
49 

1 

ITB J. Sci. Vol. 42 A No. L 2010, 49-66 

Historical Fire Detection of Tropical Forest from NDVI 

Time-series Data: Case Study on Jambi, Indonesia 


Dyah R. Panuju1
, Bambang H. Trisasongko1

, Budi Susetyo2, 

Mahmud A. Raimadoya3 & Brian G. Lees4 


IDepartment of Soil Science and Land Resources, Bogor Agricultural University. lalan 

Meranti. Bogor 16680. Indonesia. Email: d.panuju@hotmaii.com 


2Department of Statistics, Bogor Agricultural University. Bogor 16680. Indonesia. 

3Department of Civil and Environmental Engineering, Bogor Agricultural University. 


Bogor 16680. Indonesia. 

4School of Physical, Environmental and Mathematical Sciences, University of New 

South Wales at Australian Defence Force Academy. Northcott Drive, Canberra ACT 


2600. Australia 


Abstract. In addition to forest encroachment, forest fire is a serious problem in 
Indonesia. Attempts at managing its widespread and frequent occurrence has led 
to intensive use of remote sensing data. Coarse resolution images have been 
employed to derive hot spots as an indicator of forest fire. However, most efforts 
to verify the hot spot data and to verify fire accidents have been restricted to the 
use of medium or high resolution data. At present, it is difficult to verify solely 
upon those data due to severe cloud cover and low revisit time. In this paper, we 
present a method to validate forest fire using NDVI time series data. With the 
freely available NDVI data from SPOT VEGETATION, we successfully 
detected changes in time series data which were associated with fire accidents. 

Keywords: SPOT VEGEl'ATION,' outlier detection: X12-ARIMA. 

Introduction 

Forest fires in Indonesia have a wide impact on both humans and the 
environment. Fire accidents are a major cause of loss of life and severe 
degradation of air quality which, in tum, affect human health [1]. In the case of 
the islands of Sumatra and Kalimantan, cross-border smoke often raises 
political problems between Indonesia and Malaysia and Singapore. Fire is also 
one of the main factors causing environmental degradation. It causes 
fragmentation of the forest cover leading to greater risk during the subsequent 
fire episodes. At the global scale, frequent forest fires are one of the major 
contributors to a change in carbon balance [2] and have become a key 
component in climate change. 

. Efforts to combat forest fire are underway. A special task force to deal with 
forest fire has been assembled. In a number of major crises, it has been assisted 
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by ASEAN fire fighters to reduce the trans-national impact. With very extensive Whi 

areas affected, remote sensing provides invaluable data for both decision also 

makers and local fire fighters. Remote sensing also offers continuous info 
monitoring for tactical decision making [3]. prac 

sho' 
Fire frequently occurs in both tropical and boreal forests. In boreal forests, uset 
several episodes of large forest fires have been recorded which have raised the drar 
importance of time-series assessments [4]. In tropical forests, major forest fires cou: 
have been associated with the EI Nino Southern Oscillation (ENSO) which is dat;; 
associated with extreme drought making them regional, rather than local, 

Ob\phenomena [5]. It was also worsened by human activity encroached not only to 
primary forest but also preserved forest that can lead to carbon leaks from ND 
tropical area. Indeed, to detect and prove tropical forest encroachments, ApI 
particularly if triggered by fire, are difficult due to frequent precipitation which veg' 
inhibits fire. Monitoring by remote sensing has been difficult because of limited No! 
revisit time of high resolution sensors. Although many hot spot data have been Enn 
produced by many satellites, but it has been limitedly proven as real fire spot. ana 
As fire is very dynamic, time series data are required to comprehensively assess han 
the progress of the phenomenon. Coarse resolution remote sensing data offer Rec 
possibilities to provide time-series data over extensive areas. [16 

