DAFTAR PUSTAKA

<table>
<thead>
<tr>
<th>No</th>
<th>Kriteria</th>
<th>Tanggal/ bulan/ 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pengadaan pakan</td>
<td>11/1 20/1 23/1 31/1 08/2 27/3 09/4 10/4 27/4 30/4 06/5 13/5 20/5 23/5 31/5 08/6 24/10 10/11</td>
</tr>
<tr>
<td>2</td>
<td>Persiapan kandang metabolis</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pengadaan domba</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Domba ditimbang dan dikandangkan secara acak</td>
<td>11/1 20/1 23/1 31/1 08/2 27/3 09/4 10/4 27/4 30/4 06/5 13/5 20/5 23/5 31/5 08/6 24/10 10/11</td>
</tr>
<tr>
<td>5</td>
<td>Penyuntikan multivitamin</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Test kebuntingan (pemacek & USG)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Pemberian obat cacing</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Penasaran CIDR (penyeragaman siklus berahi)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Analisis proksimat dan mineral pakan</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Penimbunan ransum & perhitungan DCAD</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Pemberian ransum perlakuan DCAD</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Penasaran CIDR (I)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Pengambilan sampel air minum, ransum, feses, dan urin</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Pengukuran pH dan analisis mineral feses dan urin</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Pelaksanaan IB (I)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Analisis mineral cairan vagina dan darah (penguatan pH)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Pemeriksaan kebuntingan (pemacek & USG) dan menghitung embrio</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Pembuatan kandang untuk beranak</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Pemberian ransum perlakuan (Pengulangan)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Pemasangan CIDR (II)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Penimbunan pH cairan vagina dan IB (II)</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Pemasangan kebuntingan (pemacek & USG) dan menghitung embrio</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Pemberian ransum perlakuan (Pengulangan)</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Pemasangan CIDR (III)</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Pengukuran pH dan IB (III)</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Pemeriksaan kebuntingan (pemacek & USG) dan menghitung embrio</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Pelaksanaan CIDR (III)</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Menghitung jumlah anak, rasio kelamin, dan menimbang bobot lahir</td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 2. Persamaan dan nilai koefisien regresi

Dependent Variable: pH ransum

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>4</td>
<td>4.77910667</td>
<td>1.19477667</td>
<td>8.81</td>
<td>0.0026</td>
</tr>
<tr>
<td>Error</td>
<td>10</td>
<td>1.35686667</td>
<td>0.13568667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>14</td>
<td>6.13597333</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-Square</th>
<th>C.V.</th>
<th>Root MSE</th>
<th>PHR Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.778867</td>
<td>6.865495</td>
<td>0.36835671</td>
<td>5.36533333</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type I SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCAD</td>
<td>4</td>
<td>4.77910667</td>
<td>1.19477667</td>
<td>8.81</td>
<td>0.0026</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCAD</td>
<td>4</td>
<td>4.77910667</td>
<td>1.19477667</td>
<td>8.81</td>
<td>0.0026</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contrast</th>
<th>DF</th>
<th>Contrast SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>linier</td>
<td>1</td>
<td>0.00000333</td>
<td>0.00000333</td>
<td>0.00</td>
<td>0.9961</td>
</tr>
<tr>
<td>kuadratik</td>
<td>1</td>
<td>2.54068810</td>
<td>2.54068810</td>
<td>18.72</td>
<td>0.0015</td>
</tr>
<tr>
<td>kubik</td>
<td>1</td>
<td>0.00021333</td>
<td>0.00021333</td>
<td>0.00</td>
<td>0.9692</td>
</tr>
</tbody>
</table>

Dependent Variable: pH ransum

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2</td>
<td>4.38551</td>
<td>2.19276</td>
<td>15.032</td>
<td>0.0005</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>1.75046</td>
<td>0.14587</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total</td>
<td>14</td>
<td>6.13597</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Root MSE</th>
<th>R-square</th>
<th>Adj R-sq</th>
<th>Dep Mean</th>
<th>C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.38193</td>
<td>0.7147</td>
<td>0.6672</td>
<td>5.36533</td>
<td>7.11851</td>
</tr>
</tbody>
</table>

Parameter Estimates

<table>
<thead>
<tr>
<th>Variable</th>
<th>DF</th>
<th>Estimate</th>
<th>Std Error</th>
<th>T for H0: Parameter=0</th>
<th>Prob ></th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEP</td>
<td>1</td>
<td>4.971416</td>
<td>0.15644308</td>
<td>31.778</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>DCAD</td>
<td>1</td>
<td>0.016966</td>
<td>0.00481901</td>
<td>3.521</td>
<td>0.0042</td>
<td></td>
</tr>
<tr>
<td>DCAD2</td>
<td>1</td>
<td>0.000865</td>
<td>0.00027239</td>
<td>3.175</td>
<td>0.0080</td>
<td></td>
</tr>
</tbody>
</table>
Dependent Variable: Konsumsi abu

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>6</td>
<td>1072.52954667</td>
<td>178.75492444</td>
<td>1.39</td>
<td>0.3254</td>
</tr>
<tr>
<td>Error</td>
<td>8</td>
<td>1030.92802667</td>
<td>128.86600033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>14</td>
<td>2103.45757333</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-Square</th>
<th>C.V.</th>
<th>Root MSE</th>
<th>Konsumsi abu Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.509889</td>
<td>16.12595</td>
<td>11.351916</td>
<td>70.39533333</td>
</tr>
</tbody>
</table>

Source DF Type I SS Mean Square F Value Pr > F

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type I SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCAD</td>
<td>4</td>
<td>780.51697333</td>
<td>195.12924333</td>
<td>1.51</td>
<td>0.2857</td>
</tr>
</tbody>
</table>

Source DF Type III SS Mean Square F Value Pr > F

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCAD</td>
<td>4</td>
<td>780.51697333</td>
<td>195.12924333</td>
<td>1.51</td>
<td>0.2857</td>
</tr>
</tbody>
</table>

Contrast DF Contrast SS Mean Square F Value Pr > F

<table>
<thead>
<tr>
<th>Contrast</th>
<th>DF</th>
<th>Contrast SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>linier</td>
<td>1</td>
<td>16.98016333</td>
<td>16.98016333</td>
<td>0.13</td>
<td>0.7260</td>
</tr>
<tr>
<td>kuadratik</td>
<td>1</td>
<td>518.49773571</td>
<td>518.49773571</td>
<td>4.02</td>
<td>0.0798</td>
</tr>
<tr>
<td>kubik</td>
<td>1</td>
<td>0.15987000</td>
<td>0.15987000</td>
<td>0.00</td>
<td>0.9728</td>
</tr>
</tbody>
</table>

Dependent Variable: Konsumsi abu

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean</th>
<th>F Value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2</td>
<td>30.85246</td>
<td>15.42623</td>
<td>0.089</td>
<td>0.9152</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>2072.60511</td>
<td>172.71709</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE	14	2103.45757	13.14219	0.0147	
Dep Mean		70.39533	Adj R-sq	-0.1496	
C.V.		18.66912			

