SKRIPSI

ANALISIS PENGARUH FAKTOR ANGIN
TERHADAP VENTILASI ALAM PADA SINGLE-SPAN GREENHOUSE

Oleh :

RISNA ARDHAYANTI

F01495017

1999

FAKULTAS TEKNOLOGI PERTANIAN
INSTITUT PERTANIAN BOGOR
BOGOR
FAKULTAS TEKNOLOGI PERTANIAN
INSTITUT PERTANIAN BOGOR

ANALISIS PENGARUH FAKTOR ANGIN
TERHADAP LAJU VENTILASI ALAM PADA
SINGLE-SPAN GREENHOUSE

SKRIPSI

Sebagai salah satu syarat untuk memperoleh gelar

Sarjana Teknologi Pertanian
Pada Jurusan Teknik Pertanian
Fakultas Teknologi Pertanian

Oleh:

RISNA ARDHAYANTI
F01495017

Disedujui: Agustus 1999
Dosen Pembimbing

Dr. Ir. Henry Suhardiyanto, Msc

RINGKASAN

Pemakaian greenhouse, disisi lain memberi dampak positif yaitu terlindungnya tanaman dari terpaan air hujan, terlindungnya tanaman dari hama dan penyakit dan mengurangi intensitas cahaya matahari yang mengenai tanaman, namun disisi lain penggunaan greenhouse akan meningkatkan temperatur udara dalam greenhous. Salah satu usaha agar temperatur udara dalam greenhouse tidak terus meningkat dan dapat mendekati temperatur di luar greenhous yaitu dengan ventilasi.

Ventilasi adalah pertukaran / pergerakan udara melalui bukaan karena adanya perbedaan tekanan antara di dalam dan di luar bukaan untuk memindahkan panas yang ada dalam bangunan yang disebabkan radiasi matahari. Ventilasi ada dua yaitu: ventilasi mekanik dan ventilasi alam. Pada ventilasi mekanik, perbedaan tekanan disebabkan oleh kipas yang digerakkan oleh motor listrik. Sedangkan pada ventilasi alam, perbedaan tekanan timbul oleh dua sumber yaitu yaitu (1) Panas (termal) yang dihasilkan dalam greenhous dan (2) Angin.

Adanya pergerakan angin menyebabkan terjadinya perbedaan tekanan udara antara di dalam dan di luar greenhous. Angin menyebabkan adanya zona tekanan tinggi dan rendah disekeliling bangunan yang menyebabkan terjadinya aliran udara.

Tujuan dari penelitian ini adalah untuk mempelajari penerapan model matematika Bruce untuk menghitung laju ventilasi alam karena pengaruh faktor angin untuk single-span greenhouse. Membuat program simulasi untuk mencari nilai koefisien tekanan internal (Cpi) dan bidang tekanan netral (h) secara iterasi. Mempelajari hubungan angin dan luas bukaan terhadap laju ventilasi alami pada bangunan single-span greenhouse, dan melihat apakah hukum keseimbangan volume berlaku pada perhitungan laju ventilasi alam karena faktor angin.
Fasilitas dan peralatan yang digunakan adalah single-span greenhouse, weather station, display, PC, air max, kipas, pipa paralon, termometer, termometer bola basah dan bola kering.

Pengukuran parameter iklim meliputi kecepatan dan arah angin, temperatur dan RH di luar greenhouse, dan temperatur dan RH di dalam greenhouse. Pengukuran parameter iklim dilakukan setiap satu jam sekali dari pukul 08.00 sampai pukul 16.00. Dimensi bangunan yang diukur yaitu panjang greenhouse (Lx), lebar greenhouse (Wd), lebar bukaan 1,2 dan 3 (d1,d2,d3) panjang bukaan 1,2, dan 3 (L1,L2,L3). Perhitungan persentase luas efektif kasa dilakukan untuk mencari berapa persen dari bukaan yang berfungsi sebagai bukaan (e=konstanta kasa).

Dari hasil iterasi diperoleh nilai Cpi untuk bangunan single-span greenhouse PT. WIKA adalah -0.0576 dengan arah angin terhadap bukaan θ = 0°. Diperoleh kecepatan aliran udara (Vw) pada bukaan 1 = 0.866 m/s, bukaan 2 = -1.343 m/s, dan bukaan 3 = 0.106 m/s pada kecepatan angin 1.8 m/s. Sedangkan laju ventilasi alam (Qw) pada bukaan 1 = 21.506 m³/s, bukaan 2 = -24.170 m³/s dan bukaan 3 = 2.638 m³/s. Tanda negatif menunjukkan arah arah aliran keluar bukaan (outflow).

Dari hasil perhitungan dengan metode Bruce, dilihat hubungan antara kecepatan angin terhadap laju ventilasi dimana makin besar kecepatan angin maka laju ventilasi alam akan meningkat. Begitu juga hubungan antara antara luas bukaan dengan laju ventilasi alam, makin bertambahnya luas bukaan maka laju ventilasi alam akan meningkat. Luas bukaan akan mempengaruhi nilai Cpi dan nilai Cpi akan nilah yang akan mempengaruhi besar dan arah aliran udara yang melewati bukaan. Jadi suatu bukaan dapat berfungsi sebagai inlet (saluran masuk
udara) tetapi pada luas tertentu dapat berfungsi sebagai outlet (saluran keluar udara).

Hukum keseimbangan volume berlaku pada perhitungan laju ventilasi alam karena pengaruh faktor angin dengan menggunakan metode Bruce, dimana dari hasil perhitungan terlihat laju ventilasi alam yang masuk (Q_m) = laju ventilasi alam yang keluar bangunan (Q_{out}).
KATA PENGANTAR

Syukur Alhamdulillah penulis panjatkan ke hadirat Allah SWT karena dengan rahmat dan hidayah-Nya penulis dapat menyelesaikan penelitian hingga tersusunnya skripsi ini.

Pada kesempatan ini, penulis ingin mengucapkan terima kasih kepada:
1. Dr. Ir. Herry Suhardiyyanto, Msc., sebagai dosen pembimbing atas segala arahan dan bimbingannya selama ini.
2. Dr. Ir. Budi Indra Setiawan, MS.Ac., sebagai dosen penguji.
4. Ir. Abdurrahman, sebagai Kepala Biro Pengembangan Usaha PT. WIKA atas izinnya untuk melakukan penelitian di greenhouse PT. WIKA.
5. Ibunda, ayahanda, serta saudaraku Iccang dan Ety atas kasih sayang dan doanya selama ini.
6. Teman seperjuangan “Eka Damayanti”.
7. Ida-Rono, Novee-Eri, Beng-Beng, Gina, Merry, Mala, Aud, Uca, Erik Pondok Eni Crew (Mas Bas, Suro, Brewok, Ropi, Dedi), Pondok Mr. Bean Crew (Zaki, Rizky, Bintar, Agu, Imam de el el) dan Maya, makasih atas bantuan, dukungan dan persahabatannya selama ini.
10. Pak Ahmad, Mas Yudi, Mas Rizky, Mas Anto dan semua pihak yang telah membantu penelitian hingga tersusunnya skripsi ini.

Bogor, Agustus 1999

Penulis
DAFTAR ISI

DAFTAR ISI ... i
DAFTAR GAMBAR .. ii
DAFTAR TABEL .. iii
DAFTAR LAMPIRAN ... iv
I. PENDAHULUAN
 A. LATAR BELAKANG ... 1
 B. TUJUAN .. 3
II. TINJAUAN PUSTAKA
 A. TEMPERATUR ... 4
 B. RADIASI MATAHARI .. 5
 C. VENTILASI .. 7
III. METODOLOGI PENELITIAN
 A. TEMPAT DAN WAKTU PENELITIAN 13
 B. ALAT DAN BAHAN .. 13
 C. PENDEKATAN TEORITIS .. 15
 D. PENGUKURAN DAN PENGOLAHAN DATA 21
IV. HASIL DAN PEMBAHASAN
 A. PERSENTASE LUASAN EFEKTIF 26
 B. KOEFISIEN TEKANAN INTERNAL 27
 C. PENGARUH ANGIN TERHADAP LAJU VENTILASI 29
 D. PENGARUH LUAS BUKAAN TERHADAP LAJU VENTILASI .. 32
 E. KESEIMBANGAN LAJU VENTILASI 34
 F. TEMPERATUR DI DALAM DAN DI LUAR
 GREEHOUSE .. 36
 G. BIDANG TEKANAN NETRAL .. 37
V. KESIMPULAN DAN SARAN

DAFTAR PUSTAKA
DAFTAR GAMBAR

1. Skema dan notasi bangunan ... 16
2. Lokasi titik pengukuran ... 24
3. Distribusi perbedaan tekanan pada masing-masing bukaan untuk
 \[C_{pi} = -0.0576 \] .. 30
4. Arah aliran pada masing-masing bukaan greenhouse PT. WIKA 31
5. Grafik hubungan perubahan lebar bukaan atap terhadap C_{pi} 31
6. Grafik hubungan kecepatan angin terhadap laju ventilasi 32
7. Distribusi tekanan pada bukaan A_1=A_3=112.5 m^2, A_2=30 m^2
 untuk C_{pi}=-0.0576... 36
8. Grafik hubungan luas total bukaan terhadap laju ventilasi 36
9. Arah aliran udara pada masing-masing luas bukaan greenhouse 37
10. Grafik hubungan \(Q_{m} \) dan \(Q_{out} \) .. 38
DAFTAR TABEL

1. Luas greenhouse diberbagai negara hortikultura utama 8
2. Nilai Cpe untuk masing-masing bukaan ... 17
3. Data dimensi bangunan yang diperlukan dalam perhitungan laju Ventilasi ... 23
4. Data kecepatan aliran udara .. 26
5. Nilai Cpi terhadap 0 ... 29
6. Gradien tekanan (ΔP) terhadap Cpi=-0.0576 ... 30
7. Luas bukaan terhadap nilai Cpi .. 31
8. Kecepatan angin terhadap laju ventilasi alam 33
9. Kecepatan angin terhadap gradien tekanan (ΔP) 33
10. Luas bukaan terhadap kecepatan aliran udara 34
DAFTAR LAMPIRAN

1. Flow chart program iterasi menghitung nilai h dan Cpi 41
2. Program iterasi mencari nilai h dan Cpi .. 43
3. Gambar teknik greenhouse PT. WIKA ... 46
4. Data temperatur dan kelembaban udara (RH) dalam greenhouse 48
5. Data temperatur dan kelembaban udara (RH) pada lingkungan disekitar greenhouse .. 51
6. Data laju ventilasi alami karena faktor angin .. 55
7. Data kecepatan angin terhadap laju ventilasi alam karena pengaruh faktor angin (Qw) ... 56
8. Data kecepatan angin terhadap gradien tekanan pada masing-masing bukaan ... 57
9. Data ukuran dimensi bangunan greenhouse 58
10. Daftar simbol ... 59
11. Psikometri chart .. 61
I. PENDAHULUAN

A. LATAR BELAKANG

Lingkungan mempengaruhi aktivitas fotosintesis tanaman untuk dapat tumbuh dan berkembang dengan baik, karena itu tanaman memerlukan lingkungan yang sesuai bagi pertumbuhannya. Faktor-faktor lingkungan yang mempengaruhi pertumbuhan dan perkembangan tanaman antara lain temperatur udara disekitar tanaman, intensitas cahaya, kelembaban nisbi udara, kecepatan angin, temperatur media tanam, kelembaban media tanam dan ketersediaan unsur hara.

Untuk menciptakan lingkungan yang sesuai bagi pertumbuhan tanaman maka perlu dibuat suatu iklim mikro pada lingkungan pertumbuhan yang berbeda dengan lingkungan sekitarnya. Salah satunya adalah menggunakan rumah kaca (greenhouse). Penggunaan greenhouse dalam budidaya tanaman akan memberi dampak positif yaitu terlindungnya tanaman dari terpaan air hujan, terlindungnya tanaman dari hama dan penyakit dan mengurangi intensitas cahaya yang matahari yang mengenai tanaman. Namun penggunaan greenhouse akan meningkatkan temperatur udara dalam greenhouse.

Meningkatnya temperatur udara dalam greenhouse disebabkan oleh dua hal, yaitu: (1). efek rumah kaca, yaitu tertahannya radiasi gelombang panjang dalam greenhouse sehingga menaikkan temperatur udara dalam greenhouse dan (2). Stuktur greenhouse yang tertutup sehingga pindah panas dari pergerakan udara berkurang. Hal ini tentu saja mempengaruhi pertumbuhan tanaman yang tidak tahan terhadap temperatur yang tinggi. Oleh
pertumbuhan tanaman yang tidak tahan terhadap temperatur yang tinggi. Oleh karena itu diperlukan usaha-usaha untuk membuat temperatur di lingkungan sekitar tanaman tersebut mendekati atau sesuai dengan kebutuhan tanaman.

Salah satu usaha agar temperatur udara dalam *greenhouse* tidak terus meningkat dan dapat mendekati temperatur udara luar *greenhouse* yaitu dengan ventilasi. Ventilasi adalah pertukaran / pergerakan udara melewati bukaan bangunan untuk memindahkan panas yang ada dalam bangunan yang disebabkan oleh radiasi matahari. Ventilasi ada dua yaitu ventilasi mekanik dan ventilasi alam.

Ventilasi mekanik menggunakan kipas yang digerakkan oleh tenaga listrik, kipas ini akan menarik udara yang panas dari dalam bangunan dan membuangnya keluar sehingga tekanan udara di dalam bangunan (tekanan internal) akan turun menyebabkan udara luar akan masuk melalui bukaan, demikian seterusnya.

Pada ventilasi alam, pertukaran udara terjadi jika ada perbedaan tekanan melalui bukaan bangunan yang timbul dari dua sumber yaitu dari panas yang dihasilkan dalam bangunan dan angin. Panas yang dihasilkan dalam bangunan meningkatkan temperatur udara, menurunkan kerapatan udara yang menghasilkan perbedaan tekanan antara di dalam dan di luar bangunan sehingga terjadi aliran udara melalui bukaan bangunan. Demikian pula angin menghasilkan perbedaan tekanan di sekitar dan di dalam bangunan menyebabkan aliran udara.
B. TUJUAN

Tujuan dari penelitian ini adalah:

1. Mempelajari penerapan model matematika Bruce untuk menghitung laju ventilasi alam karena pengaruh faktor angin pada bangunan *single-span greenhouse*.

2. Membuat program simulasi untuk mencari nilai bidang tekanan netral (h) dan koefisien tekanan internal (Cp) secara iterasi.

