III. HASIL DAN PEMBAHASAN

A. Hasil penelitian

1. Sifat fisik media semi

Pengukuran beberapa sifat fisik dari ketiga media semi yang digunakan dalam penelitian ini, memberikan informasi seperti tersaji pada Lampiran 1. Dari data tersebut dapat dibuat gambar histogram seperti pada Gambar 1 dan 2.

Gambar 1. Histogram Nilai Kerapatan Isi Media Semi

Gambar 2. Histogram Nilai Porositas, KPA dan KPU Media Semi

Dari gambar di atas terlihat bahwa media tanah, serbuk sabut kelapa dan sekam padi masing-masing mempunyai nilai kerapatan isi sebesar 765.3 g/l, 83.55 g/l dan 90.35 g/l dengan nilai porositas masing-masing sebesar 71.12%, 94.03% dan 93.55%. Perbandingan nilai persentase kapasitas pegang air (KPA) dan kapasitas pegang udara (KPU) untuk media tanah mendekati 65 : 35, sedang untuk media serbuk sabut kelapa 38 : 62 dan media sekam 13 : 87.
2. Pertumbuhan semai

Untuk mengetahui pertumbuhan semai *Acacia mangium*, dilakukan pengamatan terhadap beberapa parameter. Data pengukuran dan hasil analisis keragaman untuk masing-masing parameter yang diamati dapat dilihat pada Lampiran 1 sampai 13.

<table>
<thead>
<tr>
<th>Sumber keragaman (Sk)</th>
<th>Diameter</th>
<th>Tinggi</th>
<th>BKT</th>
<th>NPA</th>
<th>Kekokohan</th>
<th>IMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>-</td>
<td>*</td>
<td>*</td>
<td>-</td>
<td>**</td>
<td>-</td>
</tr>
<tr>
<td>Pupuk</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>-</td>
<td>**</td>
</tr>
<tr>
<td>Interaksi</td>
<td>**</td>
<td></td>
<td>**</td>
<td>**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ket. - tidak memberikan pengaruh yang nyata
* memberikan pengaruh pada tingkat kepercayaan 95%
** memberikan pengaruh pada tingkat kepercayaan 99%

Dari Tabel 1 di atas dapat dikatakan bahwa faktor media semai memberikan pengaruh yang nyata terhadap pertumbuhan tinggi, BKT dan kekoharan. Untuk faktor penupukan NPK memberikan pengaruh yang sangat nyata terhadap semua parameter yang diamati, dan interaksi media dengan pupuk memberikan pengaruh yang nyata terhadap semua parameter yang diamati kecuali IMB.

2.1. Pertumbuhan diameter

Nilai diameter merupakan selisih antara pengukuran akhir dengan pengukuran awal. Hasil Uji Duncan pada Tabel 2 menunjukkan bahwa pada tingkat kepercayaan 95%, penggunaan dosis pupuk NPK 0.50 g/polytube memberikan nilai rata-rata pertumbuhan diameter yang terbesar, walaupun nilai tersebut tidak menunjukkan adanya perbedaan yang nyata jika dibandingkan dengan penggunaan dosis pupuk NPK 0.25 g/polytube. Untuk interaksi antara media dengan pupuk, perlakuan A1B3 memberikan nilai rata-rata yang terbesar di antara semua perlakuan yang diberikan.

