Dan Kami telah menghilangkan daripadamu bebanmu,
yang memberatkanmu punggungmu
karena sesungguhnya sesudah kesulitan itu ada kemudahan
maka Apabila kamu telah selesai (dari sesuatu urusan), kerjakanlah dengan sungguh-sungguh (urusan)
yang lain,
dan hanya kepada Allahlah hendaknya kamu berharap.

(Alam Nasyrak ayat 2-8)

Kupersembahkan karya ilmiah ini
untuk keluargaku
dan orang-orang yang selalu menyayangiku.
PORTOFOLIO ARBITRASE PADA CAPTIAL MARKET LINE
DAN SECURITY MARKET LINE

DESI FERAYANTI

JURUSAN MATEMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR
BOGOR
2003
RINGKASAN

Faktanya dalam dunia nyata saat ini arbitrase dapat terjadi. Apabila arbitrase terjadi maka investor tidak akan memilih portofolio pasar melainkan memilih portofolio arbitrase karena lebih menguntungkan. Portofolio arbitrase ini menguntungkan karena nilai harapan *return*nya lebih besar dari pada nilai harapan *return* portofolio pasar dengan risiko yang sama. Hal tersebut jika digambarkan pada SML dan CML, maka nilai harapan *return* portofolio arbitrase akan berada di atas nilai harapan *return* portofolio pasar, yang berarti terletak di atas CML dan SML.
Judul : Portofolio Arbitrase pada *Capital Market Line* dan *Security Market Line*

Nama : Desi Ferayanti

NRP : G05498014

Program Studi : Matematika

Menyetujui,

Drs. Effendi Syahril, Grad. Dipl.
Pembimbing I

Donny Citra Lesmana, S.Si.
Pembimbing II

Mengetahui,

[Signature]

Dr. Aprili Aman, M.Sc.
Ketua Jurusan
RIWAYAT HIDUP

PRAKATA

Segala puji bagi Allah SWT yang dengan rahmat-Nya penulis dapat menyelesaikan karya ilmiah ini dan salam semoga tercurah kepada junjungan kita Nabi Muhammad SAW yang termulia di antara semua mahluk, dinius dengan membawa kebenaran dan petunjuk sebagai rahmat bagi seisi alam.

Penulis menyampaikan banyak terima kasih kepada semua pihak yang telah membantu dalam penyelesaian karya ilmiah ini khususnya kepada Bapak Effendi Syahril beserta keluarganya (terima kasih atas bimbingannya yang penuh kesabaran dan ketekunan, maaf Ibu dan Vindi sering diganggu dengan suara-suara telpen dari Desi), Om Donny Citra Lesmana (thank’s for your kind, I hope your fans will increase and good luck for your study) dan Ibu Endar Nugrahani selaku penguji, terima kasih atas masukkannya.

Penulis juga mengucapkan terima kasih kepada:

