HASIL DAN PEMBAHASAN

Keadaan Umum

Hasil percobaan ini menunjukkan adanya pengaruh pengelompokan bahan tanaman (Tabel Lampiran 1, 2, 3, 4). Sebagaimana telah dikemukakan, pengelompokan dilakukan berdasarkan tanaman induk. Bahan stek pada kelompok 1, 2 dan 3 berasal dari tiga buah tanaman induk di Cipanas, yang merupakan pohon induk stek yang telah lama dipelihara dan dipungut hasilnya, sedangkan kelompok 4 berasal dari tanaman koleksi Jurusan Budidaya Pertanian, Paperta IPB, yang merupakan tanaman hasil perbanyakan stek dan diperkirakan baru berumur 1 1/2 - 2 tahun. Diperkirakan perbedaan antar kelompok disebabkan oleh perbedaan umur dan tingkat perkembangan jaringannya.
Dari Tabel 1, 2, 3 dan 4 terlihat bahwa kelompok 4 memiliki nilai rata-rata jumlah akar, panjang akar, komposisi akar dan persentase stek bertunas yang lebih tinggi. Hal ini sesuai dengan penyataan Hartmann dan Kester (1978) bahwa stek yang berasal dari tanaman induk yang lebih mudah akan lebih mudah berakar dan membentuk perakaran yang baik, dikarenakan diduga terdapat peningkatan kandungan zat penghambat perakaran yang sejalan dengan peningkatan umur tanaman.

Perakaran Stek

Pada Gambar 4 terlihat bahwa akar muncul menembus massa kalus sehingga menimbulkan kesan bahwa pembentukan akar harus didahului oleh terbentuknya kalus. Akan tetapi menurut Adiance dan Brison (1955) dan Hartman dan Kester (1978) umumnya pembentukan akar tidak tergantung dari
terbentuk atau tidaknya kalus, meskipun pembentukan kalus sering terlihat mendahului munculnya akar. Untuk memastikan jaringan asal akar adventif stek cemara kipas diperlukan penelitian yang lebih lanjut.

Tabel 1. Pengaruh IBA dan Campuran IBA-NAA terhadap Persentase Stek Berkalus, Persentase Stek Berakar, Jumlah Akar dan Panjang akar Stek Cemara Kipas

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Persentase Stek Berkalus (%)</th>
<th>Persentase Stek Berakar (%)</th>
<th>Jumlah Akar</th>
<th>Panjang Akar (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol</td>
<td>90.00</td>
<td>36.16 a<sup>2</sup></td>
<td>1.7</td>
<td>2.62 a</td>
</tr>
<tr>
<td>IBA 2500 ppm</td>
<td>100.00</td>
<td>50.00 ab</td>
<td>3.2</td>
<td>8.35 bc</td>
</tr>
<tr>
<td>IBA 5000 ppm</td>
<td>95.00</td>
<td>55.12 bc</td>
<td>4.8</td>
<td>11.90 c</td>
</tr>
<tr>
<td>IBA-NAA 2500 ppm</td>
<td>97.50</td>
<td>60.21 bc</td>
<td>4.0</td>
<td>7.84 b</td>
</tr>
<tr>
<td>IBA-NAA 5000 ppm</td>
<td>100.00</td>
<td>73.67 c</td>
<td>3.4</td>
<td>7.08 b</td>
</tr>
</tbody>
</table>

Keterangan : 1/ tn = tidak nyata menurut uji F pada taraf 5%

2/ angka-angka yang diikuti oleh huruf yang sama pada kolom yang sama tidak berbeda nyata menurut uji Duncan pada taraf 5%.
Gambar 1. Stek yang Membentuk Kalus dan Akar yang Menembus Kalus

Pada persentase stek berakar terlihat bahwa penggunaan campuran IBA-NAA memberikan hasil yang lebih tinggi. Pada konsentrasi 2500 ppm, penambahan NAA pada larutan IBA membentuk campuran 1:1 (w/w) memberikan hasil yang lebih tinggi dari pada pelipat gandaan konsentrasi IBA menjadi 5000 ppm. Respon yang lebih baik terhadap auksin campuran terlihat pula pada jumlah akar pada taraf 2500 ppm. Diperkirakan terdapat efek sinergis antara IBA dan NAA yang mampu merangsang proses pembentukan dan pemunculan akar menjadi lebih baik.

