LOMBA KARYA TULIS MAHASISWA

KAJIAN PENINGKATAN KANDUNGAN ZAT BESI (Fe), SENG (Zn), DAN BETA KAROTEN PADA TANAMAN SINGKONG
(Manihot esculenta Crantz ssp.) MELALUI TEKNOLOGI BIOFORTIFIKASI

Disusun oleh:

TRI HANDAYANI NRP. A34303008
ARMITA FIBRIYANTI NRP. A34303018
INDAH PRATIWI NRP. A34304059

Bidang:
Ilmu Pengetahuan Alam

INSTITUT PERTANIAN BOGOR
BOGOR
2007
LEMBAR PENGESAHAN

Karya Tulis yang berjudul:

KAJIAN PENINGKATAN KANDUNGAN ZAT BESI (Fe), SENG (Zn), DAN BETA KAROTEN PADA TANAMAN SINGKONG

(Manihot esculenta Crantz sin.) MELALUI TEKNOLOGI BIOFORTIFIKASI

Oleh:

Tri Handayani NRP A34303008
Armita Fibriyanti NRP A34303018
Indah Pratiwi NRP A34304059

Telah disahkan pada tanggal 18 April 2007

Mengetahui

Wakil Rektor III IPB

Menyetujui

Dosen Pembimbing

Prof. Dr. Ir. Yusuf Sudo Hadi, M. Agr
NIP. 130 687 459

Dr. Ir. Nurul Khumaida, MSi
NIP. 132 133 964
KATA PENGANTAR

Puji syukur kehadirat Allah SWT yang telah melimpahkan rahmatNya sehingga penulis dapat menyelesaikan karya tulis ilmiah yang berjudul "Kajian Peningkatan Kandungan Zat Besi (Fe), Seng (Zn), dan Beta Karoten pada Tanaman Singkong (Manihot esculenta Crantz sin.) Melalui Teknologi Biofortifikasi"

Karya tulis ini tersusun akibat adanya bantuan dari banyak pihak. Oleh karena itu, pada kesempatan ini penulis ingin menyampaikan terimakasih kepada:
2. Fakultas Pertanian IPB atas dukungannya
3. Departemen Agronomi dan Hortikultura atas dukungannya
4. Ibu Dr. Ir. Nurul Khumaida, MS selaku dosen pembimbing dalam penyusunan karya tulis ini.
5. Orang tua serta rekan-rekan mahasiswa yang penulis banggakan dan pihak-pihak yang turut mendukung baik moril maupun material, yang tidak dapat penulis sebutkan satu per satu.

Penulis menyadari bahwa karya tulis ini tidak luput dari kekurangan, oleh karena itu penulis mengharapkan kritik dan saran yang membangun dalam rangka penyempurnaannya. Akhirnya, semoga karya tulis ini mampu memberikan sumbangan bagi dunia ilmu pengetahuan secara luas.

Bogor, April 2007

Penulis
DAFTAR ISI

<table>
<thead>
<tr>
<th>Daftar Isi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENDAHULUAN</td>
<td></td>
</tr>
<tr>
<td>Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td>Perumusan Masalah</td>
<td>4</td>
</tr>
<tr>
<td>Tujuan Penulisan</td>
<td>5</td>
</tr>
<tr>
<td>Manfaat Penulisan</td>
<td>5</td>
</tr>
<tr>
<td>TELAAH PUSTAKA</td>
<td>6</td>
</tr>
<tr>
<td>Singkong (Manihot esculenta Crantz sin.)</td>
<td>6</td>
</tr>
<tr>
<td>Penduduk Miskin di Indonesia</td>
<td>7</td>
</tr>
<tr>
<td>Masalah Gizi (Malnutrisi)</td>
<td>8</td>
</tr>
<tr>
<td>Zat Besi *(Fe), Seng (Zn) dan Beta Karoten pada Tanaman</td>
<td>11</td>
</tr>
<tr>
<td>Biofortifikasi</td>
<td>12</td>
</tr>
<tr>
<td>METODE PENULISAN</td>
<td>14</td>
</tr>
<tr>
<td>Sumber dan Jenis Data</td>
<td>14</td>
</tr>
<tr>
<td>Pengumpulan Data</td>
<td>14</td>
</tr>
<tr>
<td>Analisis Data</td>
<td>14</td>
</tr>
<tr>
<td>Penarikan Kesimpulan</td>
<td>14</td>
</tr>
<tr>
<td>PEMBAHASAN</td>
<td>15</td>
</tr>
<tr>
<td>Perbaikan Tanaman Singkong dengan Kandungan Zat Besi (Fe), Seng (Zn), dan Beta Karoten Tinggi</td>
<td>15</td>
</tr>
<tr>
<td>Peningkatan Kandungan Zat Besi (Fe), Seng (Zn), dan Beta Karoten pada Tanaman Singkong</td>
<td>16</td>
</tr>
<tr>
<td>Biofortifikasi melalui aplikasi pemupukan</td>
<td>16</td>
</tr>
<tr>
<td>Biofortifikasi melalui pemulian tanaman konvensional</td>
<td>20</td>
</tr>
<tr>
<td>Biofortifikasi melalui rekayasa genetika</td>
<td>23</td>
</tr>
<tr>
<td>Manipulasi penyecaman dan penyimpanan zat besi (Fe) dan seng (Zn) pada tanaman singkong</td>
<td>24</td>
</tr>
<tr>
<td>Manipulasi penyecaman dan penyimpanan beta karoten pada tanaman singkong</td>
<td>25</td>
</tr>
<tr>
<td>Penurunan Kandungan Senyawa Anti Nutrisi</td>
<td>27</td>
</tr>
<tr>
<td>Peningkatan Konsentrasi Promotor</td>
<td>28</td>
</tr>
<tr>
<td>KESIMPULAN DAN SARAN</td>
<td>31</td>
</tr>
<tr>
<td>Kesimpulan</td>
<td>31</td>
</tr>
<tr>
<td>Saran</td>
<td>32</td>
</tr>
<tr>
<td>DAFTAR PUSTAKA</td>
<td>33</td>
</tr>
</tbody>
</table>
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Nomor</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Produksi dan Kebutuhan Singkong Indonesia Tahun 2003-2005</td>
<td>7</td>
</tr>
<tr>
<td>2.</td>
<td>Kandungan Nutrisi pada Singkong</td>
<td>7</td>
</tr>
<tr>
<td>3.</td>
<td>Angka Kecukupan Energi, Vitamin A, Besi, dan Seng bagi Penduduk Indonesia</td>
<td>11</td>
</tr>
<tr>
<td>4.</td>
<td>Kisaran Kandungan Fe, Zn, dan Beta Karoten pada Daun dan Umbi dari 600 Genotip Tanaman Singkong</td>
<td>16</td>
</tr>
<tr>
<td>5.</td>
<td>Rekapitulasi Hasil Penelitian Biofortifikasi Tanaman melalui Aplikasi Pemupukan</td>
<td>17</td>
</tr>
<tr>
<td>6.</td>
<td>Rekapitulasi Hasil Penelitian Biofortifikasi Tanaman melalui Pendekatan Rekayasa Genetik</td>
<td>23</td>
</tr>
<tr>
<td>7.</td>
<td>Rekapitulasi Hasil Penelitian Biofortifikasi Tanaman melalui Penurunan Senyawa Anti Nutrisi</td>
<td>27</td>
</tr>
<tr>
<td>8.</td>
<td>Rekapitulasi Hasil Penelitian Biofortifikasi Tanaman Melalui Peningkatan Konsentrasi Promotor</td>
<td>28</td>
</tr>
</tbody>
</table>

DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Nomor</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Struktur Beta Karoten ($C_{40}H_{56}$)</td>
<td>10</td>
</tr>
<tr>
<td>2.</td>
<td>Bagan Alir Absorbsi dan Translokasi Fe dan Zn pada Tanaman</td>
<td>18</td>
</tr>
<tr>
<td>3.</td>
<td>Bagan Alir Pemuliaan secara Konvensional Tanaman Singkong (Manihot esculenta Crainzi sin.) yang mengandung Fe, Zn, dan Beta Karoten Tinggi</td>
<td>22</td>
</tr>
<tr>
<td>4.</td>
<td>Ferritin</td>
<td>24</td>
</tr>
<tr>
<td>5.</td>
<td>Jalur Biosintesis Karoten</td>
<td>26</td>
</tr>
<tr>
<td>6.</td>
<td>Mekanisme Penerapan Teknologi Biofortifikasi pada Tanaman Singkong untuk Menekan Malnutrisi (Fe, Zn, dan Beta karoten)</td>
<td>30</td>
</tr>
</tbody>
</table>
RINGKASAN

TRI HANANDANI, ARMITA FIBRIYANTI, INDAH PRATIWI. Kajian Peningkatan Kandungan Zat Besi (Fe), Seng (Zn), dan Beta Karoten pada Tanaman Singkong (Manihot esculenta Crantz sin.) Melalui Teknologi Biofortifikasi. Dibimbing oleh NURUL KHUMAIDA.

Kata kunci : Biofortifikasi, singkong, Fe, Zn, beta karoten

Kekurangan nutrisi terhadap zat gizi mikro (besi (Fe), seng (Zn), dan vitamin A) merupakan masalah utama kesehatan yang dialami lebih dari setengah penduduk di dunia ini (Mason dan Garcia, 1993). United Nations System Standing Committee on Nutrition (2004) menyatakan bahwa gejala ini banyak menyerang wanita dan anak-anak usia pra sekolah. Di Indonesia, setidaknya terdapat 5 juta anak dari 18 juta anak balita menderita gizi kurang, sedangkan 1.7 juta terancam gizi buruk (Kompas, 2007).

Singkong merupakan bahan pangan yang mudah diperoleh dan relatif murah, memiliki daya adaptasi lingkungan yang tinggi, teknik budidaya mudah, tidak menerlukan banyak pupuk dan pestisida. Kandungan mikro nutrisi Fe pada singkong mentah sebesar 1.1 mg/100 gram bahan, beta karoten 10 µg/100 gram bahan (Community Food System Data, 2007). Kandungan Zn pada singkong antara 4-18 mg/kg bahan (White dan Broadley, 2005). Rekomendasi FAO/WHO tahun 2000 kebutuhan manusia dewasa terhadap Fe, Zn, beta karoten masing-masing sebesar 10-15 mg, 12-15 mg, 800-1000 µg (dalam bentuk vitamin A).

Kandungan Fe, Zn, beta karoten pada tanaman singkong belum sesuai dengan standar FAO/WHO. Oleh karena itu diperlukan upaya untuk meningkatkan kandungan mikro nutrisi pada singkong, salah satunya melalui biofortifikasi. Biofortifikasi tanaman singkong yang mengandung Fe, Zn, dan beta karoten belum banyak dilakukan. Oleh karena itu diperlukan kajian mendalam mengenai prospek pengembangan biofortifikasi tanaman singkong yang mengandung Fe, Zn, dan beta karoten, salah satunya adalah dalam bentuk karya ilmiah.
Tujuan karya ilmiah ini untuk mempelajari metode perbaikan tanaman singkong yang mengandung Fe, Zn, dan beta karoten melalui teknologi biofortifikasi, mempelajari metode peningkatan Fe, Zn, dan beta karoten pada tanaman singkong, penurunan kandungan senyawa anti nutrisi yang menghambat penyerapan Fe, Zn, dan beta karoten, dan peningkatan konsentrasi promotor yang berperan dalam peningkatan penyerapan Fe, Zn, dan beta karoten. Metode penulisan dilakukan melalui pengumpulan sumber dan jenis data dilanjutkan dengan analisis data dan langkah terakhir adalah penarikan kesimpulan.

Metode peningkatan kandungan Fe, Zn, dan beta karoten pada bagian tanaman yang dikonsumsi dilakukan dengan aplikasi pemupukan, pemulian konvensional dan pendekatan rekayasa genetik. Pemupukan dilakukan dengan memberikan pupuk makro dan mikro. Pemulian konvensional dilakukan melalui pengumpulan plasma nutfah, seleksi, pengujian, dan perbanyakan. Pendekatan rekayasa genetika dilakukan melalui karakterisasi dan pemasukan gen tertentu yang mengkode Fe, Zn, dan beta karoten.

Metode penurunan kandungan senyawa anti nutrisi yang menghambat penyerapan Fe, Zn, dan beta karoten dilakukan dengan menurunkan konsentrasi asam fitat, tanin, logam berat (Co, Hg, Pb) melalui teknik rekayasa genetika atau pemulian secara konvensional. Metode peningkatan konsentrasi promotor dilakukan dengan meningkatkan senyawa yang menstimulasi penyerapan mikro nutrisi pada tubuh manusia. Beberapa bahan organik tertentu dapat menstimulasi penyerapan hara mikro pada tubuh manusia yaitu: asam: ascorbat, β-karoten, protein sistein (cysteine), dan asam amino.

Pemulian tanaman singkong perlu dilakukan untuk meningkatkan kandungan Fe, Zn dan beta karoten pada bagian yang dikonsumsi. Kajian dan penelitian masih perlu dilakukan terhadap perbanyakan tanaman singkong secara klonal pada hasil pemulian, pengaruh teknologi biofortifikasi pada tanaman singkong terhadap status gizi masyarakat, potensi tanaman singkong untuk menyediakan mikro nutrisi selain Fe, Zn, dan beta karoten, serta partisipasi dari berbagai pihak untuk mengembangkan tanaman singkong yang kaya kandungan mikro nutrisi.
PENDAHULUAN

Latar Belakang

Anemia gizi besi merupakan salah satu masalah gizi di Indonesia, yang banyak diderita oleh anak balita (55.1%), anak sekolah (31%), ibu hamil (63.5%), dan pekerja kasar (35%) (Balai Besar Penelitian Tanaman Padi, 2006). Selain Fe, mikro nutrisi lainnya yang dibutuhkan oleh tubuh adalah Zn. Mikro nutrisi Zn dibutuhkan untuk kesehatan sistem imunitas, pertumbuhan normal, pembentukan jaringan dan membantu kerja beberapa jenis enzim. Gizi buruk akibat kekurangan vitamin A juga merupakan salah satu masalah gizi yang banyak diderita oleh anak-anak di Indonesia. Menurut data WHO, 100-140 juta anak-anak di dunia mengalami kekurangan vitamin A dan 10 juta diantaranya dialami oleh anak balita Indonesia (Kompas, 2007).

Indonesia merupakan negara agraris dengan sektor pertanian menjadi tulang punggung perekonomian negara. Beras sebagai salah satu produk pangan pertanian andalan negeri ini telah dikonsumsi oleh 65.3% penduduk Indonesia (BPS, 2006). Konsumsi padi di Indonesia telah menyumbangkan energi, protein, dan zat besi masing-masing sebesar 63.1%, 37.7%, dan 25-30% dari total kebutuhan tubuh manusia. Di Bangladesh dan Filipina, kebutuhan 40-55% Fe
tubuh dipenuhi dari mengkonsumsi beras (Balai Besar Tanaman Padi, 2006).

