HASIL DAN PEMBAHASAN

PERCOBAAN 1

Pertumbuhan dan Perkembangan Eksplan

Pembahasan untuk peubah-peubah yang diamati selanjutnya akan difokuskan pada data hasil pengamatan 9, 14 dan 19 hari setelah tanam, sesuai dengan perlakuan waktu panen pada penelitian 2. Pengaruh perlakuan terhadap peubah yang diamati dapat dilihat pada tabel 1.

Tabel 1. Pengaruh Perlakuan terhadap Peubah yang Diamati

<table>
<thead>
<tr>
<th>Peubah</th>
<th>HST</th>
<th>IBA</th>
<th>Kinetin</th>
<th>Interaksi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumlah Tunas/Botol</td>
<td>9</td>
<td>**</td>
<td>**</td>
<td>tn</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>**</td>
<td>**</td>
<td>tn</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>**</td>
<td>**</td>
<td>tn</td>
</tr>
<tr>
<td>Jumlah Daun/Tunas</td>
<td>9</td>
<td>**</td>
<td>tn</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>**</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>**</td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td>Jumlah Daun/Botol</td>
<td>9</td>
<td>**</td>
<td>tp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>**</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>**</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Jumlah akar/Botol</td>
<td>19</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Panjang Akar/Botol</td>
<td>19</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

Keterangan: tn = tidak berpengaruh nyata pada uji F 5 %
* = berpengaruh nyata pada uji F 5 %
** = berpengaruh nyata pada uji F 1 %

Jumlah Tunas per Botol

Faktor konsenterasi IBA dan Kinetin pada perlakuan memberikan pengaruh yang sangat nyata terhadap jumlah
tunas yang hidup per botol pada 9, 14 dan 19 hari setelah tanam. Pada peubah ini, tidak terjadi interaksi antara faktor IBA dan Kinetin. Pengaruh konsenterasi IBA dan Kinetin terhadap jumlah tunas yang hidup per botol dapat di-
lihat pada tabel 2.

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>9 HST</th>
<th>14 HST</th>
<th>19 HST</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0 mg/l</td>
<td>8.900 b</td>
<td>9.900 b</td>
<td>10.520 b</td>
</tr>
<tr>
<td>1.0 mg/l</td>
<td>5.425a</td>
<td>6.400a</td>
<td>6.875a</td>
</tr>
<tr>
<td>2.0 mg/l</td>
<td>4.600a</td>
<td>5.450a</td>
<td>5.975a</td>
</tr>
<tr>
<td>Kinetin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0 mg/l</td>
<td>4.967x</td>
<td>5.833x</td>
<td>6.333x</td>
</tr>
<tr>
<td>1.5 mg/l</td>
<td>7.533 y</td>
<td>8.467 z</td>
<td>8.733 y</td>
</tr>
<tr>
<td>3.0 mg/l</td>
<td>6.167xy</td>
<td>6.833xy</td>
<td>7.600xy</td>
</tr>
<tr>
<td>4.5 mg/l</td>
<td>6.567 y</td>
<td>7.667 yz</td>
<td>8.500 y</td>
</tr>
</tbody>
</table>

Keterangan: angka yang diikuti oleh huruf yang sama pada kolom yang sama tidak berbeda nyata pada uji BNJ 5%.

Jumlah tunas yang tumbuh pada media tanpa pemberian Kinetin tidak berbeda nyata dengan jumlah tunas yang tumbuh pada media yang mengandung Kinetin 3.0 mg/l, pada 9, 14 dan 19 HST. Hal ini menunjukkan bahwa Kinetin 3.0 mg/l kurang efektif digunakan sebagai perangsang terbentuknya tunas. Pada 9 dan 19 HST, pemberian Kinetin dengan konsenterasi berapa pun sesuai perlakuan meningkatkan jumlah tunas yang terbentuk tetapi tidak berbeda nyata antara konsenterasi-konsenterasi tersebut. Dengan demikian, pemberian Kinetin 1.5 mg/l cukup baik untuk meningkatkan jumlah tunas. Pada 14 HST pemberian Kinetin 1.5 mg/l
memberikan nilai yang tertinggi, walaupun nilainya tidak berbeda nyata dengan perlakuan Kinetin 4.5 mg/l. Wattimena (1990) berpendapat bahwa perlakuan Kinetin pada tunas aksilar ditujukan untuk mengaktifkan tunas dan bakal tunas serta mendorong pembentukan tunas yang banyak (proliferasi) dari mata tunas tersebut.