<table>
<thead>
<tr>
<th>Faktor</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pupuk</td>
<td></td>
</tr>
<tr>
<td>3 (0.50 g/polytube)</td>
<td>1.2667 a</td>
</tr>
<tr>
<td>2 (0.25 g/polytube)</td>
<td>1.1462 a</td>
</tr>
<tr>
<td>1 (0.10 g/polytube)</td>
<td>0.9256 b</td>
</tr>
<tr>
<td>0 (tanpa pupuk)</td>
<td>0.4385 c</td>
</tr>
</tbody>
</table>
2.2. Pertambahan tinggi

Hasil Uji Duncan seperti pada Tabel 3 menunjukkan bahwa pada tingkat kepercayaan 95%, penggunaan media tanah memberikan nilai rata-rata pertambahan tinggi yang terbesar dibanding media sabut dan media sekam. Untuk penggunaan pupuk, dosis 0.25 g/ploytube memberikan rata-rata yang terbesar walaupun nilai tersebut tidak menunjukkan adanya perbedaan yang nyata bila dibandingkan dengan penggunaan dosis 0.10 g/ploytube. Dari interaksi antara media dan pupuk, media A_1B_1 memberikan nilai rata-rata yang terbesar di antara semua perlakuan yang diberikan.

Tabel 3. Rekapitulasi Hasil Uji Duncan Pengaruh Media, Pupuk dan Interaksinya terhadap Pertambahan Tinggi Semai A. mangium

<table>
<thead>
<tr>
<th>Faktor</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>15.520 a</td>
</tr>
<tr>
<td>1</td>
<td>14.845 ab</td>
</tr>
<tr>
<td>2</td>
<td>13.623 b</td>
</tr>
<tr>
<td>Pupuk</td>
<td>17.701 a</td>
</tr>
<tr>
<td>1</td>
<td>17.178 ab</td>
</tr>
<tr>
<td>3</td>
<td>15.796 b</td>
</tr>
<tr>
<td>0</td>
<td>7.977 c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Faktor</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1B_1</td>
<td>20.917 a</td>
</tr>
<tr>
<td>A_1B_2</td>
<td>18.782 ab</td>
</tr>
<tr>
<td>$A_1B_2^+$</td>
<td>17.672 bc</td>
</tr>
<tr>
<td>A_1B_3</td>
<td>17.624 bc</td>
</tr>
<tr>
<td>A_2B_1</td>
<td>16.958 bc</td>
</tr>
<tr>
<td>A_2B_2</td>
<td>16.952 bc</td>
</tr>
<tr>
<td>A_2B_3</td>
<td>16.647 bc</td>
</tr>
<tr>
<td>A_3B_2</td>
<td>15.477 c</td>
</tr>
<tr>
<td>A_3B_3</td>
<td>15.165 c</td>
</tr>
<tr>
<td>A_3B_3</td>
<td>11.306 d</td>
</tr>
<tr>
<td>A_3B_3</td>
<td>5.731 e</td>
</tr>
<tr>
<td>A_3B_3</td>
<td>2.724 f</td>
</tr>
</tbody>
</table>

Ket. Huruf yang sama memberikan pengaruh yang tidak berbeda nyata
2.3. Berat kering total (BKT)

Nilai BKT diperoleh dari penjumlahan berat kering bagian pucuk dan bagian akar. Hasil Uji Duncan pada Tabel 4 menunjukkan bahwa penggunaan media sabut memberikan nilai rata-rata BKT yang terbesar dari dua media lain. Untuk penggunaan pupuk, dosis 0.50 g/polytube memberikan nilai rata-rata yang terbesar. Dari interaksi media dan pupuk, perlakuan A₁B₃ memberikan nilai rata-rata yang terbesar di antara semua parameter yang diberikan.

Tabel 4. Rakitulasi Hasil Uji Duncan Pengaruh Media, Pupuk dan Interaksinya terhadap BKT Semai A. mangium