3. Mempelajari hubungan kecepatan angin dan luas bukaan terhadap laju ventilasi alami pada bangunan *single-span greenhouse*.

4. Melihat apakah hukum keseimbangan volume berlaku pada perhitungan laju ventilasi alam karena faktor angin.
II. TINJAUAN PUSTAKA

A. TEMPERATUR

Faktor-faktor yang mempengaruhi besarnya temperatur udara di dalam greenhouse adalah tingkat intensitas radiasi matahari, tingkat kapasitas alat pemanas, besar kecilnya perubahan panas akibat proses transpirasi tanaman, besar kecilnya panas yang hilang melalui atap atau dinding, besar kecilnya panas yang diserap tanaman untuk transpirasi atau fotosintesis dan besar kecilnya panas yang hilang melalui ventilasi serta bahan konstruksi (Walker, 1965).

Temperatur lingkungan berpengaruh terhadap proses fisik dan kimiai tanaman dan selanjutnya akan mengendalikan proses biologi dalam tanaman (Harjadi, 1984). Temperatur mempengaruhi kelarutan berbagai zat, kestabilan sistem enzim, kecepatan reaksi, kesetimbangan berbagai sistem lain dan persenyawaan.

Menurut Harjadi (1984), temperatur yang ekstrim dapat merusak tanaman. Temperatur yang terlalu dingin akan membekukan dan temperatur yang terlalu tinggi dapat mematikan tanaman akibat koagulasi protein. Terhentinya pertumbuhan pada temperatur yang tinggi merupakan suatu gambaran dari suatu kesetimbangan metabolik yang terganggu.

Respon laju pertumbuhan tanaman terhadap satu kisaran temperatur yang luas (konstan) dibagi menjadi tiga bagian, yaitu kisaran temperatur minimum dan maksimum dimana pertumbuhan tanaman terhenti seluruhnya dan kisaran temperatur optimum dimana kecepatan pertumbuhan tertinggi
dapat dipertahankan dengan anggapan bahwa temperatur merupakan faktor pembatas pertumbuhan (Fitter dan Hay di dalam Kuncoro, 1991).

Tiap tanaman dapat tumbuh dengan baik pada kisaran temperatur lingkungan tertentu. Untuk tanaman tomat, tumbuh baik pada kisaran temperatur udara 21\(^\circ\)-24\(^\circ\) C, sedangkan temperatur malam yang sesuai bagi pembentukan bunga dan buah berkisar antara 15\(^\circ\)-20\(^\circ\) C (Thompson dan Kelly, 1979). Untuk tanaman melon, temperatur optimum pertumbuhan pada siang hari berkisar antara 28\(^\circ\)-30\(^\circ\) C dan pada malam hari berkisar antara 18\(^\circ\)-20\(^\circ\) C (Setiadi, 1996). Untuk tanaman paprika memerlukan temperatur optimum untuk pertumbuhannya adalah 18\(^\circ\)-23\(^\circ\) C (Imam Harjono, 1996).

B. RADIASI MATAHARI

Cahaya merupakan salah satu faktor lingkungan yang sangat berpengaruh terhadap pertumbuhan tanaman, baik dari segi spektrum, intensitas radiasi atau lamanya penyinaran.

Menurut Fitter dan Hay (1991), cahaya mempunyai pengaruh terhadap lingkungan. Secara langsung cahaya berpengaruh terhadap metabolisme melalui
fotosintesis serta secara tidak langsung melalui pertumbuhan dan perkembangan tanaman.

Sekitar sepertiga radiasi matahari langsung aktif dalam proses fotosintesis, sedangkan dua pertiganya merupakan radiasi difusi. Spektrum atau panjang gelombang cahaya secara garis besar dibagi menjadi tiga bagian yaitu ultra violet (290-390 nm), cahaya tampak (390-700 nm) dan infra merah (700-4000 nm). Namun tidak semua yang dapat dimanfaatkan oleh tanaman seperti cahaya ultra violet yang umumnya bersifat merusak pertumbuhan tanaman. Cahaya tampak yang memiliki panjang gelombang 390-700 nm merupakan radiasi matahari yang sangat dibutuhkan oleh tanaman untuk berfotosintesis. Fotosintes merupakan proses konversi energi cahaya menjadi energi kimia yang akan terjadi pada cahaya tampak dengan panjang gelombang sinar merah dan biru yang paling efisien digunakan (Nelson, 1978).

Beberapa dari sinar infra merah tersebut diabsorpsi melalui udara atau obyek lain, sebagian diteruskan dan dipantulkan. Sinar infra merah yang mencapai kaca dipantulkan atau diabsorpsi yang menyebabkan penambahan panas terus menerus dalam *greenhouse* selama siang hari (Kenhard dan Nelson, 1973).

Energi matahari yang masuk ke dalam *greenhouse* dipantulkan dari berbagai permukaan. Energi ini diserap oleh tanaman, lantai tanah dan lain-lain. Energi tersebut kemudian diubah menjadi panas. Kelebihan energi dihamburkan sebagai panas laten dalam transpirasi, memanaskan udara dalam *greenhouse* secara konduksi dan konveksi atau dipancarkan sebagai radiasi gelombang panjang. Energi yang dipancarkan sebagai radiasi gelombang panjang ini
terperangkap dalam greenhouse dan memanaskan udara di dalamnya sehingga temperatur udara akan naik (Businger, 1963).

C. RUMAH KACA (GREENHOUSE)

Greenhouse adalah suatu stuktur lingkungan yang tertutup oleh bahan transparan (tembus cahaya) dengan memanfatkan radiasi surya untuk pertumbuhan tanaman di dalamnya (Mastalerz, 1977). Menurut Soeseno (1985), istilah greenhouse digunakan untuk menyatakan bangunan tempat menumbuhkan tanaman yang hijau terus, walaupun keadaan lingkungan luar tidak menguntungkan seperti musim panas dan musim dingin.

Nelson (1978) mendefinisikan greenhouse sebagai suatu bangunan yang memiliki struktur atap dan dinding yang bersifat tembus cahaya, memungkinkan cahaya yang dibutuhkan tanaman bisa masuk dan tanaman terhindar dari kondisi lingkungan yang tidak menguntungkan antara lain curah hujan yang deras, tiupan angin yang kencang, atau keadaan temperatur yang terlalu rendah atau terlalu tinggi, sehingga dapat menghambat pertumbuhan tanaman.

Istilah *greenhouse* berasal dari kata “green” yang berarti hijau dan “house” yang berarti rumah. Oleh karena itu istilah *greenhouse* biasa diterjemahkan sebagai rumah hijau, ini karena tanaman yang ditanam di dalamnya selalu tampak hijau sepanjang tahun (Widyastuti, 1993).

Di negara-negara subtropis, *greenhouse* dibangun untuk melindungi tanaman dari kondisi lingkungan yang kurang menguntungkan. Seperti diketahui bahwa di negara-negara subtropis pertanian sangat tergantung pada musim, hal ini disebabkan iklim yang sangat fluktuatif, dimana pada musim dingin sulit sekali dilakukan kegiatan pertanian. Namun dengan adanya *greenhouse* yang dilengkapi dengan sistem pengendalian lingkungan seperti pengaturan temperatur, angin, cahaya, kelembapan dan kadar CO₂ udara, keadaan tersebut dapat diatasi. Luas *greenhouse* diberbagai negara hortikultura tertera pada tabel 1.

<table>
<thead>
<tr>
<th>Negara</th>
<th>Luas (Ha)</th>
<th>Tahun data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jepang</td>
<td>4300</td>
<td>1987</td>
</tr>
<tr>
<td>Itali</td>
<td>18000</td>
<td>1980</td>
</tr>
<tr>
<td>Korea</td>
<td>13000</td>
<td>1982</td>
</tr>
<tr>
<td>Holland</td>
<td>8500</td>
<td>1987</td>
</tr>
<tr>
<td>USA</td>
<td>7100</td>
<td>1980</td>
</tr>
<tr>
<td>China</td>
<td>6000</td>
<td>1978</td>
</tr>
</tbody>
</table>

Lain halnya di Indonesia, seperti daerah tropis lainnya, sinar matahari merupakan faktor iklim yang paling destruktif terhadap tanaman. Dengan demikian fungsi *greenhouse* lebih ditekankan sebagai sarana pelindung tanaman
terhadap iklim, mengurangi intensitas serangan hama penyakit (Widyastuti, 1993).

Sistem pengendalian lingkungan di dalam greenhouse merupakan bagian yang penting dalam pemeliharaan tanaman. Hal ini dilakukan untuk mengetahui apakah kondisi lingkungan di dalam greenhouse sesuai apa tidak dengan kebutuhan tanaman. Faktor lingkungan yang berperan penting dalam mempengaruhi pertumbuhan tanaman di dalam greenhouse adalah temperatur, kelembaban relatif dan cahaya.

Pemilihan bentuk greenhouse tergantung pada keadaan lingkungan dan jenis tanaman yang dibudidayakan (1 Wayan Tika, 1986).

D. VENTILASI

Ventilasi adalah proses pertukaran antara udara yang didalam dan di luar greenhouse untuk memindahkan panas yang disebabkan radiasi matahari, juga mengisi karbondioksida dan membantu mengontrol tingkat kelembaban udara. Laju ventilasi diukur dengan satuan jumlah massa udara yang
dipertukarkan dengan per unit waktu (jam, menit atau detik) (Mantalerz, 1977).

Menurut Mantalerz (1977), pertukaran udara terdiri dari pergerakan dan pencampuran udara dalam greenhouse untuk menaikkan keseragaman udara dan kelembaban serta menyediakan udara yang sesuai di seluruh greenhouse.

Ventilasi pada greenhouse mempunyai dua tujuan yaitu mengontrol temperatur udara di dalam greenhouse dan mempertahankan konsentrasi karbondioksida dalam greenhouse (Takakura, 1989).

Di bawah bidang tekanan netral, arah aliran udara adalah ke dalam bangunan, sedangkan di atas bidang tekanan netral, arah aliran udara adalah ke luar bangunan (Brockett dan Albright, 1987).

Jika temperatur udara di dalam bangunan lebih panas dari temperatur luar maka tekanan udara di dalam greenhouse akan lebih rendah dari tekanan udara luar sehingga terjadi aliran udara ke dalam bangunan atau inflow. Apabila tekanan udara dalam lebih besar daripada di luar terjadi aliran udara keluar atau outflow.

Adanya pergerakan angin menyebabkan terjadinya perbedaan tekanan udara antara di dalam dan di luar bangunan. Angin menyebabkan adanya zona tekanan tinggi dan rendah disekeliling bangunan yang menyebabkan terjadinya aliran udara (Barrington et al., 1994). Untuk menghitung laju ventilasi karena efek angin perlu diketahui nilai koefisien tekanan eksternal dan internal.
Menurut Randall dan Boon (1997), Cpi adalah nilai perbandingan tekanan internal dengan tekanan kinetik angin, dengan selalu menganggap seluruh volume bangunan adalah konstan. Sedangkan Cpe adalah nilai perbandingan tekanan eksternal dengan tekanan kinetik angin yang selalu diukur pada ketinggian 10 m diatas permukaan laut.

Penggunaan ventilasi alami diterima dan diperbaharui karena berpotensi dalam mengurangi biaya operasi. Menurut Brockett dan Albright (1987), sistem ventilasi alami membutuhkan energi dan biaya yang lebih kecil dibandingkan dengan sistem ventilasi mekanik, disamping itu lebih tenang karena sistem ventilasi mekanik digerakkan oleh kipas listrik yang mengeluarkan suara berisik bila sedang berfungsi.
III. METODOLOGI PENELITIAN

A. TEMPAT DAN WAKTU PENELITIAN

B. ALAT DAN BAHAN

Alat-alat yang digunakan pada penelitian ini adalah:

1. Rumah kaca (Greenhouse)

 Greenhouse berfungsi untuk melindungi tanaman dari faktor-faktor lingkungan yang kurang menguntungkan. Faktor-faktor tersebut seperti curah hujan yang terlalu deras, intensitas cahaya matahari yang berlebihan, terpaam angin dan serangan hama penyakit. Tanaman yang ditanam di dalam greenhouse adalah tomat dengan tiga jenis varietas yaitu tomat cherry (Lycopersicum cerasiforme), tomat resecto (Lycopersicum grandifolium) dan tomat apel (Lycopersicum pyriforme).

 Bentuk greenhouse adalah standar peak, atapnya dibuat seperti bersusun dan terdapat bukaan atap yang berfungsi untuk ventilasi. Konstruksi greenhouse menggunakan kayu sebagai tiang utama dan rangka kuda-kuda. Pondasinya dibuat dengan pondasi setempat. Atap greenhouse menggunakan plastik Polivinil Chloride transparan, sedangkan sisi samping greenhouse menggunakan kasa nyamuk. Luas greenhouse adalah 80 m² (6 x 15 m), tinggi dinding 4 m. Greenhouse dibangun
membujur utara-selatan dengan pintu masuk ke dalam greenhouse terletak di belakang.

2. Weather Station

Tipe Weather station atau stasiun cuaca yang digunakan adalah model 26700 (merk RM Young). Alat ini memiliki lima sensor yaitu sensor temperatur dan kelembaban, sensor angin, sensor tekanan udara, sensor intensitas cuaca dan sensor curah hujan, sehingga alat ini dapat digunakan untuk mengukur temperatur dan kelembaban, kecepatan dan arah angin, tekanan udara, intensitas cahaya matahari dan curah hujan. Satuan pengukuran alat ini dapat diset sesuai keinginan pemakai. Pada penelitian ini satuan temperatur diset pada °C, kelembaban dalam persen, kecepatan angin dalam m/s, arah angin dalam derajat, tekanan udara dalam millibar, curah hujan dalam mm/hari dan intensitas cahaya matahari dalam W/m². Weather station ini dipasang di luar greenhouse untuk mengetahui iklim mikro disekitar lingkungan greenhouse. Sensor angin dipasangkan pada bambu yang panjangnya 6 m agar data yang terukur lebih akurat.

3. Display

Display berfungsi untuk menampilkan data hasil pengukuran weather station agar dapat terbaca.

4. PC (Personal Computer)

Untuk merekam data hasil pengukuran weather station, Display dihubungkan dengan PC sehingga data hasil pengukuran dapat tersimpan.
5. *Air Max*

Alat ini berfungsi untuk mengukur besarnya kecepatan aliran udara. Digunakan pada pengukuran untuk mencari nilai konstanta kasa.

