VII. PEMBAHASAN UMUM

Dari penelitian ini telah dihasilkan sejumlah galur murni tanaman kacang tanah transgenik yang membawa gen protein selubung dari *peanut stripe virus* (gen *cp* PStV) dan resisten terhadap serangan virus tersebut. Ada dua varietas nasional yang digunakan dalam proses transformasi yaitu varietas Kelinci dan Gajah. Dalam penelitian yang dilaporkan oleh Avivi (2000), gen *cp* PStV terbukti dapat memproteksi tanaman *Nicotiana benthamiana* dari serangan PStV. Penelitian ini membuktikan gen tersebut juga mampu memproteksi tanaman kacang tanah dari serangan PStV.

Penelitian ini pada dasarnya berusaha menjawab permasalahan dalam kedua hal tersebut. Setelah tanaman transgenik yang membawa gen *cp* PSTV yang resitzen PSTV didapatkan (Bab III), lalu dilakukan uji respons terhadap inokulasi PSTV dari generasi ke generasi (Bab III) untuk mengetahui apakah transgen masih berfungsi setelah silang-dalam sebanyak tujuh generasi. Selanjutnya dilakukan analisis untuk menentukan jumlah integrasi transgen dan korelasinya dengan gejala yang muncul sebagai respons terhadap infeksi PSTV (Bab IV). Kemudian dilakukan persilangan dengan tanaman non-transgenik untuk menguji kestabilan transgen pada hasil silangan dan untuk mengetahui pola pewarisanannya (Bab VI). Persilangan ini juga dimaksudkan untuk memperbaiki kelemahan tanaman cacang tanah cv.Gajah transgenik yang diperoleh (Bab VII), yaitu produksi polong yang lebih rendah daripada produksi polong cv.Gajah non-transgenik. Kelemahan lainnya dari cacang tanah cv.Gajah transgenik yang ingin diperbaiki adalah kerentanannya terhadap penyakit bercak daun *Cercospora*, suatu hal yang sebelumnya sudah dipertikai sebab cv.Gajah, sebagai *genetic background*-nya, memang rentan terhadap penyakit tersebut. Kacang tanah non-transgenik yang disilangkan adalah galur WS, yang rentan PSTV tetapi resisten penyakit bercak daun serta produknya relatif tinggi. Dari persilangan ini diharapkan diperoleh tanaman transgenik resisten PSTV dan resisten penyakit bercak daun serta berproduksi tinggi. Persilangan ini sekaligus juga untuk menunjukkan bahwa karakter transgenik yaitu ketahanan terhadap PSTV dapat diperlakukan sebagaimana karakter-karakter “alam” dalam suatu program pemuliaan tanaman yang menggunakan hibridisasi untuk mendapatkan tanaman transgenik unggul.
Stabilitas Transgen

Ada dua makna stabilitas transgen, yaitu secara struktural dan fungsional, dan bisa diketahui melalui pengujian dari generasi ke generasi dan pada latar belakang genetik yang berbeda. Transgen yang secara struktural stabil artinya transgen tetap berada pada tempat menyisipnya dalam genom dari generasi ke generasi dan pada latar belakang genetik yang berbeda. Transgen yang secara fungsional stabil artinya transgen tetap berfungsi dari generasi ke generasi dan pada latar belakang genetik yang berbeda.

Hasil penelitian ini menunjukkan, transgen cp PSTV tetap berfungsi sampai tujuh generasi silang-dalam; jadi secara fungsional stabil. Untuk menentukan kestabilan secara struktural lazimnya dilakukan analisis Southern dari generasi ke generasi selanjutnya. Tetapi dalam penelitian ini analisis Southern hanya dilakukan pada tanaman transgenik T5, dan ditemukan bahwa transgen yang fungsional adalah transgen dengan pita 1,1 kb dan 1,3 kb (Bab IV). Meningkat analisis ini dilakukan pada generasi yang lebih lanjut, yaitu generasi T5, maka kestabilan transgen secara fungsional kemungkinan besar merupakan cerminan dari kestabilan transgen secara struktural. Sebab posisi menyisip transgen akan mempengaruhi ekspresinya, suatu fenomena yang lazim dinamakan efek posisi (Meyer 1995, Matzke dan Matzke 1995).

Hasil penelitian ini juga menunjukkan, transgen cp PSTV juga stabil pada latar belakang genetik yang berbeda. Transgen terbukti dapat ditransfer ke genom kacang tanah genotipe lain (gurar WS) melalui persilangan, dan tetap berfungsi. Berfungsinnya transgen ini tercermin pada fenotipe tanaman F1 yang agak rentan PSTV (Bab V), suatu respons gejala yang lebih ringan daripada gejala rentan yang
ditunjukkan oleh tanaman non-transgenik. Diperlihatkannya gejala agak rentan pada tanaman F1 menunjukkan bahwa transgen cp PSTV bersifat dominan tidak penuh, yaitu dalam keadaan homozigot menghasilkan fenotipe rentan sedangkan dalam keadaan hemizigot menghasilkan fenotipe agak rentan. Kestabilan fungsional tersebut tetap dipertahankan pada generasi F2, yaitu dengan munculnya tanaman-tanaman yang resisten PSTV, suatu fenomena yang dapat diperkirakan karena fenotipe resisten ini tentunya dihasilkan oleh transgen homozigot pada populasi F2.

