V. HASIL DAN PEMBAHASAN

5.1. Deskripsi Hubungan dan Faktor-faktor yang Mempengaruhi Impor Pasar Jepang terhadap Tuna Indonesia

5.1.1. Analisis Regresi

Analisis yang dilakukan pertama kali dengan melihat matrik korelasi sederhana (derajat nol) antar peubahnya. Dari hasil ini diperoleh gambaran mengenai kekuatan hubungan antar peubah bebas, baik antar peubah-peubah bebasnya maupun antar peubah tidak bebasnya (volume impor tuna Indonesia di pasar Jepang) dengan setiap peubah bebasnya, yaitu:

1. Harga tuna Indonesia di pasar Jepang (X1)
2. Pendapatan nasional Jepang (X2)
3. Nilai tukar Yen ke US$ (X3)
4. Tingkat konsumsi ikan di Jepang (X4)
5. Harga ikan jenis lain (X5)
6. Volume ekspor tuna di Jepang (X6)
7. Produksi domestik tuna di Jepang (X7)

<table>
<thead>
<tr>
<th></th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
<th>X6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td></td>
<td>0.861</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>0.861</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X3</td>
<td>-0.854</td>
<td>-0.928</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X4</td>
<td>0.830</td>
<td>0.961</td>
<td>-0.951</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X5</td>
<td>0.859</td>
<td>0.842</td>
<td>-0.866</td>
<td>0.777</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X6</td>
<td>0.646</td>
<td>0.383</td>
<td>-0.385</td>
<td>0.377</td>
<td>0.595</td>
<td></td>
</tr>
<tr>
<td>X7</td>
<td>-0.401</td>
<td>-0.317</td>
<td>0.257</td>
<td>-0.302</td>
<td>-0.468</td>
<td>-0.552</td>
</tr>
</tbody>
</table>
Tingginya nilai koefisien korelasi antar peubah bebasnya merupakan petunjuk adanya kemungkinan multikolinier. Secara statistik persamaan regresi linier berganda dalam keadaan tersebut tidak diharapkan terjadi. Selanjutnya multikolinier serius dapat dilihat dengan membandingkan koefisien determinasi \(R^2 \) dengan nilai koefisien korelasi kuadrat \(r^2 \). Apabila nilai \(r^2 \geq R^2 \), berarti dalam model terdapat kolinieritas ganda yang serius (Klein dalam Koutsoyiannis, 1977). Apabila kuadrat korelasi antar peubah bebas lebih besar dari koefisien determinasi, maka salah satu dari peubah bebas tersebut harus dieliminir. Pendekatan ini dilakukan agar daya ramal yang dihasilkan relatif lebih baik meskipun besar kemungkinan adanya bias spesifikasi. Dalam arti apabila ditinjau dari disiplin ilmu ekonomi adalah hal yang tidak logis apabila satu atau beberapa peubahnya harus dikeluarkan dalam persamaan regresi dugaannya. Sementara dalam teorinya peubah-peubah tersebut seharusnya secara simultan mempengaruhi suatu variabel.

Untuk melihat seberapa jauh peubah-peubah bebasnya mempengaruhi keragaman peubah tidak bebasnya secara simultan dilakukan Analisis regresi berganda. Setiap peubah bebas dikatakan mempunyai pengaruh yang berarti, bila pengujian koefisien regresinya signifikan pada taraf uji yang telah ditentukan.

Pada analisis regresi berganda diperoleh persamaan sebagai berikut:

\[
Y = \frac{172034}{(54685)} - \frac{252534}{(133395)} X_1 + \frac{91,639}{(6,578)} X_2 + \frac{18,830}{(28,330)} X_3 - \frac{5426}{(807,4)} X_4 + \frac{158081}{(129320)} X_5 \\
- \frac{0,007}{(0,025)} X_6 - \frac{0,052}{(0,032)} X_7 \]

\[\vdots \]
Hasil uji-F dan uji setiap koefisien regresi dugaan pada setiap peubah bebasnya (uji-t) dapat dilihat pada Tabel 5.2

