TINJAUAN PUSTAKA

Karacteristik Benih Kakao


Menurut Toruan (1990) berdasarkan morfologinya, buah kakao tergolong buah tunggal berbiji banyak. Pada buah tersebut pembentukan benih di dalam buah dimulai pada saat terjadi fertilisasi yang berlangsung secara serentak.

Sifat benih kakao yang penting artinya adalah tidak mengenal dormansi, sehingga tidak baik apabila disimpan lama. Apabila benih telah dikeluarkan dari daging buahnya dan tidak segera ditangani maka viabilitasnya akan cepat menurun begitu pula bila benih tersebut dibiarkan dalam buah maka biji akan berkecambah walau pun buah tersebut masih dalam pohon (Murray, 1975). Tipe
perkecambahan benih kakao adalah epigeal dimana kotiledon akan terangkat ke permukaan sebelum membuka (Purseglove, 1987).

Kakao merupakan benih rekalsitran yang memiliki kadar air tinggi, mudah berkecambah selama periode konservasi, pada kadar air yang tinggi mudah terserang cendawan, peka terhadap pengeringan, cahaya, suhu dan kelembaban yang rendah.

Kadar Air Benih Rekalsitran

Secara umum penurunan kadar air benih rekalsitran akan menurunkan viabilitasnya. Kadar air benih yang rendah menyebabkan kerusakan komponen-komponen subselular yaitu pada struktur protein, enzim dan penurunan integritas sel (King and Roberts, 1980a).

Menurut Purwanto (1986) selama konservasi, viabilitas benih dipengaruhi oleh kadar air awal benih, kondisi ruang simpan dan lama penyimpanan. Benih kakao yang disimpan selama 4 minggu dengan kadar air awal 42% dan 36% mempunyai nilai viabilitas yang lebih baik dibandingkan dengan kadar air dibawahnya. Namun menurut Madhusudanan dan Babu (1988), benih pala (Myristica fragrans) kehilangan viabilitasnya pada saat kadar air-nya 20%.

Benih kakao memiliki kepekaan yang berbeda terhadap kadar air yang rendah. Penurunan kadar air
benih sampai dibawah 30% (Basharudin, 1994) pada fase sebelum dan sesudah masak fisiologis akan menurunkan viabilitas benih kakao secara drastis. Sedangkan penurunan kadar air sampai 20% dengan silika gel pada fase perkembangan 5 bulan (masak fisiologis) menunjukkan nilai viabilitas yang cukup tinggi. Menurut Winarsih (1994) benih damar dengan kadar air awal yang rendah (20,21%) mengalami penurunan viabilitas lebih besar selama gencangan dibandingkan dengan benih yang berkadar air awal lebih tinggi (23,44% dan 35,56%).


Penelitian Winarsih (1994) pada benih damar menunjukkan bahwa benih berkadar air awal 29,97% setelah digencang selama 30 jam viabilitasnya menurun dibandingkan
dengan benih pada kadar air awal 39,09 %. Penurunan kadar air ini diduga dapat mempercepat proses kemunduran pada benih rekalsitran. Wirawan (1986) menyatakan bahwa benih jeruk siam (Citrus reticulata B.) vibilitasnya sangat ditentukan oleh taraf kadar airnya. Penurunan benih pada kadar air 13,47 % akan menurunkan daya berkecambahnya menjadi 30,25 %, begitu pula kadar air awal benih sebesar 31,02 % dapat mempertahankan vibilitas benih sampai 8 minggu sedangkan yang berkadar air awal 24,07 % hanya dapat mempertahankan vibilitas kurang dari 4 minggu. Begitu pula menurut Purwanto (1986), vibilitas benih dapat dipengaruhi oleh kadar air awal penyimpanan dan lama penyimpanan. Benih berkadar air awal ± 42 % memiliki daya berkecambah lebih tinggi yaitu 96,53 % dibandingkan benih berkadar air awal ± 27 % yaitu 6,27 % setelah disimpan selama 4 minggu. Pada penyimpanan 0 minggu, daya berkecambah lebih tinggi yaitu sebesar 82,54 % dibandingkan dengan penyimpanan selama 4 minggu sebesar 36,84 %, sedangkan pengaruh wadah simpan terhadap daya berkecambah pada wadah berlubang-lubang memiliki daya berkecambah lebih besar (70,94 %) dibanding dengan wadah yang tertutup sebesar 43,53 %.

Kemunduran Benih

Kemunduran benih merupakan suatu proses yang berjalan secara bertingkat dan kumulatif sebagai akibat dari
kemunduran alami yang terjadi secara kronologis yang berkaitan dengan unsur waktu dan kemunduran fisiologis yang disebabkan oleh faktor lingkungan (Sadjad, 1972).

