II. KERANGKA PEMIKIRAN TEORITIS

2.1. Sistem Distribusi

Berdasarkan Keppres RI No 43 tahun 1971 Bulog ditunjuk sebagai satu-satunya lembaga yang menangani pengadaan dan distribusi gula pasir nasional. Pengadaan dan distribusi gula pasir oleh Bulog bertujuan untuk menciptakan
stabilisasi harga gula pasir dalam negeri sebagai satu dari Sembilan Bahan Pokok, dalam upaya meningkatkan pendapatan petani serta menjamin harga yang layak di tingkat konsumen. Keunggulan sistem tata ini adalah stabilnya harga gula, sedang kelemahannya adalah lebih tingginya harga gula dalam negeri dibanding harga gula impor.

2.2. Model Transportasi

Sedangkan model transportasi adalah merupakan bentuk khusus dari pemograman linier, dimana perbedaan antara keduanya terletak pada koefisien fungsi kendala. Pada model transportasi koefisien tersebut selalu bernilai 1, sedangkan pada pemrograman linier nilai tersebut tidak harus selalu bernilai 1.

Menurut Dimyati dan Dimyati (1992), ciri-ciri khusus persoalan transportasi ini adalah:

1. Terdapat sejumlah sumber dan tujuan tertentu.
2. Kuantitas komoditas atau barang yang didistribusikan dari setiap sumber dan yang diminta oleh setiap tujuan besarnya tertentu.
4. Ongkos pengangkutan komoditas dari suatu sumber ke suatu tujuan besarnya tertentu.

Sedangkan menurut Taylor (1996), model transportasi dirumuskan untuk sekumpulan problem dimana memiliki ciri-ciri unik sebagai berikut:

1. Komoditas ditransportasikan dari sejumlah daerah sumber kepada sejumlah daerah tujuan dengan biaya transportasi seminimum mungkin.
2. Setiap daerah sumber dapat menyediakan komoditas dalam jumlah tertentu, dan setiap daerah tujuan memiliki permintaan terhadap komoditas dalam jumlah tertentu pula.
Secara umum, model transportasi dengan tujuan meminimumkan biaya dapat diformulasikan sebagai berikut:

\[
\text{Minimum } Z = \sum_{i=1}^{m} \sum_{j=1}^{n} C_{ij} X_{ij}
\]

Dengan kendala:

\[
\begin{align*}
\sum_{j=1}^{n} X_{ij} & \leq a_i ; & i = 1,2,\ldots, m \\
\sum_{i=1}^{m} X_{ij} & \geq b_j ; & j = 1,2,\ldots, n \\
X_{ij} & \geq 0 \\
\end{align*}
\]

dimana:

- Fungsi tujuan
- Biaya transportasi per unit produk \(X_{ij} \) dari sumber \(i \) ke tujuan \(j \).
- Jumlah satuan (unit) yang dikirimkan dari sumber \(i \) ke tujuan \(j \).
- Jumlah penawaran yang tersedia di daerah sumber \(i \), \(i = 1,2,\ldots, m \)
- Jumlah permintaan di daerah permintaan tujuan \(j \), \(j = 1,2,\ldots, n \)
- Jumlah daerah sumber.
- Jumlah daerah tujuan.

Suatu model transportasi dinyatakan seimbang (balanced transportation model) apabila total penawaran sama dengan total permintaan. Dengan kata lain:

\[
\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j
\]
Dalam kenyataan sehari-hari, batasan ini tidak selalu terpenuhi. Yang sering terjadi adalah jumlah permintaan lebih besar dari jumlah penawaran. Jika hal ini terjadi, maka model persoalannya disebut sebagai model transportasi yang tidak berimbang (unbalanced transportation model). Tetapi setiap persoalan transportasi dapat dibuat seimbang dengan cara memasukkan variabel semu yang disebut sebagai variabel dummy.

Jika jumlah permintaan melebihi penawaran, maka dibuat suatu sumber dummy yang akan menambah jumlah penawaran, yaitu sebanyak $\sum b_i - \sum a_i$. Sebaliknya, jika jumlah penawaran lebih besar daripada jumlah permintaan, maka dibuat suatu tujuan dummy untuk menyerap kelebihan tersebut, yaitu sebanyak $\sum a_i - \sum b_j$.

Ongkos transportasi per unit (c_{ij}) dari sumber dummy ke seluruh tujuan adalah nol. Hal ini dapat dipahami karena pada kenyataannya dari sumber dummy tidak terjadi pengiriman. Begitu pula dengan ongkos transportasi per unit (c_{ij}) dari semua sumber ke tujuan dummy adalah nol.