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Koefisien Estimasi</th>
<th>Nilai t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstanta</td>
<td>172034</td>
<td>3,15 *</td>
</tr>
<tr>
<td>X1</td>
<td>-252534</td>
<td>-1,89</td>
</tr>
<tr>
<td>X2</td>
<td>91,639</td>
<td>13,93 *</td>
</tr>
<tr>
<td>X3</td>
<td>18,830</td>
<td>0,66</td>
</tr>
<tr>
<td>X4</td>
<td>-5425,6</td>
<td>-6,72 *</td>
</tr>
<tr>
<td>X5</td>
<td>158081</td>
<td>1,22</td>
</tr>
<tr>
<td>X6</td>
<td>-0,0074</td>
<td>-0,29</td>
</tr>
<tr>
<td>X7</td>
<td>-0,0522</td>
<td>-1,65</td>
</tr>
<tr>
<td>R²</td>
<td>0,997</td>
<td></td>
</tr>
<tr>
<td>R²(adj)</td>
<td>0,990</td>
<td></td>
</tr>
<tr>
<td>D-W</td>
<td>2,41</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:

*) nyata pada taraf uji 5 %
\[t_{tabel} = 2,179 \]

Pada tabel di atas diketahui bahwa nilai statistik d Durbin Watson adalah 2,41, berarti tidak ada autokorelasi yang masuk ke dalam fungsi regresi populasi.

Tabel 5.3. Tabel Sidik Ragam Model Impor Pasar Jepang terhadap Tuna Indonesia

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Derajat bebas</th>
<th>Jumlah kuadrat</th>
<th>Kuadrat tengah</th>
<th>F Hitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regresi</td>
<td>7</td>
<td>1586.10^6</td>
<td>226.10^6</td>
<td>146,03 *</td>
</tr>
<tr>
<td>Sisa</td>
<td>3</td>
<td>465.10^3</td>
<td>1551.10^3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>1590.10^6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:

*) Nyata pada taraf uji 5 %
\[F_{tabel} = 8,890 \]
Dengan membandingkan nilai koefisien determinasi terhadap nilai kuadrat korelasi antar peubah bebas, menunjukkan bahwa model di atas tidak terdapat multikolinier yang serius. Dengan demikian model di atas dianggap mempunyai daya ramal yang relatif baik terhadap keragaman Y (perubahan volume impor tuna Indonesia di pasar Jepang). Hal ini juga ditunjukkan dengan nilai koefisien determinasi (R^2) dan nilai F hitung yang nyata pada taraf uji 5%.

Nilai koefisien determinasi (R^2) pada model adalah 99,7%, berarti 99,7% dari keragaman volume impor pasar Jepang terhadap tuna Indonesia dapat diterangkan oleh peubah-peubah bebas dalam model. Nilai F hitung lebih besar dari F tabel dan nyata pada taraf uji 5%, berarti secara bersama-sama (simultan) peubah-peubah bebas dalam model nyata pengaruhnya terhadap volume impor tuna Indonesia di pasar Jepang.

Untuk menguji keabsahan koefisien regresi pada tiap peubah digunakan uji t pada masing-masing koefisien regresi penduga. Uji t menunjukkan koefisien estimasi pendapatan nasional Jepang (X2) dan Tingkat Konsumsi Ikan di Jepang (X4) nyata, sedangkan koefisien estimasi Harga tuna Indonesia di pasar Jepang (X1) dan Produksi Domestik Jepang (X7) tidak nyata pada taraf uji yang ditentukan, tetapi peubah ini nyata pada taraf uji 20%.

Hubungan antar peubah-peubah bebas dalam model terhadap volume impor tuna Indonesia di pasar Jepang dapat digambarkan melalui tanda-tanda pada koefisiennya.

Harga tuna Indonesia di pasar Jepang mempunyai tanda koefisien estimasi negatif dan nyata pada taraf uji 20% terhadap volume impor tuna Indonesia di pasar Jepang. Tanda negatif ini menunjukkan bahwa secara simultan, meningkatnya harga tuna menyebabkan penurunan volume impor tersebut. Hubungan ini sesuai dengan dugaan a priori dan teori ekonomi, karena pada hakekatnya hukum permintaan me-
nyatakan 'makin rendah harga dari suatu barang, makin banyak permintaan barang tersebut; sebaliknya makin tinggi harga sesuatu barang makin sedikit permintaan barang tersebut'. Tanda negatif ini dapat disebabkan pertama, pembeli atau importir Jepang membeli tuna dari negara lain sebagai pengganti tuna Indonesia yang mengalami kenaikan harga. Sebaliknya apabila harga tuna Indonesia turun maka importir Jepang mengurangi pembelian tuna dari negara lain yang harganya lebih tinggi dan menambah pembelian tuna Indonesia yang mengalami penurunan harga. Dan yang kedua, penurunan harga menyebabkan pendapatan riel pembeli atau importir Jepang bertambah, sehingga akan menambah pembeliannya. Hubungan di atas menyebabkan tanda koeefisien estimasi negatif pada harga tuna Indonesia di pasar Jepang.