Pada 9, 14 dan 19 HST perlakuan tanpa IBA menghasilkan jumlah tunas yang tertinggi dan berbeda nyata dengan perlakuan lainnya. Perlakuan IBA 1.0 mg/l dan 2.0 mg/l tidak berbeda nyata. Hal ini menunjukkan bahwa pemberian IBA dapat mengurangi jumlah tunas yang akan terbentuk.

Hasil uji Polinomial Orthogonal untuk 19 HST terhadap jumlah tunas yang hidup menunjukkan bahwa semakin tinggi konsentrasi IBA yang diberikan pada media akan semakin mengurangi jumlah tunas yang terbentuk sampai pada konsentrasi IBA sekitar 1.5 mg/l. Kecenderungan selanjutnya tampak mulai meningkat, tetapi tetap rendah pada selang perlakuan (gambar 2). Persamaan yang dihasilkan adalah

\[Y = 10.755 - 6.400\ X + 2.063\ X^2. \]
Gambar 2. Uji Polinomial Orthogonal Pengaruh Konsenterasi IBA terhadap Jumlah Tunas per Botol pada 19 HST

Jumlah Daun per Tunas

Pemberian IBA memberikan pengaruh yang sangat nyata terhadap jumlah daun per tunas. Pemberian Kinetin memberikan pengaruh yang tidak berbeda nyata pada 9 HST, pengaruh yang berbeda nyata pada 14 HST dan pengaruh yang sangat berbeda nyata pada 19 HST. Pengaruh konsenterasi IBA dan Kinetin terhadap jumlah daun per tunas dapat dilihat pada tabel 3.
<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>9 HST</th>
<th>14 HST</th>
<th>19 HST</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBA 0.0 mg/l</td>
<td>2.872 a</td>
<td>4.695 a</td>
<td>5.546 a</td>
</tr>
<tr>
<td>1.0 mg/l</td>
<td>2.472 b</td>
<td>5.202 b</td>
<td>6.730 b</td>
</tr>
<tr>
<td>2.0 mg/l</td>
<td>2.479 b</td>
<td>5.184 b</td>
<td>6.412 b</td>
</tr>
<tr>
<td>Kinetin 0.0 mg/l</td>
<td>2.626 x</td>
<td>4.655 x</td>
<td>5.739 x</td>
</tr>
<tr>
<td>1.5 mg/l</td>
<td>2.650 x</td>
<td>5.224 y</td>
<td>6.686 z</td>
</tr>
<tr>
<td>3.0 mg/l</td>
<td>2.492 x</td>
<td>5.088 xy</td>
<td>6.073 xy</td>
</tr>
<tr>
<td>4.5 mg/l</td>
<td>2.662 x</td>
<td>5.140 y</td>
<td>6.419 yz</td>
</tr>
</tbody>
</table>

Keterangan: angka yang diikuti oleh huruf yang sama pada kolom yang sama tidak berbeda nyata pada uji BNJ 5%.

Pada 9 HST, pemberian IBA 1.0 mg/l dan 2.0 mg/l mengurangi jumlah daun per tunas yang terbentuk. Jumlah daun per tunas terbanyak dicapai pada perlakuan tanpa IBA. Tetapi pada 14 dan 19 HST, pemberian IBA justru meningkatkan jumlah daun per tunas yang terbentuk. Diduga subkultur yang telah dilakukan berulang-ulang sebelum eksplan digunakan dalam percobaan membuat kandungan auksin endogen pada eksplan sudah cukup tinggi. Pemberian IBA pada perlakuan menyebabkan semakin tingginya kandungan auksin dalam kultur, melebihi batas optimum sehingga hal itu justru menurunkan respon pada 9 HST. Konsenterasi IBA 1.0 mg/l dan 2.0 mg/l tidak memberikan hasil yang berbeda terhadap jumlah daun yang terbentuk tiap tunasnya pada 14 dan 19 HST. Dengan demikian, pemberian IBA 1.0 mg/l sudah cukup untuk meningkatkan jumlah daun per tunasnya.

Jumlah daun per tunas yang terbanyak pada 14 HST dicapai pada perlakuan Kinetin 1.5 mg/l, tetapi nilainya
tidak berbeda nyata dengan perlakuan Kinetin 3.0 mg/l dan 4.5 mg/l. Pada perlakuan Kinetin 3.0 mg/l, jumlah daun yang terbentuk tidak berbeda nyata dengan perlakuan Kinetin 0.0 mg/l. Dengan demikian pemberian Kinetin 1.5 mg/l cukup baik untuk meningkatkan jumlah daun per tunas.