Parameter Estimates

| Parameter | DF | Estimate | Standard Error | T for H0: Parameter=0 | Prob > |T| |
|-----------|-----|----------|----------------|-----------------------|--------|-----|
| INTERCEP | 1 | 71.038841| 5.42397059 | 13.097 | 0.0001 |
| DCAD | 1 | 0.066601 | 0.16012668 | 0.416 | 0.6848 |
| DCAD2 | 1 | -0.001382| 0.00908812 | -0.152 | 0.8817 |

TIDAK DAPAT DIGUNAKAN PERSAMAAN KUADRAT INI KARENA Prob model 0.9152
Dependent Variable: Absorpsi Na ransum

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>6</td>
<td>4.51672000</td>
<td>0.75278667</td>
<td>46.37</td>
<td>0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>8</td>
<td>0.12988000</td>
<td>0.01623500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>14</td>
<td>4.64660000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Square: 0.972048 C.V.: 25.48333 Root MSE: 0.127416 Absorpsi Na Mean: 0.50000000

Source DF Type I SS Mean Square F Value Pr > F

| Source | DF | Type I SS Mean Square F Value | Pr > F |
|--------|----|-------------------------|---------|--------|
| DCAD | 4 | 4.48920000 1.12230000 69.13 | 0.0001 |
| BLOK | 2 | 0.02752000 0.01376000 0.85 | 0.4636 |

Source DF Type III SS Mean Square F Value Pr > F

| Source | DF | Type III SS Mean Square F Value | Pr > F |
|--------|----|-------------------------|---------|--------|
| DCAD | 4 | 4.48920000 1.12230000 69.13 | 0.0001 |
| BLOK | 2 | 0.02752000 0.01376000 0.85 | 0.4636 |

Contrast DF Contrast SS Mean Square F Value Pr > F

| Contrast | DF | Contrast SS Mean Square F Value | Pr > F |
|----------|----|-------------------------|---------|--------|
| linier | 1 | 0.01976333 0.01976333 1.22 | 0.3020 |
| kubik | 1 | 0.00005333 0.00005333 0.00 | 0.9557 |

Dependent Variable: Absorpsi Na ransum

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2</td>
<td>4.13096</td>
<td>2.06548</td>
<td>48.068</td>
<td>0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>0.51564</td>
<td>0.04297</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total</td>
<td>14</td>
<td>4.64660</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE: 0.20729 R-square: 0.8890
Dep Mean: 0.50000 Adj R-sq: 0.8705
C.V.: 41.45839

Parameter Estimates

<table>
<thead>
<tr>
<th>Variable</th>
<th>DF</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>T for H0: Parameter=0</th>
<th>Prob ></th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEP</td>
<td>1</td>
<td>0.062605</td>
<td>0.08555238</td>
<td>0.732</td>
<td>0.4784</td>
<td></td>
</tr>
<tr>
<td>DCAD</td>
<td>1</td>
<td>0.014971</td>
<td>0.00252568</td>
<td>5.928</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>DCAD2</td>
<td>1</td>
<td>0.000939</td>
<td>0.00014333</td>
<td>6.553</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>
Dependent Variable: Absorpsi K ransum

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>6</td>
<td>37.80412000</td>
<td>6.30068667</td>
<td>3.18</td>
<td>0.0667</td>
</tr>
<tr>
<td>Error</td>
<td>8</td>
<td>15.83612000</td>
<td>1.97951500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>14</td>
<td>53.64024000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-Square: 0.704772
C.V.: 18.95651
Root MSE: 1.406952
Absorpsi K Mean: 7.42200000

Type I SS

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type I SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCAD</td>
<td>4</td>
<td>25.38924000</td>
<td>6.34731000</td>
<td>3.21</td>
<td>0.0754</td>
</tr>
<tr>
<td>BLOK</td>
<td>2</td>
<td>12.41488000</td>
<td>6.20744000</td>
<td>3.14</td>
<td>0.0987</td>
</tr>
</tbody>
</table>

Type III SS

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCAD</td>
<td>4</td>
<td>25.38924000</td>
<td>6.34731000</td>
<td>3.21</td>
<td>0.0754</td>
</tr>
<tr>
<td>BLOK</td>
<td>2</td>
<td>12.41488000</td>
<td>6.20744000</td>
<td>3.14</td>
<td>0.0987</td>
</tr>
</tbody>
</table>

Contrast

<table>
<thead>
<tr>
<th>Contrast</th>
<th>DF</th>
<th>Contrast SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>linier</td>
<td>1</td>
<td>0.70227000</td>
<td>0.70227000</td>
<td>0.35</td>
<td>0.5679</td>
</tr>
<tr>
<td>kuadratik</td>
<td>1</td>
<td>12.34459286</td>
<td>12.34459286</td>
<td>6.24</td>
<td>0.0371</td>
</tr>
<tr>
<td>kubik</td>
<td>1</td>
<td>1.96608000</td>
<td>1.96608000</td>
<td>0.99</td>
<td>0.3481</td>
</tr>
</tbody>
</table>

Dependent Variable: Absorpsi K ransum

Analysis of Variance

<table>
<thead>
<tr>
<th>Sum of Variance</th>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root MSE</td>
<td>1.73080</td>
<td>2</td>
<td>17.69204</td>
<td>8.84602</td>
<td>2.953</td>
<td>0.0906</td>
</tr>
<tr>
<td>Dep Mean</td>
<td>7.42200</td>
<td>12</td>
<td>35.94820</td>
<td>2.99568</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.V.</td>
<td>23.31992</td>
<td>14</td>
<td>53.64024</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-square: 0.3298
Adj R-sq: 0.2181

Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>T for H0: Parameter=0</th>
<th>Prob ></th>
<th>T</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEP</td>
<td>1</td>
<td>6.434892</td>
<td>0.71432795</td>
<td>9.008</td>
<td>0.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCAD</td>
<td>1</td>
<td>0.027421</td>
<td>0.02108842</td>
<td>1.300</td>
<td>0.2179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCAD2</td>
<td>1</td>
<td>0.002120</td>
<td>0.00119689</td>
<td>1.771</td>
<td>0.1019</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dependent Variable: Kandungan Na urin

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>6</td>
<td>1578711.02082667</td>
<td>263118.50347111</td>
<td>1.08</td>
<td>0.4451</td>
</tr>
<tr>
<td>Error</td>
<td>8</td>
<td>1943476.81221334</td>
<td>242934.47652667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>14</td>
<td>3522186.83304000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-Square</th>
<th>C.V.</th>
<th>Root MSE</th>
<th>NAU Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.448219</td>
<td>149.4412</td>
<td>492.883836</td>
<td>329.81800000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type I SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCAD</td>
<td>4</td>
<td>1553613.16910667</td>
<td>388403.29227667</td>
<td>1.60</td>
<td>0.2649</td>
</tr>
<tr>
<td>BLOK</td>
<td>2</td>
<td>25097.85172000</td>
<td>12548.92586000</td>
<td>0.05</td>
<td>0.9500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCAD</td>
<td>4</td>
<td>1553613.16910667</td>
<td>388403.29227667</td>
<td>1.60</td>
<td>0.2649</td>
</tr>
<tr>
<td>BLOK</td>
<td>2</td>
<td>25097.85172000</td>
<td>12548.92586000</td>
<td>0.05</td>
<td>0.9500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contrast</th>
<th>DF</th>
<th>Contrast SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>linier</td>
<td>1</td>
<td>66931.52268000</td>
<td>66931.52268000</td>
<td>0.28</td>
<td>0.6139</td>
</tr>
<tr>
<td>kuadratik</td>
<td>1</td>
<td>848115.32434286</td>
<td>848115.32434286</td>
<td>3.49</td>
<td>0.0986</td>
</tr>
<tr>
<td>kubik</td>
<td>1</td>
<td>138066.61120333</td>
<td>138066.61120333</td>
<td>0.57</td>
<td>0.4725</td>
</tr>
</tbody>
</table>