Hubungan impor dengan pendapatan nasional adalah menunjukkan bagaan pendapatan nasional yang dikeluarkan untuk impor. Pendapatan nasional Jepang mempunyai tanda koeefisien positif dan nyata pada taraf uji 5% terhadap volume impor tuna Indonesia di pasar Jepang. Hubungan ini sesuai dengan dugaan a priori dan teori ekonomi. Ada dua faktor yang menyebabkan impor tuna mengalami kenaikan jika pendapatan bertambah, yaitu:

1. Pertambahan pendapatan nasional menambah kemampuan untuk membeli lebih banyak barang-barang (tuna), karena pendapatan konsumen yang dapat dibelanjakan juga meningkat,

2. Pembeli dapat menukar konsumsi mereka ke barang yang lebih baik.

Japan Trade Development Division dan Williams dalam Kingston et.al. (1991) mengemukakan bahwa pertumbuhan 'personal disposable income' di Jepang menyebabkan konsumen Jepang secara umum menggeser preferensi mereka ke ikan yang berkualitas lebih tinggi atau jenis-jenis ikan yang lebih mahal seperti salmon, udang dan tuna. Berdasarkan sifat perubahan permintaan yang berlaku terhadap perubahan
pendapatan, maka tuna di pasar Jepang merupakan barang normal.

dikaitkan dengan peningkatan permintaan sashimi dan sushi tuna, sedangkan dilain pihak ada pula faktor yang menghambat laju peningkatan konsumsi ikan (secara keseluruhan), yaitu perubahan kebiasaan yang condong 'kebarat-baratan' dimana daging merupakan sajian utama (KBRI-Tokyo, 1989).

\[
\begin{align*}
\text{Fish} & \quad \text{EABARE} \\
\text{Tuna} & \quad \text{Crustaceans}
\end{align*}
\]

Disebutkan pada alinea di atas bahwa harga jenis ikan lain (tidak termasuk tuna) mempunyai tanda koefisien positip terhadap volume impor tuna Indonesia di pasar Jepang, sehingga keadaan tersebut menunjukkan jenis ikan lain ('other fish') dengan ikan tuna merupakan barang substitusi atau pengganti. Hal ini dapat dijelaskan sebagai berikut; peningkatan harga jenis ikan lain (cateris paribus) menyebabkan konsumen di Jepang menggeser/merubah pembeliannya ke produk ikan lain yaitu tuna sebagai produk pengganti dari ikan jenis lain. Begitu pula sebaliknya jika harga tuna menurun akan menyebabkan konsumen di Jepang akan menggeser konsumsinya ke jenis ikan lain yang hargaanya menurun (secara relatif lebih murah), sehingga permintaan tuna akan menurun. Hubungan yang demikian menyebabkan tanda positip pada koefisien estimasi harga ikan jenis lain.

Produksi domestik tuna di Jepang mempunyai tanda koefisien estimasi negatif terhadap volume impor tuna Indonesia di pasar Jepang. Tanda ini menunjukkan bahwa penurunan produksi domestik tuna di Jepang menyebabkan peningkatan volume impor pasar Jepang terhadap tuna Indonesia, atau sebaliknya. Hubungan ini sesuai dengan dugaan a priori yang diharapkan, karena dengan menurunnya produksi

5.1.3. Analisis Komponen Utama

Adanya peubah bebas dalam model regresi linier berganda yang tidak saling bebas, dengan kata lain mempunyai korelasi yang relatif tinggi antar peubah bebasnya (Tabel 5.1), menyebabkan kesimpulan yang didapatkan berbentuk masalah yang tidak sederhana karena dalam mengambil kesimpulan satu peubah sebenarnya merupakan kumpulan dari peubah lain. Pendekatan selanjutnya dilakukan dengan menggunakan analisis komponen utama pada peubah-peubah penjelasnya. Komponen merupakan suatu peubah/faktor/ variabel yang merupakan kombinasi antar peubah-peubah penyusunnya atau penjelasnya, maka dengan Analisis komponen utama akan diperoleh informasi dari kombinasi atau keeratan setiap peubah bebas pada model impor tuna Indonesia di pasar Jepang, sehingga membentuk satu definisi yang dapat diucapkan dengan tingkat penafsiran yang tinggi.