Time-series remotely sensed data have been used in other applications. In Ext 
meteorology, Liu et at. [6] presented a method to map evapotranspiration using det. 
time-series data. In agriculture, using the A VHRR sensor, Schwartz et al. [7] We 
demonstrated the capability of remote sensing data to derive information on the frOJ 
start of the spring growing season to quantify the influence of climate change. Ins1 
Another study, Julien et at. [8], emphasized the importance of long time-series dat 
remote sensing data to assess the contribution of volcanic aerosols to the dat, 
vegetation dynamics of the European continent. Because of the return 
frequency, Moderate Resolution Imaging Spectrometer (MODIS) data has been 2
preferred for many of these land-based remote sensing applications such as 
forest phenology [9,10]. Tir 

cor 
In the case of forest fire, time-series data have been employed for various mu 
purposes. Mapping of the burned scar has been the most common application. mu 
Coarse remotely sensed images have been used for this purpose including both sig 
NOAA AVHRR and MODIS [11]. Generally, forest fire has been assessed the 
through time-series composite techniques. This minimises radiometric problems 
such as effects of local atmospheric disturbances. Present time-series As 
compositing algorithms were derived from the Maximum Value Composite sta 
(MVC) of Holben [12]. However, the MVC method has been found to be less sta 
reliable for semi arid areas which generally have lower NDVI values [II]. in 
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While previous efforts have concentrated on mapping fire-affected areas, it is vc 

on also important to determine the time of the accident. In Indonesia, this 
information is important for law enforcement as massive slash-and-burnus 
practices are illegal, in particular for plantation companies. Goetz et al. [13] 
showed NDVI patterns of burned and unburned areas which were particularly 

ts, useful for studying post-burn recovery. According to their report, fire had a 
he dramatic effect in the NDVI time series data, suggesting that the technique 
'es could be used to confirm the time of fire initiation, especially from hot spot 

IS data. 
ai, 

Obviously, the NDVI is not a perfect choice to the problem. Viovy [14] showed [0 

)In NDVI dependencies on atmospheric disturbances due to volcanic eruption. 

Its, Application of NDVI on forage prediction was also found limited. Other 
eh vegetation indices have been invented and showed better performance [15]. 
ed Nonetheless, applying those newly-developed vegetation indices such as 
:en Enhanced Vegetation Index (EVI) designed from MODIS data in time series 
at. analyses is usually limited due to availability of the dataset itself. On the other 
:ss hand, NDVI provides long-term data capture suitable for time series analyses. 
fer Recent reports still have commented the usefulness of NDVI time series data 

[16,17]. 

Extending the work of Goetz et al. [13], and to evaluate the quantitative 
determination of fire initiation, we carried out an analysis of time series data. 
We employed the X12-ARIMA algorithm to provide the date automatically 
from the NDVI data of SPOT VEGETATION made available by Vlaamse 
Instelling voor Technologisch Onderzoek (VITO). The use of freely available 
data is a significant benefit for the preliminary screening for higher resolution 
data capture for operational purposes. 

urn 
~cn 2 Time Series Analysis 

as 
Time series data area chain of observations acquired over time and often 
contain a constant time lag. The observations can be single variable or 

OllS multi variable which, in remote sensing terminology, corresponds to single and 
on. multiple data respectively. The data are not limited to raw electromagnetic 
'oth signals, but also cover derivative information such as spectral indices or 
sed thematic data. 
;!1lS 

ncs Assumptions in time series analysis are homogeneity of variance and data 
site stationarity. Homogeneity is detected as being a constant variance in time, while 
less stationarity can be defined as a condition when there are no systematic changes 

in the mean of the series and without periodic shift in variances [18]. 
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Unfortunately, the stationary condition occurs rarely and therefore a XI2-A 
differencing technique is often used to handle non stationary series. Chen, 

(AO), I"­
Common modelling on single variable time series has exploited the of outll 
Autoregressive Moving Average (ARMA) or the Autoregressive Integrated contaill 
Moving Average (ARIMA) modelling philosophies introduced by Box and stocha~ 
Jenkins [19]. While the ARIMA is useful for assessing time series data, it fitted 11 
suffers from the effects of seasonality which is naturally found in many the sta 
circumstances. In order to accommodate this, the X procedure has been used as Chen a 
an alternative procedure for seasonal adjustment. 

In the ( 
The combination (XII-ARIMA) has been introduced to compensate for the lack of mull 
of an explicit model functional to the series and to minimise the unsmoothed locatiol 
first and last observation of the series [20]. Later, the model was updated to canopy 
X12-ARIMA by Findley et al. [21]. Following the Box-Jenkins notation, a Hence, 
seasonality-induced ARIMA model is represented as (p,d,q)(P,D,Q). Notations 
p and P point to the ordinary and seasonal autoregressive respectively, while q 
and Q indicate the properties of moving averages. Respectively, d and D specify 
ordinary and seasonal differences in from the primary series. The use of XII­
ARIMA, the previous version of seasonal ARIMA, in environmental research 

with th 
was found, such as on climate research [22]. 