Dependent Variable: Kandungan Na urin

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2</td>
<td>1534642.4653</td>
<td>767321.23267</td>
<td>4.633</td>
<td>0.0323</td>
</tr>
<tr>
<td>Error</td>
<td>12</td>
<td>1987544.3677</td>
<td>165628.69731</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total</td>
<td>14</td>
<td>3522186.833</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE	406.97506	R-square	0.4357
Dep Mean	329.81800	Adj R-sq	0.3417
C.V.	123.39383		

| Variable | DF | Parameter | Standard Error | T for H0: Parameter=0 | Prob > |T|
|----------|----|-----------|-----------------|------------------------|--------|
| INTERCEP | 1 | 176.833484| 166.70113148 | 1.061 | 0.3097 |
| DCAD | 1 | 12.542223 | 5.13499684 | 2.442 | 0.0310 |
| DCAD2 | 1 | 0.330580 | 0.29025100 | 1.139 | 0.2770 |
Dependent Variable: Kandungan Purin

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>6</td>
<td>222126.04614667</td>
<td>37021.00769111</td>
<td>3.26</td>
<td>0.0629</td>
</tr>
<tr>
<td>Error</td>
<td>8</td>
<td>90790.58245333</td>
<td>11348.82280667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>14</td>
<td>312916.62860000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R-Square C.V.</th>
<th>Root MSE PU Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.709857 57.81865</td>
<td>106.530853 184.25000000</td>
</tr>
</tbody>
</table>

Source

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type I SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCAD</td>
<td>4</td>
<td>209247.3366667</td>
<td>52311.83416667</td>
<td>4.61</td>
<td>0.0318</td>
</tr>
<tr>
<td>BLOK</td>
<td>2</td>
<td>12878.70948000</td>
<td>6439.35474000</td>
<td>0.57</td>
<td>0.5883</td>
</tr>
</tbody>
</table>

Source

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCAD</td>
<td>4</td>
<td>209247.3366667</td>
<td>52311.83416667</td>
<td>4.61</td>
<td>0.0318</td>
</tr>
<tr>
<td>BLOK</td>
<td>2</td>
<td>12878.70948000</td>
<td>6439.35474000</td>
<td>0.57</td>
<td>0.5883</td>
</tr>
</tbody>
</table>

Contrast

<table>
<thead>
<tr>
<th>Contrast</th>
<th>DF</th>
<th>Contrast SS</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>linier</td>
<td>1</td>
<td>1038.17301333</td>
<td>1038.17301333</td>
<td>0.09</td>
<td>0.7700</td>
</tr>
<tr>
<td>kuadratik</td>
<td>1</td>
<td>98922.58148571</td>
<td>98922.58148571</td>
<td>8.72</td>
<td>0.0184</td>
</tr>
<tr>
<td>kubik</td>
<td>1</td>
<td>17487.49920333</td>
<td>17487.49920333</td>
<td>1.54</td>
<td>0.2496</td>
</tr>
</tbody>
</table>

Dependent Variable: Kandungan Purin

<table>
<thead>
<tr>
<th>Source DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 2</td>
<td>208547.55695</td>
<td>104273.77847</td>
<td>11.989</td>
<td>0.0014</td>
</tr>
<tr>
<td>Error 12</td>
<td>104369.07165</td>
<td>8697.42264</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total 14</td>
<td>312916.62860</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Root MSE 93.25997</th>
<th>R-square 0.6665</th>
<th>Dep Mean 184.25000</th>
<th>Adj R-sq 0.6109</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.V. 50.61600</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter Estimates

| Parameter Estimates | Parameter | Standard Error | T for H0: Parameter=0 | Prob > |T| |
|---------------------|-----------|----------------|-----------------------|--------|---|
| INTERCEP 1 | 106.366387 | 38.20023563 | 2.784 | 0.0165 |
| DCAD 1 | 3.986642 | 1.17670521 | 3.388 | 0.0054 |
| DCAD2 1 | 0.170440 | 0.06651218 | 2.563 | 0.0249 |
Nilai koefisien korelasi antara DCAD dan konsumsi

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 15

<table>
<thead>
<tr>
<th></th>
<th>DCAD</th>
<th>KONBB</th>
<th>KONSABU</th>
<th>KONSAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCAD</td>
<td>1.0000</td>
<td>0.1419</td>
<td>0.1169</td>
<td>-0.1624</td>
</tr>
<tr>
<td>KONBB</td>
<td>0.1419</td>
<td>1.0000</td>
<td>0.7980</td>
<td>0.2048</td>
</tr>
<tr>
<td>KONSABU</td>
<td>0.1169</td>
<td>0.7980</td>
<td>1.0000</td>
<td>0.1365</td>
</tr>
<tr>
<td>KONSAM</td>
<td>-0.1624</td>
<td>0.2048</td>
<td>0.1365</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Keterangan:
- KONBB = Konsumsi bahan kering berdasarkan bobot badan (%)
- KONSABU = Konsumsi abu (g/hr)
- KONSAM = Konsumsi air minum (L/hr)

Nilai koefisien korelasi antara pH ransum dan kandungan mineral ransum

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 15

<table>
<thead>
<tr>
<th></th>
<th>pHR</th>
<th>Na</th>
<th>K</th>
<th>CL</th>
<th>S</th>
<th>CA</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHR</td>
<td>1.0000</td>
<td>0.86880</td>
<td>0.86880</td>
<td>-0.37103</td>
<td>-0.35575</td>
<td>-0.54443</td>
</tr>
<tr>
<td>Na</td>
<td>0.86880</td>
<td>1.0000</td>
<td>0.0000</td>
<td>-0.39267</td>
<td>-0.40825</td>
<td>0.96184</td>
</tr>
<tr>
<td>K</td>
<td>0.86880</td>
<td>1.0000</td>
<td>1.0000</td>
<td>-0.39267</td>
<td>-0.40825</td>
<td>0.90767</td>
</tr>
<tr>
<td>CL</td>
<td>-0.37103</td>
<td>-0.39267</td>
<td>-0.39267</td>
<td>1.0000</td>
<td>0.96184</td>
<td>0.87114</td>
</tr>
<tr>
<td>S</td>
<td>-0.35575</td>
<td>-0.40825</td>
<td>-0.40825</td>
<td>0.96184</td>
<td>1.0000</td>
<td>0.87114</td>
</tr>
<tr>
<td>CA</td>
<td>-0.54443</td>
<td>-0.54717</td>
<td>-0.54717</td>
<td>0.90767</td>
<td>0.87114</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Keterangan:
- pHR = nilai pH ransum
- NA = kandungan Na ransum (%)
- K = kandungan K ransum (%)
- Cl = kandungan Cl ransum (%)
- S = kandungan S ransum (%)
- CA = kandungan Ca ransum (%)