6. Kipas

Kipas yang digunakan adalah kipas yang digerakkan oleh listrik, alat ini dipakai pada pengukuran untuk mencari nilai konstanta kasa.

7. Pipa paralon

Pipa paralon yang digunakan berdiameter 11 cm dengan panjang pipa untuk aliran sebelum melewati kasa adalah 200 cm dan panjang pipa untuk aliran setelah melewati kasa adalah 50 cm.

8. Termometer

Untuk mengukur temperatur udara didalam *greenhouse* digunakan termometer air raksa sebanyak 3 buah yang diletakkan pada titik pengukuran yang berbeda dalam *greenhouse*.

9. Termometer bola basah dan bola kering

Untuk mengetahui kelembaban udara di dalam *greenhouse* digunakan termometer bola basah dan bola kering. Data hasil pengukuran kemudian diplotkan pada grafik Psikrometri untuk mengetahui besarnya kelembaban udara.

C. PENDEKATAN TEORITIS

Bruce (1975) mengembangkan persamaan matematika untuk menghitung laju ventilasi alami yang dipengaruhi faktor angin untuk kandang ternak.
Model bangunan kandang diasumsikan memiliki satu ridge (bukaan atap) dan dua buah bukaan di kedua sisi bangunan (Gambar 1).

![Diagram](image)

Gambar 1. Skema notasi bangunan
Besarnya laju ventilasi alami karena pengaruh angin yang terjadi pada semua bukaan bangunan di hitung dengan persamaan:

\[Q_w = \sum_{j=1}^{n} A_j + V_w \]

Sedangkan kecepatan aliran udara yang melewati setiap bukaan adalah:

\[V_{wj} = C_d \frac{\sqrt{C_{p ej} - C_{pi}}}{C_{p ej} - C_{pi}} \]

Cd adalah koefisien discharge yaitu nilai perbandingan antara luasan efektif yang merupakan bidang normal tegak lurus aliran dengan luasan lubang
itu sendiri. Bruce (1982) merekomendasikan nilai Cd sebesar 0.68 untuk bukaan yang terbuka.

Untuk menghitung laju ventilasi alami karena pengaruh faktor angin, perlu diketahui nilai koefisien tekanan internal (Cpi). Persamaan untuk mencari nilai koefisien tekanan internal (Cpi) telah dikembangkan oleh Bruce (1975).

\[
\sum_{j=i}^{n} A_j \frac{|Cpe_j - Cpi|^{3/2}}{Cpe_j - Cpi} = 0 \quad \text{.................(3)}
\]

Jika model bangunan pada Gambar 1 dimana terdapat 3 bukaan maka persamaan 3 dapat ditulis sebagai berikut.

\[
d_1 L_1 \frac{|Cpe_1 - Cpi|^{3/2}}{Cpe_1 - Cpi} + d_2 L_2 \frac{|Cpe_2 - Cpi|^{3/2}}{Cpe_2 - Cpi} + d_3 L_3 \frac{|Cpe_3 - Cpi|^{3/2}}{Cpe_3 - Cpi} = 0 \quad \text{..............(4)}
\]

Persamaan 4 diselesaikan secara iterasi menggunakan metode Newton untuk mencari nilai Cpi. Kemudian digunakan untuk mencari nilai kecepatan aliran udara, gradien tekanan dan laju ventilasi alami.

Tabel 3. Nilai Cpe untuk masing-masing bukaan

<table>
<thead>
<tr>
<th></th>
<th>Cpe1</th>
<th>Cpe2</th>
<th>Cpe3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.443</td>
<td>-1.261</td>
<td>-0.050</td>
</tr>
<tr>
<td>30</td>
<td>0.351</td>
<td>-1.137</td>
<td>-0.120</td>
</tr>
<tr>
<td>60</td>
<td>0.089</td>
<td>-0.664</td>
<td>-0.170</td>
</tr>
<tr>
<td>90</td>
<td>-0.164</td>
<td>-0.241</td>
<td>-0.164</td>
</tr>
</tbody>
</table>

Sumber: Down et al. (1985) di dalam Zhang et al. (1989)

Menurut Brockett dan Albright (1986) besarnya gradien tekanan karena pengaruh angin didalam dan diluar bukaan dapat dihitung dengan persamaan:
\[
\Delta P = \frac{1}{2} \rho V^2 (C_{peJ} - C_{pi})
\]

Jika gradien tekanan bernilai positif tekanan di luar bukaan lebih tinggi daripada di dalam bukaan sehingga terjadi aliran udara ke dalam bukaan (inflow), demikian sebaliknya.

Persamaan matematika yang dikembangkan oleh Bruce ini digunakan untuk menghitung laju ventilasi alami karena faktor angin pada bangunan greenhouse. Sisi dinding greenhouse dilapisi oleh kasa nyamuk sehingga tidak seluruh sisi dinding greenhouse dapat berfungsi sebagai bukaan untuk itu perlu dicari konstanta kasa (c) yang nantinya nilai c ini dikelikan dengan luas bukaan greenhouse supaya diketahui luas bukaan greenhouse yang benar-benar berfungsi sebagai bukaan.

Persamaan 4 untuk mencari nilai Cpi secara iterasi pada bangunan greenhouse menjadi:

\[
\frac{c.d_1.L_1}{C_{pe1} - C_{pi}} \left[\frac{C_{pe1} - C_{pi}}{C_{pe1} - C_{pi}} \right]^{3/2} + \frac{d_2.L_2}{C_{pe2} - C_{pi}} \left[\frac{C_{pe2} - C_{pi}}{C_{pe2} - C_{pi}} \right]^{3/2} + \frac{c.d_3.L_3}{C_{pe3} - C_{pi}} \left[\frac{C_{pe3} - C_{pi}}{C_{pe3} - C_{pi}} \right]^{3/2} = 0 \ldots \ldots \ldots (6)
\]

Untuk bukaan 2, luas bukaan tidak dikelikan dengan konstanta kasa karena pada bukaan 2 tidak terdapat kasa nyamuk. Laju ventilasi alami pada masing-masing bukaan yaitu:

\[
Q_{W_1} = c.d_1.L_1.Vw_1
\]

\[
Q_{W_2} = d_2.L_2.Vw_2
\]

\[
Q_{W_3} = c.d_3.L_3.Vw_3
\]
Supaya mempermudah perhitungan, dibuat program komputer dengan bahasa pemograman pascal untuk iterasi mencari nilai Cpi menggunakan metode Newton (Program terlampir).

Untuk iterasi dengan metode Newton, persamaan 6 perlu diturunkan terhadap Cpi agar mempermudah dalam penurunan persamaan 6 disederhanakan menjadi 3 persamaan

\[Y_1 = c \cdot d_1 \cdot L_1 \frac{(Cpe_1 - Cpi)^{3/2}}{Cpe_1 - Cpi} \](10)

\[Y_2 = d_2 \cdot L_2 \frac{(Cpe_2 - Cpi)^{3/2}}{Cpe_2 - Cpi} \](11)

\[Y_3 = c \cdot d_3 \cdot L_3 \frac{(Cpe_3 - Cpi)^{3/2}}{Cpe_3 - Cpi} \](12)

\[Y = Y_1 + Y_2 + Y_3 \]

Turunan dari masing-masing persamaan diatas, menjadi:

\[Y_1'(Cpi) = -0.5 \cdot c \cdot d_1 \cdot L_1 \frac{(Cpe_1 - Cpi)^{-0.5}}{Cpe_1 - Cpi} \](13)

\[Y_2'(Cpi) = -0.5 \cdot d_2 \cdot L_2 \frac{(Cpe_2 - Cpi)^{-0.5}}{Cpe_2 - Cpi} \](14)

\[Y_3'(Cpi) = -0.5 \cdot c \cdot d_3 \cdot L_3 \frac{(Cpe_3 - Cpi)^{-0.5}}{Cpe_3 - Cpi} \](15)

\[Y'(Cpi) = Y_1'(Cpi) + Y_2'(Cpi) + Y_3'(Cpi) \](16)
Setelah didapatkan persamaan turunan pertamanya, iterasi dapat dilakukan. Dimasukkan nilai duga Cpi disebut Cpi_{baru} program akan menghitung:

\[
Cpi_{baru} = Cpi_{lama} - \frac{Y(Cpi)}{Y'(Cpi)}
\](17)

Jika syarat memenuhi yaitu:

\[
\frac{Cpi_{lama} - Cpi_{baru}}{Cpi_{baru}} < 0.001
\](18)

Iterasi akan berhenti, tetapi bila belum iterasi akan terus berlangsung hingga terpenuhinya syarat tersebut di atas.

Bruce (1978) telah mengembangkan persamaan untuk mencari nilai bidang tekanan netral.

\[
\sum_{j=1}^{n} \frac{\bar{h} - h}{\bar{h} - \bar{h}} \int_{A_j} 1 \cdot \frac{y}{h} dy = 0
\](19)
Untuk model bangunan seperti pada gambar 2, persamaan (3) dapat ditulis sebagai berikut

\[
C.L.1 \left[\left(\frac{h + \frac{d_1}{2}}{2} \right)^{3/2} \cdot \frac{d_1}{2} - \frac{d_1}{2} \right] + C.L.3 \left[\left(\frac{h + \frac{d_3}{2}}{2} \right)^{3/2} \cdot \frac{d_3}{2} - \frac{d_3}{2} \right] - \frac{3}{2} \cdot L_2 \cdot d_2 \cdot (\frac{h}{2} - \frac{h}{2})^{3/2} = 0 \quad \ldots(20)
\]

Persamaan (20) diselesaikan secara iterasi untuk mengetahui posisi bidang tekanan netral (h). Untuk mempermudah perhitungan, dibuat program komputer dengan bahasa pemrograman Pascal untuk iterasi mencari nilai h

D. PENGUKURAN DAN PENGOLAHAN DATA

1. Pengukuran persentase luasan efektif kasa

Bukaan greenhouse dilapis oleh kasa nyamuk sehingga tidak semua luasan bukaan dapat efektif berfungsi sebagai bukaan. Untuk mengetahui berapa persen lubang kasa yang berfungsi sebagai luasan bukaan ventilasi didekat dengan rumus:

\[
m = \rho_1 \cdot A_1 \cdot V_1 = \rho_2 \cdot A_2 \cdot V_2 \quad \ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots(21)
\]

Dimana:

\[\rho_1 = \text{Massa jenis udara sebelum melalui kasa (kg/m}^3\)\]

\[\rho_2 = \text{Massa jenis udara setelah melalui kasa (kg/m}^3\)\]

\[A_1 = \text{Luas permukaan saluran pipa 1 (m}^2\)\]

\[A_2 = \text{Luas permukaan saluran pipa 2 (m}^2\)\]

\[V_1 = \text{kecepatan aliran udara sebelum melewati kasa (m/s)}\]

\[V_2 = \text{kecepatan aliran udara setelah melewati kasa (m/s)}\]
Dengan mengasumsikan \(\rho_1 = \rho_2 \), Persamaan (1) dapat disederhanakan menjadi:
\[m = A_1 V_1 = A_2 V_2 \]

\[(21)\]

Kasa nyamuk *greenhouse* diletakkan diantara dua pipa parallon, kemudian kedua pipa disatukan sehingga jika dialirkan udara pada pipa, tidak ada aliran udara yang keluar pada celah sambungan. Pada salah satu mulut pipa dialirkan udara menggunakan kipas, kecepatan aliran udara yang masuk dan keluar pipa diukur dengan menggunakan *Air Max* pada lima titik pengukuran yaitu 0.5 R, 0.7 R, R, 1.5 R, dan 2.2 R. Pengukuran ini dilakukan sebanyak 4 kali ulangan. Nilai hasil pengukuran kecepatan aliran udara yang masuk dan keluar pipa dibandingkan, kemudian dijadikan nilai luasan efektif kasa yang disebut konstanta kasa.

2. Dimensi bangunan dan bukaan *greenhouse*

Dimensi bangunan *greenhouse* yaitu panjang, lebar, dan tinggi *greenhouse*, ukuran bukaan 1, bukaan 2 dan bukaan 3 diperlukan untuk perhitungan laju ventilasi. Data-data tersebut diperoleh dari gambar teknik *greenhouse*. Model bangunan *greenhouse* diasumsikan memiliki satu bukaan atap dan dua bukaan dikedua sisinya yang berukuran sama (Gambar 1).
Tabel 2. Data dimensi bangunan yang diperlukan dalam perhitungan laju ventilasi

<table>
<thead>
<tr>
<th>Komponen</th>
<th>Variabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panjang green house</td>
<td>L_H1</td>
</tr>
<tr>
<td>Lebar green house</td>
<td>W_d</td>
</tr>
<tr>
<td>Tinggi green house</td>
<td>H_t, H_d</td>
</tr>
<tr>
<td>Lebar bukaan 1</td>
<td>d_1</td>
</tr>
<tr>
<td>Panjang bukaan 1</td>
<td>L_1</td>
</tr>
<tr>
<td>Lebar bukaan 2</td>
<td>D_2</td>
</tr>
<tr>
<td>Panjang bukaan 2</td>
<td>L_2</td>
</tr>
<tr>
<td>Lebar bukaan 3</td>
<td>d_3, W</td>
</tr>
<tr>
<td>Panjang bukaan 3</td>
<td>L_3</td>
</tr>
</tbody>
</table>

4. Pengukuran parameter iklim

Pengukuran temperatur di dalam greenhouse menggunakan termometer air raksa sebanyak tiga buah yang diletakkan pada titik pengukuran yang berbeda-beda yang kemudian dirata-ratakan untuk untuk mewakili keseragaman temperatur di dalam greenhouse. Termometer bola basah dan bola kering digunakan untuk mengetahui kelembaban udara di dalam greenhouse.
Pengukuran temperatur, kelembaban udara, kecepatan dan arah angin disekitar greenhouse, temperatur dan kelembaban di dalam greenhouse dilakukan setiap satu jam sekali dari pukul 08.00 sampai 16.00. Hasil pengukuran tersebut setelah diolah akan memberikan nilai laju ventilasi alami pada bangunan single-span greenhouse.

Keterangan:
1. Weather station
2. Termometer
3. Termometer bola basah dan bola kering

Gambar 2. Lokasi titik-titik pengukuran

5. Asumsi- asumsi yang digunakan

Untuk mengembangkan model dan mempermudah perhitungan diasumsikan : (1). Sistem ventilasi merupakan sistem yang mantap, (2). Udara itu ideal, tidak viscid dan gas yang lepas, (3). Udara yang mengalir melewati bangunan adalah dua dimensi, (4). Temperatur di dalam greenhouse itu seragam, (5). Koefisien discharge \(C_D \) untuk semua bukaan sama yaitu 0.68, (6). Angin yang masuk melalui bukaan dalam posisi horisontal (mendatar) terhadap bukaan, \(\theta = 0 \), (7). Massa jenis udara \(= 1.2 \text{ kg/m}^3 \).