3 Outlier Detection 

Outlier detection was an improvement capacity of ARIMA to deal with 
outrageous evidences during the series. Adya et al. [23] defined outliers or where 
contaminant data as unusual observations that shift from the general pattern of 
the set. While time series data generally contain outliers, they have been 9(B) ::::( 
disregarded in many studies. There are only a few which identify the various 

presemtypes of outlier. Fox [24] noted two types of outlier, namely type I and type II. 
otherw:Type I relates t9 .the state where a single observation can be influenced by gross 
presumerror. Another type is used when the influence is observed not only on a specific 2 
(Ja •observation, but continues onto the succeeding observation. Later, type I and 

type II were identified by Chang et ai. [25J as additive (AO), and innovational 
Taken(10), outliers respectively. If a series is under consideration, a single 
estimatobservation in the series can be either AO, 10 or neither. Iterative procedures to 

test for the presence of outliers have been presented [25-27J under the ARIMA 
framework. In addition to these types of outlier, Tsay [26] presented the level 
shift (LS), which was then divided into the level change (LC) or permanent 
change (PC) and transient change (TC) outliers. The most recent paper by 

where!Kaiser and Maravall [28] estabHshed another type of outlier namely the 
observ,seasonal level shift (SLS). 
times ( 
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=fore a 	 X12-ARIMA automodelling can assess the four types of outliers discussed by 
Chen and Liu [29], namely the innovational outlier (10), the additive outlier 
-(AO), the transient change (TC) and the level shift (LS). To detect the presence 

ted the of outliers in time series data, the residual of the series is determined. Residuals 
tegrated contain data unexplained by the model. The assumption of the time series 
lox and stochastic model is the homogeneity of variance and stationarity of data. The 
data. it fitted model is evaluated by computing the minimum mean square error, while 

1 many the stationarity is.r evaluated from the pattern of the corresponding residuals. 
used as Chen and Liu [29] presented equations to compute residuals for the outliers. 

In the case of forest fire hot spots, the model should accommodate the detection 
the lack of multiple outliers. This is due to the high probability of re-burn in the same 
100thed location related to time lag between estate preparation (land clearing) and 
lated to canopy closing. Time lag could be a year in case of timber plantation [30]. 
ltion. a Hence, the ARMA process can be represented as follows 
)tations 
while q 

'" m 	 9(B)
specify Y = L co.L.(B)lt(L)+ a (1) 

t j =I J J J cp(B)a(B) t)f X11­
esearch 

with the error forecast as 

(2) 

11 with 
tiers or where 9, a, cp are polynomials of B; cp(B) = I-CPI (B)- ... -cpp (B)P and 
ttern of 
e been 	 9(B)=(l-9 B-... -9 BP)are stationary; and I,(tj) serves as indicator for the 

1 pvarious 
type II. presence of outliers and is a binary number where equals to 0 if t f:. t\ and 1 

otherwise. co represents amount and pattern of outlier respectively, while al isy gross 
:pecific presumed to be a sequence of independent variable with mean 0 and variance 

2 
Oa •~ I and 

ational 
Taken into account the seasonal pattern of the data, the XI2-ARIMA [21] single 

ures to estimates regression ARIMA models of order (p,d,q)(P,D,Q) for YI as 

.RIMA 
e level 

q> (B)<I>p(Bs)(l-B)d(l-BS)D(y - f Pi Xit)=6 (B)E>Q(Bs)a (3)
nanent p t i=l q t 
per by 

where s is the length of seasonal period; s=12 represents 12 month of an annualIy the 
observation, while p, d, q and P, D, Q denotes numbers of first and seasonal 
times of autoregressive, difference and moving average. The polynomials 
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(jlP (z),<DP (z),eq (z),eQ (z) with degrees of p, P, q, Q respectively have a 

constant term equal to 1. 

4 Methodology 

The research was carried out around the Berbak National Park in eastern 
wetland of lambi province, one of three Ramsar reserves in Indonesia (Figure 
I), The area has suffered from logging and frequent fires for land clearing, 
particularly in the dry season [31 J. 