Pemerintah kemudian mengambil langkah untuk melakukan impor beras. Pada tahun 2006 impor beras mencapai 210.000 ton (Sawega, 2007). Namun tindakan ini tidak banyak berperan dalam menurunkan harga beras di pasar. Sejumlah penduduk terutama penduduk miskin mengalami kesulitan untuk membeli beras ini. Angka resmi jumlah masyarakat miskin saat ini adalah 39,1 juta orang (17.75%), dengan kisaran konsumsi kalori 2.100 kilokalori (kkal) atau garis kemiskinan sekitar Rp 152.847 per kapita per bulan (Wiguna, 2007).

Masyarakat yang tidak sanggup mengkonsumsi beras kemudian terpaksa mengkonsumsi singkong, jagung atau yang lainnya sebagai sumber pangan. Singkong berfungsi sebagai makanan substansi ini merupakan bahan pangan yang mudah diperoleh dan relatif murah. Selain itu singkong merupakan tanaman yang memiliki daya adaptasi lingkungan yang tinggi, teknik budidaya mudah, tidak memerlukan banyak pupuk dan pestisida.

Menurut data yang tercantum pada Community Food System Data (2007) disebutkan bahwa kandungan mikro nutrisi Fe pada singkong mentah sebesar 1.1 mg/100 gram bahan. Kandungan beta karoten pada singkong 10 μg/100 gram bahan. White dan Broadley (2005) menyebutkan kandungan Zn pada singkong
antara 4-18 mg/kg bahan. Menurut rekomendasi dari FAO/WHO tahun 2000 kebutuhan manusia dewasa terhadap Fe, Zn, beta karoten masing-masing sebesar 10-15 mg, 12-15 mg, 800-1000 μg (dalam bentuk vitamin A).

Selama ini kebutuhan Fe, Zn dan vitamin A banyak dipenuhi dari konsumsi sayuran dan buah-buahan. Tetapi penduduk miskin kurang memiliki akses terhadap sayuran dan buah-buahan. Penduduk miskin lebih banyak menkonsumsi bahan pangan dengan kandungan karbohidrat lebih tinggi. Sehingga mereka termasuk golongan penduduk yang rentan terhadap masalah gizi.

Oleh karena itu diperlukan kajian secara mendalam mengenai prospek pengembangan biofortifikasi tanaman singkong yang mengandung Fe, Zn, dan beta karoten dan diperlukan pemikiran-pemikiran dalam upaya pengembangan
teknologi biofortifikasi tanaman singkong tersebut, salah satunya adalah dalam bentuk karya ilmiah. Melalui karya ilmiah ini diharapkan dapat memberikan sumbangan pemikiran dan membuka cakrawala masyarakat luas mengenai pemanfaatan teknologi biofortifikasi untuk meningkatkan kandungan Fe, Zn, dan beta karoten dalam upaya untuk mengurangi atau menekan masalah gizi, diversifikasi pangan, dan peningkatan status gizi masyarakat.

Perumusan Masalah

Namun karena kandungan mikro nutrisi pada singkong terutama Fe, Zn, dan beta karoten belum mencukupi Angka Kecukupan Gizi (AKG) maka diperlukan usaha guna mencukupi AKG ini. Biofortifikasi merupakan suatu teknik bioteknologi yang dapat digunakan untuk mengatasi masalah ini.

Adapun permasalahan yang akan disampaikan pada karya ilmiah ini adalah bagaimana metode perbaikan tanaman singkong (crops improvement) yang mengandung Fe, Zn, dan beta karoten, metode peningkatan Fe, Zn, dan beta karoten pada tanaman singkong yang dikonsumsi, metode penurunan kandungan senyawa anti nutrisi yang menghambat penyerapan Fe, Zn, dan beta karoten, dan metode peningkatan konsentrasii promotor yang berperan dalam peningkatan penyerapan Fe, Zn, dan beta karoten melalui teknologi biofortifikasi.
Tujuan

Tujuan yang ingin dicapai melalui karya tulis ini adalah sebagai berikut:

1. Mempelajari metode perbaikan tanaman singkong (*crops improvement*) yang mengandung Fe, Zn, dan beta karoten melalui teknologi biofortifikasi.
2. Mempelajari metode peningkatan Fe, Zn, dan beta karoten pada tanaman singkong melalui teknologi biofortifikasi.
3. Mempelajari metode penurunan kandungan senyawa anti nutrisi yang menghambat penyerapan Fe, Zn, dan beta karoten.
4. Mempelajari metode peningkatan konsentrasi promotor yang berperan dalam peningkatan penyerapan Fe, Zn, dan beta karoten.

Manfaat

Hasil penulisan karya ilmiah ini diharapkan dapat:

1. Dipelajari potensi pengembangan biofortifikasi pada tanaman singkong.
2. Dipelajari informasi teknik perbaikan tanaman singkong (*crops improvement*) yang mengandung Fe, Zn, dan beta karoten.
3. Pemikiran dan cakrawala masyarakat luas terhadap biofortifikasi menjadi lebih terbuka khususnya mengenai penambahan Fe, Zn, dan beta karoten pada tanaman singkong.
4. Khasanah ilmu bioteknologi tanaman menjadi lebih diperka yah khususnya dalam pemansfaatan singkong melalui biofortifikasi Fe, Zn, dan beta karoten.
5. Diversifikasi pangan menjadi lebih beragam dengan adanya bahan pangan singkong yang mengandung Fe, Zn, dan beta karoten lebih tinggi.
TELAH PUSTAKA

Singkong (*Manihot esculenta* Crantz sin.)

Tabel 1. Produksi dan Kebutuhan Singkong Indonesia Tahun 2003-2005

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Produksi (ton)</th>
<th>Kebutuhan (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>18.523.810</td>
<td>15.991.000</td>
</tr>
<tr>
<td>2004</td>
<td>19.424.707</td>
<td>15.365.000</td>
</tr>
<tr>
<td>2005</td>
<td>19.321.183</td>
<td>16.336.000</td>
</tr>
</tbody>
</table>

Sumber : Badan Pusat Statistik (2006)

Tanaman singkong merupakan tanaman yang menyimpan fotosintatnya berupa karbohidrat di umbi akar. Karbohidrat ini menyusun 33.7% dari seluruh komponen umbi akar (Community Food System Data, 2007). Komposisi nutrisi yang terkandung dalam singkong disajikan pada Tabel 2.

Tabel 2. Kandungan Nutrisi pada Singkong (Manihot esculenta Crantz sin.)