- Ibu Susi terima kasih informasinya, Ibu Ade untuk bantuan administrasinya, Mas Bono untuk kebaikan dan juga kelucuannya, Mas Yono dan Mas Deni yang sudah membawakan OHP, dan juga buat Ibu Syam terima kasih buat air dinginnya (kapan kita bisa ketemu lagi?).
- Keluarga besar Bapak Edi yang selalu memberi keceriaan, terutama Bapak dan Ibu terima kasih atas doa dan dorongannya, pinjaman monitornya dan juga tumpangan nge-print-nya (Bu kapan bikin empek-empek lagi?).
- A’ Ade yang selalu meluangkan waktu kalau Desi ingin curhat, yang selalu bersedia menemani Desi kekiling-kekiling dari referensi, memperbaiki komputer Desi yang sering error, pokoknya orang yang paling sering Desi repotin (A’, thank’s for your love, you’re the best boyfriend, till now).
- Iim, Izma dan Irma terima kasih buat pertemanannya yang selalu menyemangkan dan dorongan semangatnya, serta selalu bersedia mendengarkan uneg-uneg Desi (Kapan kita jalan-jalan lagi?).
- Nana (yang selalu memberi kecerian. Kapan kita mengintai rumah orang lagi ?), Mila (thank’s sudah jadi nulis dan pinjaman spidolnya), Jannah (ayo semangat, tinggal selangkah lagi) dan Tari (semangat Ri, oh ya terima kasih udah jadi penbahas).
- Titin (FE UI 2001) dan Epi (Tehnik UNJ ’98) terima kasih buat pinjaman kartu perpustakanya,
 - Mbak Lina terima kasih buat tausyiahnya. Buat anak-anak 31 angkatan 98: Devie (sorry, kalau penulis nggak bisa jadi sahabat yang baik), Ibu Ida (semoga cepat diberi menerima, yang sabar ya Da...), Regia, Lilis dan Santi terima kasih buat suppormnya agar penulis selalu semangat menyelesaikan skripis ini.
- Anak-anak kostan Ciwaha: 10: Mbak Mala, Ibu Ijunk (semoga proses melahirkannya lancar), Ibu Ika (selamat atas kelahiran babyanya semoga jadi anak yang sholeha), Ratih, Indah, Yuli, Nunu, Nadia dan Novie (kapan kita bisa kumpul lagi, bakar ayam bareng, gosip sampai malam? For all of you, I miss you).
- Buat teman satu PS, Hery (sering-sering ngadep donk!), Denbah (terima kasih atas dukungananya).
 - Ashok, Pris, Herdin (Kapan nak kereta bareng-bareng lagi?), Akbar (gimana kabarnya Lampung?), Madhi, Hepi, Denny, Inehe, Sarah, Nita, Kiky, Ani, Floren, Anna, Intan, Syamsul, Indra, Inge, Berlin, Taufik, Nunung, Jae, Dewi, Lilo, Dinah, Ari, Jakop, Ida (kemana aja? kok nggak pernah nongol di kampus sih), Syamsuri, thank’s friends.
- Lilis dan Remy terima kasih ya sudah jadi pembahas.

Bogor, Mei 2003

Desi Feraayanti
DAFTAR ISI

<table>
<thead>
<tr>
<th>Bab</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAFTAR GAMBAR</td>
<td>vi</td>
</tr>
<tr>
<td>DAFTAR LAMPIRAN</td>
<td>vi</td>
</tr>
<tr>
<td>PENDAHULUAN</td>
<td></td>
</tr>
<tr>
<td>Latar belakang</td>
<td>1</td>
</tr>
<tr>
<td>Tujuan penulisan</td>
<td>1</td>
</tr>
<tr>
<td>Metode penulisan</td>
<td>2</td>
</tr>
<tr>
<td>Sistematika penulisan</td>
<td>2</td>
</tr>
<tr>
<td>LANDASAN TEORI</td>
<td></td>
</tr>
<tr>
<td>Probabilitas</td>
<td>2</td>
</tr>
<tr>
<td>Portofolio Optimal Berdasarkan Model Markowitz</td>
<td>2</td>
</tr>
<tr>
<td>Model Indeks Tunggal</td>
<td>3</td>
</tr>
<tr>
<td>Capital Asset Pricing Model</td>
<td>4</td>
</tr>
<tr>
<td>PERUMUSAN MASALAH</td>
<td>6</td>
</tr>
<tr>
<td>PEMBAHASAN</td>
<td></td>
</tr>
<tr>
<td>Portofolio Arbitrase</td>
<td>7</td>
</tr>
<tr>
<td>Model Pasar</td>
<td>8</td>
</tr>
<tr>
<td>Capital Market Line</td>
<td>8</td>
</tr>
<tr>
<td>Security Market Line</td>
<td>8</td>
</tr>
<tr>
<td>Penghubung antara CML dan SML</td>
<td>8</td>
</tr>
<tr>
<td>Portofolio Arbitrase dengan Security Market Line</td>
<td>9</td>
</tr>
<tr>
<td>Portofolio Arbitrase dengan Capital Market Line</td>
<td>10</td>
</tr>
<tr>
<td>KESIMPULAN</td>
<td>11</td>
</tr>
<tr>
<td>DAFTAR PUSTAKA</td>
<td>12</td>
</tr>
<tr>
<td>LAMPIRAN</td>
<td>13</td>
</tr>
</tbody>
</table>
1. Edens, Frontier dan Portofolio Pasar ... 4
2. Capital Allocation Line ... 5
3. Capital Market Line .. 5
4. Security Market Line .. 6
5. CML dan SML tanpa arbitrase .. 7
6. CML dan SML dengan arbitrase ... 7
7. Portofolio arbitrase dalam konteks SML ... 10
8. Portofolio arbitrase dalam konteks CML ... 11