Gejala kemunduran benih ini dibedakan atas gejala yang bersifat fisiologi dan biokimia. Gejala fisiologi antara lain perubahan warna, menurunnya toleransi terhadap kondisi penyimpanan yang kurang baik dan menurunnya daya berkecambah, sedangkan gejala biokimia antara lain menurunnya respirasi dan perubahan persediaan makanan (Sing and Roberts, 1980). 


Viabilitas benih yang disimpar berangsur-angsur akan menurun karena proses kemunduran. Kadar air benih merupakon salah satu faktor yang dapat menyebabkan kemunduran benih dan akhirnya ditandai dengan menghilangnya kemampuan benih untuk berkecambah. Proses kemunduran ini diikuti dengan penurunan vigor yang lebih cepat dibandingkan dengan viabilitas potensialnya (Sadjad, 1993). Kemunduran benih oleh kadar air ini ialah : bila kadar air benih rendah akan mengakibatkan kerusakan sub-seluler pada benih sedangkan bila kadar air benih tinggi
akan mengakibatkan serangan cendawan (King and Roberts, 1980b).

Naimah (1994) melaporkan bahwa benih kakao mengalami penurunan viabilitas selama ditransportasi, yaitu daya berkecambah mulai menurun setelah menempuh jarak ± 3000 km selama 7 hari sedangkan vigor benih menurun lebih cepat, yaitu setelah menempuh jarak ± 2000 km selama 5 hari. Demikian pula menurut Winarsih (1994) kadar air awal benih, jarak dan lama transportasi berpengaruh terhadap kemunduran viabilitas benih, benih yang berkadar air awal 25,49 % mengalami penurunan viabilitas yang lebih besar dibandingkan dengan benih berkadar air awal 40,14 % setelah benih mengalami transportasi sejauh 978 km (6 hari) dan 1586 km (8 hari). Purwanto (1986) menyatakan bahwa benih kakao yang disimpan dengan kadar air 31 % dan 27 % cepat mengalami penurunan viabilitas yang ditunjukkan dengan daya berkecambah, kecepatan tumbuh, tinggi bibit dan bobot kering bibit dibandingkan dengan benih yang disimpan dengan kadar air awal 42 % dan 36 %.

Viabilitas dan Vigor Benih

Viabilitas benih adalah daya hidup benih yang dapat ditunjukkan oleh fenomena pertumbuhan benih atau gejala metabolismenya (Sadjad, 1993). Parameter viabilitas benih adalah viabilitas potensial, vigor kekuatan tumbuh
dan vigor daya simpan. Viabilitas potensial adalah viabilitas benih pada kondisi optimum yang secara potensial mampu menghasilkan tanaman normal yang berproduksi normal, dengan tolak ukur diantaranya daya berkecambah dan bobot kering kecambah normal. Vigor kekuatan tumbuh benih adalah vigor benih sehingga benih mampu tumbuh di luarang menghasilkan tanaman normal yang berproduksi normal pada kondisi sub optimum atau menghasilkan produk di atas normal pada kondisi optimum, dengan tolak ukur diantaranya kecepatan tumbuh dan tinggi bibit. Sedangkan vigor daya simpan adalah vigor yang menunjukkan kemampuan benih untuk disimpan, dengan tolak ukur antara lain Vigor setelah deraan alkohol (Valk), kerserempakan tumbuh dan Daya Hantar Listrik (DHL).

Viabilitas benih dipengaruhi oleh faktor genetik, kemasakan benih, kondisi lingkungan selama perkembangan benih, ukuran atau keragaman dan berat jenis benih, kerusakan fisik selama penyimpanan serta kondisi lingkungan saat imbibisi pada proses perkecambahan (Copeland dan McDonald, 1985).

Menurut Sadjad (1994) uji vigor benih terbagi menjadi dua kelompok yaitu uji langsung yang ditunjukkan oleh inerja pertumbuhan benih (kecambah, bibit) dan uji tidak langsung yang ditunjukkan oleh gejala hidup (enzimatik).
Perlakuan Benih dengan Zat Pengatur Tumbuh


Zat pengatur tumbuh menghasilkan pengaruh ber- variasi pada tanaman atau bagian-bagian tanaman melalui aktivitasnya dalam proses pertumbuhan. Hal demikian berbeda dengan bahan lainnya seperti asam sulfur yang secara langsung dapat membakar tanaman atau konsentrasi larutan garam yang menyebabkan dehidrasi, sedangkan ZPT masuk ke dalam proses fisiologi untuk mencampuri atau mempengaruhi benih dengan berbagai cara dan tingkatan yang berbeda (Hammer dan Tukey dalam Tukey, 1959).

Perlakuan ZPT pada benih menurut Kusumo (1990) bertujuan untuk meningkatkan daya berkecambah, mempercepat perkecambahan, menambah kesuburan benih/bibit, mempercepat masa berbunga tanaman, mempertinggi hasil, dan menghindari pengaruh buruk fungisida.