Nilai koefisien korelasi antara DCAD, pH ransum, pH darah, pH cairan vagina, pH urin, dan absorpsi mineral

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 15

<table>
<thead>
<tr>
<th></th>
<th>DCAD</th>
<th>pHR</th>
<th>PHD</th>
<th>PHCV</th>
<th>PHU</th>
<th>ABSNA</th>
<th>ABSK</th>
<th>ABSCL</th>
<th>ABSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCAD</td>
<td>1.0000</td>
<td>0.68923</td>
<td>0.37441</td>
<td>0.45604</td>
<td>0.88623</td>
<td>0.70749</td>
<td>0.39862</td>
<td>-0.83833</td>
<td>-0.73415</td>
</tr>
<tr>
<td>pHR</td>
<td>0.68923</td>
<td>1.0000</td>
<td>0.03962</td>
<td>0.26008</td>
<td>0.49092</td>
<td>0.88585</td>
<td>0.73251</td>
<td>-0.29937</td>
<td>-0.15867</td>
</tr>
<tr>
<td>PHD</td>
<td>0.37441</td>
<td>0.03962</td>
<td>1.0000</td>
<td>0.63780</td>
<td>0.30638</td>
<td>0.15230</td>
<td>-0.12931</td>
<td>-0.58068</td>
<td>-0.42347</td>
</tr>
<tr>
<td>PHCV</td>
<td>0.45604</td>
<td>0.26008</td>
<td>0.63780</td>
<td>1.0000</td>
<td>0.46373</td>
<td>0.25137</td>
<td>-0.17750</td>
<td>-0.53846</td>
<td>-0.47739</td>
</tr>
<tr>
<td>PHU</td>
<td>0.88623</td>
<td>0.49092</td>
<td>0.30638</td>
<td>0.46373</td>
<td>1.0000</td>
<td>0.53912</td>
<td>0.20002</td>
<td>-0.86445</td>
<td>-0.83142</td>
</tr>
<tr>
<td>ABSNA</td>
<td>0.70749</td>
<td>0.88585</td>
<td>0.15230</td>
<td>0.25137</td>
<td>0.53912</td>
<td>1.0000</td>
<td>0.72727</td>
<td>-0.30647</td>
<td>-0.21688</td>
</tr>
<tr>
<td>ABSK</td>
<td>0.39862</td>
<td>0.73251</td>
<td>-0.12931</td>
<td>-0.17750</td>
<td>0.20002</td>
<td>0.72727</td>
<td>1.0000</td>
<td>-0.01441</td>
<td>0.13968</td>
</tr>
<tr>
<td>ABSCL</td>
<td>-0.83833</td>
<td>-0.29937</td>
<td>-0.58068</td>
<td>-0.53846</td>
<td>-0.86445</td>
<td>-0.30647</td>
<td>-0.01441</td>
<td>1.0000</td>
<td>0.92910</td>
</tr>
<tr>
<td>ABSS</td>
<td>-0.73415</td>
<td>-0.15867</td>
<td>-0.42347</td>
<td>-0.47739</td>
<td>-0.83142</td>
<td>-0.21688</td>
<td>0.13968</td>
<td>0.92910</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Keterangan:
- * = Hasil analisis kontras polinomial, lebih signifikan pada kuadratik
- pHR = nilai pH ransum
- PHD = nilai pH darah
- PHCV = nilai pH cairan vagina
- PHU = nilai pH urin
- ABSNA = absorpsi Na ransum (g)
- ABSK = absorpsi K ransum (g)
- ABSCL = absorpsi Cl ransum (g)
- ABSS = absorpsi S ransum (g)
Nilai koefisien korelasi antar unsur-unsur blood gas

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 15

<table>
<thead>
<tr>
<th>DCAD</th>
<th>PHD</th>
<th>PCO2D</th>
<th>PO2D</th>
<th>HCO3D</th>
<th>BASED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>0.37441</td>
<td>0.21985</td>
<td>0.29230</td>
<td>0.64988</td>
<td>0.48597</td>
</tr>
<tr>
<td>PHR</td>
<td>0.68923</td>
<td>0.03962</td>
<td>-0.08503</td>
<td>0.32676</td>
<td>0.36176</td>
</tr>
<tr>
<td>PHD</td>
<td>0.37441</td>
<td>1.00000</td>
<td>0.27536</td>
<td>0.33453</td>
<td>0.63532</td>
</tr>
<tr>
<td>PCO2D</td>
<td>0.21985</td>
<td>0.27536</td>
<td>1.00000</td>
<td>-0.35962</td>
<td>0.60389</td>
</tr>
<tr>
<td>HCO3D</td>
<td>0.64988</td>
<td>0.63532</td>
<td>0.60389</td>
<td>0.16290</td>
<td>1.00000</td>
</tr>
<tr>
<td>BASED</td>
<td>0.48597</td>
<td>0.14235</td>
<td>0.75619</td>
<td>-0.23348</td>
<td>0.82602</td>
</tr>
</tbody>
</table>

Keterangan:
- PHD = nilai pH darah
- PCO2D = pCO2 darah (mmHg)
- PO2D = pO2 darah (mmHg)
- HCO3D = HCO3 darah (mmol/L)
- BASED = based darah (mmol/L)

Nilai koefisien korelasi antara pH darah dan kandungan mineral plasma

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 15

<table>
<thead>
<tr>
<th>PHD</th>
<th>NAP</th>
<th>KP</th>
<th>SP</th>
<th>CLP</th>
<th>CAP</th>
<th>PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>-0.30955</td>
<td>0.22162</td>
<td>-0.30705</td>
<td>0.28652</td>
<td>-0.04012</td>
<td>0.17482</td>
</tr>
<tr>
<td>NAP</td>
<td>-0.30955</td>
<td>1.00000</td>
<td>0.07835</td>
<td>-0.23486</td>
<td>0.03461</td>
<td>0.05582</td>
</tr>
<tr>
<td>KP</td>
<td>0.22162</td>
<td>0.07835</td>
<td>1.00000</td>
<td>0.35048</td>
<td>0.44597</td>
<td>0.47139</td>
</tr>
<tr>
<td>SP</td>
<td>-0.30705</td>
<td>-0.23486</td>
<td>0.35048</td>
<td>1.00000</td>
<td>0.42408</td>
<td>0.32465</td>
</tr>
<tr>
<td>CLP</td>
<td>0.28652</td>
<td>0.03461</td>
<td>0.44597</td>
<td>0.42408</td>
<td>1.00000</td>
<td>-0.01675</td>
</tr>
<tr>
<td>CAP</td>
<td>-0.04012</td>
<td>0.05582</td>
<td>0.47139</td>
<td>0.32465</td>
<td>-0.01675</td>
<td>1.00000</td>
</tr>
<tr>
<td>PP</td>
<td>0.17482</td>
<td>0.31458</td>
<td>0.06987</td>
<td>-0.69112</td>
<td>-0.26879</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