<table>
<thead>
<tr>
<th>Faktor</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.5213 a</td>
</tr>
<tr>
<td>0</td>
<td>0.4282 ab</td>
</tr>
<tr>
<td>2</td>
<td>0.3604 b</td>
</tr>
<tr>
<td>Papuk</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.6994 a</td>
</tr>
<tr>
<td>2</td>
<td>0.5233 b</td>
</tr>
<tr>
<td>1</td>
<td>0.3711 c</td>
</tr>
<tr>
<td>0</td>
<td>0.1528 d</td>
</tr>
<tr>
<td>Interaksi</td>
<td></td>
</tr>
<tr>
<td>A₁B₃</td>
<td>0.935 a</td>
</tr>
<tr>
<td>A₁B₂</td>
<td>0.647 b</td>
</tr>
<tr>
<td>A₀B₃</td>
<td>0.638 b</td>
</tr>
<tr>
<td>A₂B₃</td>
<td>0.525 bc</td>
</tr>
<tr>
<td>A₀B₂</td>
<td>0.516 bc</td>
</tr>
<tr>
<td>A₁B₁</td>
<td>0.429 bc</td>
</tr>
<tr>
<td>A₂B₂</td>
<td>0.406 cd</td>
</tr>
<tr>
<td>A₀B₁</td>
<td>0.372 cd</td>
</tr>
<tr>
<td>A₀B₁</td>
<td>0.313 cd</td>
</tr>
<tr>
<td>A₀B₀</td>
<td>0.198 de</td>
</tr>
<tr>
<td>A₁B₀</td>
<td>0.186 de</td>
</tr>
<tr>
<td>A₁B₉</td>
<td>0.075 e</td>
</tr>
</tbody>
</table>

Ket. Huruf yang sama menunjukkan pengaruh yang tidak berbeda nyata

2.4. Nisbah pucuk akar (NPA)

Nisbah pucuk akar diperoleh dari pembagian berat kering pucuk dengan berat kering akar pada akhir pengamatan. Hasil Uji Duncan pada Tabel 5 terlihat bahwa semua-senai yang tidak diberi pupuk memberikan nilai rata-rata NPA yang terkecil di antara semua media yang digunakan. Dari interaksi media dengan pupuk, perlakuan A₁B₀ memberikan nilai rata-rata terkecil di antara semua perlakuan yang diberikan.
Tabel 5. Rekapitulasi Hasil Uji Duncan Pengaruh Media dan Interaksinya dengan Pupuk terhadap NPA Semai A. mangium

<table>
<thead>
<tr>
<th>Faktor</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4.999 a</td>
</tr>
<tr>
<td>1</td>
<td>4.680 ab</td>
</tr>
<tr>
<td>2</td>
<td>4.364 c</td>
</tr>
<tr>
<td>0</td>
<td>3.126 d</td>
</tr>
<tr>
<td>A1B3</td>
<td>6.452 a</td>
</tr>
<tr>
<td>A2B1</td>
<td>4.892 b</td>
</tr>
<tr>
<td>A3B2</td>
<td>4.759 bc</td>
</tr>
<tr>
<td>A2B3</td>
<td>4.672 bcd</td>
</tr>
<tr>
<td>A3B1</td>
<td>4.657 bcd</td>
</tr>
<tr>
<td>Interaksi</td>
<td></td>
</tr>
<tr>
<td>A1B1</td>
<td>4.491 bcde</td>
</tr>
<tr>
<td>A2B2</td>
<td>4.285 bcde</td>
</tr>
<tr>
<td>A3B3</td>
<td>4.048 bcde</td>
</tr>
<tr>
<td>A4B2</td>
<td>3.804 cde</td>
</tr>
<tr>
<td>A8B0</td>
<td>3.652 de</td>
</tr>
<tr>
<td>A6B0</td>
<td>3.502 e</td>
</tr>
<tr>
<td>A5B0</td>
<td>2.226 f</td>
</tr>
</tbody>
</table>

Ket. Haruf yang sama memberikan pengaruh yang tidak berbeda nyata

2.5. Kekokohan

Kekokohan merupakan perbandingan antara tinggi terhadap diameter semai yang diukur pada akhir pengamatan. Berdasarkan hasil Uji Duncan seperti pada Tabel 5, semua semai yang ditanam pada media sabut memberikan nilai rata-rata terkecil dari dua media lainnya. Untuk penggunaan pupuk NPK, dosis 0.50 g/polytube memberikan nilai rata-rata terkecil dibanding dengan penggunaan dosis yang lain. Dari interaksi media dan pupuk, perlakuan A1B0 memberikan nilai rata-rata terkecil dari semua perlakuan yang diberikan.