Pada hasil analisis komponen utama diperoleh akar ciri yang ada pada Lampiran 7 yaitu keseluruhan nilai akar ciri dan besarnya sumbangan dari setiap komponen utamanya. Akar ciri ini untuk melihat berapa buah komponen yang kita perlu.

Selanjutnya nilai akar ciri yang dipertimbangkan untuk menggambarkan total
keragaman datanya adalah nilai akar ciri yang mempunyai persentase keragamannya sekitar 75 - 80%. Akar ciri yang terpilih untuk analisa selanjutnya disajikan pada Tabel 5.4.

Tabel 5.4. Nilai Akar Ciri, Persentase Total dan Kumulatif Keragaman Data yang Diterangkan.

<table>
<thead>
<tr>
<th>No.</th>
<th>Nilai akar ciri</th>
<th>% Keragaman Total yang diterangkan</th>
<th>% Keragaman kumulatif yang diterangkan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>5,1559</td>
<td>73,7</td>
<td>73,7</td>
</tr>
<tr>
<td>2.</td>
<td>0,9606</td>
<td>13,7</td>
<td>87,4</td>
</tr>
</tbody>
</table>

Dua akar ciri terpilih menunjukkan keragaman kumulatif sebesar 87,4%, berarti 87,4% dari total keragaman data dapat diterangkan oleh dua komponen terpilih, sedangkan komponen sisanya hanya memberikan tambahan sumbangan sebesar 12,6%. Komponen pertama dapat menerangkan keragaman data sebesar 73,7% dan komponen kedua dapat menerangkan keragaman data sebesar 13,7%.

Dari setiap akar ciri diperoleh vektor ciri (vektor pembobot komponen utama). Tanda dan besarnya elemen-elemen pada vektor pembobot pada setiap akar ciri menunjukkan hubungan dan besarnya kontribusi dari setiap peubah asal (peubah bebas) dalam membentuk komponennya. Vektor pembobot komponen utama seluruhan dapat dilihat pada Lampiran 8, sedangkan vektor pembobot komponen utama terpilih disajikan pada Tabel 5.5.
Tabel 5.5. Vektor Pembobot Komponen Utama Terpilih pada Setiap Peubah dengan Komponen Utamanya.

<table>
<thead>
<tr>
<th>Peubah</th>
<th>Vektor Pembobot</th>
<th>W1</th>
<th>W2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harga tuna Indonesia (X1)</td>
<td></td>
<td>0,417</td>
<td>-0,010</td>
</tr>
<tr>
<td>Pendapatan Nasional (X2)</td>
<td></td>
<td>0,412</td>
<td>-0,287</td>
</tr>
<tr>
<td>Nilai tukar Yen/US$ (X3)</td>
<td></td>
<td>-0,418</td>
<td>0,242</td>
</tr>
<tr>
<td>Tingkat konsumsi ikan (X4)</td>
<td></td>
<td>0,410</td>
<td>-0,247</td>
</tr>
<tr>
<td>Harga jenis ikan lain (X5)</td>
<td></td>
<td>0,404</td>
<td>-0,023</td>
</tr>
<tr>
<td>Volume ekspor tuna (X6)</td>
<td></td>
<td>0,204</td>
<td>0,630</td>
</tr>
<tr>
<td>Produksi domestik (X7)</td>
<td></td>
<td>-0,240</td>
<td>-0,719</td>
</tr>
</tbody>
</table>

Interpretasi setiap komponen utama dengan melihat elemen-elemen vektor pembobot dari setiap komponen utama tersebut masih sulit dilakukan, maka selanjutnya menghitung korelasi setiap peubah asal terhadap komponen-komponennya untuk memudahkan daya interpretasi yang lebih baik. Koefisien korelasi ini menunjukkan keeratan hubungan antara anatar peubah asal ke-i dengan komponen utama ke-i, dengan rumus $\alpha_i \sqrt{\beta_i}$; α_i adalah vektor pembobot ke-i dan β_i adalah akar ciri ke-i. Biasanya interpretasi komponen dilihat dari vektor komponen ini.

