

III. METODOLOGI PENELITIAN

Waktu dan Lokasi Penelitian

Alat dan Bahan

Alat yang digunakan dalam penelitian ini peluncur kayu bulat yang terbuat dari adalah pipa paralon dengan diameter 20 cm sepanjang 16 meter, sekrup, seng dan dalam pembuatannya menggunakan alat bantu gergaji tangan, bor, penggaris dan alat tulis. Adapun perangkaian paralon untuk menjadi sebuah peluncur log adalah sebagai berikut :

- Pipa paralon berdiameter 20 cm yang terdiri dari 4 seksi dengan panjang masing-masing seksi 4 meter dibelah pada bagian atasnya dengan menggunakan gergaji tangan sehingga paralon menjadi bentuk U.
- Dua seksi paralon pada bagian ujung dan pangkalnya dibuat lubang dengan menggunakan alat bor, sedangkan untuk dua seksi lainnya hanya pada bagian pangkal atau ujungnya saja. Tujuan dibuat lubang pada paralon adalah untuk penyambungan antar seksi menjadi rangkaian peluncur kayu bulat.
- Keempat seksi paralon kemudian dirangkaikan dengan menggunakan sekrup sehingga menjadi peluncur kayu bulat dengan panjang 16 meter.

Sedangkan alat yang digunakan dalam pengukuran dan pengambilan data adalah pita ukur, clinometer, stopwatch, tally sheet dan alat hitung (kalkulator dan komputer untuk pengolahan data).

Bahan yang digunakan dalam penelitian ini adalah sortimen kayu bulat Pinus merkusii hasil penjarangan berdiameter < 20 cm.
Pengambilan Data

Data yang diperlukan adalah data primer yang merupakan hasil pengukuran langsung di laboratorium dan lapangan. Adapun data yang diperlukan yaitu:

1. Volume dan massa kayu bulat Pinus merkusii hasil penjarangan yang akan diluncurkan
2. Kelerengan lapangan
3. Kecepatan luncur kayu bulat

Metode Penelitian

1. Laboratorium

Percobaan di laboratorium dilakukan untuk melihat pengaruh kelerengan dan massa kayu bulat terhadap kecepatan luncur kayu bulat. Peluncuran dilakukan pada kelerengan 30%, 35%, dan 40% untuk empat massa kayu Pinus merkusii yang berbeda yaitu 12,58 kg; 14,14 kg; 14,66 kg, dan 19,19 kg. Ulangan untuk setiap kelerengan dan massa sebanyak 3 kali.

Pengukuran waktu luncur kayu bulat dilakukan dengan menggunakan stopwatch, pada kelerengan yang berbeda dan massa kayu yang berbeda. Pada percobaan di laboratorium untuk mendapatkan kelerengan yang berbeda maka alat peluncur disangga dengan kayu yang dipasang pada setiap sambungan paralon. Rancangan peluncur dapat dilihat pada gambar di bawah ini.

![Gambar 1. Rancangan alat peluncur kayu bulat](image-url)
D.2. Lapangan

Percobaan di lapangan dilakukan selain untuk melihat pengaruh kelerengan dan massa kayu bulat, juga dilakukan untuk melihat penggunaan alat langsung di lapangan pada kegiatan penjarangan dan melihat organisasi kerja penjaradan dengan menggunakan peluncur kayu bulat ini.

Percobaan dilakukan pada kelerengan 20%, 30%, 40%, 45%, dan 72%. Secara purposive kayu yang akan disarad dibagi menjadi dua bagian yang relatif sama. Kayu yang disarad dengan menggunakan peluncur sebanyak 1,807 m³ (721,02 kg) dan 1,587 m³ (635,51 kg) disarad secara manual.

Pengukuran volume batang dilakukan dengan menggunakan rumus Huber dimodifikasi yaitu:

\[
V = 0.25 \pi \frac{(D_p + D_u)}{2} \times L
\]

Keterangan:
- \(V\) = Volume tiap seksi (m³)
- \(L\) = Panjang tiap seksi (m)
- \(D_p\) = Diameter pangkal rata-rata (m)
- \(D_u\) = Diameter ujung rata-rata (m)

Untuk mendapatkan massa kayu, maka volume kayu yang telah diukur dikonversikan ke dalam satuan massa dengan menggunakan berat jenis kayu Pinus merkusii yaitu 0,4-0,55 (Mandang, 1992).

Rumus untuk mendapatkan kecepatan luncur adalah:

\[
V = \frac{s}{t}
\]

Dimana:
- \(V\) = Kecepatan luncur kayu bulat (m/detik)
- \(s\) = Jarak sarad (m)
- \(t\) = Waktu luncur kayu bulat (m/detik)
Asumsi

Asumsi yang digunakan dalam pengukuran ini adalah:
1. Titik berat kayu bulat tepat berada pada sumbu kayu bulat
2. Energi yang berubah dalam bentuk energi lain (panas, perubahan bentuk, gerak mengayun) diabaikan
3. Koefisien gesek masing-masing percobaan adalah sama