Konsentrasi larutan ZPT yang digunakan untuk perlakuan benih akan mempengaruhi jumlah dan kecepatan penyierapan yang terjadi pada benih serta tingkat efektifitasnya bagi pertumbuhan (Winarsih, 1994). Pemberian NAA dan GA₃ dengan konsentrasi (10:10 ppm) dan (10:100 ppm) pada benih yang telah mengalami goncangan cenderung meningkatkan perkecambahan benih damar.

Menurut Winarsih (1994) pemberian GA₃ : NAA dengan konsentrasi 0 : 10 ppm dan 100 : 10 ppm terhadap benih damar yang telah mengalami gencangan 10 dan 30 jam dapat meningkatkan viabilitas benih dengan tolok ukur daya berkecambah dan kecepatan tumbuh. Begitu pula menurut Chandrarini (1994) pemberian GA₃ : NAA (12,5 : 12,5) ppm pada benih kakao dapat memperbaiki daya berkecambah (73,33%) dibandingkan kontrol (62,50 %). Penemuan pula pada tolok ukur kecepatan tumbuh dan keserempakan tumbuh, perlakuan ini mampu memperbaiki kecepatan tumbuh (5,17 %/etmal) dan keserempakan tumbuh (24,17 %) dibandingkan kontrol (4,7 %/etmal dan 7,5 %).

Perkecambahan benih dimulai dengan aktifnya giberelin endogen. Benih yang mengalami kekurangan atau kerusakan giberelin endogen akan terhambat perkecambahannya dan hal ini dapat diatasi dengan pemberian giberelin eksogen, misalnya asam giberelat (GA₃).

Asam giberelat (C₁₉H₂₂O₆) paling mudah ditemukan dan paling banyak digunakan dalam penelitian. Saat ini telah diketahui bahwa giberelin terdapat pada bagian organ dan jaringan tanaman misalnya akar, buah, jaringan kulit, batang, tunas, daun, kuncup-kuncup bunga dan bintil akar. Benih yang sedang berkembang
Diketahui mengandung kadar giberelin yang tertinggi dibanding bagian vegetatif (Krishnamoorthy, 1981, Wattimena, 1988).

Pemberian GA₃ diduga dapat meningkatkan jumlah GA₃ internal yang terdapat dalam benih, yang diperlukan dalam sintesis α-amilase yang penting bagi perkecambahan benih. Enzim ini berperan sebagai katalisator dalam perubahan pati menjadi gula (Krishnamoorthy, 1981).

Pada biji yang kaya akan lemak, GA₃ berperan untuk endorong aktifitas enzim isosтрат lyase pada fase awal perkecambahan benih (Prawiranata, Harran dan Tjonrongegoro, 1989). Lipid dirubah menjadi sukrosa, kemudian sukrosa dipergunakan oleh benih untuk pertumbuhan dan perkembangan embrio menjadi kecambah.


Auksin endogen maupun eksogen dikenal sebagai penstimulir perkecambahan, mendorong pembelahan sel dan
menginisiasi akar adventif. Meskipun selang konsentrasi NAA yang optimum bagi pertumbuhan sempit, NAA memiliki sifat yang lebih tahan, tidak mudah terdegradasi dan relatif lebih murah dibanding jenis aukiin lainnya (Chandrarini, 1994).

Kemungkinan pembesaran sel oleh NAA melalui dua cara yaitu: (1) dengan mempengaruhi sintesis/aktifitas enzim dalam sitoplasm atau dinding sel, sehingga air akan masuk ke dalam sel sehingga sel akan mengembang, (2) melalui pelunakan dinding sel primer sehingga menurunkan tekanan dinding sel dan air akan masuk ke akuola (Prawiranata, Harran dan Tjondronegoro, 1989).

Menurut Kusumo (1990) sitokinik adalah suatu zat di dalam tanaman yang bersama dengan aukiin mendorong pembelahan sel dan berinteraksi dengan auksiin dalam menentukan arah terjadinya deferensiasi.

Sitokinik berpengaruh di dalam perkembangan embrio (Wattimena, 1988). Selain itu juga memperlambat proses senescence, mendorong pembentukan tunas lateral, meningkatkan perluasan daun pada beberapa dikotil serta pemangkuan batang (Zahara, 1994).

Salah satu senyawa sitokinik adalah kinetin yang berperan dalam metabolisme asam nukleat dan sintesis protein, juga mempengaruhi aktivitas dari beberapa
enzim. Pada keadaan tertentu sitokinrin dapat meng-gantikan peran GA₃ seperti pada pembentukan enzim α-amilase pada proses perkecambahan (Wattimena, 1988).