Tabel 5.6. Koefisien Korelasi Setiap Peubah Bebas terhadap Komponen Utamanya.

<table>
<thead>
<tr>
<th>Peubah</th>
<th>Komponen Ke</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harga tuna Indonesia (X1)</td>
<td></td>
<td>0,947</td>
<td>0,010</td>
</tr>
<tr>
<td>Pendapatan nasional (X2)</td>
<td></td>
<td>0,936</td>
<td>0,281</td>
</tr>
<tr>
<td>Nilai tukar Yen/US$ (X3)</td>
<td></td>
<td>0,949</td>
<td>0,237</td>
</tr>
<tr>
<td>Tingkat konsumsi ikan (X4)</td>
<td></td>
<td>0,931</td>
<td>0,242</td>
</tr>
<tr>
<td>Harga jenis ikan lain (X5)</td>
<td></td>
<td>0,917</td>
<td>0,023</td>
</tr>
<tr>
<td>Volume ekspor Jepang (X6)</td>
<td></td>
<td>0,690</td>
<td>0,813</td>
</tr>
<tr>
<td>Produksi domestik (X7)</td>
<td></td>
<td>0,545</td>
<td>0,705</td>
</tr>
</tbody>
</table>
Dengan menghitung koefisien korelasi setiap peubah asal terhadap komponennya (Tabel 5.6) untuk dua komponen utama terpilih yang disajikan pada Tabel 5.4 terlihat beberapa kombinasi peubah asal yang memiliki keeratan hubungan yang relatif tinggi dalam membentuk setiap komponen utamanya. Pada komponen pertama kombinasi peubah-peubah tersebut adalah harga tuna Indonesia di pasar Jepang (X1), pendapatan nasional Jepang (X2), nilai tukar Yen ke US$ (X3), dan tingkat konsumsi ikan di Jepang (X4), dan harga jenis ikan lain (X5). Seelanjutnya tersebut diidentifikasikan sebagai faktor indikator ekonomi Jepang dalam arti menggambarkan tingkat ekonomi Jepang. Faktor indikator ekonomi Jepang dapat memberikan sumbangan sebesar 73,7% dari total keragamannya.

Pada komponen kedua peubah-peubahnya adalah volume ekspor oleh Jepang (X6) dan volume penangkapan tuna domestik di Jepang (X7). Komponen ini berkaitan dengan kuantitas yang dapat diidentifikasi sebagai potensi supply pasar tuna di Jepang. Besarnya sumbangan dari faktor kedua sebesar 13,7% dari total keragaman data.

Hasil analisis regresi dengan menggunakan komponen utama terpilih pada volume impor pasar Jepang terhadap tuna Indonesia (Y) diperoleh model dugaan:

\[Y = 12540 + 4075 W1 - 3570 W2 \]

\[(2089) \quad (1026) \quad (2026) \]

Dipilihnya model linier pada persamaan dugaannya karena fungsi linier dapat diimplikasikan sebagai MPC atau 'Marginal Propensity of Consumen' yang konstan dan memiliki kriteria 'adding-up' yang tetap (Hassan, Z.A dan Jhonson, S.R., 1977). Alasan lain adalah karena pola plot sisaan yang dihasilkan terhadap nilai dugaan Yi menunjukkan tidak terlihat adanya suatu pola (dapat dilihat pada Lampiran 8); artinya dapat dipertimbangkan dapat memenuhi asumsi kenormalan. Hasil ini dapat juga diartikan bahwa model persamaan dugaannya yang dipertimbangkan cukup akurat, dalam arti mampu menerangkan sebagian besar total keragaman peubah Yi. Disamping pola plot juga menunjukkan ragam sisaan yang homogen (Lampiran 9).

Uji keabsahan dari masing-masing koefisien peubah atau komponen disajikan pada Tabel 5.7.