Keterangan:
- pHD = nilai pH darah
- NAP = kandungan Na plasma (ppm)
- KP = kandungan K plasma (ppm)
- CLP = kandungan Cl plasma (ppm)
- SP = kandungan S plasma (ppm)
- PP = kandungan P plasma (ppm)

Nilai koefisien korelasi antara pH cairan vagina dan kandungan mineral plasma

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 15

<table>
<thead>
<tr>
<th>PHCV</th>
<th>NAP</th>
<th>KP</th>
<th>SP</th>
<th>CLP</th>
<th>CAP</th>
<th>PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>-0.29108</td>
<td>0.19248</td>
<td>-0.30102</td>
<td>0.30663</td>
<td>-0.26958</td>
<td>0.43107</td>
</tr>
<tr>
<td>NAP</td>
<td>-0.29108</td>
<td>1.00000</td>
<td>0.07835</td>
<td>-0.23486</td>
<td>0.03461</td>
<td>0.05582</td>
</tr>
<tr>
<td>KP</td>
<td>0.19248</td>
<td>0.07835</td>
<td>1.00000</td>
<td>0.35048</td>
<td>0.44597</td>
<td>0.47139</td>
</tr>
<tr>
<td>SP</td>
<td>-0.30102</td>
<td>-0.23486</td>
<td>0.35048</td>
<td>1.00000</td>
<td>0.42408</td>
<td>0.32465</td>
</tr>
<tr>
<td>CLP</td>
<td>0.28652</td>
<td>0.03461</td>
<td>0.44597</td>
<td>0.42408</td>
<td>1.00000</td>
<td>-0.01675</td>
</tr>
<tr>
<td>CAP</td>
<td>-0.04012</td>
<td>0.05582</td>
<td>0.47139</td>
<td>0.32465</td>
<td>-0.01675</td>
<td>1.00000</td>
</tr>
<tr>
<td>PP</td>
<td>0.43107</td>
<td>0.31458</td>
<td>0.06987</td>
<td>-0.69112</td>
<td>-0.26879</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

Keterangan:
- PHCV = nilai pH cairan vagina
- NAP = kandungan Na plasma (ppm)
- KP = kandungan K plasma (ppm)
- CLP = kandungan Cl plasma (ppm)
- SP = kandungan S plasma (ppm)
- PP = kandungan P plasma (ppm)
Nilai koefisien korelasi antara pH cairan vagina dan kandungan mineral cairan vagina

<table>
<thead>
<tr>
<th></th>
<th>DCAD</th>
<th>PHCV</th>
<th>NACV</th>
<th>KCV</th>
<th>SCV</th>
<th>CLCV</th>
<th>CACV</th>
<th>PCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCAD</td>
<td>1.00000</td>
<td>0.45604</td>
<td>-0.05114</td>
<td>-0.18934</td>
<td>0.11919</td>
<td>-0.01607</td>
<td>-0.26704</td>
<td>0.03560</td>
</tr>
<tr>
<td>PHCV</td>
<td>0.45604</td>
<td>1.00000</td>
<td>0.05124</td>
<td>-0.28392</td>
<td>0.22380</td>
<td>-0.02799</td>
<td>0.02654</td>
<td>0.04132</td>
</tr>
<tr>
<td>NACV</td>
<td>-0.05114</td>
<td>0.05124</td>
<td>1.00000</td>
<td>0.28169</td>
<td>0.65635</td>
<td>-0.18218</td>
<td>0.72834</td>
<td>0.50360</td>
</tr>
<tr>
<td>KCV</td>
<td>-0.18934</td>
<td>-0.28392</td>
<td>0.28169</td>
<td>1.00000</td>
<td>0.05759</td>
<td>-0.27400</td>
<td>0.06068</td>
<td>0.08285</td>
</tr>
<tr>
<td>SCV</td>
<td>0.11919</td>
<td>0.23838</td>
<td>0.65635</td>
<td>0.05759</td>
<td>1.00000</td>
<td>0.05439</td>
<td>0.54920</td>
<td>0.88675</td>
</tr>
<tr>
<td>CLCV</td>
<td>-0.01607</td>
<td>-0.02799</td>
<td>-0.18218</td>
<td>-0.27400</td>
<td>1.00000</td>
<td>0.25037</td>
<td>0.10426</td>
<td></td>
</tr>
<tr>
<td>CACV</td>
<td>0.026704</td>
<td>0.02654</td>
<td>0.72834</td>
<td>0.50360</td>
<td>0.05439</td>
<td>1.00000</td>
<td>0.47990</td>
<td></td>
</tr>
<tr>
<td>PCV</td>
<td>0.03560</td>
<td>0.04132</td>
<td>0.50360</td>
<td>0.08285</td>
<td>0.10426</td>
<td>0.47990</td>
<td>1.00000</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: pHCV = nilai pH cairan vagina
NACV = kandungan Na cairan vagina (ppm)
KCV = kandungan K cairan vagina (ppm)
SCV = kandungan S cairan vagina (ppm)
CACV = kandungan Ca cairan vagina (ppm)
PCV = kandungan P cairan vagina (ppm)

Nilai koefisien korelasi antara pH urin dan kandungan mineral urin

<table>
<thead>
<tr>
<th></th>
<th>DCAD</th>
<th>PHU</th>
<th>NAU</th>
<th>KU</th>
<th>SU</th>
<th>CLU</th>
<th>CAU</th>
<th>PU</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCAD</td>
<td>1.00000</td>
<td>0.88623</td>
<td>0.61213*</td>
<td>0.36078</td>
<td>-0.71976</td>
<td>0.06353</td>
<td>-0.65076*</td>
<td>0.69566*</td>
</tr>
<tr>
<td>PHU</td>
<td>0.88623</td>
<td>1.00000</td>
<td>0.68415</td>
<td>0.29786</td>
<td>-0.63852</td>
<td>-0.14830</td>
<td>-0.62956</td>
<td>0.48181</td>
</tr>
<tr>
<td>NAU</td>
<td>0.61213</td>
<td>0.68415</td>
<td>1.00000</td>
<td>0.67149</td>
<td>-0.42008</td>
<td>0.03015</td>
<td>-0.32666</td>
<td>0.40621</td>
</tr>
<tr>
<td>KU</td>
<td>0.36078</td>
<td>0.29786</td>
<td>0.67149</td>
<td>1.00000</td>
<td>0.01472</td>
<td>0.33780</td>
<td>0.08066</td>
<td>0.12145</td>
</tr>
<tr>
<td>SU</td>
<td>-0.71976</td>
<td>-0.63852</td>
<td>-0.42008</td>
<td>0.01472</td>
<td>1.00000</td>
<td>-0.02576</td>
<td>0.81199</td>
<td>-0.51056</td>
</tr>
<tr>
<td>CLU</td>
<td>0.06353</td>
<td>-0.14830</td>
<td>0.03015</td>
<td>0.33780</td>
<td>-0.02576</td>
<td>1.00000</td>
<td>-0.10706</td>
<td>0.16992</td>
</tr>
<tr>
<td>CAU</td>
<td>-0.65076</td>
<td>-0.62956</td>
<td>-0.32666</td>
<td>0.08066</td>
<td>0.81199</td>
<td>-0.10706</td>
<td>1.00000</td>
<td>-0.33295</td>
</tr>
<tr>
<td>PU</td>
<td>0.69566</td>
<td>0.48181</td>
<td>0.40621</td>
<td>0.12145</td>
<td>-0.51056</td>
<td>0.16992</td>
<td>-0.33295</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