Panjang akar dipengaruhi oleh proses pemanjangan akar. Diperkirakan terjadi efek antagonis antara IBA dan NAA yang mempengaruhi aktivitas IBA dalam merangsang perpanjangan akar, sehingga menyebabkan perbedaan panjang akar antara penggunaan IBA secara tunggal dan campuran.

Penggunaan auksin untuk merangsang perakaran stek memiliki selang konsentrasi optimum. Apabila diberikan auksin dengan konsentrasi yang lebih tinggi dapat mengakibatkan terhambatnya pertumbuhan akar, pertumbuhan tanaman dan bahkan dapat menyebabkan kematian jaringan tanaman (Avery dan Johnson, 1947). Pada percobaan ini
terlihat bahwa penggunaan IBA secara tunggal hingga konsentrasi 5000 ppm masih menunjukkan peningkatan jumlah stek berakar, jumlah akar dan panjang akar. Akan tetapi pada penggunaan campuran, peningkatan konsentrasi menjadi 5000 ppm dari 2500 ppm tidak lagi meningkatkan panjang akar, bahkan terlihat menurun. Penurunan ini mungkin disebabkan oleh konsentrasi IBA-NAA telah melampaui batas optimum, tetapi belum mencapai taraf menghambat. Diduga konsentrasi optimum penggunaan campuran IBA-NAA berada di sekitar 2500 ppm.

Menurut Leopold (1963) penggunaan auksin konsentrasi tinggi sering menghasilkan primordia akar yang banyak akan tetapi primordia tersebut gagal muncul menjadi akar karena perpanjangannya terhambat. Berbeda dengan pengaruhnya pada panjang akar dan jumlah akar, perlakuan IBA-NAA 5000 ppm memiliki persentase stek berakar yang terbaik. Hal ini menunjukkan pada taraf tersebut proses dediferensiasi dan pembentukan primordia akar terjadi lebih aktif dan walaupun aktivitas pemanjangan akar mulai menurun, akar tetap dapat muncul.

Pengaruh perlakuan terhadap komposisi akar disajikan pada Tabel 2 dan perakaran yang terbentuk disajikan pada Gambar 2.
<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Nilai skor 1/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol</td>
<td>1.6 a²/</td>
</tr>
<tr>
<td>IBA 2500 ppm</td>
<td>2.0 b</td>
</tr>
<tr>
<td>IBA 5000 ppm</td>
<td>2.1 b</td>
</tr>
<tr>
<td>IBA-NAA 2500 ppm</td>
<td>2.1 b</td>
</tr>
<tr>
<td>IBA-NAA 5000 ppm</td>
<td>2.0 b</td>
</tr>
</tbody>
</table>

Keterangan :

1/ nilai skor =
1 = stek berakar, tidak memiliki akar sekunder
2 = stek berakar, memiliki akar sekunder, tidak memiliki akar tertier
3 = stek berakar, memiliki akar sekunder dan akar tertier

2/ Angka-angka yang diikuti oleh huruf yang sama tidak berbeda nyata menurut uji Duncan pada taraf 5 %

Dari Tabel 2 terlihat bahwa stek yang mendapat perlakuan auksin memiliki komposisi akar yang lebih baik. Hal ini disebabkan oleh perkembangan akarnya telah berlangsung lebih jauh. Perkembangan yang lebih lanjut ini diperkirakan terjadi karena perakaran terbentuk lebih cepat akibat pemberian auksin. Perbedaan komposisi akar yang diakibatkan oleh perbedaan konsentrasi dan penggunaan auksin tunggal maupun campuran tidak nyata karena diduga perakaran yang terbentuk memiliki perkembangan yang sama.
Gambar 2. Pengaruh IBA dan IBA-NAA pada Perakaran stek Gemara Kipas