<table>
<thead>
<tr>
<th>Peubah</th>
<th>Koefisien</th>
<th>t hitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstanta</td>
<td>12540</td>
<td>5,98 *</td>
</tr>
<tr>
<td>W1</td>
<td>4075</td>
<td>3,97 *</td>
</tr>
<tr>
<td>W2</td>
<td>-3570</td>
<td>-1,73</td>
</tr>
<tr>
<td>R²</td>
<td></td>
<td>0,76</td>
</tr>
<tr>
<td>R²(adj)</td>
<td></td>
<td>0,70</td>
</tr>
</tbody>
</table>

Keterangan:

*) nyata pada taraf uji 5%

\[t \text{ tabel} = 2,228 \]
Tabel 5.8. Tabel Sidik Ragam Hasil Regresi Analisis Komponen Utama.

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>Derajat bebas</th>
<th>Jumlah kuadrat</th>
<th>Kuadrat Tengah</th>
<th>F Hitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regresi</td>
<td>2</td>
<td>121.10^7</td>
<td>61.10^7</td>
<td>12,83 *</td>
</tr>
<tr>
<td>Sisa</td>
<td>8</td>
<td>38.10^7</td>
<td>5.10^7</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>159.10^7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:

*) nyata pada taraf uji 5 %
F tabel = 4,46

Faktor potensi pasar tuna di Jepang (W2) hanya berpengaruh nyata pada taraf uji 20%. Hal ini berarti peubah penjelas tersebut (W2) kurang tampak dalam menyumbang penjelasan untuk keragaman permintaan impor tuna Indonesia di pasar...

5.2. Pendugaan Elastisitas

Elastisitas dapat didefinisikan sebagai derajat kepekaan atau 'degree of responsiveness' yaitu kepekaan perubahan nilai peubah tak bebas (Y) terhadap perubahan peubah penjelasnya (X). Pendugaan elastisitas dalam penelitian ini dipertimbangkan dengan menggunakan model linier dari analisa regresi untuk melihat elastisitas peubah-peubah bebas terhadap volume impor tuna Indonesia di pasar Jepang.

Berdasarkan model persamaan regresi dugaan yang dihasilkan (bentuk linier) persamaan elastisitas setiap peubah penjelasnya adalah:

\[E_j = \frac{X_j}{Y} \times \hat{E}_j \]

Keterangan:

\[X_j = \text{Nilai } X \text{ rata-rata ke } J \]
\[Y = \text{Nilai } Y \text{ rata-rata} \]

Dari hasil analisis regresi diperoleh nilai elastisitas setiap peubah yang disajikan pada Tabel 5.9.

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Koef. elastisitas</th>
<th>Jenis elastisitas</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>-0,427</td>
<td>elastisitas harga</td>
</tr>
<tr>
<td>X2</td>
<td>19,655</td>
<td>elastisitas pendapatan</td>
</tr>
<tr>
<td>X3</td>
<td>0,333</td>
<td>elastisitas nilai tukar</td>
</tr>
<tr>
<td>X4</td>
<td>-2,576</td>
<td>elastisitas konsumsi</td>
</tr>
<tr>
<td>X5</td>
<td>0,441</td>
<td>elastisitas silang</td>
</tr>
<tr>
<td>X6</td>
<td>-0,109</td>
<td>elastisitas ekspor</td>
</tr>
<tr>
<td>X7</td>
<td>-1,500</td>
<td>elastisitas produksi</td>
</tr>
</tbody>
</table>

Elastisitas harga dari permintaan bertujuan untuk melihat perubahan permintaan akibat perubahan harga. Nilai elastisitasnya 0,427, nilai ini menunjukkan perubahan volume impor tuna Indonesia terhadap harga adalah inelastis, yaitu meningkatnya harga sebesar 10% diikuti dengan penurunan volume impor tuna Indonesia sebesar 4% saja. Adanya kecenderungan bahwa bahan makanan utama cenderung inelastis dibandingkan komoditi lain, dengan demikian rendahnya nilai elastisitas ini, disebabkan karena keadaan masyarakat Jepang yang telah menempatkan tuna sebagai bagian yang integral di Jepang, sehingga bagaimanapun berfluktuasinya harga tuna, permintaan pasar Jepang akan tuna tidak mengubah banyak tingkah laku konsumen masyarakat Jepang untuk mengurangi volume pembeliannya. Dalam hal ini tuna sudah menjadi makanan penting yang harus ada bagi penduduk Jepang.