Pada 19 HST, jumlah daun per tunas yang terbanyak dicapai pada perlakuan Kinetin 1.5 mg/l, tetapi nilainya tidak berbeda nyata dengan perlakuan Kinetin 4.5 mg/l. Oleh karena itu, pemberian Kinetin 1.5 mg/l juga dapat dianggap sebagai perlakuan terbaik dalam percobaan untuk meningkatkan jumlah daun per tunasnya.

Interaksi antara IBA dan Kinetin terjadi pada 9, 14 dan 19 HST. Pada 9 HST, perlakuan tanpa penambahan zat pengatur tumbuh memberikan nilai jumlah daun per tunas yang tertinggi. Tetapi jumlah daun tersebut tidak berbeda nyata dengan kombinasi perlakuan tanpa IBA dengan Kinetin 1.5 mg/l, 3.0 mg/l dan 4.5 mg/l; kombinasi perlakuan IBA 1.0 mg/l dengan Kinetin 1.5 mg/l, 3.0 mg/l dan 4.5 mg/l serta kombinasi perlakuan IBA 2.0 mg/l dengan perlakuan tanpa Kinetin dan Kinetin 4.5 mg/l. Pada 14 HST, kombinasi perlakuan IBA 2.0 mg/l dengan Kinetin 4.5 mg/l memberikan nilai jumlah daun per tunas tertinggi, tetapi nilai tersebut tidak berbeda nyata dengan semua perlakuan yang ada kecuali kombinasi perlakuan IBA 2.0 mg/l tanpa Kinetin. Pada 19 HST jumlah daun per tunas yang terbanyak terjadi pada kombinasi perlakuan IBA 1.0 mg/l dengan
Kinetin 4.5 mg/l. Tetapi nilai tersebut tidak berbeda nyata jika dibandingkan dengan kombinasi perlakuan IBA 1.0 mg/l dengan Kinetin 1.5 mg/l dan 3.0 mg/l serta kombinasi perlakuan IBA 2.0 mg/l dengan Kinetin 1.5 mg/l, 3.0 mg/l dan 4.5 mg/l. Pengaruh interaksi antara IBA dan Kinetin terhadap jumlah daun per botol dapat dilihat pada tabel 4.

Tabel 4. Pengaruh Interaksi IBA dan Kinetin terhadap Jumlah Daun per Tunas

<table>
<thead>
<tr>
<th></th>
<th>IBA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0 mg/l</td>
</tr>
<tr>
<td>9 HST</td>
<td></td>
</tr>
<tr>
<td>Kinetin 0.0 mg/l</td>
<td>3.207 b</td>
</tr>
<tr>
<td>1.5 mg/l</td>
<td>2.960ab</td>
</tr>
<tr>
<td>3.0 mg/l</td>
<td>2.788ab</td>
</tr>
<tr>
<td>4.5 mg/l</td>
<td>2.532ab</td>
</tr>
<tr>
<td>14 HST</td>
<td></td>
</tr>
<tr>
<td>Kinetin 0.0 mg/l</td>
<td>4.965ab</td>
</tr>
<tr>
<td>1.5 mg/l</td>
<td>4.668ab</td>
</tr>
<tr>
<td>3.0 mg/l</td>
<td>4.482ab</td>
</tr>
<tr>
<td>4.5 mg/l</td>
<td>4.664ab</td>
</tr>
<tr>
<td>19 HST</td>
<td></td>
</tr>
<tr>
<td>Kinetin 0.0 mg/l</td>
<td>5.628abc</td>
</tr>
<tr>
<td>1.5 mg/l</td>
<td>6.094abcd</td>
</tr>
<tr>
<td>3.0 mg/l</td>
<td>5.504ab</td>
</tr>
<tr>
<td>4.5 mg/l</td>
<td>5.057a</td>
</tr>
</tbody>
</table>

Keterangan: angka yang diikuti oleh huruf yang sama tidak berbeda nyata pada uji BNJ 5 %.