Keterangan: * = hasil analisis kontras polinomial, lebih signifikan pada kuadratik
pHU = nilai pH urin
NAU = kandungan Na urin (ppm)
KU = kandungan K urin (ppm)
CLU = kandungan Cl urin (ppm)
SU = kandungan S urin (ppm)
PU = kandungan P urin (ppm)
Nilai koefisien korelasi antara pH ransum, pH darah, pH cairan vagina, pH CV waktu IB, embrio, anak, dan rasio kelamin anak

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 15

<table>
<thead>
<tr>
<th></th>
<th>DCAD</th>
<th>PHR</th>
<th>PHD</th>
<th>PHCV</th>
<th>PHIB</th>
<th>EMBR</th>
<th>ANAK</th>
<th>ASRASIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCAD</td>
<td>1.00000</td>
<td>0.68923</td>
<td>0.37441</td>
<td>0.45604</td>
<td>0.00584</td>
<td>0.30494</td>
<td>-0.03285</td>
<td>0.20201</td>
</tr>
<tr>
<td>PHR</td>
<td>0.68923</td>
<td>1.00000</td>
<td>0.03962</td>
<td>0.26008</td>
<td>0.04248</td>
<td>-0.05375</td>
<td>-0.03482</td>
<td></td>
</tr>
<tr>
<td>PHD</td>
<td>0.37441</td>
<td>0.03962</td>
<td>1.00000</td>
<td>0.63780</td>
<td>0.46978</td>
<td>0.55302</td>
<td>0.33684</td>
<td>0.31192</td>
</tr>
<tr>
<td>PHCV</td>
<td>0.45604</td>
<td>0.26008</td>
<td>0.63780</td>
<td>1.00000</td>
<td>0.48325</td>
<td>0.16096</td>
<td>-0.15034</td>
<td>0.24212</td>
</tr>
<tr>
<td>PHIB</td>
<td>0.00584</td>
<td>0.04248</td>
<td>0.46978</td>
<td>0.48325</td>
<td>1.00000</td>
<td>0.21039</td>
<td>0.43507</td>
<td>0.75221</td>
</tr>
<tr>
<td>EMBR</td>
<td>0.30494</td>
<td>-0.05375</td>
<td>0.55302</td>
<td>0.16096</td>
<td>0.21039</td>
<td>1.00000</td>
<td>0.65547</td>
<td>0.15338</td>
</tr>
<tr>
<td>ANAK</td>
<td>-0.03285</td>
<td>-0.03482</td>
<td>0.33684</td>
<td>-0.15034</td>
<td>0.43507</td>
<td>0.65547</td>
<td>1.00000</td>
<td>0.55786</td>
</tr>
<tr>
<td>ASRASIO</td>
<td>0.20201</td>
<td>0.46656</td>
<td>0.31192</td>
<td>0.24212</td>
<td>0.75221</td>
<td>0.15338</td>
<td>0.55786</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

Keterangan: * = hasil analisis kontras polinomial, lebih signifikan pada kuadratik

pHR = nilai pH ransum
pHD = nilai pH darah
pHCV = nilai pH cairan vagina
pHIB = nilai pH cairan vagina pada waktu IB
EMBR = jumlah embrio (buah)
ASRASIO = rasio kelamin anak (%)

Dependent Variable: PHCV

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Square</th>
<th>F Value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>0.31940</td>
<td>0.31940</td>
<td>3.414</td>
<td>0.0875</td>
</tr>
<tr>
<td>Error</td>
<td>13</td>
<td>1.21640</td>
<td>0.09357</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total</td>
<td>14</td>
<td>1.53580</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 0.30589
Dep Mean 7.28000
C.V. 4.20180

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | T for H0: Parameter=0 | Prob > |T| |
|----------|-----|--------------------|----------------|-----------------------|--------|---|
| INTERCEP | 1 | 7.277241 | 0.07899478 | 92.123 | 0.0001 |
| DCAD | 1 | 0.006899 | 0.00373382 | 1.848 | 0.0875 |

Dependent Variable: PHCV

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Square</th>
<th>F Value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>0.62474</td>
<td>0.62474</td>
<td>8.915</td>
<td>0.0105</td>
</tr>
<tr>
<td>Error</td>
<td>13</td>
<td>0.91106</td>
<td>0.07008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total</td>
<td>14</td>
<td>1.53580</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 0.26473
Dep Mean 7.28000
C.V. 3.63639

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | T for H0: Parameter=0 | Prob > |T| |
|----------|-----|--------------------|----------------|-----------------------|--------|---|
| INTERCEP | 1 | 0.877736 | 2.14538636 | 0.409 | 0.6891 |
| PHD | 1 | 0.874865 | 0.29301684 | 2.986 | 0.0105 |
Dependent Variable: PHCV

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>0.10389</td>
<td>0.10389</td>
<td>0.943</td>
<td>0.3492</td>
</tr>
<tr>
<td>Error</td>
<td>13</td>
<td>1.43191</td>
<td>0.11015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total</td>
<td>14</td>
<td>1.53580</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE: 0.33188
Dep Mean: 7.28000
Adj R-sq: -0.0041

Parameter

| Variable | DF | Estimate | Standard Error | T for H0: Parameter=0 | Prob > |T| |
|----------|----|----------|----------------|------------------------|--------|---|
| INTERCEP | 1 | 6.581874 | 0.72394525 | 9.092 | 0.0001 |
| PHR | 1 | 0.130118 | 0.13398156 | 0.971 | 0.3492 |

Dependent Variable: FETUS

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>5.42342</td>
<td>5.42342</td>
<td>5.727</td>
<td>0.0325</td>
</tr>
<tr>
<td>Error</td>
<td>13</td>
<td>12.30991</td>
<td>0.94692</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total</td>
<td>14</td>
<td>17.73333</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE: 0.97310
Dep Mean: 2.13333
Adj R-sq: 0.2524

Parameter

| Variable | DF | Parameter Estimate | Standard Error | T for H0: Parameter=0 | Prob > |T| |
|----------|----|--------------------|----------------|------------------------|--------|---|
| INTERCEP | 1 | -16.730079 | 7.8 8605397 | -2.121 | 0.0537 |
| PHD | 1 | 2.577673 | 1.07707713 | 2.393 | 0.0325 |

Dependent Variable: ASRASIO

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>2.14797</td>
<td>2.14797</td>
<td>0.553</td>
<td>0.4703</td>
</tr>
<tr>
<td>Error</td>
<td>13</td>
<td>50.48567</td>
<td>3.88351</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total</td>
<td>14</td>
<td>52.63364</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE: 1.97066
Dep Mean: 1.82200
Adj R-sq: -0.0330