<table>
<thead>
<tr>
<th>Nutrisi</th>
<th>Komposisi nutrisi /100g (bagian yang dikonsumsi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Belum diolah</td>
</tr>
<tr>
<td>Energi, Kkal</td>
<td>139</td>
</tr>
<tr>
<td>Protein, g</td>
<td>0.6</td>
</tr>
<tr>
<td>Lemak, g</td>
<td>0.2</td>
</tr>
<tr>
<td>Karbohidrat, g</td>
<td>33.7</td>
</tr>
<tr>
<td>Kalsium, mg</td>
<td>30</td>
</tr>
<tr>
<td>Besi, mg</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>0.8-1.3*</td>
</tr>
<tr>
<td>Beta-karoten, µg</td>
<td>10</td>
</tr>
<tr>
<td>Vitamin A, RE-µg</td>
<td>2</td>
</tr>
<tr>
<td>Vitamin A, RAE-µg</td>
<td>1</td>
</tr>
<tr>
<td>Riboflavin, mg</td>
<td>0.02</td>
</tr>
<tr>
<td>Niacin, mg</td>
<td>0.6</td>
</tr>
<tr>
<td>Asam ascorbat, mg</td>
<td>50.0</td>
</tr>
<tr>
<td>Seng</td>
<td>0.4-0.9*</td>
</tr>
</tbody>
</table>

Sumber : Community Food System Data (2007)
White and Broadley (2005)

Penduduk Miskin di Indonesia

Sensus penduduk yang dilakukan oleh Badan Pusat Statistik tahun 2003 menunjukkan bahwa jumlah penduduk Indonesia pada tahun 2003 sebesar 205
juta. Sensus berikutnya yang dilakukan pada tahun 2006 mengenai jumlah penduduk miskin (penduduk yang berada dibawah garis kemiskinan) menunjukkan bahwa jumlah penduduk miskin di Indonesia pada bulan Maret 2006 sebesar 39.05 juta (17.75%). Dibandingkan dengan penduduk miskin pada Februari 2005 yang berjumlah 35.10 juta (15.97%), berarti jumlah penduduk miskin meningkat sebesar 3.95 juta (BPS, 2003).

Berdasarkan data yang dikeluarkan BPS bahwa pada bulan Maret 2006, sumbangan garis kemiskinan makanan terhadap garis kemiskinan sebesar 74.99%. Komoditi yang penting bagi penduduk miskin adalah beras. Pada Maret 2006, persentase pengeluaran beras terhadap total pengeluaran sebulan untuk penduduk miskin sebesar 23.10%, bahkan di perdesaan persentase ini mencapai 26.08%. Sumbangan pengeluaran beras terhadap Garis Kemiskinan mencapai 34.91% di perdesaan dan 25.98% di perkotaan. Dengan demikian kenaikan harga beras akan berpengaruh besar kepada penduduk miskin (Berita Resmi Statistik, 2006).

Masalah Gizi (Malnutrisi)

Masalah gizi merupakan gangguan pada beberapa segi kesejahteraan perorangan atau masyarakat yang disebabkan oleh tidak terpenuhinya kebutuhan akan zat gizi yang diperoleh dari makanan (Baliwati dan Rimbawan, 2004). Menurut Ahli gizi (Anonim, 2007) malnutrisi dapat terjadi oleh karena kekurangan gizi (undernutrisi) maupun karena kelebihan gizi (overnutrisi) keduaunya disebabkan oleh ketidakseimbangan antara kebutuhan tubuh dan asupan zat gizi esensial.

Baliwati dan Rimbawan (2004) mengelompokkan masalah gizi menjadi masalah gizi makro dan mikro. Jenis masalah gizi makro yang terjadi adalah kurang energi protein (KEP) sedangkan masalah gizi mikro antara lain kurang vitamin A (KV A), anemia gizi besi (AGB), gangguan akibat kekurangan iodium (GAKI) dan kurang Zn.
Zat besi (Fe)

Kekurangan Fe dianggap sebagai masalah gizi mikro yang paling serius di negara berkembang karena kurang lebih 2-5 juta orang rentan terserang malnutrisi pada berbagai tingkat usia. Gangguan akibat kekurangan Fe di Indonesia masih menunjukkan prevalensi yang cukup tinggi. Pada Kompas (2007) dilaporkan terdapat prevalensi anak balita yang kekurangan Fe (anemia gizi) sebesar 26.8 %.

Singkong sebagai sumber pangan kedua setelah beras telah menyumbangkan zat besi sebesar 1.1 mg/100 gram bahan (Community Food System Data, 2007). FAO/WHO (2000) menyebutkan bahwa kebutuhan manusia dewasa terhadap Fe sebesar 10-15 mg.

Seng (Zn)

Mineral mikro Zn berperan dalam berkerjanya lebih dari 200 jenis enzim. Selain itu unsur ini berperan sebagai antioksidan dan berperan dalam fungsi membran. Seng dibutuhkan untuk kesehatan sistem imunitas, pertumbuhan normal, dan pembentukan jaringan. Seng juga lebih banyak dibutuhkan ketika jaringan baru harus dibentuk, misalnya untuk pemulihan dari pembedahan, pemulihan luka bakar; mineral peningkat imunitas yang paling penting dan membantu tubuh memerangi infeksi. Gejala defisiensi
Zn dapat menyebabkan pertumbuhan terhambat dan daya kekebalan tubuh menurun. Bahan makanan sebagai sumber pangan yang tinggi kandungan Zn diantaranya tiram, makanan laut, hati, lembaga gandum, ragi, daging, telur, unggas dan ikan (Baliwati dan Rimbawan, 2004 dan Anonim, 2007).

Vitamin A

![Gambar 1: Struktur Beta karoten (C_{40}H_{56})](image)

gizi untuk mineral Fe, Zn dan vitamin A bagi penduduk Indonesia dapat dilihat pada Tabel 3.

Tabel 3. Angka Kecukupan Energi, Vitamin A, Besi, dan Seng bagi Penduduk Indonesia

<table>
<thead>
<tr>
<th>No</th>
<th>Kelompok Umur (tahun)</th>
<th>Energi (Kkal)</th>
<th>Vitamin A (RE)</th>
<th>Besi (mg)</th>
<th>Seng (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anak</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0-0.5</td>
<td>550</td>
<td>375</td>
<td>0,5</td>
<td>1,3</td>
</tr>
<tr>
<td>2</td>
<td>0.5-1</td>
<td>650</td>
<td>400</td>
<td>7</td>
<td>7,5</td>
</tr>
<tr>
<td>3</td>
<td>1.0-3.0</td>
<td>1000</td>
<td>400</td>
<td>8</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>4.0-6.0</td>
<td>1550</td>
<td>450</td>
<td>9</td>
<td>9,7</td>
</tr>
<tr>
<td>5</td>
<td>7.0-9.0</td>
<td>1800</td>
<td>500</td>
<td>10</td>
<td>11,2</td>
</tr>
<tr>
<td></td>
<td>Laki-laki</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10-12</td>
<td>2050</td>
<td>600</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>13-15</td>
<td>2400</td>
<td>600</td>
<td>19</td>
<td>17,4</td>
</tr>
<tr>
<td>8</td>
<td>16-18</td>
<td>2600</td>
<td>600</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>19-29</td>
<td>2550</td>
<td>600</td>
<td>13</td>
<td>12,1</td>
</tr>
<tr>
<td>10</td>
<td>30-49</td>
<td>2350</td>
<td>600</td>
<td>13</td>
<td>13,4</td>
</tr>
<tr>
<td>11</td>
<td>50-64</td>
<td>2250</td>
<td>600</td>
<td>13</td>
<td>13,4</td>
</tr>
<tr>
<td>12</td>
<td>60+</td>
<td>2050</td>
<td>600</td>
<td>13</td>
<td>13,4</td>
</tr>
<tr>
<td></td>
<td>Wanita</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10-12</td>
<td>2050</td>
<td>600</td>
<td>20</td>
<td>12,6</td>
</tr>
<tr>
<td>14</td>
<td>13-15</td>
<td>2350</td>
<td>600</td>
<td>26</td>
<td>15,4</td>
</tr>
<tr>
<td>15</td>
<td>16-18</td>
<td>2200</td>
<td>600</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>19-29</td>
<td>1900</td>
<td>500</td>
<td>26</td>
<td>9,3</td>
</tr>
<tr>
<td>17</td>
<td>30-49</td>
<td>1800</td>
<td>500</td>
<td>26</td>
<td>9,8</td>
</tr>
<tr>
<td>18</td>
<td>50-64</td>
<td>1750</td>
<td>500</td>
<td>12</td>
<td>9,8</td>
</tr>
<tr>
<td>19</td>
<td>60+</td>
<td>1600</td>
<td>500</td>
<td>12</td>
<td>9,8</td>
</tr>
<tr>
<td></td>
<td>Wanita Hamil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0-0.25</td>
<td>180</td>
<td>300</td>
<td>0</td>
<td>+1,7</td>
</tr>
<tr>
<td>21</td>
<td>0.25-0.5</td>
<td>300</td>
<td>300</td>
<td>0</td>
<td>+1,7</td>
</tr>
<tr>
<td>22</td>
<td>0.5-0.75</td>
<td>300</td>
<td>300</td>
<td>0</td>
<td>+1,7</td>
</tr>
<tr>
<td></td>
<td>Wanita Menyusui</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0-0.5</td>
<td>500</td>
<td>350</td>
<td>6</td>
<td>+4.6</td>
</tr>
<tr>
<td>24</td>
<td>0.5-1</td>
<td>550</td>
<td>350</td>
<td>6</td>
<td>+4.6</td>
</tr>
</tbody>
</table>