Hasil uji Polinomial Orthogonal untuk 19 HST terhadap konsenterasi IBA menunjukkan bahwa pada perlakuan tanpa Kinetin, penambahan konsenterasi IBA tidak meningkatkan jumlah daun yang terbentuk per tunasnya. Pada media yang mengandung Kinetin 1.5 mg/l, grafik yang terbentuk memilik persamaan $Y = 6.351 + 2.009 X - 1.004 X^2$.
Berdasarkan persamaan tersebut, nilai tertinggi jumlah daun per tunas dalam percobaan dicapai pada konsenterasi IBA sekitar 1.0 mg/l. Peningkatan konsenterasi IBA setelah 1.0 mg/l akan mengurangi jumlah daun/tunas yang terbentuk (gambar 3).

Gambar 3. Uji Polinomial Orthogonal Pengaruh Interaksi IBA dan Kinetin terhadap Jumlah Daun per Tunas pada 19 HST

Pemberian Kinetin 3.0 mg/l memberikan grafik yang berbentuk linier dengan persamaan \(Y = 5.612 + 0.461 \, X \).

Dengan demikian, pada selang percobaan yang dilakukan, semakin tinggi konsenterasi IBA yang diberikan bersama Kinetin 3.0 mg/l akan semakin meningkatkan jumlah daun per tunas.

Grafik yang terbentuk pada pemberian Kinetin 4.5 mg/l berbentuk kuadratik dengan persamaan...
Y = 4.826 + 5.061 X - 2.081 X². Dari grafik terlihat bahwa jumlah daun per tunas tertinggi dalam percobaan dicapai pada media dengan pemberian IBA berkisar 1.0 mg/l. Sedikit peningkatan konsenterasi IBA akan meningkatkan jumlah daun per tunas yang terbentuk, tetapi kemudian akan menurunkan nilai tersebut.

Berdasarkan hasil uji Polinomial Orthogonal terlihat bahwa perlakuan yang memberikan nilai jumlah daun per tunas tertinggi pada 19 HST adalah perlakuan Kinetin 4.5 mg/l yang dikombinasikan dengan IBA 1.0 mg/l. Hal tersebut juga terlihat pada hasil pengujian dengan BNJ 5% di atas.

Jumlah Daun per Botol

Pemberian IBA dan Kinetin memberikan pengaruh yang sangat nyata terhadap jumlah daun yang dihasilkan per botol. Pengaruh konsenterasi IBA dan Kinetin terhadap jumlah tunas yang hidup per botol dapat dilihat pada tabel 5.

Tabel 5. Pengaruh Konsenterasi IBA dan Kinetin terhadap Jumlah Daun per Botol

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>9 HST</th>
<th>14 HST</th>
<th>19 HST</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBA 0.0 mg/l</td>
<td>25.200 b</td>
<td>45.825 b</td>
<td>58.250 c</td>
</tr>
<tr>
<td>1.0 mg/l</td>
<td>13.875a</td>
<td>33.825a</td>
<td>46.875 b</td>
</tr>
<tr>
<td>2.0 mg/l</td>
<td>12.050a</td>
<td>28.575a</td>
<td>38.600a</td>
</tr>
<tr>
<td>Kinetin 0.0 mg/l</td>
<td>14.300x</td>
<td>27.700x</td>
<td>32.267x</td>
</tr>
<tr>
<td>1.5 mg/l</td>
<td>20.533y</td>
<td>43.800z</td>
<td>57.700 z</td>
</tr>
<tr>
<td>3.0 mg/l</td>
<td>16.167x</td>
<td>33.100xy</td>
<td>45.200xy</td>
</tr>
<tr>
<td>4.5 mg/l</td>
<td>17.167xy</td>
<td>39.700yz</td>
<td>51.467yz</td>
</tr>
</tbody>
</table>

Keterangan: angka yang diikuti oleh huruf yang sama pada kolom yang sama tidak berbeda nyata pada uji BNJ 5%.
Jumlah daun per botol pada media tanpa pemberian Kinnetin tidak berbeda nyata dengan jumlah daun per botol pada media yang mengandung Kinnetin 3.0 mg/l. Jumlah daun per botol tertinggi dihasilkan pada perlakuan Kinnetin 1.5 mg/l tetapi nilainya tidak berbeda nyata dengan perlakuan Kinnetin 4.5 mg/l. Pada 9 HST, jumlah daun per botol yang terbentuk pada media tanpa Kinnetin juga tidak berbeda nyata dengan jumlah daun per botol pada media dengan Kinnetin 3.0 mg/l. Hal ini berhubungan juga dengan banyaknya tunas yang terbentuk dalam botol dan jumlah daun per tunas. Pada pembahasan sebelumnya diketahui bahwa jumlah tunas dan jumlah daun per tunas terbanyak diperoleh pada perlakuan Kinnetin 1.5 mg/l. Dengan demikian perlakuan ini menghasilkan jumlah daun per botol yang terbanyak.

