

Dr. Despal, S.Pt., M.Sc.Agr. Dept. Nutrition & feed Technology, IPB

IMPROVING COCOA POD QUALITY BY UREA, NaOH AND COCOA POD ASH ALKALI TREATMENTS FOR RUMINANT FEEDSTUFFS

Backgound

Dev-ing countries:

- Limiting of grain and high quality fibre
- abundant plantation by-product.
- cocoa seed demand increase
- release by-product; cocoa pods

Figure 1.1: Cocoa producing countries (producing country) Source: ICCO (2001)

Cocoa pods

- late mature plant comp
- high lignocellulosic
- low utility
- low animal performance
- high excess to environment.

.... Need treatment to improve nutrient value

Treatment to improve lignocellulosic

- physic-, chemi- and biology-cally,
- Laconi (2000): Simple chemical treatment using urea as effective as biological fermentation to improve cocoa pods quality.

Objectives

- To study the effect of alkali sources and their level on proximate composition, cell wall constituent and in vitro gas production
- To estimate digestibility and metabolisable energy of treated cocoa pod from gas production and proximate composition
- To found the best alkali source and its level which gave the maximum in vitro digestibility

Treatments

Alkali sources	Level (g/kg cocoa pods				
Urea	10	20	30		
NaOH	2	4	6		
CPA	5	10	15		

Control: Fresh and fermented cocoa pod without alkali

Fermentation & sample preparations

- Cocoa pod is cutted to 0.5 cm thick
- alkali agent is added (except control)
- homogenized
- incubated anaerobically for 2 weeks (except fresh control).
- The pods are then dried and milled to pass 0.5 mm screen.

Parameters

- Proximate compositions (Naumann and Bassler, 1976)
- Van Soest cell wall constituent (Van Soest, 1967)
- In vitro gas production (Menke et al., 1979)
- Estimate DOM and ME

In vitro gas production (Menke et al., 1979)

Gas production (ml/200 mg DM)

- Estimate DOM
- =14.88 + 0.889 Gb (ml) + 0.045 CP + 0.065 ASH
- Estimate ME
- = 1.242 + 0.146 Gb (ml) + 0.007 CP + 0.224 XL

DOM (%), ME (MJ/kg DM); CP (g/kg DM); ASH (g/kg DM); XL (g/kg DM)

Design

• Block design • Factors: alkali source • Level: 11 • Linear model: $Yij = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$

Table 1: Proximate analysis of treated cocoa pod

Treats.	Dosis	DM	ASH	СР	XL	CF	
	g/kg	%	%	%	%	%	
Fresh		87.65	7.88 ^b	9.34 ^b	0.54 ^b	52.30 ^c	
Silage	0	89.44	6.19 ^a	8.68 ^{ab}	0.48 ^{ab}	42.09 ^a	
СРА	5	87.41	8.34 ^b	7.85 ^{ab}	0.50 ^{ab}	49.59 ^{bc}	
	10	87.09	9.32 ^{bc}	7.89 ^{ab}	0.63 ^b	50.83 ^{bc}	
	15	86.67	10.39°	7.96 ^{ab}	0.47^{ab}	49.32 ^{bc}	
NaOH	2	88.88	7.89 ^b	7.49 ^a	0.43 ^{ab}	46.30 ^{ab}	
	4	87.32	9.59°	7.33 ^a	0.34 ^{ab}	46.27 ^{ab}	
	6	87.16	10.64 ^c	7.33 ^a	0.27 ^a	47.67 ^{bc}	
Urea	10	88.88	6.32 ^{ab}	19.36°	0.40 ^{ab}	47.18 ^{bc}	
	20	88.06	5.81 ^a	26.51 ^d	0.39 ^{ab}	49.98 ^{bc}	
	30	87.96	5.49 ^a	43.24 ^e	0.48 ^{ab}	46.83 ^b	

CPA = Cocoa pod ash. The cocoa pod was incubated anaerobically for 2 weeks except for fresh treatment. Different superscript at the same column shows the statistically different at p < 0.05

Table 2. Van Soest analysis of treated cocoa pod

Treatments	Dosis	ADF	NDF	
	g/kg	%	%	
Fresh		69.52 ^b	79.48 ^{ab}	
Silage	0	62.15 ^{ab}	82.04 ^{ab}	
	5	69.23 ^b	86.81 ^b	
СРА	10	67.21 ^b	84.82 ^b	
	15	66.60 ^b	80.73 ^{ab}	
	2	64.60 ^b	85.38 ^b	
NaOH	4	67.10 ^b	80.13 ^{ab}	
	б	62.67 ^{ab}	76.70 ^a	
	10	61.39 ^{ab}	82.59 ^{ab}	
Urea	20	62.13 ^{ab}	81.92 ^{ab}	
	30	58.61 ^a	80.07 ^{ab}	

CPA = Cocoa pod ash. The cocoa pod was incubated anaerobically for 2 weeks except for fresh treatment. Different superscript at the same column shows the statistically different at p < 0.05

Table 3. Gas production, estimated of digestibility and ME

5		Dosis	Gb	OMD	ME
V	Treat.	g/kg	ml/200 mg DM	%	MJ/kg DM
	Fresh		9. 41°	32.61 ^{ab}	3.40 ^b
	Silage	0	11.51 ^d	33.04 ^{ab}	3.64 ^b
	CPA	5	8.85 ^{bc}	31.70 ^{ab}	3.20 ^{ab}
-		10	8.17 ^b	31.75 ^{ab}	3.13 ^{ab}
		15	9.28 ^{bc}	33.47 ^b	3.26 ^{ab}
	NaOH	2	9.68°	31.98 ^{ab}	3.28 ^b
		4	8.05 ^b	31.57 ^a	3.01 ^a
		6	9.08b°	33.17 ^{ab}	3.14 ^{ab}
1	Urea	10	12.07 ^d	38.43°	4.45°
7		20	12.99 ^d	42.13 ^d	5.08 ^d
		30	4.86 ^a	42.07 ^d	5.06 ^d

Response of OMD and ME on urea applications

No	Formula	Peak	n	r ²	F
	Based on Gb	g/kg DM			
1	$Gb = 11.0306 + 0.067U - 0.0005U^2$	67	12	0.86	0.000
	Based on %TP (TP-N x 6.25)				
2	$OMD = 33.4659 + 0.0743 \text{ U} - 0.0004 \text{ U}^2$	93	12	0.84	0.000
3	$ME = 4.3889 + 0.0113 \text{ U} - 0.00006 \text{ U}^2$	94	12	0.84	0.000
	Based on (NAN – UR-N) x 6.25				
4	$OMD = 34.3873 + 0.0401 \text{ U} - 0.0003 \text{ U}^2$	67	12	0.75	0.000
5	$ME = 4.5191 + 0.0065 \text{ U} - 0.00005 \text{ U}^2$	65	12	0.72	0.000

Conclusion

- Urea is the most suitable alkali source for cocoa pod quality improvement
- On local absence of the alkali source, the improvement quality of cocoa pod with silage treatment is also recommended
- The (NAN-UR) value is suggested to be the nearest evaluation of the real protein value of urea treated cocoa pods.
- The optimum level of urea was 67 g/kg DM cocoa pods.