6. Perhitungan dan pengolahan data

Setelah data parameter iklim, data dimensi bangunan dan nilai \(h \) dan nilai \(C_p \) telah diketahui, gradien tekanan udara, kecepatan aliran udara dan laju ventilasi karena pengaruh faktor angin dapat dihitung.
Untuk melihat hubungan antara \(Q^+ (Q_{in}) \) dan \(Q^- (Q_{out}) \), dilakukan perhitungan statistika untuk menentukan nilai koefisien determinasi \((R^2) \).

\[
R^2 = \frac{n \sum_{i=1}^{n} \sum_{j=1}^{n} X_i Y_i - \left(\sum_{i=1}^{n} X_i \right) \left(\sum_{i=1}^{n} Y_i \right)}{\sqrt{\left[n \sum_{i=1}^{n} X_i^2 - \left(\sum_{i=1}^{n} X_i \right)^2 \right] \left[n \sum_{i=1}^{n} Y_i^2 - \left(\sum_{i=1}^{n} Y_i \right)^2 \right]}} \tag{22}
\]

Nilai \(R^2 \) ini menunjukkan hubungan linier antara \(Q_{in} \) dan \(Q_{out} \), sedangkan \(R^2 \) menunjukkan besarnya keragaman nilai-nilai dari \(Q_{out} \) yang dapat dijelaskan oleh \(Q_{in} \).
IV. HASIL DAN PEMBAHASAN

A. PERSENTASE LUASAN EFEKTIF KASA

Dari data hasil pengukuran, kecepatan aliran udara sebelum melewati kasa lebih besar dari kecepatan aliran udara setelah melewati kasa.

Tabel 4. Data kecepatan aliran udara

<table>
<thead>
<tr>
<th>Titik Pengukuran</th>
<th>Kecepatan Udara sebelum melewati kasa (m/s)</th>
<th>Kecepatan Udara Setelah Melewati Kasa (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ulangan 1</td>
<td>Ulangan 2</td>
</tr>
<tr>
<td>0.5 R</td>
<td>2.35</td>
<td>2.40</td>
</tr>
<tr>
<td>0.7 R</td>
<td>2.30</td>
<td>2.35</td>
</tr>
<tr>
<td>R</td>
<td>2.35</td>
<td>2.40</td>
</tr>
<tr>
<td>1.5 R</td>
<td>2.40</td>
<td>2.45</td>
</tr>
<tr>
<td>2.2 R</td>
<td>2.60</td>
<td>2.45</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>2.40</td>
<td>2.47</td>
</tr>
</tbody>
</table>

Setelah melewati kasa, kecepatan aliran udara menjadi lebih kecil daripada sebelum melewati kasa. Hal ini berarti bahwa udara tidak seluruhnya dapat melewati kasa, karena terhalang oleh sekat kasa sehingga perlu diketahui berapa persentase luasan kasa efektif untuk dapat dilewati oleh aliran udara.

Nilai kecepatan aliran udara sebelum melewati kasa dibandingkan dengan nilai kecepatan aliran udara sesudah melewati kasa sehingga diperoleh nilai 0.46 atau 46 %. Nilai inilah yang disebut konstanta kasa (c) yang
merupakan persentase luasan efektif kasa yang dapat berfungsi sebagai bukaan untuk pertukaran udara di dalam dan di luar greenhouse.

B. TEMPERATUR DI DALAM DAN DI LUAR GREENHOUSE

Dari data *typical* yang diperoleh pada tanggal 17 Juli 1999 diketahui bahwa temperatur di dalam *greenhouse* selalu lebih tinggi dari temperatur di luar *greenhouse*.

<table>
<thead>
<tr>
<th>Waktu (jam)</th>
<th>08.00</th>
<th>09.00</th>
<th>10.00</th>
<th>11.00</th>
<th>12.00</th>
<th>13.00</th>
<th>14.00</th>
<th>15.00</th>
<th>16.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur Udara Dalam Greenhouse (°C)</td>
<td>21.0</td>
<td>23.7</td>
<td>25.8</td>
<td>25.7</td>
<td>24.5</td>
<td>25.7</td>
<td>26.0</td>
<td>24.5</td>
<td>23.0</td>
</tr>
<tr>
<td>Temperatur Udara Luar Greenhouse (°C)</td>
<td>20.4</td>
<td>22.6</td>
<td>25.3</td>
<td>24.4</td>
<td>24.2</td>
<td>24.7</td>
<td>25.3</td>
<td>22.9</td>
<td>22.3</td>
</tr>
</tbody>
</table>

Perbedaan besarnya temperatur di dalam dan di luar *greenhouse* disebabkan antara lain: pertama, radiasi gelombang pendek yang diteruskan oleh plastik penutup ataupun berubah menjadi gelombang panjang. Gelombang panjang tersebut menyebabkan panas sensibel dan panas evaporasi yang tidak dapat diteruskan keluar melalui plastik dan terperangkap di dalam. Kedua, konstruksi *greenhouse* yang sisi sampiunnya merupakan dinding yang kawat kasa yang tidak dapat seluruhnya berfungsi sebagai bukaan, sehingga pergantian massa dan energi di dalam *greenhouse* menjadi lambat. Grafik hubungan antara waktu terhadap temperatur lingkungan *greenhouse* dapat dilihat pada Gambar 3.
Gambar 3. Grafik hubungan waktu dengan temperatur luar

Dari grafik terlihat selisih temperatur antara di dalam dan di luar greenhouse tidak berbeda jauh, hal ini disebabkan oleh luasnya bukaan greenhouse yang dilapisi oleh kawat kasa sehingga sirkulasi udara memungkinkan terjadi.
C. KOEFISIEN TEKANAN INTERNAL (Cpi)

Dari hasil perhitungan secara iterasi menggunakan metoda Newton, nilai koefisien tekanan internal (Cpi) yang diperoleh untuk berbagai sudut datangnya angin (θ) untuk ukuran single-span greenhouse milik PT. WIKA seperti pada tabel berikut:

Tabel 5. Nilai Cpi terhadap θ

<table>
<thead>
<tr>
<th>θ</th>
<th>Cpi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.0576</td>
</tr>
<tr>
<td>30</td>
<td>-0.1218</td>
</tr>
<tr>
<td>60</td>
<td>-0.1700</td>
</tr>
<tr>
<td>90</td>
<td>-0.1729</td>
</tr>
</tbody>
</table>

L1=L2=L3=15m d1=d3=3.6m d3=1.2m

Terlihat bahwa nilai Cpi semakin kecil dengan bertambahnya sudut datangnya angin yang yang melewati bukaan, namun nilai Cpi untuk sudut 60° dan 90° tidak berbeda jauh.

Jika koefisien tekanan internal (Cpi) lebih kecil dari koefisien tekanan eksternal (Cpe) berarti tekanan udara di dalam greenhouse lebih kecil dari tekanan udara di luar greenhouse sehingga gradien tekanan akan positif, berarti terjadi aliran udara ke dalam atau inflow, demikian pula sebaliknya. Jika nilai Cpi lebih besar dari nilai Cpe bukaan, gradien tekanan akan negatif sehingga terjadi aliran udara ke luar atau outflow. U dara yang bertemperatur tinggi, tekanan udara menjadi lebih rendah, sedangkan udara yang temperaturnya
rendah, tekanan udara akan tinggi. Sesuai sifat udara, udara akan bergerak dari yang bertekanan tinggi ke yang bertekanan rendah.

Untuk $\theta=0$, Terlihat bahwa nilai C_p lebih kecil dari C_{pe} untuk bukaan 1 dan bukaan 2 sehingga gradien tekanannya akan menjadi positif. Sedangkan untuk bukaan 3, nilai C_p lebih besar dari C_{pe} sehingga gradien tekanan udara akan negatif (lihat Tabel 6) Hal ini menunjukkan bahwa pada bukaan 1 dan bukaan 3 terjadi aliran udara ke dalam greenhouse (inflow). Pada bukaan 2, terjadi aliran udara keluar greenhouse (outflow). Berapa nilai kecepatan aliran udara dan laju ventilasi alami yang terjadi akan di bahas lebih lanjut.

Tabel 6. Gradien tekanan (ΔP) pada $cpi=-0,0576$

<table>
<thead>
<tr>
<th>Bukaan</th>
<th>ΔP (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,201</td>
</tr>
<tr>
<td>2</td>
<td>-2,888</td>
</tr>
<tr>
<td>3</td>
<td>0,018</td>
</tr>
</tbody>
</table>

$V=2\text{ m/s}$, $\rho=1,2\text{ kg/m}^3$

Gambar 4. Distribusi perbedaan tekanan pada masing-masing bukaan

Untuk $C_{pi}=-0,0576$
Dari hasil perhitungan yang ditampilkan pada grafik dibawah ini, jika lebar bukaan atap \((d_2) \) bertambah, sedangkan panjang bukaannya \((L_2) \) tetap dan ukuran bukaan 1 dan 2 juga tetap, diperoleh bahwa nilai Cpi akan semakin kecil dan ini akan berpengaruh terhadap gradien tekanan, kecepatan aliran udara pada bukan dan laju ventilasi alami.

Gambar 5. Grafik hubungan perubahan lebar bukaan atap terhadap Cpi

Jika luas bukaan atap \((A_2) \), luas bukaan 1 \((A_1) \) dan luas bukaan 3 \((A_3) \) bertambah, maka terlihat kecenderungan nilai Cpi akan bertambah besar.

Tabel 7. Luas bukaan terhadap nilai Cpi

<table>
<thead>
<tr>
<th>(A_1) (m²)</th>
<th>(A_2) (m²)</th>
<th>(A_3) (m²)</th>
<th>Cpi</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.5</td>
<td>18</td>
<td>52.5</td>
<td>-0.0613</td>
</tr>
<tr>
<td>80.0</td>
<td>24</td>
<td>80.5</td>
<td>-0.0502</td>
</tr>
<tr>
<td>112.5</td>
<td>30</td>
<td>112.5</td>
<td>-0.0463</td>
</tr>
<tr>
<td>150.0</td>
<td>36</td>
<td>150.0</td>
<td>-0.0367</td>
</tr>
<tr>
<td>192.5</td>
<td>42</td>
<td>192.5</td>
<td>-0.0253</td>
</tr>
</tbody>
</table>

\(\theta = 0^\circ \)
C. PENGARUH KECEPATAN ANGIN TERHADAP LAJU VENTILASI

Kecepatan angin akan berpengaruh terhadap besarnya laju ventilasi alami. Dari hasil perhitungan yang diplotkan pada Gambar 4, terlihat adanya hubungan yang linier positif antara kecepatan angin dan laju ventilasi yang terjadi pada bangunan greenhouse, dimana dengan meningkatnya kecepatan angin yang bertempat disekitar greenhouse maka laju ventilasi alami yang masuk dan keluar bukaan akan meningkat sehingga temperatur udara di dalam greenhouse akan mendekati temperatur udara luar.

Gambar 6. Grafik hubungan kecepatan angin dengan laju ventilasi alami
Tabel 8. Kecepatan angin terhadap laju ventilasi alami

<table>
<thead>
<tr>
<th>V</th>
<th>(V_{w1})</th>
<th>(V_{w2})</th>
<th>(V_{w3})</th>
<th>(Q_{w1})</th>
<th>(Q_{w2})</th>
<th>(Q_{w3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.6</td>
<td>0.289</td>
<td>-0.448</td>
<td>0.035</td>
<td>7.169</td>
<td>-8.057</td>
<td>0.879</td>
</tr>
<tr>
<td>1.2</td>
<td>0.577</td>
<td>-0.895</td>
<td>0.071</td>
<td>14.338</td>
<td>-16.114</td>
<td>1.759</td>
</tr>
<tr>
<td>1.8</td>
<td>0.866</td>
<td>-1.343</td>
<td>0.106</td>
<td>21.506</td>
<td>-24.170</td>
<td>2.638</td>
</tr>
<tr>
<td>2.4</td>
<td>1.154</td>
<td>-1.790</td>
<td>0.142</td>
<td>28.675</td>
<td>-32.227</td>
<td>3.517</td>
</tr>
<tr>
<td>3.0</td>
<td>1.443</td>
<td>-2.238</td>
<td>0.177</td>
<td>35.844</td>
<td>-40.284</td>
<td>4.397</td>
</tr>
<tr>
<td>3.6</td>
<td>1.732</td>
<td>-2.686</td>
<td>0.212</td>
<td>43.013</td>
<td>-48.341</td>
<td>5.276</td>
</tr>
<tr>
<td>4.0</td>
<td>1.924</td>
<td>-2.984</td>
<td>0.236</td>
<td>47.792</td>
<td>-53.712</td>
<td>5.862</td>
</tr>
</tbody>
</table>

\(L_1=L_2=L_3=15\ m, \ d_1=d_2=3.6\ m, \ d_2=1.2\ m\)

Terlihat pola aliran udara yang terjadi yaitu pada bukaan 1 dan 3 terjadi aliran udara ke dalam greenhouse (inflow), ditunjukkan oleh nilai kecepatan aliran udara \((V_{w1} \text{ dan } V_{w2})\) yang positif, sedangkan pada bukaan 2 terjadi aliran udara ke luar greenhouse (outflow) karena \(V_{w} \text{ negatif}\).

Arah aliran udara berkaitan dengan gradien tekanan antara di dalam dan di luar bukaan. Pada Tabel 8 terlihat gradien tekanan positif maka aliran udara akan positif (inflow) demikian sebaliknya.