Tabel 6. Rekapitulasi Hasil Uji Duncan Pengaruh Media, Pupuk dan Interaksinya terhadap Kekokohan Semai A. mangium

<table>
<thead>
<tr>
<th>Faktor</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>119.908 a</td>
</tr>
<tr>
<td>2</td>
<td>112.132 b</td>
</tr>
<tr>
<td>1</td>
<td>99.673 c</td>
</tr>
<tr>
<td>Pupuk</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>127.960 a</td>
</tr>
<tr>
<td>2</td>
<td>113.791 b</td>
</tr>
<tr>
<td>0</td>
<td>103.644 c</td>
</tr>
<tr>
<td>3</td>
<td>96.889 d</td>
</tr>
</tbody>
</table>
1. Dalam menentukan ada atau tidaknya interaksi, pengujian dapat dilakukan melalui cara menghitung nilai rata-rata per kelompok (tabel 6) dan dengan menggunakan uji Duncan.

2. Perhatikan bahwa pengujian dilakukan dengan memeriksa nilai rata-rata sensorial dan penilaian terhadap interaksi pada cabang tanaman.

2. 6. Indeks mutu bitub (IMB)

Hasil uji Duncan seperti pada Tabel 7 menunjukkan bahwa penggunaan dosis pupuk NPK 0,50 g/polytube memberikan nilai rata-rata IMB yang terbanyak dibanding dengan penggunaan dosis yang lain.

Tabel 7. Rekapitulasi Hasil Uji Duncan Penerapan Pupuk terhadap Indeks Mutu Bitub * A. mangium

<table>
<thead>
<tr>
<th>Faktor</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.04667 a</td>
</tr>
<tr>
<td>2</td>
<td>0.03418 b</td>
</tr>
<tr>
<td>1</td>
<td>0.02174 c</td>
</tr>
<tr>
<td>0</td>
<td>0.01146 d</td>
</tr>
</tbody>
</table>

Ket. Huruf yang sama memberikan pengaruh yang tidak berbeda

2. 7. Penentuan Skor

Dari hasil perhitungan untuk semua parameter yang diamati, dapat dibuat skor untuk masing-masing perlakuan seperti tercantum pada Tabel 8. Dari tabel tersebut dapat diketahui bahwa perlakuan A1B3 memberikan nilai terbesar dari semua perlakuan yang diberikan.

Tabel 8. Rekapitulasi Perhitungan Skor Setiap Kombinasi Perlakuan

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>diameter</th>
<th>tinggi</th>
<th>BKT</th>
<th>NPA</th>
<th>kekoksanan</th>
<th>IMB</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0B0</td>
<td>5</td>
<td>7</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>A0B1</td>
<td>6</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>A0B2</td>
<td>8</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>7</td>
<td>40</td>
</tr>
<tr>
<td>A0B3</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>42</td>
</tr>
<tr>
<td>A1B0</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>24</td>
<td>36</td>
</tr>
<tr>
<td>A1B1</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>36</td>
</tr>
<tr>
<td>A1B2</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>41</td>
</tr>
<tr>
<td>A1B3</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>6</td>
<td>10</td>
<td>47</td>
</tr>
<tr>
<td>A2B0</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>A2B1</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>A2B2</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>36</td>
</tr>
<tr>
<td>A2B3</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>42</td>
</tr>
</tbody>
</table>
1. Media Semai

Media merupakan unsur penting bagi tanaman karena antara lain berfungsi sebagai ruang hidup tempat berjangkanya akar, penopang batang agar dapat berdiri kokoh, dan juga sebagai tempat penyerapan air serta unsur-unsur hara penting yang diperlukan bagi kelangsungan hidupnya.