Untuk mengetahui apakah setelah melalui persilangan, secara struktural transgen tetap stabil, idealnya perlu dilakukan analisis Southern pada sejumlah tanaman pada populasi F1 dan F2. Hal ini tidak dilakukan. Walaupun demikian, kestabilan fungsional kemungkinan dapat merupakan cerminan dari kestabilan struktural. Hasil percobaan menunjukkan, beberapa galur tanaman transgenik yang disilangkan dengan tanaman non-transgenik menghasilkan populasi tanaman F1 yang semuanya menunjukkan fenotipe yang sama yaitu agak rentan PSTV (Bab V, Tabel 8), yang merupakan akibat dari kondisi transgen yang hemizigot. Hal ini merupakan tingkah laku gen yang dapat diperkirakan (predictable). Hal ini tidak akan terjadi jika secara struktural transgen tidak stabil.

Analisis fenotipe pada populasi F2 menunjukkan, sejumlah persilangan menghasilkan komposisi tanaman F2 yang juga dapat diperkirakan, yaitu mengikuti hukum Mendel. Komposisi tersebut adalah, nisbah antara tanaman yang mengandung transgen dan yang tidak mengandung transgen adalah 3:1 (Bab V, Tabel 9). Analisis molekuler tidak dilakukan pada populasi F2. Oleh karena
itu ada tidaknya transgen diduga dari fenotipe. Fenotipe yang dihasilkan oleh tanaman yang mengandung transgen adalah resisten (skor 0), recovery cepat (skor 1), recovery lambat (skor 2), atau agak rentan (skor 3). Fenotipe tanaman yang tidak mengandung transgen pastilah rentan (skor 4).

Studi korelasi antara genotipe dan fenotipe (Bab IV) menunjukkan, transgen 5,8 kb tidak menghasilkan resistensi terhadap PSTV, jadi tidak fungsional. Sedangkan transgen 1,1 kb dan 1,3 kb menghasilkan fenotipe resisten atau recovery dalam keadaan homozigot (Bab III) dan agak rentan dalam keadaan hemizigot (Bab IV dan V). Jumlah integrasi transgen tidak mempengaruhi fenotipe yang dihasilkan. Jika suatu tanaman transgenik membawa transgen fungsional maka tanaman tersebut mempunyai fenotipe resisten atau recovery.

Berdasarkan analisis segregan pada T₃ (Bab IV) diambil kesimpulan bahwa gejala recovery diakibatkan oleh transgen fungsional dalam lokus homozigot. Akan tetapi berdasarkan analisis segregan pada tanaman F₂ (Bab V Tabel 9) gejala resisten atau recovery selain diakibatkan oleh transgen fungsional dalam kondisi homozigot mungkin juga diakibatkan oleh transgen fungsional dalam lokus hemizigot. Analisis terhadap populasi F₂ menunjukkan, sejumlah persilangan menghasilkan komposisi fenotipe pada F₂ yang mengikuti hukum Mendel yaitu 3:1 untuk jumlah tanaman yang mengandung transgen dibanding yang tidak mengandung transgen. Yang tiga bagian dinyatakan sebagai yang mengandung transgen karena kelompok tanaman ini terdiri atas tanaman resisten, recovery, dan agak rentan. Sedangkan yang satu bagian dinyatakan sebagai yang tidak mengandung transgen karena semuanya merupakan tanaman rentan. Sebagai ilustrasi, jika genotipe tanaman resisten adalah TT, genotipe tanaman

Oleh karena transgen bersifat dominan tidak penuh sebagaimana tercermin dari fenotipe F1 yang agak rentan, seharusnya populasi F2 mempunyai komposisi $TT: Tt: tt = 1:2:1$, yaitu satu bagian adalah tanaman resisten, dua bagian tanaman agak rentan, dan satu bagian tanaman rentan. dan tidak ada tanaman *recovery*. Tetapi yang terjadi adalah, pada populasi F2 terdapat tanaman *recovery* dan jumlah tanaman resisten lebih banyak daripada yang diperkirakan, sedangkan jumlah tanaman agak rentan lebih sedikit daripada yang diperkirakan.

Oleh karena $(TT+Tt): tt = 3:1$, artinya secara struktural transgen stabil, proporsi tanaman resisten yang lebih banyak dari yang diperkirakan dan proporsi tanaman agak rentan yang lebih sedikit dari yang diperkirakan mengindikasikan bahwa sebagian populasi Tt menghasilkan fenotipe resisten. Dengan perkataan lain, populasi Tt pada populasi F2 sebagian merupakan tanaman resisten dan lainnya tanaman agak rentan. Tanaman *recovery* dapat mempunyai genotipe TT atau Tt. Dari segi praktis, fenomena ini memudahkan permanfaatan transgen *cp PTsiV* dalam pemulian tanaman melalui hibridisasi, sebab keberadaan transgen dapat diidentifikasi melalui fenotipe sehingga seleksi mudah dilakukan. Jika suatu tanaman menunjukkan fenotipe resisten, *recovery* atau agak rentan berarti tanaman tersebut mengandung transgen dalam kondisi homozigot atau hemizigot.

Pada transformasi genetika tanaman padi, ditemukan bahwa pada sebagian besar transforman, transgen justru tidak fungsional jika berada pada kondisi
homozigot, dan fungsional jika dalam keadaan hemizigot (James et al. 2002). Hal ini tentunya akan menyulitkan seleksi sebab akan terjadi counter-selection terhadap tanaman homozigot.

Aspek agronomi

Persilangan antara tanaman transgenik tersebut dengan galur tanaman kacang tanah non-transgenik yang resisten penyakit berca daun (galur WS) menghasilkan sejumlah individu tanaman F2 yang resisten PSTV dan penyakit berca daun. Di samping itu, juga dihasilkan sejumlah individu tanaman F2 yang berproduksi lebih tinggi dibandingkan tetua transgeniknya. Hal ini mendemonstrasikan bahwa karakter transgenik yaitu ketahanan terhadap PSTV dapat diperlakukan sebagaimana karakter “alami” dalam suatu program pemuliaan tanaman yang melibatkan hibridisasi.