Tabel 9. kecepatan angin terhadap gradien tekanan (\(\Delta P_w\))

<table>
<thead>
<tr>
<th>V</th>
<th>(\Delta P_{w1})</th>
<th>(\Delta P_{w2})</th>
<th>(\Delta P_{w3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.6</td>
<td>0.108</td>
<td>-0.260</td>
<td>0.0016</td>
</tr>
<tr>
<td>1.2</td>
<td>0.433</td>
<td>-1.040</td>
<td>0.0066</td>
</tr>
<tr>
<td>1.8</td>
<td>0.973</td>
<td>-2.339</td>
<td>0.0148</td>
</tr>
<tr>
<td>2.4</td>
<td>1.730</td>
<td>-4.159</td>
<td>0.0263</td>
</tr>
<tr>
<td>3.0</td>
<td>2.703</td>
<td>-6.498</td>
<td>0.0410</td>
</tr>
<tr>
<td>3.6</td>
<td>3.893</td>
<td>-9.358</td>
<td>0.0591</td>
</tr>
<tr>
<td>4.0</td>
<td>4.806</td>
<td>-11.553</td>
<td>0.0730</td>
</tr>
</tbody>
</table>

\(L_1=L_2=L_3=15\ m, \ d_1=d_2=3.6\ m, \ d_2=1.2\ m\)
D. PENGARUH LUAS BUKAAN TERHADAP LAJU VENTILASI

Perubahan luas bukaan *greenhouse* akan berpengaruh terhadap besarnya laju ventilasi alami. Dari Tabel 9 terlihat adanya hubungan yang linier positif antara luas bukaan terhadap laju ventilasi alami yang terjadi pada *greenhouse*, di mana laju ventilasi akan meningkat dengan bertambahnya luas masing-masing bukaan.

Tabel 10. Luas bukaan terhadap kecepatan aliran udara

<table>
<thead>
<tr>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(A_3)</th>
<th>(V_{w1})</th>
<th>(V_{w2})</th>
<th>(V_{w3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.5</td>
<td>18.0</td>
<td>52.5</td>
<td>1.449</td>
<td>-2.234</td>
<td>0.217</td>
</tr>
<tr>
<td>80.0</td>
<td>24.0</td>
<td>80.0</td>
<td>1.433</td>
<td>-2.248</td>
<td>0.029</td>
</tr>
<tr>
<td>112.5</td>
<td>30.0</td>
<td>112.5</td>
<td>1.427</td>
<td>-2.248</td>
<td>-0.124</td>
</tr>
<tr>
<td>150.0</td>
<td>36.0</td>
<td>150.0</td>
<td>1.413</td>
<td>-2.257</td>
<td>-0.235</td>
</tr>
<tr>
<td>192.5</td>
<td>42.0</td>
<td>192.5</td>
<td>1.390</td>
<td>-2.268</td>
<td>-0.321</td>
</tr>
</tbody>
</table>

\(V = 3 \text{ m/s} \)

Tabel 11. Luas bukaan terhadap laju ventilasi alami.

<table>
<thead>
<tr>
<th>(A_1)</th>
<th>(A_2)</th>
<th>(A_3)</th>
<th>(Q_{w1})</th>
<th>(Q_{w2})</th>
<th>(Q_{w3})</th>
<th>(Q_{w4})</th>
<th>(Q_{w5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.5</td>
<td>18.0</td>
<td>52.5</td>
<td>34.984</td>
<td>-40.219</td>
<td>5.236</td>
<td>40.219</td>
<td>40.219</td>
</tr>
<tr>
<td>80.0</td>
<td>24.0</td>
<td>80.0</td>
<td>52.723</td>
<td>-53.875</td>
<td>1.062</td>
<td>53.785</td>
<td>53.875</td>
</tr>
<tr>
<td>112.5</td>
<td>30.0</td>
<td>112.5</td>
<td>73.847</td>
<td>-67.443</td>
<td>-6.417</td>
<td>73.847</td>
<td>73.847</td>
</tr>
<tr>
<td>150.0</td>
<td>36.0</td>
<td>150.0</td>
<td>97.490</td>
<td>-81.263</td>
<td>-16.229</td>
<td>97.490</td>
<td>97.492</td>
</tr>
<tr>
<td>192.5</td>
<td>42.0</td>
<td>192.5</td>
<td>123.616</td>
<td>-95.243</td>
<td>-28.398</td>
<td>123.616</td>
<td>123.641</td>
</tr>
</tbody>
</table>

Jadi kemampuan pertukaran udara antara di dalam dan di luar bangunan bergantung pada desain dan ukuran *greenhouse*. Luas bukaan tidak berpengaruh langsung terhadap kecepatan aliran udara yang melewati bukaan,
tetapi berpengaruh terhadap nilai Cpi, nilai Cpi inilah yang berpengaruh terhadap kecepatan aliran udara yang melalui bukaan.

Pada tabel 10, untuk ukuran bukaan 1 dan 3 adalah 52.5 m² dan bukaan 2 adalah 18 m², terlihat pola aliran udara pada bukaan 1 dan bukaan 3 adalah inflow, sedangkan pada bukaan 2 adalah outflow. Pada ukuran bukaan 1 dan bukaan 3 adalah 112.5 m² dan bukaan 2 adalah 30 m², pola aliran udaranya yaitu, pada bukaan 1 adalah inflow dan pada bukaan 2 dan bukaan 3 adalah outflow. Hal ini disebabkan oleh gradien tekanan masing-masing bukaan (terlihat pada tabel 11), dimana gradien tekanan ini dipengaruhi oleh nilai Cpi dan nilai Cpi akan berubah dengan berubahnya ukuran bukaan. Sehingga suatu bukaan pada luasan tertentu dapat menjadi saluran masuk udara (inlet) dan pada luasan bukaan yang lain dapat berfungsi sebagai saluran keluarnya udara (outlet).

Tabel 12. Luas bukaan terhadap gradien tekanan

<table>
<thead>
<tr>
<th>(A_t)</th>
<th>(A_e)</th>
<th>(A_e)</th>
<th>(\text{C}_{pe}-\text{Cpi})</th>
<th>(\text{C}_{pe}-\text{Cpi})</th>
<th>(\Delta P_{w_t})</th>
<th>(\Delta P_{w_e})</th>
<th>(\Delta P_{w_e})</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>18,0</td>
<td>52,5</td>
<td>0,5043</td>
<td>-1,1997</td>
<td>0,0113</td>
<td>2,7232</td>
<td>-6,4784</td>
</tr>
<tr>
<td>80</td>
<td>24,0</td>
<td>80,0</td>
<td>0,4932</td>
<td>-1,2108</td>
<td>0,0002</td>
<td>2,6633</td>
<td>-6,5383</td>
</tr>
<tr>
<td>112,5</td>
<td>30,0</td>
<td>112,5</td>
<td>0,4893</td>
<td>-1,2147</td>
<td>-0,0037</td>
<td>2,6422</td>
<td>-6,5594</td>
</tr>
<tr>
<td>150</td>
<td>36,0</td>
<td>150,0</td>
<td>0,4797</td>
<td>-1,2243</td>
<td>-0,0133</td>
<td>2,5904</td>
<td>-6,6112</td>
</tr>
<tr>
<td>192,5</td>
<td>42,0</td>
<td>192,5</td>
<td>0,4683</td>
<td>-1,2357</td>
<td>-0,0247</td>
<td>2,5288</td>
<td>-6,6728</td>
</tr>
</tbody>
</table>

\(\theta = 0^\circ \)
Gambar 7 Distribusi perbedaan tekanan pada bukaan $A_1=A_3=112.5 \text{ m}^2$
dan $A_2=30 \text{ m}^2$ untuk $C_{pi}=-0.0576$

E. KESEIMBANGAN LAJU VENTILASI

Idealnya udara adalah gas yang yang lepas, jadi volume udara yang
masuk harus sama dengan volume udara yang keluar greenhouse. Ini dikenal
dengan hukum keseimbangan volume, yaitu:

$$Q_{in} = Q_{out}$$

Dari kecepatan angin yang diukur (Lampiran 6), terlihat jumlah volume
udara yang masuk setiap detiknya (Q_{in}) sama dengan jumlah volume udara
yang keluar setiap detiknya (Q_{out}) dari greenhouse. Nilai Q_{in} dan Q_{out}
diplotkan dalam grafik dibawah ini.
Gambar 8 Grafik hubungan Qin dan Qout

Dari grafik terlihat Q_{in} dan Q_{out} membentuk korelasi positif dan tinggi, dimana titik-titik menggerombol, berimpit dengan garis lurus dengan kemiringan positif. Nilai kofisien determinasi (R^2) dari persamaan regresi diperoleh nilai $R^2 = 1$. Ini menunjukkan sangat besarnya keragaman nilai-nilai dari Q_{out} yang dapat dijelaskan oleh Q_{in}, jadi dalam hal ini hukum keseimbangan volume berlaku pada laju ventilasi alami yang dipengaruhi oleh faktor angin.

F. BIDANG TEKANAN NETRAL (\tilde{h})

Posisi bidang tekanan netral (\tilde{h}) perlu diketahui dalam perhitungan laju ventilasi karena pengaruh faktor termal namun pada tujuan ini tidak dibahas mengenai laju ventilasi karena pengaruh faktor termal, hanya memperlihatkan posisi bidang tekanan netral pada bukaan greenhouse. Dari hasil perhitungan secara iterasi, diperoleh bidang tekanan netral bukaan greenhouse (\tilde{h}) milik PT
WIKA adalah 0.7595 di atas sumbu bukaan. Sedangkan tinggi bidang tekanan netral dari permukaan tanah adalah 2.9595 m.

Pada Tabel 13, terlihat perubahan dimensi panjang bukaan 1, 2, dan 3 tidak mempengaruhi bidang tekanan netral (h). Hal ini terlihat dari nilai h yang tetap yaitu 0.7595 m, walaupun panjang bukaan bertambah, dengan asumsi lebar bukaan 1,2, dan 3 tetap. Begitu pula pada perubahan lebar bukaan 1 dan 3 terlihat nilai h hanya mengalami perubahan yang sangat kecil.

Tabel 13. Posisi bidang tekanan netral terhadap pertambahan panjang semua bukaan.

<table>
<thead>
<tr>
<th>$L1-L2+L3$ (m)</th>
<th>$d1-d3$ (m)</th>
<th>$D2$ (m)</th>
<th>h (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>3.6</td>
<td>1.2</td>
<td>0.7595</td>
</tr>
<tr>
<td>16</td>
<td>3.6</td>
<td>1.2</td>
<td>0.7595</td>
</tr>
<tr>
<td>17</td>
<td>3.6</td>
<td>1.2</td>
<td>0.7595</td>
</tr>
<tr>
<td>18</td>
<td>3.6</td>
<td>1.2</td>
<td>0.7595</td>
</tr>
<tr>
<td>19</td>
<td>3.6</td>
<td>1.2</td>
<td>0.7595</td>
</tr>
<tr>
<td>20</td>
<td>3.6</td>
<td>1.2</td>
<td>0.7595</td>
</tr>
</tbody>
</table>

Nilai akan meningkat dengan bertambahnya lebar bukaan atap, seperti yang terlihat pada Tabel 14. Pada lebar bukaan atap 1.2 m nilai h adalah 0.7595 m, dan jika lebar bukaan atap diubah menjadi 2 m maka nilai h berubah menjadi 1.0612 m.
Tabel 14. Posisi bidang tekanan netral terhadap pertambahan lebar bukaan 1 dan 3.

<table>
<thead>
<tr>
<th>(L_1 = L_2 = L_3) (m)</th>
<th>(d_1 = d_3) (m)</th>
<th>(d_2) (m)</th>
<th>(\tilde{h}) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>3.6</td>
<td>1.2</td>
<td>0.7595</td>
</tr>
<tr>
<td>15</td>
<td>3.8</td>
<td>1.2</td>
<td>0.7606</td>
</tr>
<tr>
<td>15</td>
<td>4.0</td>
<td>1.2</td>
<td>0.7609</td>
</tr>
<tr>
<td>15</td>
<td>4.2</td>
<td>1.2</td>
<td>0.7601</td>
</tr>
<tr>
<td>15</td>
<td>4.4</td>
<td>1.2</td>
<td>0.7585</td>
</tr>
<tr>
<td>15</td>
<td>4.6</td>
<td>1.2</td>
<td>0.7561</td>
</tr>
</tbody>
</table>

Tabel 15. Posisi bidang tekanan netral terhadap pertambahan lebar bukaan atap 2.

<table>
<thead>
<tr>
<th>(L_1 = L_2 = L_3) (m)</th>
<th>(d_1 = d_3) (m)</th>
<th>(d_2) (m)</th>
<th>(\tilde{h}) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>3.6</td>
<td>1.2</td>
<td>0.7595</td>
</tr>
<tr>
<td>15</td>
<td>3.6</td>
<td>1.4</td>
<td>0.7430</td>
</tr>
<tr>
<td>15</td>
<td>3.6</td>
<td>1.6</td>
<td>0.9207</td>
</tr>
<tr>
<td>15</td>
<td>3.6</td>
<td>1.8</td>
<td>0.9932</td>
</tr>
<tr>
<td>15</td>
<td>3.6</td>
<td>2.0</td>
<td>1.0612</td>
</tr>
</tbody>
</table>

Pada posisi bidang tekanan netral (\(\tilde{h} \)) yaitu 0.7595 m di atas sumbu bukaan, pada posisi itu tekanan udara di dalam dan di luar greenhouse adalah sama jadi pada posisi tersebut tidak terjadi aliran pertukaran udara antara di dalam dan di luar greenhouse.
V. KESIMPULAN DAN SARAN

A. KESIMPULAN

1. Model perhitungan yang dikembangkan oleh Bruce untuk menghitung laju ventilasi alami karena pengaruh faktor angin pada kandang ternak dapat dipakai untuk menerangkan laju ventilasi alami pada greenhouse.

2. Pada model perhitungan yang dikembangkan oleh Bruce ini, arah aliran udara dan jumlah laju ventilasi yang masuk dan keluar bukaan greenhouse dapat diketahui.

3. Dari perhitungan dengan menggunakan model perhitungan Bruce yang dimodifikasi sesuai kondisi bangunan greenhouse, didapatkan bahwa kecepatan angin dan luasan bukaan mempengaruhi laju ventilasi pada greenhouse.

4. Hukum keseimbangan volume berlaku pada laju ventilasi karena pengaruh faktor angin, dimana laju ventilasi yang masuk \(Q_{in} \) = Laju ventilasi yang keluar \(Q_{out} \).

5. Program iterasi yang dibuat dapat digunakan untuk menghitung mencari nilai \(h \) dan \(Cpi \) berbagai ukuran bukaan greenhouse.