DAFTAR LAMPIRAN

Halaman

1. Bukti Teorema 1 ... 14
2. Bukti Teorema 2 ... 14
3. Bukti Teorema 3 ... 14
4. Bukti Teorema 4 ... 15
5. Bukti Teorema 5 ... 16
6. Bukti Lema 1 .. 18
7. Bukti Teorema 6 ... 19
8. Bukti Teorema 7 ... 21
9. Bukti Teorema 8 ... 24
Metode Penulisan

Metode penulisan karya ilmiah ini adalah studi literatur. Materi karya ilmiah ini diambil dari jurnal dan buku-buku yang terkait dengan tulisan ini.

Sistematika Penulisan

LANDASAN TEORI

Landasan teori ini menyajikan hal-hal yang menjadi dasar pengetahuan karya ilmiah ini dan diberikan dalam bentuk definisi-definisi, beberapa lema dan teorema- teorema penting.

Probabilitas

Definisi 1 [Bain, 1992]
Jika \(X \) dan \(Y \) adalah peubah acak dengan fungsi kepekatan \(f_X(x) \) maka didefinisikan

a. Nilai harapan peubah acak \(X \), \(E(X) \), adalah
 \[E(X) = \sum x f_X(x) \] \((1) \)

b. Ragam peubah acak \(X \), \(\sigma_X^2 \), adalah
 \[\sigma_X^2 = E[(X - E(X))^2] \] \((2) \)

c. Peragam antara peubah acak \(X \) dengan peubah acak \(Y \) adalah
 \[\text{Cov}(X, Y) = E[(X - E(X))(Y - E(Y))] \] \((3) \)
 atau
 \[\text{Cov}(X, Y) = E(XY) - E(X)E(Y) \] \((4) \)

d. Koefisien korelasi antara \(X \) dan \(Y \) adalah
 \[\rho_{xy} = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y} \] \((5) \)

Definisi 2 [Helms, 1997]
Peubah acak \(X_1, ..., X_n \) saling bebas jika
 \[f_{X_1, ..., X_n}(x_1, ..., x_n) = f_{X_1}(x_1) \times ... \times f_{X_n}(x_n) \] \((6) \)
 untuk semua \(x_1, ..., x_n \in \mathbb{R} \).

Teorema 1 [Bain, 1992]
Jika \(X \) dan \(Y \) peubah acak yang saling bebas dengan fungsi kepekatan \(f_X(x) \) dan \(f_Y(y) \) maka:

\[E(XY) = E(X)E(Y) \] \((7) \)
\[\text{Cov}(X; Y) = 0 \] \((8) \)

Bukti: lihat Lampiran 1.

Portofolio Optimal Berdasarkan Model Markowitz

Model Markowitz merupakan model yang hanya menggunakan dua parameter yang mempengaruhi keputusan investor untuk berinvestasi, yaitu nilai harapan return, \(E(R) \), dan risiko, \(\sigma \).

Model Markowitz ini berlandaskan 5 asumsi sebagai berikut:
1. Hanya dua parameter saja yang mempengaruhi keputusan investor dalam berinvestasi, yaitu nilai harapan return dan risiko.
2. Investor bersifat risk averse. Artinya untuk portofolio dengan return yang sama investor akan memilih risiko yang terkecil, dan juga bila dihadapkan pada tingkat risiko yang sama investor akan memilih portofolio yang nilai harapan returnnya paling tinggi.
4. Ada \(n \geq 2 \) sekuritas yang diperdagangkan dengan ragam yang hingga dan nilai harapan return yang berbeda.

Definisi 3 [Bodie, 1993]
Efisien frontier didefinisikan sebagai himpunan portofolio-portofolio yang menawarkan nilai harapan return maksimum untuk risiko yang
berbeda dan menawarkan risiko minimum untuk nilai harapan return yang berbeda.

Model Markowitz menyatakan bahwa portofolio yang optimal terletak pada efisiensi frontier. Selain itu Model Markowitz juga membentuk portofolio berisiko yang optimal dari semua sekuritas yang ada di pasar. Dengan demikian investor akan meminimalkan risiko portofolio, \(\sigma_i^2 \), dengan syarat jumlah proporsi investasi pada semua sekuritas sama dengan satu,

\[\sum_i x_i = 1. \]

Teorema 2 [Elton, 1995]

Misalkan P adalah portofolio yang terbentuk dari sekuritas i dan sekuritas j.