Elastisitas pendapatan nasional menunjukkan kepekaan masyarakat konsumen dalam menambah pembelian barang sebagai akibat perubahan relatif pendapatan. Elastisitas pendapatan nasional Jepang terhadap volume impor tuna Indonesia di pasar Jepang adalah 19,655. Nilai ini menunjukkan elastisitas yang sangat kuat, yaitu dengan meningkatnya pendapatan nasional Jepang sebesar 1% diikuti dengan mening-
katnya volume impor sebesar 20%. Dengan demikian perubahan pendapatan nasional Jepang menghasilkan respon yang sangat kuat (dalam bentuk peningkatan permintaan) terhadap volume permintaan impor tuna Indonesia di pasar Jepang, dibandingkan dengan peubah-peubah bebas lain dalam model. Hubungan elastisitas pendapatan nasional dengan hukum Engel menunjukkan bahwa komoditi tuna ini termasuk dalam kategori barang normal, karena peningkatan pendapatan konsumen akan menyebabkan penambahan tingkat konsumsi tuna.

(semua jenis ikan) sebesar 1% diikuti dengan peningkatan volume impor tuna sebesar 2,6%. Hubungan negatif ini menunjukkan adanya komoditi substitusi antara tuna dengan jenis ikan lain. Hal ini telah dijelaskan pada analisa sebelumnya.

Elastisitas harga semua jenis ikan (kecuali tuna) terhadap volume impor tuna Indonesia di pasar Jepang adalah inelastis yaitu 0,441 dan bertanda positip. Elastisitas ini menegaskan adanya substitusi antara tuna dengan ikan jenis lain dengan besaran kenaikan 10%, akan menyebabkan perubahan/pergeseran konsumsi masyarakat Jepang untuk mengkonsumsi ikan jenis lain ke konsumsi tuna, yang akhirnya akan meningkatkan volume impor tuna Indonesia di pasar Jepang sebesar 4%.

Elastisitas produksi domestik tuna di Jepang menunjukkan kepekaan pasar Jepang dalam menambah atau mengurangi permintaan impornya terhadap perubahan produksi domestiknya. Nilai elastisitasnya adalah 1,5 dan bertanda negatif. Nilai elastisitas produksi domestik Jepang terhadap volume impor tuna Indonesia adalah elastis, karena dengan meningkatnya produksi domestik sebesar 1% diikuti dengan menurunya volume impornya terhadap tuna Indonesia sebesar 1,5%. Keadaan ini menunjukkan adanya upaya pemerintah Jepang untuk tetap melindungi produksi tuna domestiknya dan adanya kemungkinan bahwa tuna impor dari Indonesia merupakan substitusi tuna domestik Jepang.
5.3. Proyeksi dari Volume Impor Pasar Jepang

Selanjutnya nilai penduga pendapatan nasional Jepang, diperoleh dengan mendapatkan persamaan regresinya sebagai fungsi dari waktu (t) dengan tahun dasar 1979. Persamaan regresi dugaannya adalah:

\[
NI = 2096 + 88.3 \, t \\
(41.14) \quad (6.34)
\]

Persamaan regresi volume impor sebagai fungsi dari pendapatan nasional Jepang adalah:

\[
Y = -77422 + 34.7 \, NI \\
(10817) \quad (4.16)
\]

Hasil analisis regresinya dapat dilihat pada Tabel 5.11 dan Tabel 5.12.

Tabel 5.11. Estimasi Pendapatan Nasional Jepang terhadap Variabel Waktu.

<table>
<thead>
<tr>
<th>Peubah</th>
<th>Koefisien</th>
<th>t hitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstanta</td>
<td>2095,75</td>
<td>50,94 *</td>
</tr>
<tr>
<td>t</td>
<td>88,33</td>
<td>13,94 *</td>
</tr>
<tr>
<td>R^2</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>F Hitung</td>
<td>194,36</td>
<td>*</td>
</tr>
</tbody>
</table>
Tabel 5.12. Estimasi Volume Impor Tuna Indonesia di Pasar Jepang terhadap Pendapatan Nasional

<table>
<thead>
<tr>
<th>Peubah</th>
<th>Koefisien</th>
<th>t hitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstanta</td>
<td>-77422</td>
<td>-7,16 *</td>
</tr>
<tr>
<td>t</td>
<td>34,65</td>
<td>8,33 *</td>
</tr>
<tr>
<td>R²</td>
<td>0,87</td>
<td></td>
</tr>
<tr>
<td>F Hitung</td>
<td>69,39 *</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:

*) nyata pada taraf uji 5%
\[t_{tabel} = 2,179 \]
\[F_{tabel} = 4,960 \]

Pada taraf selang kepercayaan 95%, maka volume penduga impor pasar Jepang terhadap tuna Indonesia disajikan pada Tabel 5.13.