B. SARAN

1. Untuk kecepatan angin dibawah 1 m/s, laju ventilasi karena faktor angin kecil dan yang berpengaruh adalah laju ventilasi karena pengaruh faktor termal, untuk itu perlu dikembangkan perhitungan laju ventilasi alami karena faktor termal.
DAFTAR PUSTAKA

Lampiran 1. Flow chart program iterasi menghitung nilai h dan $C pi$

Mulai

Konstanta $C = $

Hitung $C pi$

Hitung $C pi$, h

Sudut 0, 30, 60, 90

$L1, L2, L3, d1, d2, d3, C pi$

Lama

For $i = 1$ to N

$Y(C pi)$

$Y'(C pi)$

$C pi$ baru = $C pi$ lama - $[Y(cpi)/Y'(C pi)]$

A

B

C

D

For $i = 1$ to N

$Y(ii)$

$Y'(h)$

h baru = h lama - $[Y(h)/Y'(h)]$
A

Tidak

[(Cpi lama - Cpi baru)/
Cpi baru] < 0,0001

Ya

Cetak Cpi

B

C

Tidak

[(th lama - h baru)/
h baru] < 0,0001

Ya

Cetak h

D

Selesai
Lampiran 2. Program iterasi mencari nilai h dan Cpi

(ON 65520, 0, 655350)

USES

CUT;

VAR

L1, L2, L3, D1, D2, D3, CPE1, CPE2, CPE3, H, TP, NPL : REAL;

I, J, SUDET, PILIH : INTEGER;

CPI, Y1, Y2, Y3, YTURUN, YTURUNL, YTURUN2, YTURUN3, DELTA

,YH, YH1, YH2, YH3, YHT, YHT1, YHT2, YHT3, DELTAH, HI : ARRAY [1..510] OF REAL;

CONST

C = 0.16;

LABEL

1, 10, 150, 500, 600, 750, 1100, 1110;

BEGIN

1:

CLRSRC:

WRITELN('SILAHKAN PILIH : 1. MENGHITUNG CPI');
WRITELN('2. MENGHITUNG HI');
WRITELN('3. KELUAR ');
WRITELN('PILIHAN ANDA = '); READ(PILIH);
IF PILIH = 1 THEN GOTO 10;
IF PILIH = 2 THEN GOTO 600;
IF PILIH = 3 THEN GOTO 1110;

10: (MENCARI CPI)

CLRSRC:

{MASUKAN DATA}

WRITE('NILAI L1 (H) = '); READLN(L1);
WRITE('NILAI L2 (K) = '); READLN(L2);
WRITE('NILAI L3 (M) = '); READLN(L3);
WRITE('NILAI D1 (K) = '); READLN(D1);
WRITE('NILAI D2 (K) = '); READLN(D2);
WRITE('NILAI D3 (K) = '); READLN(D3);
WRITE('SUDET BAKAAN (0,30,60 ATAU 90) = '); READLN(SUDET);

IF SUDET=0 THEN BEGIN
CPE1 := 0.443;
CPE2 := -1.261;
CPE3 := -0.05;
END;
IF SUDET=30 THEN BEGIN
CPE1 := 0.351;
CPE2 := -1.137;
CPE3 := -0.12;
END;
IF SUDET=60 THEN BEGIN
CPE1 := 0.089;
CPE2 := -0.664;
CPE3 := -0.17;
END;
IF SUDET=90 THEN BEGIN
CPE1 := -0.164;
CPE2 := -0.241;
CPE3 := -0.164;
END;

CPI[1]:= 0.000001;
DELTA[1]:= 1;
I:=0;
J:=0;

1:I:=I+1;

Y1[I]:= C*D1*L1*EXP(LN(ABS(CPE1-CPI[I]))*3/2)/(CPE1-CPI[I]);
Y2[I] := D2^2*L2*EXP(LN(ABS(CPE2-CPI[I])))*3/2)/(CPE2-CPI[I]);
Y3[I] := C*O3*L3*EXP(LN(ABS(CPE3-CPI[I])))*3/2)/(CPE3-CPI[I]);
Y[I] := Y1[I]+Y2[I]+Y3[I];
YURUN1[I] := -0.5*C*D1*L1/SQRT(ABS(CPE1-CPI[I]));
YURUN2[I] := -0.5*D2*L2/SQRT(ABS(CPE2-CPI[I]));
YURUN3[I] := -0.5*C*D3*L3/SQRT(ABS(CPE3-CPI[I]));
YURUN[I] := YURUN1[I]+YURUN2[I]+YURUN3[I];

CPI[I+1] := CPI[I]-Y[I]/YURUN[I];
DELTA[I] := ABS((CPI[I]-CPI[I+1])/CPI[I+1]);

IF I = 500 THEN
BEGIN
I := 0; J := J+1;
CPI[I] := CPI[501];
DELTA[I] := DELTA[500];
END;

CLSCHR;
WRITELN('TUNGGU');
WRITELN('JUMLAH ITERSI = ',J+500+I);
WRITELN('Y = ',Y[I]:6:4);
WRITELN('DURUN = ',YURUN[I]:6:4);
WRITELN('DELTA = ',DELTA[I]:6:4);
WRITELN('CPI = ',CPI[I]:6:4);
DELAY(250);

IF DELTA[I] < 0.0001 THEN GOTO 500 ELSE GOTO 150;

500:

CLSCHR;
WRITELN('NILAI L1 (M) = ',L1:4:3);
WRITELN('NILAI L2 (M) = ',L2:4:3);
WRITELN('NILAI L3 (M) = ',L3:4:3);
WRITELN('NILAI D1 (M) = ',D1:4:3);
WRITELN('NILAI D2 (M) = ',D2:4:3);
WRITELN('NILAI D3 (M) = ',D3:4:3);
WRITELN('SUDUT BUKAU (0,30,60 ATAU 90) = ',SUDUT);
WRITELN('CPE1 = ',CPE1:4:3);
WRITELN('CPE2 = ',CPE2:4:3);
WRITELN('CPE3 = ',CPE3:4:3);
WRITELN('JUMLAH ITERSI = ',J+500+I);
WRITELN('YH = ',YH[I]:6:4);
WRITELN('YURUN = ',YURUN[I]:6:4);
WRITELN('DELTA = ',DELTA[I]:6:4);
READLN;

GOTO 1;

600: (MENCARI HI)
(MASUKAN DATA)
CLSCHR;
WRITELN('NILAI L1 (M) = ');READLN(L1);
WRITELN('NILAI L2 (M) = ');READLN(L2);
WRITELN('NILAI L3 (M) = ');READLN(L3);
WRITELN('NILAI D1 (M) = ');READLN(D1);
WRITELN('NILAI D2 (M) = ');READLN(D2);
WRITELN('NILAI D3 (M) = ');READLN(D3);
WRITELN('YH = ');READLN(H);
WRITELN('TP = ');READLN(TP);

HI[I] := 150;
DELTA[I] := 5;
I := 0;
J := 0;

750:
I := I+1;

YH1[I] := C*L1*EXP(LN(HI[I]+D1/2)*3/2)-EXP(LN(ABS(D1/2-HI[I])))*3/2);
YH2[I] := 3/2*D2*L2*EXP(LN(ABS(H-HI[I])))*0.5;
YH3[I] := C*L1*EXP(LN(HI[I]+D3/2)*3/2)-EXP(LN(ABS(D3/2-HI[I])))*3/2);
YH[I] := YH1[I]-YH2[I]+YH3[I];
YHT1[I] := C*LI*(3/2*EXP(LN(D1/2+HI[I])))*0.5+3/2*EXP(LN(ABS(D1/2-HI[I])))*0.5;
YHT2[I] := -3/4*D2*L2/SQRT(ABS(D-HI[I]));
YHT3[I] := C*L3*(3/2*EXP(LN(D3/2+HI[I])))*0.5+3/2*EXP(LN(ABS(D3/2-HI[I])))*0.5;
YHT[I] := YHT1[I]-YHT2[I]+YHT3[I];

HI[I+1] := HI[I]-YH[I]/YHT[I];
DELTAH[I] := ABS((HI[I]-HI[I+1])/HI[I+1]);

IF I = 500 THEN
BEGIN
 I := 0; J := J+1;
 HI[I] := HI[501];
 DELTAHI[I] := DELTA[500]
END;

CLRSCR;
WRITELN('TUNGGU');
WRITELN('JUMLAH ITERSI = ',J*500+I);
WRITELN('YH = ',YH[I]:6:4);
WRITELN('YH TURUN = ',YHT[I]:6:4);
WRITELN('DELTAH = ',DELTAH[I]:8:6);
WRITELN('HI = ',HI[I]:6:4);
DELAY(250);

IF DELTAHI[I] < 0.0001 THEN GOTO 1100 ELSE GOTO 750;

1100:

NPL := HI[I] + D1/2 + TP;

WRITELN('NILAI L1 (M) = ',L1:4:3);
WRITELN('NILAI L2 (M) = ',L2:4:3);
WRITELN('NILAI L3 (M) = ',L3:4:3);
WRITELN('NILAI L1 (M) = ',D1:4:3);
WRITELN('NILAI L2 (M) = ',D2:4:3);
WRITELN('NILAI L3 (M) = ',D3:4:3);
WRITELN('JUMLAH ITERSI = ',J*500+I);
WRITELN('YH = ',YH[I]:6:4);
WRITELN('YH TURUN = ',YHT[I]:6:4);
WRITELN('DELTAH = ',DELTAH[I]:8:6);
WRITELN('HI = ',HI[I]:6:4);
READLN;

GOTO 1;

1110:
END.
Lampiran 5. Data temperatur dan kelembaban udara (RH) dalam greenhouse

Selasa, 13 Juli 1999

<table>
<thead>
<tr>
<th>Pukul</th>
<th>T1 (°C)</th>
<th>T2 (°C)</th>
<th>T3 (°C)</th>
<th>Trata-rata (°C)</th>
<th>Rh (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.00</td>
<td>20.1</td>
<td>20.4</td>
<td>20.6</td>
<td>20.4</td>
<td>81</td>
</tr>
<tr>
<td>09.00</td>
<td>20.1</td>
<td>23.5</td>
<td>22.6</td>
<td>22.7</td>
<td>75</td>
</tr>
<tr>
<td>10.00</td>
<td>22.1</td>
<td>21.9</td>
<td>22.6</td>
<td>22.2</td>
<td>74</td>
</tr>
<tr>
<td>11.00</td>
<td>21.6</td>
<td>21.9</td>
<td>21.6</td>
<td>21.7</td>
<td>74</td>
</tr>
<tr>
<td>12.00</td>
<td>21.1</td>
<td>21.4</td>
<td>21.6</td>
<td>21.4</td>
<td>82</td>
</tr>
<tr>
<td>13.00</td>
<td>21.6</td>
<td>21.4</td>
<td>21.6</td>
<td>21.5</td>
<td>74</td>
</tr>
<tr>
<td>14.00</td>
<td>21.6</td>
<td>21.4</td>
<td>21.6</td>
<td>21.5</td>
<td>74</td>
</tr>
<tr>
<td>15.00</td>
<td>22.1</td>
<td>21.9</td>
<td>21.6</td>
<td>21.9</td>
<td>74</td>
</tr>
<tr>
<td>16.00</td>
<td>22.1</td>
<td>20.9</td>
<td>21.1</td>
<td>21.0</td>
<td>74</td>
</tr>
</tbody>
</table>

Kamis, 15 Juli 1999

<table>
<thead>
<tr>
<th>Pukul</th>
<th>T1 (°C)</th>
<th>T2 (°C)</th>
<th>T3 (°C)</th>
<th>Trata-rata (°C)</th>
<th>Rh (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.00</td>
<td>21.1</td>
<td>21.4</td>
<td>21.6</td>
<td>21.4</td>
<td>79</td>
</tr>
<tr>
<td>09.00</td>
<td>23.0</td>
<td>23.0</td>
<td>23.0</td>
<td>23.0</td>
<td>74</td>
</tr>
<tr>
<td>10.00</td>
<td>22.0</td>
<td>22.5</td>
<td>22.5</td>
<td>22.3</td>
<td>75</td>
</tr>
<tr>
<td>11.00</td>
<td>23.5</td>
<td>24.5</td>
<td>23.5</td>
<td>23.9</td>
<td>68</td>
</tr>
<tr>
<td>12.00</td>
<td>21.6</td>
<td>21.4</td>
<td>21.6</td>
<td>21.5</td>
<td>82</td>
</tr>
<tr>
<td>13.00</td>
<td>20.6</td>
<td>20.4</td>
<td>20.6</td>
<td>20.5</td>
<td>82</td>
</tr>
<tr>
<td>14.00</td>
<td>21.6</td>
<td>21.4</td>
<td>21.6</td>
<td>21.5</td>
<td>82</td>
</tr>
<tr>
<td>15.00</td>
<td>25.5</td>
<td>25.6</td>
<td>25.5</td>
<td>25.5</td>
<td>68</td>
</tr>
<tr>
<td>16.00</td>
<td>24.5</td>
<td>24.0</td>
<td>24.5</td>
<td>24.4</td>
<td>62</td>
</tr>
</tbody>
</table>
Sabtu, 17 Juli 1999

<table>
<thead>
<tr>
<th>Pukul</th>
<th>T1 (°C)</th>
<th>T2 (°C)</th>
<th>T3 (°C)</th>
<th>Rata-rata (°C)</th>
<th>Rli (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.00</td>
<td>21.0</td>
<td>21.0</td>
<td>21.0</td>
<td>21.0</td>
<td>81</td>
</tr>
<tr>
<td>09.00</td>
<td>23.5</td>
<td>24.0</td>
<td>23.5</td>
<td>23.7</td>
<td>66</td>
</tr>
<tr>
<td>10.00</td>
<td>25.5</td>
<td>26.5</td>
<td>25.5</td>
<td>25.8</td>
<td>62</td>
</tr>
<tr>
<td>11.00</td>
<td>26.0</td>
<td>25.6</td>
<td>25.5</td>
<td>25.7</td>
<td>62</td>
</tr>
<tr>
<td>12.00</td>
<td>24.5</td>
<td>24.5</td>
<td>24.5</td>
<td>24.5</td>
<td>68</td>
</tr>
<tr>
<td>13.00</td>
<td>25.5</td>
<td>25.6</td>
<td>26.0</td>
<td>25.7</td>
<td>63</td>
</tr>
<tr>
<td>14.00</td>
<td>26.0</td>
<td>25.6</td>
<td>26.5</td>
<td>26.0</td>
<td>63</td>
</tr>
<tr>
<td>15.00</td>
<td>24.0</td>
<td>24.5</td>
<td>24.5</td>
<td>24.5</td>
<td>69</td>
</tr>
<tr>
<td>16.00</td>
<td>24.0</td>
<td>22.5</td>
<td>22.6</td>
<td>23.0</td>
<td>75</td>
</tr>
</tbody>
</table>