Parameter

| Variable | DF | Parameter Estimate | Standard Error | T for H0: Parameter=0 | Prob > |T| |
|----------|----|--------------------|----------------|------------------------|--------|---|
| INTERCEP | 1 | 1.814844 | 0.50891399 | 3.566 | 0.0034 |
| DCAD | 1 | 0.017890 | 0.02405467 | 0.744 | 0.4703 |
Dependent Variable: ASRASIO

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>11.45711</td>
<td>11.45711</td>
<td>3.617</td>
<td>0.0796</td>
</tr>
<tr>
<td>Error</td>
<td>13</td>
<td>41.17653</td>
<td>3.16743</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total</td>
<td>14</td>
<td>52.63364</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root MSE</td>
<td>1.77973</td>
<td>R-square</td>
<td>0.2177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dep Mean</td>
<td>1.82200</td>
<td>Adj R-sq</td>
<td>0.1575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.V.</td>
<td>97.67982</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter Estimates

| Variable | DF | Parameter Estimate | Parameter Error | T for H0: Parameter=0 | Prob > |T| |
|----------|----|--------------------|-----------------|-----------------------|--------|---|
| INTERCEP | 1 | -5.509494 | 3.88214864 | -1.419 | 0.1794 |
| PHR | 1 | 1.366456 | 0.71847469 | 1.902 | 0.0796 |

Dependent Variable: ASRASIO

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>5.12082</td>
<td>5.12082</td>
<td>1.401</td>
<td>0.2577</td>
</tr>
<tr>
<td>Error</td>
<td>13</td>
<td>47.51282</td>
<td>3.65483</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total</td>
<td>14</td>
<td>52.63364</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root MSE</td>
<td>1.91176</td>
<td>R-square</td>
<td>0.0973</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dep Mean</td>
<td>1.82200</td>
<td>Adj R-sq</td>
<td>0.0279</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.V.</td>
<td>104.92654</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter Estimates

| Variable | DF | Parameter Estimate | Parameter Error | T for H0: Parameter=0 | Prob > |T| |
|----------|----|--------------------|-----------------|-----------------------|--------|---|
| INTERCEP | 1 | -16.507607 | 15.49307909 | -1.065 | 0.3060 |
| PHD | 1 | 2.504729 | 2.11604451 | 1.184 | 0.2577 |

Dependent Variable: ASRASIO

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>29.78120</td>
<td>29.78120</td>
<td>16.942</td>
<td>0.0012</td>
</tr>
<tr>
<td>Error</td>
<td>13</td>
<td>22.85244</td>
<td>1.75788</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total</td>
<td>14</td>
<td>52.63364</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root MSE</td>
<td>1.32585</td>
<td>R-square</td>
<td>0.5658</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dep Mean</td>
<td>1.82200</td>
<td>Adj R-sq</td>
<td>0.5324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.V.</td>
<td>72.76897</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter Estimates

| Variable | DF | Parameter Estimate | Parameter Error | T for H0: Parameter=0 | Prob > |T| |
|----------|----|--------------------|-----------------|-----------------------|--------|---|
| INTERCEP | 1 | -26.674403 | 6.93176425 | -3.848 | 0.0020 |
| PHIB | 1 | 3.991466 | 0.96974122 | 4.116 | 0.0012 |
Dependent Variable: PHD

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Square</th>
<th>F Value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>0.27523</td>
<td>0.27523</td>
<td>6.613</td>
<td>0.0232</td>
</tr>
<tr>
<td>Error</td>
<td>13</td>
<td>0.54101</td>
<td>0.04162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total</td>
<td>14</td>
<td>0.81624</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE: 0.20400
Dep Mean: 7.31800
C.V.: 2.78766

Parameter Estimates

| Variable | DF | Estimate | Standard Error | T for H0: Parameter=0 | Prob>|T| |
|----------|----|----------|----------------|------------------------|-------|
| INTERCEP | 1 | 7.493287 | 0.08614146 | 86.988 | 0.0001|
| ABSCL | 1 | -0.047002| 0.01827701 | -2.572 | 0.0232|

Dependent Variable: PHD

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Square</th>
<th>F Value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>0.14637</td>
<td>0.14637</td>
<td>2.841</td>
<td>0.1157</td>
</tr>
<tr>
<td>Error</td>
<td>13</td>
<td>0.66987</td>
<td>0.05153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total</td>
<td>14</td>
<td>0.81624</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE: 0.22700
Dep Mean: 7.31800
C.V.: 3.10192

Parameter Estimates

| Variable | DF | Estimate | Standard Error | T for H0: Parameter=0 | Prob>|T| |
|----------|----|----------|----------------|------------------------|-------|
| INTERCEP | 1 | 7.470319 | 0.10771621 | 69.352 | 0.0001|
| ABSS | 1 | -0.114698| 0.06805316 | -1.685 | 0.1157|

Dependent Variable: PHD

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Square</th>
<th>F Value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>0.32946</td>
<td>0.32946</td>
<td>8.798</td>
<td>0.0109</td>
</tr>
<tr>
<td>Error</td>
<td>13</td>
<td>0.48678</td>
<td>0.03744</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total</td>
<td>14</td>
<td>0.81624</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE: 0.19351
Dep Mean: 7.31800
C.V.: 2.64426