It 

A 

• City 
~ River 
c:J Provincial Boundaries 
I8TI Protected Areas 
_ Forest Concessions 
D Plantations 

Figure 1 Site location. Dark and light polygons represent forest concessions 
and plantations respectively. The Berbak NP is located on eastern coastal region. 

The study made use of both medium and coarse remote sensing data. Landsat 
ETM, as medium resolution data, provided actual fire data. We selected a 
Landsat ETM scene of lambi (path/row 125-061) acquired on 1 September 
1999 which showed a large active fire. It is difficult to have fire evidence data 
and to capture actual fire in tropical region on image (such as Landsat ETM) 
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due to cloud cover, therefore the data was a valuable evidence of fire for a 
e a 	 reference on further analysis. No radiometric adjustment was applied, mainly 

due to the laGk of meteorological data. Hotspot data collected from the 
Indonesian Institute of Space and Aeronautics was also employed for 
completing and cross checking the evidence. The hotspot data were produced 
from NOAA-AVHRR from some platforms including NOAAI2, 15 and 16. 
Several techniques for bum scar delineation can be found in the literature, ern 
nevertheless we found a paper by Koutsias et al. [32] particularly interesting. ure 
The paper discussed the application of the Intensity-Hue-Saturationng, 
transformation on specific colour composite image. The technique proved 
useful, taking advantage of the fast computation of intensity, hue and saturation 
components from a red-green-blue image composite. 

Using the fire extent derived from the medium resolution image, the burned 
area was gridded to obtain several samples as the main locations for time series 
analysis. We used NDVI data of SPOT VEGETATION from the VITO website. 
The NDVI data were distributed as 1O-day composite images, hence there were 
three for each month and the first NDVI (NDVI\) data represented a time span 
between day 1 and day 10, NDVI2 denoted day 11 to day 20, and NDVI3 

symbolized day 21 to day 30 of the month. To ease extraction of the NDVI time 
series at each sample point, we stacked all NDVI data taken between 1 April 
1998 and 21 February 2005. Due to the limits of the ARIMA model, a monthly 
aggregation was carried out. To do this we selected the approaches presented by 
Jia et at. [33]. The monthly average (MA) and monthly peak (MP) were 
calculated using following equations. 

MANDV1 = mean(NDVlh NDVlz, NDVI3) 	 (4) 

MPNDV1 = max(NDVIh NDVJz, NDVh) 	 (5) 

We employed Demetra 2.04 for XI2-ARIMA modelling and to detect outliers. 
The software was developed by Eurostat and has been used mainly for finance 
and monetary applications. The automodelling provided option to choose the 
appropriate model for univariate series analysis with several adjustments 
including: (1) pretests for a logarithm transformation (multiplicati vel additi ve 
modelling); (2) a mean correction (if necessary); (3) a new ARIMA model 
identification! selection and estimation; (4) pre-tests for Easter and one of four 
different trading day effects (including country-specific holidays); (5) an 
automatic detection and correction for outliers over the whole time series 
length; (6) an interpolation of missing observations; (7) an ARIMA forecast at 
the end of the series; and (8) an automatic decomposition. To test our results, 
we compared detected outliers with available hotspot data from the Indonesian 
Institute of Space and Aeronautics (LAPAN). To avoid misregistration over 
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various remote sensing data sources, we also considered hotspots around the 
site at a distance of 0.02 degree. 

5 Results and Discussion 

5.1 Fire delineation from Landsat ETM data 

The IRS transform is a simple image transformation which has been used for 
many applications including multi-resolution data fusion and enhancement of 
terrain for interpretation. While those applications require a two-way 
transformation (ROB to IHS and back to ROB), the thematic extraction of 
Koutsias et al. [32] only requires a forward transform. Dealing with multi­
spectral images such as Landsat, the key step to extract bum scars is to find 
suitable band combinations. Koutsias et ai. [32] suggested bands of 7, 4, and 1 
for the best discrimination. In this study, we used that suggested combination 
and compared it to a combination of 7-4-2. Figure 2 presents a Landsat colour 
composite (ROB 542) and the hue components after the IRS transform. The 
Landsat image coincidentally captured a large active fire along with associated 
smoke. The burnt area is located in the centre of the image surrounded by 
various land use types including fragmented forests, clear cut and agricultural 
fields (Figure 2a). 
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Figure 2 Colour composite image (a) in comparison with hue components of 
ROB 7-4-1 (b) and ROB 7-4-2 (c). 
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,und the From the composite image, the area apparently was burned several times over a 
short period of time. Slightly different levels of reddish are shown which 
indicate different intensities of burning or different times of slash-and-burn. 
Considering that frequent downpours in the eastern Jambi provinces can inhibit 
fire spread, it can be estimated that attempts to bum started before August 1999. 
We noticed a good agreement between visual analysis and derived hue images. 
In general both hue images present clear discrimination of the bum scar and its 