Kebutuhan tanaman akan air dapat dipenuhi melalui penyiraman, sedang unsur hara dapat ditambahkan melalui pupuk. Selain itu, tanaman memerlukan udara untuk perkembangan perakaran. Hal tersebut dipengaruhi oleh keadaan media tumbuh yang harus mempunyai sifat-sifat:

Hasil analisa sifat fisik media menunjukkan bahwa media tanah mempunyai nilai kerapatan isi tertinggi dengan porositas terendah. Untuk media sabut menunjukkan hal yang sebaliknya. Hal ini membuktikan bahwa nilai kerapatan isi berbanding terbalik terhadap porositas dan sesuai dengan pendapat Hamzah (1983) bahwa semakin rendah kerapatan isi semakin tinggi porositasnya.

Kerapatan isi menunjukkan perbandingan antara berat kering media dengan volumenya termasuk volume pori-pori. Nilai ini juga merupakan petunjuk kepadatan, artinya bahwa makin padat suatu media semakin tinggi kerapatan isi, yang berarti semakin sulit meneruskan air atau sulit ditembus air tanaman (Hardjowigeno 1995).

Berdasarkan hasil uji Duncan diketahui bahwa penggunaan media sabut memberikan nilai rata-rata berat kering total (BKT) yang terbesar, namun nilai tersebut tidak menunjukkan adanya perbedaan yang nyata jika dibandingkan dengan penggunaan media tanah lapisan atas. Untuk parameter kekokohan, penggunaan media sabut memberikan nilai rata-rata terkecil di antara ketiga media yang digunakan. Hal ini diduga disebabkan oleh kondisi media sabut yang mempunyai kerapatan isi rendah dengan porositas tinggi sehingga mudah ditembus akar tanaman untuk dapat berfungsi optimal terutama dalam penyerapan air dan hara.

Porositas menunjukkan banyaknya pori yang terkandung dalam suatu media. Pori-pori adalah bagian yang tidak terisi bahan padat melainkan oleh udara dan air. Pori-pori dibedakan menjadi pori-pori besar (macropore) dan pori-pori kecil (micropore). Pori-pori besar berisi udara atau air gravitasi (air yang mudah hilang karena gaya gravitasii) sedang pori-pori kecil berisi air kapiler atau udara (Hardjowigeno 1995).

Nilai KPA berkaitan dengan kandungan air dalam media yang berfungsi sebagai pelarut unsur hara dalam media dan pembawa unsur hara ke permukaan akar tumbuhan. Air yang dimaksud adalah air kapiler yaitu air yang diikat begitu lemah oleh media sehingga tanaman dapat memanfaatkannya. Pupuk NPK yang diberikan dalam bentuk larutan akan bergerak mendekati akar bersama-sama pergerakan air kapiler. Pergerakan air ini akan lancar bila didukung oleh adanya pori-pori kecil dalam media. Air dan tambahan unsur hara yang diberikan tidak akan berperan efektif bila jumlah pori-pori kecil dalam media sedikit atau KPA-nya rendah. Yang terjadi malah timbulnya genangan air karena media tidak dapat mengalirkan air sebagaimana mestinya. Keadaan ini akan meningkatkan kelembaban tanah yang potensial bagi pertumbuhan jamur dan dapat mengganggu pertumbuhan tanaman. Jadi, KPA juga dapat digunakan sebagai petunjuk keadaan drainase yaitu nilai KPA yang optimum menunjukkan kualitas drainase yang baik karena aliran air dalam media berlangsung lancar.