Zat Besi (Fe), Seng (Zn) dan Beta Karoten pada Tanaman

Unsur hara mikro diperlukan tanaman dalam jumlah sedikit dan dapat merusak bila dalam jumlah banyak (Soepardi, 1983). Unsur hara mikro diambil tanaman dari tanah (baik dipupuk maupun tidak) selama masa pertumbuhannya. Unsur hara mikro seperti Fe dan Zn diserap tanaman dari tanah dalam bentuk ion bebas (Fe$^{2+}$, Zn$^{2+}$) melalui akar (Frossard, et al., 2000).
Peranan unsur mikro dalam metabolisme tanaman sangat komplek. Besi berperan dalam pertumbuhan dan perkembangan tanaman sebagai kofaktor dari berbagai enzim. Sebagian besar dari Fe ini dijumpai sebagai bagian kloroplas dan sangat esensial dalam pembentukan klorofil. Seng merupakan penyusun dari berbagai enzim meliputi dehidrogenase, diantaranya dehidrogenase alkohol dan laktat. Disamping itu Zn juga berfungsi sebagai kofaktor berbagai enzim tetapi tidak mempunyai kekhususan yang tinggi (Soepardi, 1983).

Ion hara masuk ke dalam sel akar dengan cara difusi atau aliran massa menembus membran dan masuk ke dalam sitoplasma dan vakuola. Ion hara dalam sel tanaman selanjutnya akan bergerak menuju bagian tanaman seperti daun melalui transport protein yang berada pada membran plasma sel (Frossard, et al., 2000).

Beta karoten merupakan salah satu karotenoid pada tanaman yang banyak ditemukan pada plastid berwarna (kromoplas) di akar, batang, daun, bunga dan buah berbagai tumbuhan. Karotenoid adalah salah satu pigmen tanaman yang memberikan warna kuning sampai jingga (Salisbury dan Ross, 1995).

Biofortifikasi

Biofortifikasi untuk peningkatan nutrisi mikro pada makanan pokok, dilakukan baik melalui persilangan tanaman secara tradisional maupun dengan teknik molekuler (Welch dan Graham, 2004). Fortifikasi bahan pangan dengan Fe, Zn, dan vitamin A mampu mencegah secara signifikan jumlah kematian bayi dan anak-anak serta mempunyai daya tarik yang lebih besar pada pihak yang bertanggung jawab terhadap kesehatan (Horton, 2006).

Hasil penelitian dari The Constitutative Group on International Agricultural Research (CGLAR), (2002) menyatakan makanan pokok yang mempunyai potensi genetik untuk ditingkatkan kandungan Fe dan Zn diantaranya adalah beras (Oryza sativa), gandum (Triticum aesticum), jagung (Zea mays), buncis (Phaseolus vulgaris) dan singkong (Manihot esculenta).

Secara teori biofortifikasi dapat dilakukan dengan meningkatkan jumlah kandungan mikro nutrisi pada bagian tanaman yang dapat dimakan pada tanaman pokok. Di sisi lain, peningkatan konsentrasi kandungan dengan meningkatkan penyerapan senyawa promoter (asam askorbat, β-karoten, protein sistein (cysteine), dan asam amino), mengurangi konsentrasi senyawa inhibitor penyerapan mikronutrisi (asam fitat, tanin, senyawa fenolik, dan logam berat) (Frossard, et al., 2000; Welch, 2002; White dan Broadley, 2005).
METODE PENULISAN

Sumber dan Jenis Data

Data yang digunakan dalam karya ilmiah ini bersumber dari berbagai referensi dan literatur yang relevan dengan topik permasalahan yang dibahas. Referensi dan literatur diperoleh baik melalui media cetak maupun elektronik. Validitas dan relevansi referensi yang digunakan dapat dipertanggungjawabkan. Jenis data yang digunakan adalah data sekunder, baik bersifat kualitatif maupun kuantitatif.

Pengumpulan Data

Penulisan karya ini menggunakan metode studi pustaka yang didasarkan atas hasil studi terhadap berbagai literatur yang saling berhubungan satu sama lain, relevan dengan kajian tulisan serta mendukung uraian atau analisis pembahasan.

Analisis Data

Pengolahan data dilakukan dengan cara menyusun secara sistematis dan logis. Teknik analisa data dilakukan dengan analisis deskriptif argumentatif, dengan tulisan bersifat deskriptif, menggambarkan proses biofortifikasi mikro nutrisi yaitu Fe, Zn, dan beta karoten pada tanaman singkong.

Penarikan Kesimpulan

Setelah proses analisis, selanjutnya dilakukan proses sintesis dengan menghubungkan antara perumusan masalah, tujuan penulisan dan pembahasan. Langkah berikutnya dilakukan penarikan kesimpulan secara umum. Berdasarkan kesimpulan tersebut kemudian direkomendasikan beberapa hal sebagai upaya transfer gagasan.
PEMBAHASAN

Perbaikan Tanaman Singkong dengan Kandungan Zat Besi (Fe), Seng (Zn), dan Beta Karoten Tinggi

Singkong merupakan sumber makanan pokok yang paling penting setelah padi di negara tropis. Kurang lebih terdapat 70 juta penduduk yang mendapat lebih dari 500 kalori/hari dari singkong. Penduduk ini sebagian terdapat di Afrika dan Brazil (Cock, 1985) dan sisanya terdapat di Asia (Kawano et al., 1998).

United Nation Industrial Development Organization (UNIDO) atau Badan PBB di bidang Pembangunan Industri telah mencatat bahwa Indonesia sejak tahun 1982 merupakan negara penghasil singkong terbesar ketiga (13.3 juta ton) setelah Brasil (24.5 juta ton), Thailand (13.5 juta ton), disusul Nigeria (11 juta ton), India (6.5 juta ton). Total produksi singkong dunia 122.1 juta ton/tahun (Suriawiria, 2002).