Parameter Estimates

<p>| Variable | DF | Estimate | Standard Error | T for H0: Parameter=0 | Prob>|T| |
|----------|----|----------|----------------|------------------------|-------|
| INTERCEP | 1 | 5.102070 | 0.74872630 | 6.814 | 0.0001|
| HCO3 | 1 | 0.097270 | 0.03279252 | 2.966 | 0.0109|</p>
<table>
<thead>
<tr>
<th></th>
<th>DCAD</th>
<th>KONSCA</th>
<th>CAP</th>
<th>CACV</th>
<th>CAU</th>
<th>FETUS</th>
<th>ANAK</th>
<th>ASRASIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00000</td>
<td>-0.95794</td>
<td>-0.58562</td>
<td>-0.26704</td>
<td>-0.65076</td>
<td>0.30494</td>
<td>-0.03285</td>
<td>0.20201</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.0001</td>
<td>0.0218</td>
<td>0.3360</td>
<td>0.0086</td>
<td>0.2691</td>
<td>0.9075</td>
<td>0.4703</td>
</tr>
<tr>
<td>KONSCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.95794</td>
<td>1.00000</td>
<td>0.64669</td>
<td>0.13371</td>
<td>0.72055</td>
<td>-0.30097</td>
<td>0.04252</td>
<td>-0.22662</td>
</tr>
<tr>
<td></td>
<td>0.0001</td>
<td>0.0</td>
<td>0.0092</td>
<td>0.6347</td>
<td>0.0024</td>
<td>0.2757</td>
<td>0.8804</td>
<td>0.4167</td>
</tr>
<tr>
<td>CAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.58562</td>
<td>0.64669</td>
<td>1.00000</td>
<td>0.05676</td>
<td>0.54448</td>
<td>0.20030</td>
<td>0.10334</td>
<td>-0.38320</td>
</tr>
<tr>
<td></td>
<td>0.0218</td>
<td>0.0092</td>
<td>0.0</td>
<td>0.8408</td>
<td>0.0359</td>
<td>0.4741</td>
<td>0.7140</td>
<td>0.1586</td>
</tr>
<tr>
<td>CACV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.26704</td>
<td>0.13371</td>
<td>0.05676</td>
<td>1.00000</td>
<td>0.42024</td>
<td>0.04405</td>
<td>0.32218</td>
<td>0.43545</td>
</tr>
<tr>
<td></td>
<td>0.3360</td>
<td>0.6347</td>
<td>0.8408</td>
<td>0.0</td>
<td>0.1189</td>
<td>0.8761</td>
<td>0.2416</td>
<td>0.1047</td>
</tr>
<tr>
<td>CAU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.65076</td>
<td>0.72055</td>
<td>0.54448</td>
<td>0.42024</td>
<td>1.00000</td>
<td>-0.26586</td>
<td>0.16091</td>
<td>0.17507</td>
</tr>
<tr>
<td></td>
<td>0.0086</td>
<td>0.0024</td>
<td>0.0359</td>
<td>0.1189</td>
<td>0.0</td>
<td>0.3382</td>
<td>0.5667</td>
<td>0.5326</td>
</tr>
<tr>
<td>FETUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.30494</td>
<td>-0.30097</td>
<td>0.20030</td>
<td>0.04405</td>
<td>-0.26586</td>
<td>1.00000</td>
<td>0.65547</td>
<td>0.15338</td>
</tr>
<tr>
<td></td>
<td>0.2691</td>
<td>0.2757</td>
<td>0.4741</td>
<td>0.8761</td>
<td>0.3382</td>
<td>0.0</td>
<td>0.0080</td>
<td>0.5852</td>
</tr>
<tr>
<td>ANAK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.03285</td>
<td>0.04252</td>
<td>0.10334</td>
<td>0.32218</td>
<td>0.16091</td>
<td>0.65547</td>
<td>1.00000</td>
<td>0.55786</td>
</tr>
<tr>
<td></td>
<td>0.9075</td>
<td>0.8804</td>
<td>0.7140</td>
<td>0.2416</td>
<td>0.5667</td>
<td>0.0080</td>
<td>0.0</td>
<td>0.0307</td>
</tr>
<tr>
<td>ASRASIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.20201</td>
<td>-0.22662</td>
<td>-0.38320</td>
<td>0.43545</td>
<td>0.17507</td>
<td>0.15338</td>
<td>0.55786</td>
<td>1.00000</td>
</tr>
<tr>
<td></td>
<td>0.4703</td>
<td>0.4167</td>
<td>0.1586</td>
<td>0.1047</td>
<td>0.5326</td>
<td>0.5852</td>
<td>0.0307</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Dependent Variable: KONSCA

Sum of
Mean

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Square</th>
<th>F Value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>53.84715</td>
<td>53.84715</td>
<td>144.848</td>
<td>0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>13</td>
<td>4.83274</td>
<td>0.37175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total</td>
<td>14</td>
<td>58.67989</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE: 0.60971
R-square: 0.9176
Dep Mean: 3.85933
Adj R-sq: 0.9113
C.V.: 15.79839

Parameter Estimates

| Parameter | Estimate | Error | Parameter=0 | Prob>|T| |
|-----------|----------|-------|-------------|-----|----|
| INTERCEP | 3.895162 | 0.15745520 | 24.738 | 0.0001 |
| DCAD | -0.089571 | 0.00744238 | -12.035 | 0.0001 |

Dependent Variable: CAP

Sum of
Mean

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Square</th>
<th>F Value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>6228.28524</td>
<td>6228.28524</td>
<td>6.786</td>
<td>0.0218</td>
</tr>
<tr>
<td>Error</td>
<td>13</td>
<td>11932.44413</td>
<td>917.88032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total</td>
<td>14</td>
<td>18160.72937</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE: 30.29654
R-square: 0.3430
Dep Mean: 448.03133
Adj R-sq: 0.2924
C.V.: 6.76215
Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 448.416662 7.82393142 57.313 0.0001
DCAD 1 -0.963321 0.36981115 -2.605 0.0218

Dependent Variable: CACV

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 654.908779 57.63927422 11.362 0.0001
DCAD 1 -2.721947 2.72441627 -0.999 0.3360

Dependent Variable: CAU

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 1002.456726 292.53308400 3.427 0.0045
DCAD 1 -42.728481 13.82706329 -3.090 0.0086

Dependent Variable: CAP

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 448.03133 36.981115 -12.055 0.0001
DCAD 1 -0.963321 0.36981115 -2.605 0.0218
Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Standard</th>
<th>T for H0:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>DF</td>
<td>Estimate</td>
</tr>
<tr>
<td>INTERCEP</td>
<td>1</td>
<td>404.124522</td>
</tr>
<tr>
<td>KONSCA</td>
<td>1</td>
<td>11.376786</td>
</tr>
</tbody>
</table>

Dependent Variable: CAU

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>15022900.729</td>
<td>15022900.729</td>
<td>14.038</td>
<td>0.0024</td>
</tr>
<tr>
<td>Error</td>
<td>13</td>
<td>13911900.225</td>
<td>1070146.1711</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total</td>
<td>14</td>
<td>28934800.954</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 1034.47870 R-square 0.5192
Dep Mean 985.36533 Adj R-sq 0.4822
C.V. 104.98428

Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Standard</th>
<th>T for H0:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>DF</td>
<td>Estimate</td>
</tr>
<tr>
<td>INTERCEP</td>
<td>1</td>
<td>-967.375156</td>
</tr>
<tr>
<td>KONSCA</td>
<td>1</td>
<td>505.978707</td>
</tr>
</tbody>
</table>

Dependent Variable: FETUS

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>1.60631</td>
<td>1.60631</td>
<td>1.295</td>
<td>0.2757</td>
</tr>
<tr>
<td>Error</td>
<td>13</td>
<td>16.12702</td>
<td>1.24054</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total</td>
<td>14</td>
<td>17.73333</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 1.11380 R-square 0.0906
Dep Mean 2.13333 Adj R-sq 0.0206
C.V. 52.20916

Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Standard</th>
<th>T for H0:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>DF</td>
<td>Estimate</td>
</tr>
<tr>
<td>INTERCEP</td>
<td>1</td>
<td>2.771865</td>
</tr>
<tr>
<td>KONSCA</td>
<td>1</td>
<td>-0.165451</td>
</tr>
</tbody>
</table>

Dependent Variable: CAU

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>8577823.7915</td>
<td>8577823.7915</td>
<td>5.478</td>
<td>0.0359</td>
</tr>
<tr>
<td>Error</td>
<td>13</td>
<td>20356977.162</td>
<td>1565921.3202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C Total</td>
<td>14</td>
<td>28934800.954</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 1251.36778 R-square 0.2965
Dep Mean 985.36533 Adj R-sq 0.2423
C.V. 126.99531

Parameter Estimates
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Standard</th>
<th>T for H0:</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERCEP</td>
<td>1</td>
<td>-8751.749787</td>
</tr>
<tr>
<td>CAP</td>
<td>1</td>
<td>21.733112</td>
</tr>
</tbody>
</table>