Pertunasan Stek

Tabel 3. Pengaruh Pemberian IBA dan Campuran IBA-NAA terhadap Persentase Stek Bertunas

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Persentase Stek Bertunas (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol</td>
<td>5.2 a</td>
</tr>
<tr>
<td>IBA 2500 ppm</td>
<td>20.9 b</td>
</tr>
<tr>
<td>IBA 5000 ppm</td>
<td>29.9 b</td>
</tr>
<tr>
<td>IBA-NAA 2500 ppm</td>
<td>22.5 b</td>
</tr>
<tr>
<td>IBA-NAA 5000 ppm</td>
<td>31.4 b</td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang diikuti oleh huruf yang sama tidak berbeda nyata menurut uji Duncan pada taraf 5%.
Pemberian auksin konsentrasi tinggi untuk merangsang perakaran stek sering mengakibatkan pertumbuhan tunas terhambat (Komissarov, 1968). Hasil percobaan ini tidak menunjukkan adanya penghambatan pertumbuhan tunas oleh pemberian auksin. Persentase stek bertunas meningkat pada stek yang mendapat perlakuan auksin.

Dari pengamatan secara visual terlihat bahwa stek yang bertunas umumnya memiliki perakaran yang baik, sehingga diduga terdapat hubungan antara pertunasan dengan perakaran. Terlihat sebagaimana pada persentase stek berakar, persentase stek bertunas meningkat pula pada penggunaan konsentrasi auksin yang lebih tinggi.

Pada stek air merupakan faktor pembatas pertumbuhan. Air memegang peranan penting dalam fase pemanjangan dalam proses pertumbuhan tanaman (Prawiranata et al., 1981). Oleh karena tidak memiliki perakaran, stek tidak dapat menyerap air dalam jumlah cukup untuk mendukung pertumbuhannya. Dengan terbentuknya akar pada stek maka kesulitan tersebut dapat teratasi.

Keberhasilan Stek

Keberhasilan stek dicirikan oleh didapatnya bibit yang memiliki perakaran dan pertumbuhan yang baik dalam jumlah yang banyak pada satuan waktu tertentu. Diharapkan bibit-bibit tersebut akan tumbuh dan berkembang menjadi tanaman yang baik sesuai dengan yang diinginkan pemelihara-ranya.
Secara umum pemberian auksin meningkatkan keberhasilan stek cemara kipas. Hal ini terlihat dari peningkatan jumlah stek berakar, panjang akar, jumlah akar, nilai komposisi akar dan pertumbuhan tunas. Dengan demikian dalam waktu yang sama, pemberian auksin menghasilkan bibit yang lebih banyak dan lebih baik dibanding kontrol.

Dalam aplikasi auksin untuk penyetekan pada skala yang besar, diperlukan suatu perlakuan yang mampu menghasilkan bibit yang baik dalam jumlah yang banyak pada satu satuan waktu tertentu dan ekonomis untuk dilaksanakan. Dari percobaan ini terlihat bahwa perlakuan IBA-NAA 5000 ppm menghasilkan persentase berakar stek cemara kipas yang tertinggi, akan tetapi perakaran terbaik didapat pada perlakuan IDA 5000 ppm. Bila kedua perlakuan tadi dibandingkan dengan dengan perlakuan IBA 2500 ppm, maka hasil perlakuan IBA-NAA 2500 ppm memiliki nilai diantara kedunya. IBA-NAA menghasilkan persentase stek berakar tertinggi setelah perlakuan IBA-NAA 5000 ppm, sedangkan jumlah akar, panjang akar dan komposisi akarnya memiliki nilai yang mendekati hasil IBA tunggal 5000 ppm.

Sebagaimana dikemukakan terdahulu harga NAA jauh lebih murah dari IBA sehingga biaya pengadaannya-pun lebih murah. Dengan baiknya hasil dan biaya yang rendah, maka perlakuan IBA-NAA 2500 ppm merupakan perlakuan yang paling efisien untuk dilaksanakan.