Jumlah daun terbanyak dalam botol diperoleh pada perlakuan tanpa pemberian IBA. Hal ini juga berhubungan dengan jumlah tunas yang terbentuk dan jumlah daun per tunas. Jumlah daun per tunas terbanyak dicapai pada perlakuan IBA 1.0 dan 2.0 mg/l (pada 14 dan 19 HST). Hasil ini menunjukkan bahwa peubah jumlah tunas per botol adalah lebih berpengaruh terhadap jumlah daun total per botol.

Interaksi antara IBA dan Kinnetin hanya terjadi pada 9 HST. Dari tabel 6 terlihat bahwa jumlah daun per botol terbanyak didapat pada kombinasi perlakuan tanpa IBA dengan Kinnetin 1.5 mg/l, tetapi nilainya tidak berbeda nyata dengan kombinasi perlakuan tanpa 2PT, kombinasi perlakuan
tanpa IBA dengan Kinetin 3.0 mg/l dan 4.5 mg/l serta kombinasi perlakuan IBA 1.0 mg/l dengan Kinetin 1.5 mg/l.

Tabel 6. Pengaruh Interaksi IBA dan Kinetin terhadap Jumlah Daun per Botol pada 9 HST

<table>
<thead>
<tr>
<th></th>
<th>IBA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 mg/l</td>
</tr>
<tr>
<td>Kinetin 0.0 mg/l</td>
<td>26.000</td>
</tr>
<tr>
<td>1.5 mg/l</td>
<td>26.300</td>
</tr>
<tr>
<td>3.0 mg/l</td>
<td>24.700</td>
</tr>
<tr>
<td>4.5 mg/l</td>
<td>23.800</td>
</tr>
</tbody>
</table>

Keterangan: angka yang diikuti oleh huruf yang sama tidak berbeda nyata pada uji BNY 5%.

Persamaan yang dihasilkan dari uji Polinomial Orthogonal untuk 19 HST terhadap jumlah daun per botol adalah $Y = 57.733 - 9.825 X$. Kecenderungan yang terlihat adalah semakin besar jumlah IBA yang diberikan maka akan semakin sedikit jumlah daun yang dihasilkan per botol (gambar 4).

Gambar 4. Uji Polinomial Orthogonal Pengaruh Konsentrasi IBA terhadap Jumlah Daun per Botol pada 19 HST
Jumlah Akar

Tabel 7. Pengaruh Konsenterasi IBA dan Kinetin terhadap Jumlah Akar per Botol pada 19 HST

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>19 HST</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBA 0.0 mg/l</td>
<td>3.050ab</td>
</tr>
<tr>
<td>1.0 mg/l</td>
<td>3.450b</td>
</tr>
<tr>
<td>2.0 mg/l</td>
<td>2.875a</td>
</tr>
<tr>
<td>Kinetin 0.0 mg/l</td>
<td>3.100xy</td>
</tr>
<tr>
<td>1.5 mg/l</td>
<td>3.667y</td>
</tr>
<tr>
<td>3.0 mg/l</td>
<td>2.867x</td>
</tr>
<tr>
<td>4.5 mg/l</td>
<td>2.867x</td>
</tr>
</tbody>
</table>

Keterangan: angka yang diikuti oleh huruf yang sama pada kolom yang sama tidak berbeda nyata pada uji BNJ 5%.

Jumlah akar terbanyak diperoleh pada perlakuan IBA 1.0 mg/l, tetapi nilai ini tidak berbeda nyata dengan perlakuan tanpa IBA. Dengan demikian tanpa penambahan IBA, akar kentang *in vitro* pada percobaan sudah dapat tumbuh dengan baik. Hal ini berbeda dengan teori yang ada dan diduga disebabkan telah terakumulasinya auksin pada eksplan yang digunakan.

Tabel 8 memperlihatkan bahwa jumlah akar yang terbentuk juga dipengaruhi interaksi antara IBA dan Kinetin. Jumlah akar terbanyak diperoleh pada kombinasi perlakuan Kinetin 1.5 mg/l dengan IBA 2.0 mg/l walaupun nilai ini tidak berbeda nyata dengan hampir semua perlakuan yang lain, kecuali untuk kombinasi perlakuan Kinetin 3.0 mg/l dengan IBA 2.0 mg/l.