Ised for surrounding land cover. Nonetheless, the hue component derived from 7-4-2 
nent of composite is shown in slightly lower contrast (Figure 2c). In the image, both 
\No-way burned area and bare soil are presented in a similar tone, which leads to 
:tion of difficulty in the automated delineation of the burned surface. In general, our 
I multi- result was in agreement with the conclusion of Koutsias et al. [32] that a 
to find combination of 7-4-1 produced a better discrimination than of 7-4-2. The result 

l, and 1 of IHS transform was used to delineate bum area which covered about 1342 
)ination hectares. The area was then gridded and we obtained 20 sample series for X-12 
. colour ARIMA modelling . 
n. The 
ociated 5.2 ARIMA Automodeling of Tropical Forest 
ded by The seasonal adjustment automodelling was set up for selecting, in order, the 
:ultural autoregressive, differencing, and moving average respectively both on ordinary 

and seasonal series of data [34]. The model used was the economic application 
in which Easter and trading day components were taken into account. This 
model had to be adapted to remove those unnecessary components as they had 
no meaningful relationship to vegetation greenness represented by NDVI. 
Figure 3 shows time series data of 20 grid samples. The figure illustrates time 
series pattern of NDVI which affected by seasonality and therefore difficult to 
interpret. Visual interpretation solely based on these series might mislead 
information retrieval if the seasonality is present. Statistical tests such as outlier 
detection could make a clarification for the problem. 

Each sample can be modelled on a particular ARIMA model. Instead of using a 
particular madeJ,. we us.ed.automQdel ARIMA to allow us more focus on the 
comparison of NDVI data representation of MA and MP. A particular model 
has significant meaning in forecasting and it is beyond the scope of this study to 
explain the difference on each series due to the limitations of our ground 
information. Models of the 20-samples varied in almost all order of 
autoregressive, differencing and moving average for both ordinary and seasonal 
series. Comparisons of the performance of the automodelling processes of MA 
and MP are presented in Table 1. 

;; of 
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Figure 3 Time series plot of 4 grid samples of MA-NDVI and MP-NDVL 

Table 1 Comparison of some process proceeded on 20 samples of MA and MP Detee 
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Statistical Processes 

Seasonally adjustment 

Transformation , .... 

Mean correction 

Missing observations 

Seasonality "significant" 

Forecasting error> 10% 

Monthly Average 
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~.,.- 0 (0%). 
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0(0%) 

2.0 (loo%) 

6 (30%) 
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10 (50%) 
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Table 1 shows similar performances between MA and MP on some processes, 
Theparticularly in the requirement of data transformation, mean correction and 
dete(detection of missing observations for the samples .. A significant difference of 
tookMA and MP was shown in the detection of the seasonality effect on each 

sample series. All MA series had a significant seasonal pattern while only II we a 
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samples (55%) of MP series were affected by seasonality. However, seasonality 
was probably present in the remaining samples of MP. Most of the MA and MP 
samples were seasonally adjusted allowing proper seasonal pattern 
identification. All MA samples were seasonally significant which means that all 
samples were seasonally affected. Another process shown in Table 1 is 
forecasting error. Slight differences in performance were shown between MA 
and MP which indicated that 6 samples of MA and 8 samples of MP were not 
reliable for quantitative analysis. It appears that previous studies by Goetz et ai. 
[13] assumed equal significance of series taken from different sites. It shown 
here that even if all samples were taken from a similar condition (delimitation 
of extracted burned areas), different characteristics of series were evident. 
Different aggregation processes by assigning average or maximum values over 
specific time frame produced different results. We observed that excessive 
aggregation would likely generate biased interpretation. Using information 
from Table 1, we were able to show those differences and hence able to select 
reliable series. 