2. Pemberian pupuk majemuk NPK

Salah satu usaha untuk meningkatkan pertumbuhan tanaman yaitu dengan cara memperbaiki kuesion media melalui pemberian pupuk. Berdasarkan kondisi unsur haranya, dikenal istilah pupuk majemuk yaitu pupuk yang mengandung lebih dari satu unsur hara (Hakim et. al. 1986) misalnya pupuk NPK. Nitrogen (N), Fosfor (P), dan Kalium (K) termasuk ke dalam unsur hara makro yang sering mengalami defisiensi di dalam media karena berbagai hal seperti pencucian, penguapan, aktivitas mikroorganisme dan pemanenan. Pemberian pupuk NPK diharapkan dapat memperbaiki kuesion tanah.

Dari hasil penelitian diperoleh bahwa pemberian pupuk NPK memberikan pengaruh sangat nyata terhadap semua parameter pertumbuhan semai yang diamati yaitu diameter, tinggi, BKT, NPA, kekohian dan IMB.

Peningkatan pertumbuhan semai berupa tinggi, diameter dan perkembangan akar, diduga banyak dipengaruhi oleh adanya unsur-unsur N, P, dan K yang ditambahkan pada media melalui kegiatan pemupukan NPK. Dalam hal ini berkaitan erat dengan peran masing-masing unsur tersebut dalam mempengaruhi pertumbuhan semai. Nitrogen berperan dalam merangsang pertumbuhan vegetatif yaitu meningkatkan tinggi tanaman dan merangsang tumbuhnya anakak, sebagai penyusun klorofil daun sehingga membuat tanaman lebih hijau dan mempengaruhi proses fotosintesa (Setyawidjaja 1986); serta cenderung menaikkan pertumbuhan bagian tanaman di atas media (Buckman dan Brady 1982).

Peranan P terhadap pertumbuhan semai berkaitan erat dengan keterlibatannya dalam metabolisme pembentukan karbohidrat, protein dan lemak; pembelahan sel serta pembentukan adenosine triphosphat (ATP) dan adenosine diphosphat (ADP) yang bereksesi tinggi sehingga dapat merangsang pertumbuhan tanaman (Binkley 1986); memperkuat batang anakak agar tidak mudah roboh dengan cara mempertebal dinding sel (Hardjowigeno 1995) dan mempengaruhi perkembangan akar (Sarief 1985).
Unsur K berperan dalam membantu pembentukan karbohidrat dalam mengeraskan bagian kayu dari tanaman, mempengaruhi proses fotosintesa, penyerapan unsur-unsur lain dan perkembangan akar (Sariif 1985). Dengan demikian penambahan unsur-unsur tersebut dapat mempengaruhi pertumbuhan semai, berupa diameter, tinggi dan perakaran; sesuai dengan perannya masing-masing yang pada akhirnya akan mempengaruhi parameter-parameter lain yang diamati.

Menurut Dermayanto (1994) BKT semai menunjukkan kemampuan semai untuk mengambil unsur hara yang tersedia dalam media semai tersebut. Berat kering total secara langsung ditentukan oleh besarnya pertumbuhan. Jika semai tumbuh dengan baik maka akan diperoleh BKT yang besar, artinya semai tersebut mampu menyerap unsur hara yang terdapat di dalam media. Kemudian melalui proses metabolisme diubah dan disusun menjadi sel-sel baru (misalnya daun, batang, ranting, bunga, buah, akar dan sebagainya).

Nisbah pucuk akar (NPA) dapat digunakan sebagai indikator untuk memindahkan semai ke lapangan karena menggambarkan keadaan fisiologis dari suatu tanaman terutama dalam kaitannya dengan evapotranspirasi dan daya adaptasi semai. Nilai NPA ditentukan oleh perkembangan bagian pucuk dan akar. Perkembangan bagian pucuk dipengaruhi oleh perkembangan sistem perakaran; sistem perakaran yang pendek akan membatasi perkembangan bagian pucuk akibat berkurangnya kemampuan akar untuk menyerap air dan mineral. Sedangkan perkembangan akar dipengaruhi oleh persediaan karbohidrat dalam bagian pucuk (Kramer dan Kozlowski 1960 dalam Rismayadi 1995).