Tabel 8. Pengaruh Interaksi IBA dan Kinetin terhadap Jumlah Akar per Botol pada 19 HST

<table>
<thead>
<tr>
<th></th>
<th>IBA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0 mg/l</td>
</tr>
<tr>
<td>Kinetin 0.0 mg/l</td>
<td>3.200ab</td>
</tr>
<tr>
<td>1.5 mg/l</td>
<td>3.600ab</td>
</tr>
<tr>
<td>3.0 mg/l</td>
<td>3.100ab</td>
</tr>
<tr>
<td>4.5 mg/l</td>
<td>2.300ab</td>
</tr>
</tbody>
</table>

Keterangan: angka yang diikuti oleh huruf yang sama tidak berbeda nyata pada uji BNJ 5%.

Hasil uji Polinomial Orthogonal untuk jumlah akar pada 19 HST menunjukkan bahwa pada media yang mengandung Kinetin 0.0, 1.5 dan 4.5 mg/l peningkatan konsenterasi IBA
tidak merubah jumlah akar yang terbentuk. Pada media dengan Kinetin 3.0 mg/l didapat persamaan \(Y = 2.892 + 3.100 X - 1.875 X^2 \). Dari grafik ini juga terlihat bahwa jumlah akar tertinggi diperoleh pada konsentrasi IBA antara 0.5 - 1.0 mg/l (gambar 5).

Gambar 5. Uji Polinomial Orthogonal Pengaruh Interaksi IBA dan Kinetin terhadap Jumlah Akar pada 19 HST

Panjang Akar

Pemberian IBA dan Kinetin memberikan pengaruh yang sangat nyata terhadap panjang akar terpanjang per botol. Pengaruh konsentrasi IBA dan Kinetin terhadap panjang akar dapat dilihat pada tabel 9.

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>19 HST</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBA 0.0 mg/l</td>
<td>13.540 b</td>
</tr>
<tr>
<td>1.0 mg/l</td>
<td>12.635 b</td>
</tr>
<tr>
<td>2.0 mg/l</td>
<td>9.685a</td>
</tr>
<tr>
<td>Kinetin 0.0 mg/l</td>
<td>8.983x</td>
</tr>
<tr>
<td>1.5 mg/l</td>
<td>12.337 y</td>
</tr>
<tr>
<td>3.0 mg/l</td>
<td>14.117 y</td>
</tr>
<tr>
<td>4.5 mg/l</td>
<td>12.377 y</td>
</tr>
</tbody>
</table>

Keterangan: angka yang diikuti oleh huruf yang sama pada kolom yang sama tidak berbeda nyata pada uji BNJ 5%.

Akar terpanjang diperoleh pada perlakuan tanpa IBA, walaupun nilai ini tidak berbeda nyata dengan perlakuan IBA 1.0 mg/l. Hal ini menunjukkan bahwa tanpa penambahan IBA, pertumbuhan akar sudah berlangsung dengan baik. Kecenderungan yang terlihat adalah dengan semakin meningkat- nya konsenterasi IBA akan menghambat pemanjangan akar.

Akar terpanjang diperoleh pada perlakuan Kinetin 3.0 mg/l, walaupun nilai tersebut tidak berbeda nyata dengan perlakuan Kinetin 1.5 mg/l dan 4.5 mg/l. Dengan demikian pemberian Kinetin 1.5 mg/l cukup efektif untuk meningkatkan pertumbuhan akar.

<table>
<thead>
<tr>
<th>IBA</th>
<th>0.0 mg/l</th>
<th>1.0 mg/l</th>
<th>2.0 mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinetin 0.0 mg/l</td>
<td>10.120ab</td>
<td>10.660 b</td>
<td>6.170a</td>
</tr>
<tr>
<td>1.5 mg/l</td>
<td>12.930 b</td>
<td>13.730 bc</td>
<td>10.350ab</td>
</tr>
<tr>
<td>3.0 mg/l</td>
<td>17.930 c</td>
<td>13.910 bc</td>
<td>10.510 b</td>
</tr>
<tr>
<td>4.5 mg/l</td>
<td>13.180 b</td>
<td>12.240 b</td>
<td>11.710 b</td>
</tr>
</tbody>
</table>

Keterangan: angka yang diikuti oleh huruf yang sama tidak berbeda nyata pada uji BNJ 5%.