Senin, 19 Juli 1999

<table>
<thead>
<tr>
<th>Pukul</th>
<th>T1 (°C)</th>
<th>T2 (°C)</th>
<th>T3 (°C)</th>
<th>Rata-rata (°C)</th>
<th>Rli (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.00</td>
<td>21.6</td>
<td>22.5</td>
<td>21.6</td>
<td>21.9</td>
<td>82</td>
</tr>
<tr>
<td>09.00</td>
<td>21.1</td>
<td>21.9</td>
<td>21.6</td>
<td>21.5</td>
<td>82</td>
</tr>
<tr>
<td>10.00</td>
<td>24.5</td>
<td>26.1</td>
<td>25.5</td>
<td>25.4</td>
<td>62</td>
</tr>
<tr>
<td>11.00</td>
<td>26.5</td>
<td>27.1</td>
<td>27.5</td>
<td>27.0</td>
<td>58</td>
</tr>
<tr>
<td>12.00</td>
<td>26.5</td>
<td>27.6</td>
<td>27.5</td>
<td>27.2</td>
<td>54</td>
</tr>
<tr>
<td>13.00</td>
<td>23.5</td>
<td>23.5</td>
<td>24.5</td>
<td>23.9</td>
<td>62</td>
</tr>
<tr>
<td>14.00</td>
<td>23.5</td>
<td>23.0</td>
<td>24.0</td>
<td>23.5</td>
<td>82</td>
</tr>
<tr>
<td>15.00</td>
<td>24.0</td>
<td>24.0</td>
<td>24.5</td>
<td>24.2</td>
<td>75</td>
</tr>
<tr>
<td>16.00</td>
<td>22.6</td>
<td>22.5</td>
<td>22.6</td>
<td>22.5</td>
<td>83</td>
</tr>
<tr>
<td>Pukul</td>
<td>T1 (°C)</td>
<td>T2 (°C)</td>
<td>T3 (°C)</td>
<td>Trata-rata (°C)</td>
<td>Rh (%)</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>08.00</td>
<td>21.6</td>
<td>22.5</td>
<td>22.1</td>
<td>22.0</td>
<td>82</td>
</tr>
<tr>
<td>09.00</td>
<td>22.6</td>
<td>24.0</td>
<td>23.5</td>
<td>23.4</td>
<td>75</td>
</tr>
<tr>
<td>10.00</td>
<td>24.5</td>
<td>24.5</td>
<td>24.5</td>
<td>24.5</td>
<td>68</td>
</tr>
<tr>
<td>11.00</td>
<td>25.0</td>
<td>25.6</td>
<td>25.0</td>
<td>25.2</td>
<td>68</td>
</tr>
<tr>
<td>12.00</td>
<td>24.5</td>
<td>24.5</td>
<td>24.8</td>
<td>24.6</td>
<td>76</td>
</tr>
<tr>
<td>13.00</td>
<td>24.5</td>
<td>24.5</td>
<td>23.1</td>
<td>24.6</td>
<td>75</td>
</tr>
<tr>
<td>14.00</td>
<td>23.5</td>
<td>23.8</td>
<td>23.5</td>
<td>23.8</td>
<td>75</td>
</tr>
<tr>
<td>15.00</td>
<td>23.0</td>
<td>23.0</td>
<td>22.6</td>
<td>23.0</td>
<td>75</td>
</tr>
<tr>
<td>16.00</td>
<td>23.0</td>
<td>23.0</td>
<td>22.6</td>
<td>23.0</td>
<td>75</td>
</tr>
</tbody>
</table>
Lampiran 6. Data suhu, RH dan kecepatan angin pada lingkungan di sekitar greenhouse

<table>
<thead>
<tr>
<th>Selasa 13 Juli 1999</th>
<th>Kamis 15 Juli 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pukul</td>
<td>T (°C)</td>
</tr>
<tr>
<td>08.00</td>
<td>18.8</td>
</tr>
<tr>
<td>09.00</td>
<td>21.5</td>
</tr>
<tr>
<td>10.00</td>
<td>22.9</td>
</tr>
<tr>
<td>11.00</td>
<td>21.4</td>
</tr>
<tr>
<td>12.00</td>
<td>21.0</td>
</tr>
<tr>
<td>13.00</td>
<td>20.8</td>
</tr>
<tr>
<td>14.00</td>
<td>20.8</td>
</tr>
<tr>
<td>15.00</td>
<td>20.2</td>
</tr>
<tr>
<td>16.00</td>
<td>20.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sabtu 17 Juli 1999</th>
<th>Senin 19 Juli 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pukul</td>
<td>T (°C)</td>
</tr>
<tr>
<td>08.00</td>
<td>20.4</td>
</tr>
<tr>
<td>09.00</td>
<td>22.6</td>
</tr>
<tr>
<td>10.00</td>
<td>25.3</td>
</tr>
<tr>
<td>11.00</td>
<td>24.4</td>
</tr>
<tr>
<td>12.00</td>
<td>24.2</td>
</tr>
<tr>
<td>13.00</td>
<td>24.7</td>
</tr>
<tr>
<td>14.00</td>
<td>25.3</td>
</tr>
<tr>
<td>15.00</td>
<td>22.9</td>
</tr>
<tr>
<td>16.00</td>
<td>22.3</td>
</tr>
</tbody>
</table>
Lanjutan lampiran 6.

<table>
<thead>
<tr>
<th>Pukul</th>
<th>T (°C)</th>
<th>RH (%)</th>
<th>V (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.00</td>
<td>20.3</td>
<td>80</td>
<td>1.24</td>
</tr>
<tr>
<td>09.00</td>
<td>22.0</td>
<td>73</td>
<td>1.80</td>
</tr>
<tr>
<td>10.00</td>
<td>23.6</td>
<td>80</td>
<td>0.80</td>
</tr>
<tr>
<td>11.00</td>
<td>23.6</td>
<td>78</td>
<td>1.39</td>
</tr>
<tr>
<td>12.00</td>
<td>23.6</td>
<td>88</td>
<td>1.53</td>
</tr>
<tr>
<td>13.00</td>
<td>22.5</td>
<td>98</td>
<td>1.61</td>
</tr>
<tr>
<td>14.00</td>
<td>23.1</td>
<td>88</td>
<td>1.12</td>
</tr>
<tr>
<td>15.00</td>
<td>22.6</td>
<td>77</td>
<td>0.00</td>
</tr>
<tr>
<td>16.00</td>
<td>22.6</td>
<td>71</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Lampiran 7. Data laju ventilasi alami karena faktor angin

Selasa, 13 Juli 1999

<table>
<thead>
<tr>
<th>V</th>
<th>Vw1</th>
<th>Vw2</th>
<th>Vw3</th>
<th>Qw1</th>
<th>Qw2</th>
<th>Qw3</th>
<th>Qw4+</th>
<th>Qw-</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>0,44</td>
<td>0,212</td>
<td>-0,328</td>
<td>0,026</td>
<td>5,257</td>
<td>-5,908</td>
<td>0,645</td>
<td>5,902</td>
<td>5,908</td>
</tr>
<tr>
<td>1,27</td>
<td>0,611</td>
<td>-0,947</td>
<td>0,075</td>
<td>15,174</td>
<td>-17,054</td>
<td>1,861</td>
<td>17,035</td>
<td>17,054</td>
</tr>
<tr>
<td>0,53</td>
<td>0,255</td>
<td>-0,395</td>
<td>0,031</td>
<td>6,332</td>
<td>-7,117</td>
<td>0,777</td>
<td>7,109</td>
<td>7,117</td>
</tr>
<tr>
<td>1,03</td>
<td>0,495</td>
<td>-0,768</td>
<td>0,061</td>
<td>12,306</td>
<td>-13,831</td>
<td>1,510</td>
<td>13,816</td>
<td>13,831</td>
</tr>
<tr>
<td>0,17</td>
<td>0,082</td>
<td>-0,127</td>
<td>0,010</td>
<td>2,031</td>
<td>-2,283</td>
<td>0,249</td>
<td>2,280</td>
<td>2,283</td>
</tr>
<tr>
<td>0,00</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>0,56</td>
<td>0,269</td>
<td>-0,418</td>
<td>0,033</td>
<td>6,691</td>
<td>-7,520</td>
<td>0,821</td>
<td>7,512</td>
<td>7,520</td>
</tr>
<tr>
<td>0,00</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
</tbody>
</table>

Kamis, 15 Juli 1999

<table>
<thead>
<tr>
<th>V</th>
<th>Vw1</th>
<th>Vw2</th>
<th>Vw3</th>
<th>Qw1</th>
<th>Qw2</th>
<th>Qw3</th>
<th>Qw4+</th>
<th>Qw-</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,24</td>
<td>0,596</td>
<td>-0,925</td>
<td>0,073</td>
<td>14,816</td>
<td>-16,651</td>
<td>1,817</td>
<td>16,633</td>
<td>16,651</td>
</tr>
<tr>
<td>1,80</td>
<td>0,866</td>
<td>-1,343</td>
<td>0,106</td>
<td>21,506</td>
<td>-24,170</td>
<td>2,638</td>
<td>24,144</td>
<td>24,170</td>
</tr>
<tr>
<td>0,80</td>
<td>0,385</td>
<td>-0,597</td>
<td>0,047</td>
<td>9,558</td>
<td>-10,742</td>
<td>1,172</td>
<td>10,731</td>
<td>10,742</td>
</tr>
<tr>
<td>1,39</td>
<td>0,669</td>
<td>-1,037</td>
<td>0,082</td>
<td>16,608</td>
<td>-18,665</td>
<td>2,037</td>
<td>18,645</td>
<td>18,665</td>
</tr>
<tr>
<td>1,53</td>
<td>0,736</td>
<td>-1,141</td>
<td>0,090</td>
<td>18,281</td>
<td>-20,545</td>
<td>2,242</td>
<td>20,523</td>
<td>20,545</td>
</tr>
<tr>
<td>1,61</td>
<td>0,774</td>
<td>-1,201</td>
<td>0,095</td>
<td>19,236</td>
<td>-21,619</td>
<td>2,360</td>
<td>21,596</td>
<td>21,619</td>
</tr>
<tr>
<td>1,12</td>
<td>0,539</td>
<td>-0,836</td>
<td>0,066</td>
<td>13,382</td>
<td>-15,039</td>
<td>1,641</td>
<td>15,023</td>
<td>15,039</td>
</tr>
<tr>
<td>0,00</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>0,00</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
</tbody>
</table>
Lanjutan lampiran 7

Sabtu, 17 Juli 1999

<table>
<thead>
<tr>
<th>V</th>
<th>Vw1</th>
<th>Vw2</th>
<th>Vw3</th>
<th>Qw1</th>
<th>Qw2</th>
<th>Qw3</th>
<th>Qw+</th>
<th>Qw-</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,63</td>
<td>0,303</td>
<td>-0,470</td>
<td>0,037</td>
<td>7,527</td>
<td>-8,460</td>
<td>0,923</td>
<td>8,451</td>
<td>8,460</td>
</tr>
<tr>
<td>0,85</td>
<td>0,409</td>
<td>-0,634</td>
<td>0,050</td>
<td>10,156</td>
<td>-11,141</td>
<td>1,246</td>
<td>11,402</td>
<td>-11,414</td>
</tr>
<tr>
<td>1,53</td>
<td>0,736</td>
<td>-1,141</td>
<td>0,090</td>
<td>18,281</td>
<td>-20,545</td>
<td>2,242</td>
<td>20,523</td>
<td>20,545</td>
</tr>
<tr>
<td>0,00</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>1,80</td>
<td>0,866</td>
<td>-1,343</td>
<td>0,106</td>
<td>21,506</td>
<td>-24,170</td>
<td>2,638</td>
<td>24,144</td>
<td>24,170</td>
</tr>
<tr>
<td>1,25</td>
<td>0,601</td>
<td>-0,933</td>
<td>0,074</td>
<td>14,935</td>
<td>-16,785</td>
<td>1,832</td>
<td>16,767</td>
<td>16,785</td>
</tr>
<tr>
<td>1,05</td>
<td>0,505</td>
<td>-0,783</td>
<td>0,062</td>
<td>12,545</td>
<td>-14,099</td>
<td>1,539</td>
<td>14,084</td>
<td>14,099</td>
</tr>
<tr>
<td>1,59</td>
<td>0,765</td>
<td>-1,186</td>
<td>0,094</td>
<td>18,997</td>
<td>-21,351</td>
<td>2,330</td>
<td>21,328</td>
<td>21,351</td>
</tr>
<tr>
<td>2,09</td>
<td>1,005</td>
<td>-1,559</td>
<td>0,123</td>
<td>24,971</td>
<td>-28,065</td>
<td>3,063</td>
<td>28,034</td>
<td>28,065</td>
</tr>
</tbody>
</table>

Senin, 19 Juli 1999

<table>
<thead>
<tr>
<th>V</th>
<th>Vw1</th>
<th>Vw2</th>
<th>Vw3</th>
<th>Qw1</th>
<th>Qw2</th>
<th>Qw3</th>
<th>Qw+</th>
<th>Qw-</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>1,10</td>
<td>0,529</td>
<td>-0,821</td>
<td>0,065</td>
<td>13,143</td>
<td>-14,771</td>
<td>1,612</td>
<td>14,755</td>
<td>14,771</td>
</tr>
<tr>
<td>0,00</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>1,48</td>
<td>0,712</td>
<td>-1,104</td>
<td>0,087</td>
<td>17,683</td>
<td>-19,873</td>
<td>2,169</td>
<td>19,852</td>
<td>19,873</td>
</tr>
<tr>
<td>1,57</td>
<td>0,755</td>
<td>-1,171</td>
<td>0,093</td>
<td>18,758</td>
<td>-21,082</td>
<td>2,301</td>
<td>21,059</td>
<td>21,082</td>
</tr>
<tr>
<td>1,20</td>
<td>0,577</td>
<td>-0,895</td>
<td>0,071</td>
<td>14,338</td>
<td>-16,114</td>
<td>1,759</td>
<td>16,096</td>
<td>16,114</td>
</tr>
<tr>
<td>1,50</td>
<td>0,722</td>
<td>-1,119</td>
<td>0,089</td>
<td>17,922</td>
<td>-20,142</td>
<td>2,198</td>
<td>20,120</td>
<td>20,142</td>
</tr>
<tr>
<td>0,00</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>0,00</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
</tbody>
</table>
Lanjutan lampiran 7