Nisbah pucuk akar yang besar mengakibatkan laju transpirasi bagian pucuk menjadi lebih besar dan tidak seimbang dibandingkan dengan laju penyerapan air dan mineral oleh akar. Pada kondisi demikian umumnya semai mempunyai kemampuan hidup di lapangan yang rendah bila dibandingkan dengan semai yang memiliki nilai NPA yang kecil. Kondisi ini terutama perlu diperhatikan ketika akan melakukan penanaman di daerah yang mempunyai intensitas sinar matahari yang tinggi dan periode penyinaran yang lama, agar tidak terjadi laju transpirasi bagian pucuk yang terlalu tinggi yang tidak mampu diimbangi oleh kemampuan bagian akar untuk menyerap air dan mineral sehingga semai tidak mengalami kematan. Pada intensitas sinar matahari dan lama penyinaran yang meningkat diperlukan nilai NPA yang kecil (Kozlowski 1971).

Sakaguchi (1971) dalam Al rasyid (1972) menyatakan bahwa nilai NPA yang baik berkisar antara dua sampai lima, dan yang paling baik adalah yang mendekati nilai minimum (Dermayanto 1994). Tetapi hasil penelitian seperti pada Lampiran 8, menunjukkan bahwa semai-semai pada media sabut dengan pemupukan NPK 0.50 g/polytube mempunyai nilai rata-rata NPA terbesar yaitu 6.45. Dengan nilai tersebut dapat dikatakan bahwa perkembangan bagian tanaman di atas media lebih besar dari pada perkembangan perakarnanya. Padahal dengan adanya tambahan hara dari pemupukan NPK akan terjadi akumulasi atau penumpukan unsur hara terutama P dan K, sehingga diharapkan perakaran dapat lebih berkembang lagi. Hal ini diduga disebabkan oleh sifat mobil dari unsur-unsur P dan K (Daniel et. al 1995) sehingga tanaman kurang dapat menyerap unsur-unsur
tersebut untuk membantu pertumbuhan perakaranunya. Selain itu, tidak dilakukannya pengomposan terhadap bahan-bahan organik yang digunakan sebagai media semai, diduga cukup berpengaruh terhadap hal tersebut. Dengan tanpa pengomposan, unsur-unsur yang terkandung di dalamnya tidak dapat terurai sehingga tidak dapat segera dimanfaatkan oleh tanaman. Dalam hal ini dapat dikatakan bahwa terjadi pengurangan unsur hara dalam media terutama untuk membantu perkembangan perakaran sehingga terjadi pertumbuhan yang kurang seimbang antara bagian pucuk dengan bagian akar.

Tiap spesies mempunyai nilai optimal untuk parameter kekokohan semai yang tergantung dari tempat persemaian. Untuk daerah yang semakin mendekati daerah tropis dengan kondisi tempat tumbuh yang baik nilai kekokohan semainya lebih besar daripada yang menjauhi daerah tropis, untuk daerah-daerah yang kondisi cuacanya buruk pada tanah-tanah yang berat nilai kekokohan semai lebih kecil (Dorsser 1983 dalam Darmayanto 1994).

Indeks mutu bibit (IMB) merupakan suatu nilai yang cukup lengkap karena selain memperhitungkan nisbah pucuk akar juga menggunakan berat kering bibit dan nisbah tinggi diameter untuk menentukan mutu bibit (Hendromono 1987). Nilai IMB yang semakin besar menandakan bibit mempunyai mutu semakin tinggi pula.