Umbi singkong menjadi salah satu alternatif pangan yang menyediakan kalori yang cukup tetapi tidak memenuhi kandungan Fe, Zn, dan beta karoten yang dibutuhkan oleh tubuh. Daun singkong sendiri mempunyai kandungan mineral yang tinggi dan kandungan karoten 100 kali lebih tinggi daripada umbi, tetapi konsumsi daun singkong menempati porsi yang kecil dari total konsumsi umbi singkong. Singkong juga diketahui memiliki variasi genetik untuk kandungan mikronutrisi (baik vitamin dan mineral) yang cukup signifikan. Data yang diperoleh dari evaluasi sekitar 600 genotip singkong hasil koleksi dari The Centro Internacional de Agricultura Tropical (CIAT) diketahui kandungan Fe, Zn, dan karoten pada umbi akar dan daun bervariasi antar genotip (Chavez, et al., 2002). Secara lebih jelas dapat dilihat pada Tabel 4.
Tabel 4. Kisaran Kandungan Fe, Zn, dan Beta Karoten pada Daun dan Umbi dari 600 Genotip Tanaman Singkong.

<table>
<thead>
<tr>
<th>Mikro nutrisi</th>
<th>Daun (mg/100 gram bahan)</th>
<th>Umbi (mg/100 gram bahan)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimal</td>
<td>Maksimal</td>
</tr>
<tr>
<td>Zat Besi (Fe)</td>
<td>1.190</td>
<td>26.000</td>
</tr>
<tr>
<td>Seng (Zn)</td>
<td>0.151</td>
<td>1.505</td>
</tr>
<tr>
<td>Beta Karoten</td>
<td>12.050</td>
<td>96.420</td>
</tr>
</tbody>
</table>

Sumber: Chavez, et al. (2002).

Singkong merupakan salah satu bahan pangan yang dikonsumsi untuk memenuhi kebutuhan kalori, mineral esensial, dan vitamin yang dibutuhkan oleh tubuh manusia. Namun karena adanya perbedaan kandungan mikro nutrisi pada setiap genotip tanaman singkong, maka perlu dilakukan suatu upaya untuk meningkatkan kandungan mineral mikro dan vitamin pada tanaman singkong. Peningkatan kandungan mikro nutrisi tersebut dimaksudkan untuk mengatasi malnutrisi melalui pengkayaan kandungan mikro nutrisi tanaman singkong khususnya pada bagian yang dapat dimakan (umbi dan daun). Terdapat beberapa strategi untuk meningkatkan kandungan mikro nutrisi (Fe, Zn, beta karoten) tanaman singkong ini yaitu melalui: 1) penanaman, 2) pemupukan konvensional dan 3) pendekatan rekayasa genetik sebagai proses biofortifikasi.

Pada biofortifikasi perbaikan tanaman singkong selain melalui ketiga cara tersebut di atas, juga dapat dilakukan melalui pendekatan yang lain. Pendekatan tersebut yaitu dengan cara menurunkan kandungan senyawa anti nutrisi yang dapat menghambat ketersediaan mikro nutrisi (Fe, Zn, beta karoten) serta dengan meningkatkan kandungan senyawa-senyawa tertentu (promotor) yang dapat meningkatkan ketersediaan mikro nutrisi pada bagian tanaman yang dikonsumsi.

Peningkatan Kandungan Zat Besi (Fe), Seng (Zn), dan Beta Karoten pada Tanaman Singkong

Biofortifikasi melalui aplikasi pemupukan

Pupuk banyak digunakan oleh para petani untuk meningkatkan hasil dan kualitas tanaman. Aplikasi pemupukan dapat menyumbangkan peningkatan kandungan mikro nutrisi pada makanan pokok khususnya pada bagian yang dikonsumsi. Pada Tabel 4 disajikan rekapitulasi hasil
penelitian yang telah dilakukan pada berbagai tanaman pangan oleh beberapa peneliti terkait dengan biofortifikasi melalui aplikasi pemupukan.

Tabel 4. Rekapitulasi Hasil Penelitian Biofortifikasi Tanaman melalui Aplikasi Pemupukan

<table>
<thead>
<tr>
<th>No.</th>
<th>Perlakuan</th>
<th>Tanaman</th>
<th>Hasil</th>
<th>Sumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Metode aplikasi pupuk mikro Zn</td>
<td>Gandum</td>
<td>Hasil tanaman dan kandungan Zn dalam biji gandum berbeda</td>
<td>Yilmaz, et al., 1997</td>
</tr>
<tr>
<td></td>
<td>yang berbeda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fe-EDDHA</td>
<td></td>
<td>dari pada FeSO₄</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fe-EDTA</td>
<td></td>
<td>- Pemupukan Fe meningkatkan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FeSO₄</td>
<td></td>
<td>hasil tanaman ietapi sediktit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>meningkatkan kandungan Fe pada bulir</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Perlakuan</td>
<td>Wortel</td>
<td>Kandungan beta karoten naik dari 113 mg/100 berat kering menjadi</td>
<td>Habben, 1972</td>
</tr>
<tr>
<td></td>
<td>pupuk N dari 0,3 g N/pot</td>
<td></td>
<td>126 mg/100 berat kering (naik 12%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>menjadi 2,4 g N/pot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dan Mg</td>
<td></td>
<td>- Perlakuan pupuk K meningkatkan beta karoten 27%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Perlakuan pupuk Mg meningkatkan beta karoten antara 42%-30%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>yang rendah unsur Zn</td>
<td>gandum, kacang-kacangan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Kandungan Zn dalam bulir meningkat secara signifikan</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Penambahan unsur Fe pada tanaman</td>
<td>Sereal,</td>
<td>Sedikit peningkatan Fe pada bagian biji dan bulir yang dikonsumsi</td>
<td>Welch, 2004</td>
</tr>
<tr>
<td></td>
<td>kekacangkacangan</td>
<td>karangan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Peningkatan ketersediaan unsur</td>
<td>Buncis</td>
<td>Peningkatan kandungan Zn secara nyata pada biji buncis</td>
<td>Welch, 2004</td>
</tr>
<tr>
<td></td>
<td>hara Zn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>jenis pupuk mikro Zn, Ni, Se,</td>
<td>jenis tanaman</td>
<td>bagian tanaman yang dikonsumsi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dan I</td>
<td></td>
<td>- Fe, B, V dan Cr tidak berpengaruh nyata pada akumulasi nutrisi di</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bagian tanaman yang dikonsumsi</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Aplikasi melalui tanah dan daun meningkatkan kandungan Zn</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sekitar 35 mg/kg bahan</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan: Disarikan dari Berbagai Sumber

Gambar 2. Bagan Alir Absorpsi dan Translokasi Fe dan Zn pada Tanaman

Keterangan:

→ : Jalur transportasi

..... : Faktor yang mempengaruhi

kandungan mineral esensial dalam tanaman, misalnya tipe, metode aplikasi dan dosis pupuk, dan sistem pertanamannya.

Pada praktek budidaya tanaman singkong di Indonesia, para petani jarang menggunakan pupuk baik pupuk organik maupun anorganik. Hal ini dikarenakan tanaman singkong merupakan tanaman yang mudah beradaptasi pada berbagai kondisi lingkungan tanam. Namun di sisi lain, tanaman singkong membutuhkan asupan hara makro dan mikro untuk meningkatkan potensi agronominya. Pada tanaman singkong, pengaruh aplikasi pupuk untuk meningkatkan kandungan mikro nutrisi (mineral maupun vitamin) khususnya pada bagian singkong yang dikonsumsi (umbi atau daun) belum banyak dipelajari. Sehingga perlu dilakukan penelitian untuk mengetahui apakah aplikasi pemupukan berpengaruh terhadap peningkatan kandungan mikro nutrisi pada umbi dan daun singkong.