5.3 Outlier Extraction 

Particularly on the eastern provinces of Sumatra, slash-and burn techniques 
have been practiced for land clearing. Hence, a high number of forest fires have 
been detected in this region. Due to the humid climate and high rainfall, 
repeated burning has been observed as slash-and-burn activities may be 
interrupted by the rain. Burning can be continued several days later once the 
surface has dried. This pattern creates a high frequency of hot spots detected by 
remote sensing and explains why hot spots occur at the same location. 

Detection of forest fire using Landsat data indicated that repeated burning 
occurred on the test site. Theoretically, the fire created a hiatus in vegetation 
condition represented on the NDVI time series data where the NDVI values 
sharply decreased. Since long term observations can contain seasonal patterns 
[351, that phen9lD~TlOn shoulli beilccounted for during data processing. We 
assumed that ten-day NDVI or their monthly aggregation data were shown as an 
annual repeated pattern. Hence outlier detection looked for any hiatus in the 
data while taking account of the seasonal pattern. The outlier detection offers 
precise identification of date (or in our case month and year) of fire occurrence, 
therefore improves on Goetz et ai. [l3} findings. Results of outlier detection 
using MA and MP are presented in Table 2. 

The Landsat image was used as a point of reference to be compared with 
detected outliers. Considering slash-and-burn behaviour on the site, we also 
took into account burning before the date of Landsat acquisition. In this case, 
we assumed August 1999 and September 1999 as an exact time of burning on 
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the site. There appears to be little difference in performance between MA and 
MP on outlier detection. Many outliers were successfully detected on MA and 
MP samples. Some were shown to share an identical date with our hot spot 
database and the Landsat image. We considered a month after outlier date to be 
identical because the change of greenness due to fire can be detected after the 
burning. particularly if it was taken place on last ten day of the month. 

Table 2 Outlier detection using monthly average and monthly peak data. 
Outliers in bold indicate in agreement with Landsat image, while in underline in 
agreement with hot spot data respectively. 

Sample 
series 

Grid 1 Sep-98, Sep-Ol, Feb-03, Dec-03 Sep-99, Feb-05 

Grid2 Sep-98, Aug-99, Oct-Ol, Feb-03, Aug-99, Dec-02, Feb-03,l!!l::Q.l, 
lul-03, Dec-04, lan-05 Dec-04 

Grid3 Oct-98, Sep-99, Nov-Ol, Mar-03, Aug-99, Dec-02, Feb-03, Jul-03, 
A.Ygjll, Jan-05, Feb-05 Dec-04 

Grid4 Sep-99,lul-03,Dec-04,Jan-05 Sep-99,Feb~3,Jul-03 

GridS Feb-99, Mar-OI l!!l::Q.l 

Grid6 Feb-99, Feb-OO, Feb-03, Jul-03 Mar-03,lY.!JU 

Grid7 Feb-99, Jul-03 Feb-99, Dec-02, Jul-03, Jun-04 

GridS Aug-99, lun-OO, JuI-03, Dec-04 

Grid9 Aug-99, Jun-OO, Jul-03, Dec-04 

Grid 10 Aug-99, lun-OO, Mar-OI, Oct-02, Jan-O I, Jul-03 
Jul-03, Dec-03, Jan-05 

Grid 1 1 Sep-99, Jul-03, Dec-03 Sep-99, Nov-02, Feb-03, Jul-03, 
Dec-03, Dec-04, Jan-OS 

Grid 12 Jun-03 Jul-03 

Grid 13 Dec-04 Jan-99, Dec-04 

GridI4 Feb-99, Feb-Ol 

GridI5 Feb-99, Feb-Ol, Feb-03, Nov-04 

Grid 16 Feb-99, Jan-OO, Feb-O i, Dec-OJ 

GridI7 Feb-99, Jan-OO 

GridlS Apr-99, Jan-OO. Jul-03, Dec-03 

GridI9 Nov-Oi, Jun-03 Apr-99, Apr-OO, Nov-Ol, OcI-02. 
Dec-02, Jul-03, Feb-04, Jan-05 

Grid20 Jan-99, Jan-OO, Jul-03 
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j 

j 
The result shows that the MA and MP contained four series with outliers which 
were detected coincident with fire detection from Landsat image on 
August/September 1999 at different sites (Grid 2, 3,4 and 11). Based on the 
presumption that significant effect of fire would be manifested on outrageous 
change on NDVI series, it could be inferred that the corresponding sample was 
affected by fire. In addition, we obtained seven samples of MA and MP that 
contained similar dates to detected hot spots (July 2003). There were fifteen 
samples of MA and fourteen samples of MP which showed good agreement 
with hotspot data, although these could not be validated due to the lack of 
additional reference data. Complete hotspots detected in samples area are 
presented in Table 3. 