Analisis Data

Data yang telah diperoleh di laboratorium dan lapangan, diolah menggunakan Model Regresi Berganda untuk menaksir pengaruh kelerengan dan massa kayu bulat terhadap kecepatan luncur. Model Regresi Berganda yang terbentuk adalah:

\[Y = b_0 + b_1 X_1 + b_2 X_2 + e_i \]

dimana:
- \(Y \) = kecepatan luncur kayu bulat (m/detik)
- \(X_1 \) = kelerengan (
- \(X_2 \) = massa kayu (kg)
- \(b_0 \) = konstanta
- \(b_i \) = parameter peubah bebas
- \(e_i \) = peubah pengganggu
- \(i = 1, 2 \)

Analisis ragam untuk \(Y \) yang diregresikan terhadap \(X_i \) adalah:

<table>
<thead>
<tr>
<th>Sumber</th>
<th>(db)</th>
<th>(JK)</th>
<th>(KT)</th>
<th>(F_{hit})</th>
<th>(F_{tabel})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regresi</td>
<td>(k - 1)</td>
<td>JKR</td>
<td>JKR/(k - 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sisa</td>
<td>(n - k)</td>
<td>JKS</td>
<td>JKS/(n - k)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>(n - 1)</td>
<td>JKT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dimana:
- \(n \) = jumlah pengamatan
- \(k \) = jumlah peubah bebas

Untuk melihat kebaikan suatu model digunakan \(R \) yang dapat memperlihatkan kemampuan peubah bebas secara bersama-sama dalam menjelaskan peubah tidak bebas.

\[R^2 = \frac{\text{Jumlah Kuadrat Regresi}}{\text{Jumlah kuadrat Total}} \]
Untuk pengujian faktor-faktor yang mempengaruhi kecepatan luncur kayu bulat maka digunakan hipotesa :

\[H_0 : b_1 = b_2 = 0 \]

\[H_1 : \text{Paling sedikit ada satu nilai } b_i \text{ yang tidak sama dengan nol} \]

Kemudian dilakukan uji F untuk mengetahui tingkat kepercayaan dari kemampuan peubah bebas dalam menjelaskan peubah tak bebas.

\[
F_{hitung} = \frac{\text{Jumlah Kuadrat Regresi}/(k-1)}{\text{Jumlah Kuadrat Sisa}/(n-k)}
\]

Bila : \[F_{hit} > F_{t,a.}(k-1;n-k) \] \rightarrow tolak \(H_0 \).

Bila : \[F_{hit} < F_{t,a.}(k-1;n-k) \] \rightarrow terima \(H_0 \).

Apabila terima \(H_0 \) maka kedua peubah bebas secara bersama-sama tidak berpengaruh terhadap peubah tidak bebas. Sebaliknya apabila tolak \(H_0 \) maka kedua peubah bebas ini berpengaruh terhadap variabel tidak bebas.

Selain mengetahui pengaruh kedua peubah bebas terhadap peubah tak bebas, juga dilakukan uji-t untuk mengetahui pengaruh masing-masing parameter regresi. Hipotesa yang digunakan adalah:

\[H_0 : b_i = b_2 = 0 \]

\[H_1 : b_i \neq 0 \]

\[t_{hit} = \frac{b_i - \mu}{\text{Si}} \]

Dimana : \(\text{Si} \) = standar error ke-\(i \)

\(b_i \) = koefisien peubah ke-\(i \)

Bila : \[t_{hit} > t_{a,\alpha}(\alpha/2;n-k) \] \rightarrow tolak \(H_0 \).

Bila : \[t_{hit} < t_{a,\alpha}(\alpha/2;n-k) \] \rightarrow terima \(H_0 \).

Apabila keputusannya tolak \(H_0 \) berarti peubah bebas yang dipilih berpengaruh nyata terhadap peubah tidak bebas. Apabila keputusannya terima \(H_0 \) maka peubah bebas tidak berpengaruh nyata terhadap peubah tidak bebas.
Prestasi Kerja

Dalam percobaan di lapangan dilakukan pengukuran waktu dengan menggunakan stop watch. Waktu yang diukur adalah:

1. Waktu Tetap, terdiri dari:
 - Waktu pemasangan alat
 - Waktu pegumpanan kayu ke dalam peluncur
 - Waktu penumpukkan kayu bulat
 - Waktu pembongkaran alat, Pembongkaran alat tidak setiap kali dilakukan karena rangkaian alat peluncur dapat digunakan pada beberapa kelerengan tanpa perlu dibongkar.

2. Waktu Variabel, yaitu waktu meluncurnya kayu bulat.

Waktu yang digunakan dalam perhitungan prestasi kerja adalah waktu total yaitu waktu variabel (waktu pengumpanan dan peluncuran) dan waktu tetap (waktu pemasangan alat dan penumpukkan kayu).

Prestasi kerja sarad dihitung dengan menggunakan rumus:

\[
P = \frac{V}{T}
\]

Keterangan:
- \(P\) = Prestasi kerja sarad (m'/det, m'/jam)
- \(V\) = Volume kayu yang disarad (m³)
- \(T\) = Waktu total menyarad (detik)
Gambar 2. Sketsa Rangkaian Peluncur Kayu

Gambar 3. Rangkaian Peluncur Kayu di Laboratorium