Pada tanaman singkong, strategi pemupukan untuk meningkatkan kandungan Fe, Zn, dan beta karoten dimungkinkan dapat dilakukan dengan mengadopsi cara-cara di atas (Tabel 4). Pemupukan Fe dilakukan dengan mengaplikasikan pupuk mikro yang mengandung Fe-EDDHA atau Fe-EDTA melalui penyemprotan pada daun. Pemupukan Zn dilakukan dengan cara mengaplikasikan pupuk mikro yang mengandung ZnSO₄ yang diberikan langsung pada tanah. Perlakuan pupuk hara makro yang mengandung N, P, K, dan Mg yang diberikan langsung pada tanah dapat meningkatkan konsentrasi beta karoten.

Penggunaan strategi aplikasi pemupukan untuk meningkatkan kandungan mikro nutrisi (mineral mikro dan vitamin) khususnya pada bagian tanaman yang dikonsumsi (umbi singkong) menghadapi beberapa kendala. Kendala
tersebut yaitu perambahan biaya input pupuk (baik pupuk mikro maupun pupuk makro) dan tenaga kerja sehingga akan meningkatkan biaya produksi yang kemudian berimbas pada peningkatan harga singkong. Meningkatnya harga singkong ini akan membuat penduduk miskin memiliki kesulitan untuk mendapatkan singkong dengan harga murah. Oleh karena itu diperlukan strategi lain untuk dapat meningkatkan kandungan Fe, Zn, dan beta karoten.

Biofortifikasi melalui pemuliaan tanaman secara konvensional

Teknik pemuliaan tanaman yang selama ini dikembangkan banyak ditujukan untuk meningkatkan hasil (agronomi) dan ketahanan terhadap hama penyakit (Frossard et al., 2000). Teknik pemuliaan tanaman yang ditujukan untuk meningkatkan kandungan mikro nutrisi belum banyak dilakukan. Beberapa penelitian telah dilakukan untuk meningkatkan kandungan mikro nutrisi pada padi, gandum, dan jagung. Namun, penelitian untuk meningkatkan kandungan mikro nutrisi terutama Fe, Zn, dan beta karoten pada tanaman singkong belum banyak dilaporkan. Oleh karena itu diperlukan teknik pemuliaan tanaman untuk meningkatkan kandungan Fe, Zn, dan beta karoten pada tanaman singkong.

Strategi peningkatan kandungan Fe, Zn, dan beta karoten pada tanaman singkong melalui pemuliaan konvensional dilakukan melalui beberapa tahap. Tahap tersebut yaitu pengumpulan plasma nutfah, penyaringan keragaman genetik dari jenis singkong di alam (baik dari dalam negeri maupun luar negeri), seleksi genotipe yang diinginkan, persilangan, dan langkah terakhir adalah melakukan seleksi kembali untuk mendapatkan singkong yang memiliki kualitas yang terbaik. Setiap jenis dapat dikembangkan melalui strategi pemuliaan konvensional jika pengaruh lingkungan cukup rendah dan terdapat keragaman genetik.

Perbanyakan tanaman singkong di Indonesia dilakukan melalui stek batang (vegetatif). Perbanyakan secara generatif (menggunakan biji) belum dilakukan oleh petani, karena tanaman singkong di Indonesia tidak

Menurut Welch dan Graham (2004) kriteria seleksi yang dapat dijadikan acuan pada seleksi tanaman singkong yaitu 1) produktivitas tanaman, 2) tingkat kandungan mikro nutrisi (Fe, Zn, beta karoten) pada bagian tanaman yang dikonsumsi, 3) daya adaptasi tanaman, 4) tingkat keamanan konsumsi, 5) penerimaan konsumen. Produktivitas tanaman singkong harus ditingkatkan atau dijaga agar petani tetap menanam dan mengembangkan tanaman singkong. Pengkayaan kandungan mikro nutrisi tanaman singkong harus pada tingkat yang dapat diterima dan berdampak nyata pada kesehatan manusia. Tanaman singkong harus mempunyai daya adaptasi yang tinggi pada kondisi lingkungan dan kondisi iklim yang berbeda. Tingkat kandungan mikro nutrisi harus diuji pada manusia untuk menjamin bahwa kandungan mikro tersebut dapat meningkatkan status gizi manusia dan aman untuk dikonsumsi. Faktor lain yang tidak kalah penting yaitu konsumen bersedia menerima baik rasa dan kualitas pangan.

Klon tanaman singkong yang dikumpulkan selanjutnya diseleksi untuk mendapatkan klon tanaman yang memiliki kandungan Fe, Zn, dan atau beta karoten yang tinggi. Langkah selanjutnya klon ditanam pada lahan yang memiliki kordisi lingkungan seragam sehingga pengaruh faktor lingkungan dapat ditekan. Klon-klon tersebut kemudian diseleksi berdasarkan karakter agronomi dan fisiologinya. Karakter agronomi ditentukan berdasarkan produksi dan produktivitas tanaman. Karakter fisiologi ditentukan berdasarkan kandungan mikro nutrisi (Fe, Zn, dan beta karoten) yang terkandung dalam bagian tanaman yang dikonsumsi. Tanaman singkong mempunyai variasi genetik yang luas untuk kandungan Fe, Zr., dan beta karoten. Kandungan Fe dan Zn menurut Frossard et al. (2000) memiliki hubungan positif, bahwa tanaman yang mempunyai
kandungan Fe tinggi dimungkinkan mempunyai kandungan Zn yang tinggi pula. Seleksi kandungan beta karoten pada singkong dapat diperkirakan dari warna akar (Chavez et al., 2002). Umbi singkong yang berwarna kuning dimungkinkan memiliki kandungan beta karoten yang lebih tinggi.

Biofortifikasi melalui rekayasa genetika

Biofortifikasi melalui pendekatan molekuler atau rekayasa genetika dilakukan dengan menemasifikasi gen yang mengkode senyawa tertentu ke susunan genotip tanaman singkong. Untuk itu diperlukan pengetahuan tentang jalur biosintesis senyawa yang ingin ditingkatkan (misal jalur sintesis Fe, Zn, ataupun beta karoten), proses biokimia pada tanaman singkong dan karakterisasi gen yang terkait metabolisme tersebut (CIAT, 2002). Transfer gen ini dapat meningkatkan kapasitas penyerapan nutrisi (Frossard, et al., 2000). Namun peningkatan kandungan Fe, Zn, dan beta karoten ini seharusnya diikuti dengan modifikasi penyimpanan pada tanaman singkong itu sendiri. Pada Tabel 6 ditunjukkan rekapsulasi hasil penelitian biofortifikasi tanaman melalui pendekatan rekayasa genetik.