B.3. Interaksi media semai dengan pemupukan NPK

Berdasarkan hasil skoring pengaruh perlakuan terhadap semua parameter yang diamati, diketahui bahwa perlakuan A₁B₁ mempunyai nilai terbesar di antara semua perlakuan yang diberikan. Dan dari uji Duncan diketahui bahwa perlakuan A₁B₁ memberikan nilai rata-rata terbesar untuk pertambahan diameter, tinggi dan BKT. Untuk parameter NPA dan kekokohan, perlakuan A₁B₁ memberikan nilai terkecil. Hal ini berkaitan erat dengan aktivitas sistem perakaran tanaman pada media semai dalam menyerap air dan unsur hara, walaupun sebenarnya proses penyerapan ini dapat pula ditularkan melalui daun.

Sebelum tanaman dapat mengabsorpsi unsur hara, maka unsur tersebut harus terdapat pada permukaan akar. Pergerakan unsur hara ke permukaan akar terjadi melalui tiga cara yaitu (1) intersepsi (penyerapannya) hara, (2) aliran massa (mass flow) dan (3) diffusi. Mekanisme intersepsi
merupakan pertukaran langsung antara hara dengan akar, sehingga semakin banyak akar yang bersentuhan dengan hara semakin banyak hara yang diserap akar. Mekanisme aliran massa, dalam hal ini air akan bergerak ke akar tanaman akibat transpirasi. Mekanisme difusi terjadi sebagai akibat selisih konsentrasi yang terjadi di sekitar akar. Selanjutnya hara di sekitarnya akan berdiffusi ke daerah ini (Hakim et al. 1986).

Proses penyerapan unsur hara oleh akar dipengaruhi oleh beberapa faktor yaitu faktor internal dan faktor lingkungan. Faktor internal lebih berkaitan dengan akar itu sendiri yang dikendalikan oleh genetiknya (Salisbury dan Ross 1995) sehingga dikenal sistem perakaran serabut dan sistem perakaran tunggang. Sistem perakaran dalam lebih banyak mengabsorpsi unsur hara cibandingkan dengan sistem perakaran dangkal. Selain itu kerapatan akar cenderung menyebabkan lebih banyak akar yang bersentuhan dengan larutan tanah dan permukaan koloid sehingga dengan sendirinya akan lebih banyak hara yang dapat diserap (Hakim et al. 1986).

Faktor lingkungan yang berpengaruh terhadap penyerapan hara berkaitan dengan media antara lain sebagai tempat berjangkanya akar serta penyedia air dan unsur hara. Menurut Hamzah (1983) sifat media yang berkaitan dengan penyediaan unsur hara tanaman dan air, misalnya tekstur dan struktur media. Tekstur yang berat menghasilkan struktur yang padat/pejal. Kondisi seperti ini sangat menghambat pertumbuhan akar tanaman karena selain sukar ditembus akar tanaman juga berakibat sulitnya sirkulasi udara dan air dalam media. Aerasi yang buruk dapat menyebabkan akar tanaman kekurangan udara atau keracunan oleh senyawa kimia yang terbentuk akibat meningkatnya karbondioksida dalam media.

Hasil penelitian Baver (1951) dalam Hakim et al. (1986) mengenai hubungan antara udara dengan media dengan sifat-sifat fisik media dan pertumbuhan tanaman menyimpulkan bahwa terbatasnya udara dalam media akan menghambat pertumbuhan, perkembangan dan pernapasan akar tanaman, menghambat penyerapana air dan unsur hara dalam media serta menekan aktivitas jasad-jasad hidup dalam media. Keduaan seperti ini tidak akan terjadi jika media mempunyai KPU atau pori-pori besar yang cukup, yang berarti juga media mempunyai kualitas aerasi yang baik.

Dari uraian di atas dapat dikatakan bahwa proses penyerapan hara oleh akar akan berlangsung dengan lancar bila didukung oleh kondisi media semai yang porous atau dengan kata lain media yang mempunyai tingkat porositas yang tinggi. Keseimbangan antara banyaknya pori-pori kecil dan besar menimbulkan keseimbangan kandungan air dan udara dalam media yang sama-sama berperanan penting terhadap pertumbuhan tanaman.