Selasa, 20 Juli 1999

<table>
<thead>
<tr>
<th>V</th>
<th>Vw1</th>
<th>Vw2</th>
<th>Vw3</th>
<th>Qw1</th>
<th>Qw2</th>
<th>Qw3</th>
<th>Qw+</th>
<th>Qw-</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>0,88</td>
<td>0,423</td>
<td>-0,656</td>
<td>0,052</td>
<td>10,514</td>
<td>-11,817</td>
<td>1,290</td>
<td>11,804</td>
<td>11,817</td>
</tr>
<tr>
<td>1,38</td>
<td>0,664</td>
<td>-1,029</td>
<td>0,081</td>
<td>16,488</td>
<td>-18,531</td>
<td>2,022</td>
<td>18,511</td>
<td>18,531</td>
</tr>
<tr>
<td>0,68</td>
<td>0,327</td>
<td>-0,507</td>
<td>0,040</td>
<td>8,125</td>
<td>-9,131</td>
<td>0,997</td>
<td>9,121</td>
<td>9,131</td>
</tr>
<tr>
<td>0,61</td>
<td>0,293</td>
<td>-0,455</td>
<td>0,036</td>
<td>7,288</td>
<td>-8,191</td>
<td>0,894</td>
<td>8,182</td>
<td>8,191</td>
</tr>
<tr>
<td>1,31</td>
<td>0,630</td>
<td>-0,977</td>
<td>0,077</td>
<td>15,652</td>
<td>-17,591</td>
<td>1,920</td>
<td>17,572</td>
<td>17,591</td>
</tr>
<tr>
<td>1,19</td>
<td>0,572</td>
<td>-0,888</td>
<td>0,070</td>
<td>14,218</td>
<td>-15,979</td>
<td>1,744</td>
<td>15,962</td>
<td>15,979</td>
</tr>
<tr>
<td>1,01</td>
<td>0,486</td>
<td>-0,753</td>
<td>0,060</td>
<td>12,068</td>
<td>-13,562</td>
<td>1,480</td>
<td>13,548</td>
<td>13,562</td>
</tr>
<tr>
<td>1,01</td>
<td>0,487</td>
<td>-0,755</td>
<td>0,060</td>
<td>12,097</td>
<td>-13,596</td>
<td>1,484</td>
<td>13,581</td>
<td>13,596</td>
</tr>
</tbody>
</table>
Lampiran 8. Data kecepatan angin terhadap Laju ventilasi alami karena pengaruh faktor angin (Qw)

<table>
<thead>
<tr>
<th>V</th>
<th>Vw1</th>
<th>Vw2</th>
<th>Vw3</th>
<th>Qw1</th>
<th>Qw2</th>
<th>Qw3</th>
<th>Qw4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>0,2</td>
<td>0,096</td>
<td>-0,149</td>
<td>0,012</td>
<td>2,390</td>
<td>-2,686</td>
<td>0,293</td>
<td>2,683</td>
</tr>
<tr>
<td>0,4</td>
<td>0,192</td>
<td>-0,298</td>
<td>0,024</td>
<td>4,779</td>
<td>-5,371</td>
<td>0,586</td>
<td>5,365</td>
</tr>
<tr>
<td>0,6</td>
<td>0,289</td>
<td>-0,448</td>
<td>0,035</td>
<td>7,169</td>
<td>-8,057</td>
<td>0,879</td>
<td>8,048</td>
</tr>
<tr>
<td>0,8</td>
<td>0,385</td>
<td>-0,597</td>
<td>0,047</td>
<td>9,558</td>
<td>-10,742</td>
<td>1,172</td>
<td>10,731</td>
</tr>
<tr>
<td>1,0</td>
<td>0,481</td>
<td>-0,746</td>
<td>0,059</td>
<td>11,948</td>
<td>-13,428</td>
<td>1,466</td>
<td>13,414</td>
</tr>
<tr>
<td>1,2</td>
<td>0,577</td>
<td>-0,895</td>
<td>0,071</td>
<td>14,338</td>
<td>-16,114</td>
<td>1,759</td>
<td>16,096</td>
</tr>
<tr>
<td>1,4</td>
<td>0,673</td>
<td>-1,044</td>
<td>0,083</td>
<td>16,727</td>
<td>-18,799</td>
<td>2,052</td>
<td>18,779</td>
</tr>
<tr>
<td>1,6</td>
<td>0,770</td>
<td>-1,194</td>
<td>0,094</td>
<td>19,117</td>
<td>-21,485</td>
<td>2,345</td>
<td>21,462</td>
</tr>
<tr>
<td>1,8</td>
<td>0,866</td>
<td>-1,343</td>
<td>0,106</td>
<td>21,506</td>
<td>-24,170</td>
<td>2,638</td>
<td>24,144</td>
</tr>
<tr>
<td>2,0</td>
<td>0,962</td>
<td>-1,492</td>
<td>0,118</td>
<td>23,896</td>
<td>-26,856</td>
<td>2,931</td>
<td>26,827</td>
</tr>
<tr>
<td>2,2</td>
<td>1,058</td>
<td>-1,641</td>
<td>0,130</td>
<td>26,286</td>
<td>-29,542</td>
<td>3,224</td>
<td>29,510</td>
</tr>
<tr>
<td>2,4</td>
<td>1,154</td>
<td>-1,790</td>
<td>0,142</td>
<td>28,675</td>
<td>-32,227</td>
<td>3,517</td>
<td>32,193</td>
</tr>
<tr>
<td>2,6</td>
<td>1,251</td>
<td>-1,940</td>
<td>0,153</td>
<td>31,065</td>
<td>-34,913</td>
<td>3,810</td>
<td>34,875</td>
</tr>
<tr>
<td>2,8</td>
<td>1,347</td>
<td>-2,089</td>
<td>0,165</td>
<td>33,455</td>
<td>-37,598</td>
<td>4,104</td>
<td>37,558</td>
</tr>
<tr>
<td>3,0</td>
<td>1,443</td>
<td>-2,238</td>
<td>0,177</td>
<td>35,844</td>
<td>-40,284</td>
<td>4,397</td>
<td>40,241</td>
</tr>
<tr>
<td>3,2</td>
<td>1,539</td>
<td>-2,387</td>
<td>0,189</td>
<td>38,234</td>
<td>-42,970</td>
<td>4,690</td>
<td>42,924</td>
</tr>
<tr>
<td>3,4</td>
<td>1,635</td>
<td>-2,536</td>
<td>0,201</td>
<td>40,623</td>
<td>-45,655</td>
<td>4,983</td>
<td>45,606</td>
</tr>
<tr>
<td>3,6</td>
<td>1,732</td>
<td>-2,686</td>
<td>0,212</td>
<td>43,013</td>
<td>-48,341</td>
<td>5,276</td>
<td>48,289</td>
</tr>
<tr>
<td>3,8</td>
<td>1,828</td>
<td>-2,835</td>
<td>0,224</td>
<td>45,403</td>
<td>-51,026</td>
<td>5,569</td>
<td>50,972</td>
</tr>
<tr>
<td>4</td>
<td>1,924</td>
<td>-2,984</td>
<td>0,236</td>
<td>47,792</td>
<td>-53,712</td>
<td>5,862</td>
<td>53,654</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V</th>
<th>Δ Pw1</th>
<th>Δ Pw2</th>
<th>Δ Pw3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>0,2</td>
<td>0,012</td>
<td>-0,029</td>
<td>0,0002</td>
</tr>
<tr>
<td>0,4</td>
<td>0,048</td>
<td>-0,116</td>
<td>0,0007</td>
</tr>
<tr>
<td>0,6</td>
<td>0,108</td>
<td>-0,260</td>
<td>0,0016</td>
</tr>
<tr>
<td>0,8</td>
<td>0,192</td>
<td>-0,462</td>
<td>0,0029</td>
</tr>
<tr>
<td>1,0</td>
<td>0,300</td>
<td>-0,722</td>
<td>0,0046</td>
</tr>
<tr>
<td>1,2</td>
<td>0,433</td>
<td>-1,040</td>
<td>0,0066</td>
</tr>
<tr>
<td>1,4</td>
<td>0,589</td>
<td>-1,415</td>
<td>0,0089</td>
</tr>
<tr>
<td>1,6</td>
<td>0,769</td>
<td>-1,848</td>
<td>0,0117</td>
</tr>
<tr>
<td>1,8</td>
<td>0,973</td>
<td>-2,339</td>
<td>0,0148</td>
</tr>
<tr>
<td>2,0</td>
<td>1,201</td>
<td>-2,888</td>
<td>0,0182</td>
</tr>
<tr>
<td>2,2</td>
<td>1,454</td>
<td>-3,495</td>
<td>0,0221</td>
</tr>
<tr>
<td>2,4</td>
<td>1,730</td>
<td>-4,159</td>
<td>0,0263</td>
</tr>
<tr>
<td>2,6</td>
<td>2,030</td>
<td>-4,881</td>
<td>0,0308</td>
</tr>
<tr>
<td>2,8</td>
<td>2,355</td>
<td>-5,661</td>
<td>0,0358</td>
</tr>
<tr>
<td>3,0</td>
<td>2,703</td>
<td>-6,498</td>
<td>0,0410</td>
</tr>
<tr>
<td>3,2</td>
<td>3,076</td>
<td>-7,394</td>
<td>0,0467</td>
</tr>
<tr>
<td>3,4</td>
<td>3,472</td>
<td>-8,347</td>
<td>0,0527</td>
</tr>
<tr>
<td>3,6</td>
<td>3,893</td>
<td>-9,358</td>
<td>0,0591</td>
</tr>
<tr>
<td>3,8</td>
<td>4,337</td>
<td>-10,426</td>
<td>0,0658</td>
</tr>
<tr>
<td>4,0</td>
<td>4,806</td>
<td>-11,553</td>
<td>0,0730</td>
</tr>
</tbody>
</table>
Lampiran 10. Data ukuran dimensi bangunan *greenhouse* PT WIKA.

<table>
<thead>
<tr>
<th>Kompoten</th>
<th>Variabel</th>
<th>Ukuran</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panjang greenhouse</td>
<td>Ln</td>
<td>15 m</td>
</tr>
<tr>
<td>Lebar greenhouse</td>
<td>Wd</td>
<td>6 m</td>
</tr>
<tr>
<td>Tinggi greenhouse</td>
<td>Ht</td>
<td>4 m</td>
</tr>
<tr>
<td></td>
<td>Hd</td>
<td>5.35 m</td>
</tr>
<tr>
<td>Lebar bukaan 1</td>
<td>d1</td>
<td>3.6 m</td>
</tr>
<tr>
<td>Panjang bukaan 1</td>
<td>L1</td>
<td>15 m</td>
</tr>
<tr>
<td>Lebar bukaan 2</td>
<td>d2</td>
<td>3.6 m</td>
</tr>
<tr>
<td>Panjang bukaan 2</td>
<td>L2</td>
<td>15 m</td>
</tr>
<tr>
<td>Lebar bukaan 3</td>
<td>d3</td>
<td>3.6 m</td>
</tr>
<tr>
<td>Panjang bukaan 3</td>
<td>L3</td>
<td>15 m</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>0.72 m</td>
</tr>
</tbody>
</table>
Lampiran 11. Daftar simbol

<table>
<thead>
<tr>
<th>Simbol</th>
<th>Besaran</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_f</td>
<td>Bidang tekanan netral</td>
<td>-</td>
</tr>
<tr>
<td>Cpi</td>
<td>Koefisien tekanan internal</td>
<td>-</td>
</tr>
<tr>
<td>Cpe</td>
<td>Koefisien tekanan internal</td>
<td>-</td>
</tr>
<tr>
<td>A</td>
<td>Luas bukan</td>
<td>m²</td>
</tr>
<tr>
<td>L₁</td>
<td>Panjang bukaan 1</td>
<td>m</td>
</tr>
<tr>
<td>L₂</td>
<td>Panjang bukan 2</td>
<td>m</td>
</tr>
<tr>
<td>L₃</td>
<td>Panjang bukaan 3</td>
<td>m</td>
</tr>
<tr>
<td>D₁</td>
<td>Lebar bukaan 1</td>
<td>m</td>
</tr>
<tr>
<td>D₂</td>
<td>Lebar bukaan 2</td>
<td>m</td>
</tr>
<tr>
<td>D₃</td>
<td>Lebar bukaan 3</td>
<td>m</td>
</tr>
<tr>
<td>h</td>
<td>Tinggi sumbu bukan</td>
<td>M</td>
</tr>
<tr>
<td>$ΔPw_1$</td>
<td>Perbedaan tekanan pada bukan 1</td>
<td>Pa</td>
</tr>
<tr>
<td>$ΔPw_2$</td>
<td>Perbedaan tekanan pada bukan 2</td>
<td>Pa</td>
</tr>
<tr>
<td>$ΔPw_3$</td>
<td>Perbedaan tekanan pada bukan 3</td>
<td>Pa</td>
</tr>
<tr>
<td>$θ$</td>
<td>Sudut datangnya angin terhadap bukan</td>
<td>°</td>
</tr>
<tr>
<td>Cd</td>
<td>Koefisien discharge</td>
<td>-</td>
</tr>
<tr>
<td>V_{w_1}</td>
<td>Kecepatan aliran udara antara di dalam dan di luar bukan 1</td>
<td>m/s</td>
</tr>
<tr>
<td>V_{w_2}</td>
<td>Kecepatan aliran udara di dalam dan di luar bukan 2</td>
<td>m/s</td>
</tr>
<tr>
<td>V_{w_3}</td>
<td>Kecepatan aliran udara di dalam dan di luar bukan 3</td>
<td>m/s</td>
</tr>
<tr>
<td>Q_{w_1}</td>
<td>Laju ventilasi udara pada bukaan1</td>
<td>m³/s</td>
</tr>
<tr>
<td>Q_{w_2}</td>
<td>Laju ventilasi udara pada bukan2</td>
<td>m³/s</td>
</tr>
<tr>
<td>Q_{w_3}</td>
<td>Laju ventilasi udara pada bukan3</td>
<td>m³/s</td>
</tr>
<tr>
<td>V</td>
<td>Kecepatan angin</td>
<td>m/s</td>
</tr>
<tr>
<td>Simbol</td>
<td>Besaran</td>
<td>Satuan</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>ρ</td>
<td>Massa jenis udara</td>
<td>Kg/m³</td>
</tr>
<tr>
<td>L</td>
<td>Panjang greenhouse</td>
<td>m</td>
</tr>
<tr>
<td>+</td>
<td>Aliran udara masuk ke dalam greenhouse</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Aliran udara ke luar greenhouse</td>
<td>-</td>
</tr>
</tbody>
</table>
Lampiran 12 Polometric Chart

[Diagram with grid and labeled axes]