Akar terpanjang didapat dari kombinasi perlakuan tanpa IBA dengan Kinetin 3.0 mg/l. Nilai tersebut tidak berbeda nyata dengan kombinasi perlakuan IBA 1.0 mg/l dengan Kinetin 1.5 mg/l dan 3.0 mg/l.

Hasil uji Polinomial Orthogonal terhadap panjang akar pada 19 HST menunjukkan bahwa perlakuan tanpa Kinetin memberikan kecenderungan kuadratik terhadap konsenterasi IBA yang ditambahkan. Persamaan yang dihasilkan adalah \(Y = 9.701 + 5.570X - 3.773X^2 \). Grafik ini memperlihatkan
bahwa akar terpanjang dihasilkan pada konsenterasi IBA antara 0.5 mg/l dan 1.0 mg/l (gambar 6).

Perlakuan dengan Kinetin 1.5 dan 3.0 mg/l memberikan kecenderungan berbentuk linier terhadap konsenterasi IBA yang ditambahkan. Peningkatan konsenterasi IBA akan menurunkan respon terhadap panjang akar. Persamaan grafik untuk Kinetin 1.5 mg/l adalah $Y = 13.627 - 1.290 X$ sedangkan persamaan grafik untuk Kinetin 3.0 mg/l adalah $Y = 17.827 - 3.710 X$.

PERCOBAAN 2

Keadaan plantlet pada saat baru dipanen dari botol kultur hasil perbanyakan dengan media yang memberikan hasil optimum dari percobaan 1 (kombinasi perlakuan IBA 1.0 mg/l dengan Kinetin 1.5 mg/l) dapat dilihat pada gambar 7.

Persentase hidup plantlet setelah pra aklimatisasi selama 8 hari, setelah simpan sesuai perlakuan, setelah aklimatisasi selama 2 minggu dan total dari awal pemindahan sampai akhir aklimatisasi dapat dilihat pada tabel 11. Pengaruh perlakuan terhadap peubah yang diamati dapat dilihat pada tabel 12.
<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Setelah Pra Aklimatisasi (%)</th>
<th>Setelah Simpan (%)</th>
<th>Setelah Aklimatisasi (%)</th>
<th>Total Awal-akhir (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simpan (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 hari</td>
<td>86.500a</td>
<td>100.000a</td>
<td>87.826a</td>
<td>76.000a</td>
</tr>
<tr>
<td>2 hari</td>
<td>91.500a</td>
<td>93.400a</td>
<td>1.984 b</td>
<td>1.500 b</td>
</tr>
<tr>
<td>3 hari</td>
<td>87.500a</td>
<td>53.490a</td>
<td>0.000 b</td>
<td>0.000 b</td>
</tr>
<tr>
<td>Umur Panen (U)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 hari</td>
<td>91.333x</td>
<td>94.645x</td>
<td>44.994x</td>
<td>39.500x</td>
</tr>
<tr>
<td>15 hari</td>
<td>85.667x</td>
<td>73.277x</td>
<td>44.816x</td>
<td>38.000x</td>
</tr>
<tr>
<td>S x U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S0U10</td>
<td>88.000</td>
<td>100.000</td>
<td>88.560</td>
<td>78.000</td>
</tr>
<tr>
<td>S0U15</td>
<td>85.000</td>
<td>100.000</td>
<td>87.092</td>
<td>74.000</td>
</tr>
<tr>
<td>S2U10</td>
<td>92.000</td>
<td>97.670</td>
<td>1.428</td>
<td>1.000</td>
</tr>
<tr>
<td>S2U15</td>
<td>91.000</td>
<td>89.120</td>
<td>2.540</td>
<td>2.000</td>
</tr>
<tr>
<td>S3U10</td>
<td>94.000</td>
<td>85.270</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>S3U15</td>
<td>81.000</td>
<td>30.710</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Keterangan: angka yang diikuti oleh huruf yang sama pada kolom yang sama tidak berbeda nyata pada uji BNJ 5%.