Table 3 Number of hospots on sample areas (location-I) or ± 0.02 degree of 
longitude or latitude (location-2), and their date (month-year). 

Location Month Number of hotspots 

Aug-99 2 

2 Aug-99 6 

2 Sep-02 2 

Iun-03 16 

2 lun-03 35 

2 lul-03 2 

2 Aug-03 5 

Aug-04 

2 Aug-04 2 

2 Sep-04 2 

OcI-04 2 

The results show that we were able to assess the importance of the degree of 
bum severity. We found that all outliers that coincidentally related to fire had 
the LS type. According to Tsay [26], this type has long-lasting effect. Vaage 
[36] noticed that LS showed an impact that permanently shifted the following 
pattern of the series. LS had also been shown to affect the parameter estimation 
of ARMA making it inconsistent by changing the mean of the series. Seven 
outliers of MA (five on August 1999 and two on June 2003) were in agreement 
with hotspots and fire on the corresponding sites in LS-type. In addition, 9 
outliers of MA, including 8 outliers in TC-type and 1 outlier in LS-type were 
consistent with the hotspot of July and August 2003. Furthermore, 2 outliers of 
MP were in agreement wi th hotspot and fire on August 1999 and 13 outliers of 
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MP comprised 6 outliers in TC-type and 7 in LS-type was also coincident with 
hotspot of July 2003 in surrounding site or with a month later of hotspot 
detected in the site. We did not deal with all types of outliers due to limitations 
of information to deliver proper explanations. 

The result of outlier detection of MA and MP were quite different, however 
they showed that both achieved their aim. Many outliers could not be precisely 
linked to burning activity on the corresponding date of hotspot. Some other 
possible activities, such as logging. can affect a similar change of vegetation 
greenness. It appears that outlier detection of NDVI series is a potential method 
to explore historical evidences of vegetative area. Outliers could be a sign that 
there was an important phenomenon occurred on the specific date. Detailed 
information should be explored to prove and dig up initial information provided 
from outlier detection analysis. 

6 Conclusions 

In this paper, the application of out1ier detection using XI2-ARIMA for 
exploring historical evidence of forest fire was investigated. It seems that part . 
of lambi natural forest have been suffering from encroachment since before 
August 1999 and sti11 continuing. Using illS transformation, hue image of 
bands 7-4-1 composite could discriminate clearly bum scars. Mapping of bum 
scars confirmed active fire encroaching the test site. Image extraction on 
sample area provided information on the efforts to convert natural forests to 
cultivated area. Using XI2-ARIMA the efforts were detected as outliers on 
NDVI time series. LANDSAT ETM acquisition date was identified in the 
outlier list. Four outliers were detected on MA and two on MP samples which 
coincide with hotspots data and LANDSAT image. In addition, three MA and 
three MP samples were able to detect outliers which correspond with a month 
after fire captured on image. Apparently, sensitivity on outlier detection using 
MA and MP showed indifferent. Using auto-modelling of ARIMA, we showed 
a quantitative analysis of selected sites. We extended the approach outlined by 
Goetz et al. [13J by providing the date of the events from time series databases 
of NDVL Research of Goetz et al. [13J tent to disregard this selection and 
generally assumed that all sample sets are equally reliable. 

Despite recent avai1ability of many vegetation indices, the NDVI time series 
data were shown useful, mainly due to their long-term accessibility. 
Nonetheless, we urge further assessments to exploit other indices such as the 
Enhanced Vegetation Index (EVI). Comparison of the use of different 
vegetation indices may provide a more reliable index for detection of historical 
changes in vegetated areas. Vegetation indices of MODIS (Moderate 
Resolution Imaging Spectro-radiometer) should also be investigated for better 
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with understanding due to its detailed scale. Improving capacity on ARIMA 
Itspot modelling in analysing ten days data would also enhance precision in outlier 
ltions detection. 
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