</td>
<td>11,76370</td>
<td>5,88185</td>
<td>0,32</td>
<td>3,23 5,18</td>
</tr>
<tr>
<td>Insulin*waktu</td>
<td>4</td>
<td>28,18406</td>
<td>7,04602</td>
<td>0,39</td>
<td>2,61 3,83</td>
</tr>
<tr>
<td>Gulainswaktu</td>
<td>4</td>
<td>32,83059</td>
<td>8,20765</td>
<td>0,45</td>
<td>2,61 3,83</td>
</tr>
<tr>
<td>Galat</td>
<td>36</td>
<td>658,27573</td>
<td>18,28544</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td>762,36899</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 12. Analisis ragam pengaruh perlakuan pada nilai kemerahan (a) daging dompa

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>Fhit</th>
<th>Fhit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,05</td>
<td>0,01</td>
</tr>
<tr>
<td>Gula</td>
<td>1</td>
<td>4,33500</td>
<td>4,33500</td>
<td>3,39</td>
<td>4,09</td>
</tr>
<tr>
<td>Insulin</td>
<td>2</td>
<td>1,92063</td>
<td>0,96032</td>
<td>0,75</td>
<td>3,23</td>
</tr>
<tr>
<td>Waktu</td>
<td>2</td>
<td>3,20681</td>
<td>1,60341</td>
<td>1,26</td>
<td>3,23</td>
</tr>
<tr>
<td>Gula*ins</td>
<td>2</td>
<td>0,14314</td>
<td>0,07157</td>
<td>0,06</td>
<td>3,23</td>
</tr>
<tr>
<td>Gula*waktu</td>
<td>2</td>
<td>1,97563</td>
<td>0,98782</td>
<td>0,77</td>
<td>3,23</td>
</tr>
<tr>
<td>Insulin*waktu</td>
<td>4</td>
<td>2,33039</td>
<td>0,58260</td>
<td>0,46</td>
<td>2,61</td>
</tr>
<tr>
<td>Gulainswaktu</td>
<td>4</td>
<td>3,99079</td>
<td>0,99770</td>
<td>0,78</td>
<td>2,61</td>
</tr>
<tr>
<td>Galat</td>
<td>36</td>
<td>45,97853</td>
<td>1,27718</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td>63,88093</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 13. Analisis ragam pengaruh perlakuan pada nilai kekuningan (b) daging dompa

<table>
<thead>
<tr>
<th>SK</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>Fhit</th>
<th>Fhit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,05</td>
<td>0,01</td>
</tr>
<tr>
<td>Gula</td>
<td>1</td>
<td>2,32297</td>
<td>2,32296</td>
<td>0,58</td>
<td>4,09</td>
</tr>
<tr>
<td>Insulin</td>
<td>2</td>
<td>1,37434</td>
<td>0,68717</td>
<td>0,17</td>
<td>3,23</td>
</tr>
<tr>
<td>Waktu</td>
<td>2</td>
<td>1,43874</td>
<td>0,71937</td>
<td>0,18</td>
<td>3,23</td>
</tr>
<tr>
<td>Gula*ins</td>
<td>2</td>
<td>1,79818</td>
<td>0,89909</td>
<td>0,22</td>
<td>3,23</td>
</tr>
<tr>
<td>Gula*waktu</td>
<td>2</td>
<td>3,28067</td>
<td>1,64034</td>
<td>0,41</td>
<td>3,23</td>
</tr>
<tr>
<td>Insulin*waktu</td>
<td>4</td>
<td>4,44924</td>
<td>1,11231</td>
<td>0,28</td>
<td>2,61</td>
</tr>
<tr>
<td>Gulainswaktu</td>
<td>4</td>
<td>2,46599</td>
<td>0,61650</td>
<td>0,15</td>
<td>2,61</td>
</tr>
<tr>
<td>Galat</td>
<td>36</td>
<td>144,54607</td>
<td>4,01517</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td>161,67620</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>