<table>
<thead>
<tr>
<th>Peubah</th>
<th>Umur</th>
<th>Simpan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setelah Pra Aklimatisasi</td>
<td>tn</td>
<td>tn</td>
</tr>
<tr>
<td>Setelah Simpan</td>
<td>tn</td>
<td>tn</td>
</tr>
<tr>
<td>Setelah Aklimatisasi</td>
<td>tn</td>
<td>**</td>
</tr>
<tr>
<td>Awal-Akhir</td>
<td>tn</td>
<td>*</td>
</tr>
</tbody>
</table>

Keterangan: tn = tidak berpengaruh nyata pada uji F 5 %
* = berpengaruh nyata pada uji F 5 %
** = berpengaruh nyata pada uji F 1 %

Pra aklimatisasi yang dilakukan selama 8 hari sejak plantlet dipanen dari botol memberikan hasil yang tidak

Analisis sidik ragam setelah plantlet disimpan sesuai perlakuan (0, 2 dan 3) memberikan hasil yang tidak berbeda nyata terhadap persentase hidup, baik dari faktor lamanya simpan maupun faktor umur panen. Keadaan tersebut terutama disebabkan belum terlihatnya pengaruh waktu simpan terhadap kemampuan hidup plantlet selanjutnya. Secara visual tampak bahwa keadaan plantlet yang disimpan 2 dan 3 hari, tidak sebaik seperti sebelum dilakukan penyimpanan.

Setelah plantlet disimpan, plantlet diberi perlakuan aklimatisasi selama 2 minggu untuk melihat bagaimana pengaruh perlakuan terhadap persentase hidup plantlet di lapang. Hasil analisis sidik ragam menunjukkan bahwa faktor simpan memberikan pengaruh yang sangat berbeda nyata terhadap persentase hidup plantlet. Faktor umur panen kembali tidak memberikan pengaruh yang berbeda nyata.

Dari data terlihat bahwa plantlet yang diberi perlakuan simpan 0 hari mempunyai persentase hidup 88.560 % (pada usia panen 10 hari) dan 87.092% (pada usia panen 15 hari). Persentase hidup plantlet yang mengalami penyimpanan 2 hari hanya 1 % (pada usia panen 10 hari) dan 2 % (pada usia panen 15 hari). Plantlet yang disimpan selama 3 hari bahkan secara keseluruhan mati. Hal ini memberi gambaran bagaimana besarnya pengaruh cahaya terhadap pertumbuhan plantlet.

Tanaman memerlukan cahaya untuk melakukan beberapa proses fisiologinya. Salah satu proses fisiologi yang

Difusi CO₂ ke dalam daun untuk fotosintesa terjadi melalui stomata. Penutupan stomata menyebabkan laju fotosintesa menurun. Di samping itu, reaksi fotosintesa itu sendiri tidak dapat terjadi tanpa adanya energi radiasi sebagai pereduksi CO₂ dan pembentukan senyawa organik.

Keadaan tanpa cahaya pada penyimpanan menyebabkan tidak terjadinya proses fotosintesa pada periode waktu pen-nyimpanan tersebut. Pada saat itu, tanaman tidak dapat menghasilkan karbohidrat yang tetap diperlukannya walaupun dalam keadaan tanpa cahaya untuk proses respirasi. Dengan demikian tanaman mengambil karbohidrat dari jaringannya sendiri. Sedangkan plantlet hasil kultur jaringan cende-rung lebih lemah dibandingkan tanaman eks vitro, sehingga karbohidrat yang ada pada tanaman tidak cukup untuk mendu-kung pertumbuhannya selama periode penyimpanan tersebut yang kemudian menyebabkan terjadinya kematian.

Masa aklimatisasi adalah masa penyesuaian. Kondisi lingkungan yang optimum sangat diperlukan untuk menjamin keberhasilan proses aklimatisasi tersebut. Penyimpanan plantlet menyebabkan tidak tercapainya kondisi optimum
pada masa aklimatisasi, sehingga perlakuan penyimpanan mengakibatkan kematian plantlet.

Secara visual tanaman yang disimpan 0 hari terus menunjukkan gejala pertumbuhan. Akar dan daun baru tampak semakin banyak. Pada beberapa plantlet bahkan sudah menunjukkan munculnya daun majemuk seperti yang biasa terdapat pada tanaman dewasa. Hal ini semakin mendukung dugaan bahwa kondisi penyimpanan tanpa cahaya yang lebih berpengaruh terhadap kematian plantlet di lapang.

Gambar 8. Keadaan Plantlet yang Tidak Diberi Perlakuan Penyimpanan (U10S0 dan U15S0) Setelah Aklimatisasi

Persentase hidup dari awal tanam sampai akhir aklimatisasi memberikan kecenderungan yang sama dengan persentase hidup plantlet setelah aklimatisasi. Hal ini semakin menunjukkan bahwa respon tanaman yang diakibatkan oleh...