Misalkan \(R_p, R_i, \) dan \(R_j \) berturut-turut melambangkan return portofolio P, return sekuritas i dan sekuritas j, \(\sigma^2 \), menyatakan ragam sekuritas i sedangkan \(\text{Cov}(R_i, R_j) \) menyatakan peragam antara return sekuritas i dan sekuritas j. Misalkan \(x_i \) dan \(x_j \) menyatakan bobot atau proporsi dana yang diinvestasikan pada sekuritas i dan sekuritas j, dengan

\[R_p = x_i R_i + x_j R_j \quad \text{dan} \quad x_i + x_j = 1 \tag{9} \]

maka

a. Nilai harapan return portofolio P adalah

\[E(R_p) = x_i E(R_i) + x_j E(R_j) \tag{10} \]

b. Ragam dari portofolio P adalah

\[\sigma_p^2 = x_i^2 \sigma_i^2 + x_j^2 \sigma_j^2 + 2x_i x_j \text{Cov}(R_i, R_j) \tag{11} \]

Bukti: lihat Lampiran 2.

Model Indeks Tunggal

Model indeks tunggal digunakan untuk menyederhanakan perhitungan pada model Markowitz. Model ini didasarkan pada anggapan bahwa harga sekuritas berubah searah dengan harga indeks pasar.

Model indeks tunggal adalah model yang menyatakan bahwa return sekuritas-sekuritas mempunyai korelasi dengan return portofolio pasar. Portofolio pasar adalah portofolio yang terdiri atas semua sekuritas yang ada di pasar dan portofolio pasar ini dapat diwakili oleh indeks pasar. Hubungan return dari suatu sekuritas dengan return indeks pasar dapat dituliskan sebagai berikut

\[R_i = \alpha_i + \beta R_m \tag{12} \]

dengan

\[R_i = \text{return sekuritas} \ i \]

\[\alpha_i = \text{suatu peubah acak yang menunjukkan komponen dari return sekuritas} \ i \ \text{yang tidak bergantung pada pasar,} \]

\[\beta = \text{koefisien risiko yang mengukur perubahan} \ R_m \ \text{akibat dari perubahan} \ R_m. \]

\[R_m = \text{tingkat return} \ \text{dari indeks pasar, juga merupakan peubah acak.} \]

Karena \(\alpha \) adalah komponen return yang tidak bergantung pada return pasar maka \(\alpha \) dapat dipecah menjadi nilai yang diharapkan (\(\alpha \)) dan kesalahan/residu (\(e \)) yang dituliskan sebagai berikut

\[\alpha = \alpha + e \tag{13} \]

Sehingga Persamaan (12) dapat ditulis menjadi

\[R_i = \alpha + \beta R_m + e \tag{14} \]

dengan \(E(e) = 0 \), karena Persamaan (13) berfungsi menduga return sekuritas i agar nilai yang diduga mendekati nilai yang sebenarnya maka diharapkan tidak ada kesalahan atau kesalahananya mendekati nol.

Pada Model indeks tunggal, return dari sekuritasaunya dapat juga dinyatakan dalam bentuk nilai harapan return.

Teorema 3 [Elton, 1995]

Jika return sekuritas i pada model indeks tunggal berbentuk seperti berikut:

\[R_i = \alpha + \beta R_m + e \tag{15} \]

maka:

a. Nilai harapan return dari sekuritas i adalah

\[E(R_i) = \alpha + \beta E(R_m) \tag{16} \]

b. Ragam dari sekuritas i adalah

\[\sigma_i^2 = \beta^2 \sigma_m^2 + \sigma_i^2 \tag{17} \]

c. Peragam antara return sekuritas i dan sekuritas j adalah

\[\text{Cov}(R_i, R_j) = \beta_i \beta_j \sigma_m^2 \tag{18} \]

dengan \(\beta_i, \beta_j \) adalah koefisien risiko sekuritas i dan sekuritas j.

Bukti: lihat Lampiran 3.

Model indeks tunggal memiliki beberapa sifat:

1. Beta dari portofolio, \(\beta_p \) merupakan rata-rata terboboti dari beta masing-masing sekuritas, \(\beta \)

\[\beta_p = \sum \beta_i \tag{19} \]

\[\beta_p = \sum \beta_i \]