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Pendapatan Nasional</th>
<th>Volume (Ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>3167,4</td>
<td>40.963,00</td>
</tr>
<tr>
<td>1992</td>
<td>3243,9</td>
<td>35.141,33</td>
</tr>
<tr>
<td>1994</td>
<td>3420,5</td>
<td>41.269,35</td>
</tr>
<tr>
<td>1996</td>
<td>3599,1</td>
<td>47.466,77</td>
</tr>
<tr>
<td>1998</td>
<td>3773,7</td>
<td>53.525,39</td>
</tr>
<tr>
<td>2000</td>
<td>3950,3</td>
<td>59.653,41</td>
</tr>
</tbody>
</table>

Volume penduga pada tahun 2000 adalah 59.653,41 ton, berarti dalam kurun waktu 10 tahun yang akan datang terdapat peningkatan sebesar 45,36% volume.
Impor tuna Indonesia di pasar Jepang dengan asumsi perubahan-perubahan lain dianggap tetap.

Keterangan:
- : Volume dengan data actual
- : Volume dugaan (Proyeksi)

5.4. Implikasi Kebijaksanaan

Implikasi kebijaksanaan digunakan analisa dengan melihat ukuran parameter dan elastisitas permintaan tuna Indonesia di pasar Jepang.

Interpretasi dari persamaan regresi yang diperoleh adalah jika X_1, X_2, X_3, X_4, X_5, X_6, dan X_7 semua nol, maka volume impor pasar Jepang terhadap tuna Indonesia adalah 172.034 Kg. Persamaan ini menunjukkan adanya pengaruh negatif
yang diinginkan konsumen seperti tingkat kesegaran, warna daging, pengemasan dan lain-lain; maka hal ini akan lebih membuka peluang Indonesia dalam merebut bagian 'share' negara eksportir lain di pasar Jepang.

Dengan melihat hasil analisa sebelumnya dan elastisitas setiap peubah bebas dalam model, diketahui bahwa impor tuna Indonesia di pasar Jepang berhubungan erat oleh pendapatan nasional Jepang. Hal ini merupakan petunjuk adanya jaminan bahwa pasar Jepang masih akan prospektif bagi Indonesia. Keadaan ini didukung dengan adanya harapan yang kuat bahwa pendapatan nasional Jepang akan naik, dan ini berarti permintaan tuna Indonesia akan naik. Selanjutnya tugas pemerintah dan eksporit tuna adalah memelihih preferensi konsumen Jepang terhadap tuna Indonesia, antara lain berupa:

- Produk-produk unggul
- Mengadakan atau mengikuti promosi/pameran Internasional
- Hubungan informal untuk mempromosikan tuna Indonesia.

Selain itu perlunya upaya-upaya dalam mengidentifikasi kebutuhan pasar Jepang yang menyangkut masalah kemampuan membaca bentuk dan jenis ikan yang disukai konsumen, hingga trend pasar.

Hal ini juga menyangkut pola konsumsi masyarakat Jepang. Dimana pada dewasa ini ada kecenderungan makan diluar rumah dan lebih cenderung memilih...
makanan yang rendah kalori dan termasuk kategori mahal (*high class*) seperti sashimi dan sushi. Untuk itu diperlukan ikan tuna dengan tingkat kesegaran tinggi, karena sashimi dan sushi ini disajikan dalam bentuk mentah. Hal ini menekankan kembali perlunya eksportir untuk memperhatikan kualitas tuna eksporinya.

Kebijaksanaan lain adalah perlunya segera merintis sasaran pasar-pasar Internasional lain dalam memperluas pasar tuna, mengingat Indonesia sebagai negara produsen tuna yang hanya sebagai 'price taker' dan baru mempunyai pangsa pasar yang kecil di pasar Internasional.