<table>
<thead>
<tr>
<th>No</th>
<th>Uraian</th>
<th>Protein yang Dikodekan</th>
<th>Asal Gen</th>
<th>Hasil</th>
<th>Sumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tembakan: Peningkatan penyerapan Fe dari tanah</td>
<td>Fe oxidase</td>
<td>Gen FRE2</td>
<td>Mereduksi Fe³⁺ sepanjang akar dan pecuk</td>
<td>Samuelsen, et al., 1998</td>
</tr>
<tr>
<td>4.</td>
<td>Jagung: penyerapan Fe</td>
<td>Transporter kompleks phytosiderophore Fe⁴⁺</td>
<td>Gen Yellow Stripe 1 (YS 1), OsIR1 dari padi</td>
<td>Meningkatkan penyerapan Fe dari tanah untuk ditransportasikan ke akar</td>
<td>Grusak, et al., 1999</td>
</tr>
<tr>
<td>5.</td>
<td>Padi (Golden Rice): Peningkatan Beta Karoten</td>
<td>Phytoene synthase</td>
<td>Daffodil dan bakteri Erwinia uredovora</td>
<td>Kandungan beta karoten beras meningkat (maks 1.6 ppm di endosperma)</td>
<td>Salas, 2005</td>
</tr>
<tr>
<td>6.</td>
<td>Padi (IR64 and BR29): Peningkatan Beta Karoten</td>
<td>Phytoene synthase (psy)</td>
<td>Daffodil dan bakteri Erwinia uredovora</td>
<td>Beta karoten IR64: 2.32 μg/g BR29: 3.92 μg/g</td>
<td>Datta, et al., 2006</td>
</tr>
</tbody>
</table>

Keterangan: Disarikan dari Berbagai Sumber
Manipulasi penyerapan dan penyimpanan zat besi (Fe) dan seng (Zn) pada tanaman singkong

Frossard, et al. (2000) menyebutkan bahwa peningkatan konsentrasi Fe pada tanaman dipengaruhi ekspresi dari beberapa sistem komponen larutan Fe termasuk Fe transporter, protein yang terlibat dalam sintesis Fe, dan aktivator transkripsi pada gen penyimpan Fe. Cara yang telah dilakukan oleh para peneliti (Tabel 6) dapat diadopsi untuk meningkatkan penyerapan dan penyimpanan kandungan Fe pada singkong. Peningkatan penyerapan Fe dilakukan dengan cara memasukkan gen pengkode Fe (FRE2) sedangkan peningkatan penyimpanan Fe dapat dilakukan dengan memasukkan ferritin.

Ferritin (Gambar 4) merupakan sebuah protein yang terdiri dari 24 sub unit polipeptida yang terdapat di dalam plastida dan kloroplas. Setiap subunit molekul individu berikatan non kovalen. Ukuran protein komplek ini kurang lebih 450 kDa (Frey et al., 1995).

Sumber: Frey et al., 1995
Gambar 4. Ferritin

Mekanisme penyerapan Zn hampir sama dengan Fe, yaitu dengan melibatkan molekul phytosiderophore (PS) yang mengkelat mineral melalui sistem transportnya dari akar (Grusak, et al., 1999). Biosintesis PS dan mekanisme transport PS ke sitoplasma merupakan strategi dari generasi tanaman dikotil untuk menyerap Zn. Cara lain yaitu dengan memasukkan gen Yellow Stripe 1 (YS 1), OsIRT1. YS 1 adalah transporter komplek phytosiderophore
Fe$^{3+}$ yang telah diidentifikasi dari jagung. OsIRTI adalah gen padi yang dapat mengurangi Fe pada tanah untuk ditransportasikan ke akar.

Manipulasi penyerapan dan penyimpanan beta karoten pada tanaman singkong

Beta karoten adalah senyawa intermediat pada jalur biosintesis karoten dan berhubungan dengan jalur metabolisme sekunder pada tanaman. Beta karoten merupakan prekursor vitamin A yang paling penting karena setiap molekulnya dapat memproduksi dua molekul retinol (vitamin A) dengan reaksi oksidasi pemecahan ikatan ganda dan mereduksi gugus aldehid pada bagian ujungnya (Salas, 2005).

Pada tanaman padi teknik rekayasa genetika mulai banyak dilakukan oleh para peneliti. Salah satu hasil teknik rekayasa genetika yang banyak dikenal yaitu 'golden rice'. Peningkatan kandungan beta karoten pada padi tersebut dilakukan dengan memasukkan gen mengkode untuk *phytoene synthase* dan *lycopene β-cyclase* (Tabel 6).

Gen-gen yang terlibat pada sintesis beta karoten selanjutnya digunakan sebagai acuan rekayasa genetika untuk meningkatkan sintesis beta karoten pada tanaman singkong khususnya pada singkong yang rendah kandungan beta karoten. Selain itu, jalur biosintesis karoten pada tanaman padi juga digunakan sebagai acuan untuk mengetahui secara lengkap jalur biosintesis beta karoten. Gambar 5 menunjukkan jalur biosintesis karoten pada

![Diagram biosintesis karoten]

- Sumber: Salas, (1999)

Gambar 5. Jalur Biosintesis Karoten

Hasil-hasil penelitian biofortifikasi tanaman melalui pendekatan rekayasa genetika memberikan peluang yang cukup besar untuk penerapan teknologi tersebut pada tanaman singkong. Pendekatan ini memberikan harapan pengembangan tanaman singkong yang memiliki kandungan Fe, Zn dan beta karoten yang tinggi. Namun untuk pengembangan tersebut dana yang dibutuhkan cukup banyak. Selain itu pengetahuan dan kemampuan/skill yang tinggi sangat dibutuhkan untuk dapat menerapkan teknologi ini.
Penurunan Kandungan Senyawa Anti Nutrisi

Efisiensi ketersediaan senyawa mikro nutrisi pada bagian yang dikonsumsi dipengaruhi oleh senyawa anti nutrisi dan senyawa promotor. Senyawa anti nutrisi tersebut menjadi penghalang penyerapan mikro nutrisi oleh tubuh manusia. Beberapa senyawa anti nutrisi yang menghambat ketersediaan Fe dan Zn pada beberapa jenis tanaman adalah asam fitat atau fitin, fiber (selulosse, hemiselulosse, lignin, cutin, suberin), tanin dan polifenolik, lekkin dan logam berat seperti Co, Hg, dan Pb (Welch, 2002). Rekapitulasi hasil penelitian biofortifikasi tanaman melalui penurunan senyawa anti nutrisi dapat dilihat pada tabel 7.

Tabel 7. Rekapitulasi Hasil Penelitian Biofortifikasi Tanaman Melalui Penurunan Senyawa Anti Nutrisi

<table>
<thead>
<tr>
<th>No.</th>
<th>Anti Nutrisi</th>
<th>Hasil</th>
<th>Sumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Asam fitat</td>
<td>Pada kedelai, penyerapan Fe ditingkatkan ketika asam fitat dikurangi sampai 1.0 g/kg.</td>
<td>Frossard, et al., 2000</td>
</tr>
<tr>
<td></td>
<td>(IP₆)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Logam berat</td>
<td>Pada tanaman berumbi menghambat ketersediaan Fe dan Zn</td>
<td>Welch, 2002</td>
</tr>
<tr>
<td></td>
<td>(Co, Hg, Pb)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(IP₆)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Asam fitat</td>
<td>Pada jagung penurunan 65% asam fitat mampu meningkatkan penyerapan Fe dan Zn</td>
<td>Frossard, et al., 2000</td>
</tr>
<tr>
<td></td>
<td>(IP₆)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Asam fitat</td>
<td>Pada padi, jagung, gandum, barley, dan kedelai pengurangan asam fitat dilakukan dengan memasukkan enzim pendegradasi asam fitat</td>
<td>White dan Broadley, 2005</td>
</tr>
</tbody>
</table>

Keterangan: Disarikan dari Berbagai Sumber

Tanaman pangan mempunyai kandungan anti nutrisi yang berbeda-beda tergantung pada genetik dan lingkungan (Welch, 2002). Pada Tabel 7 dapat dilihat bahwa pada tanaman yang berumbi seperti singkong, penyerapan Fe dan Zn lebih dipengaruhi logam berat (Co, Hg, dan Pb). Kandungan senyawa anti nutrisi yang lain seperti asam fitat atau tanin pada tanaman singkong belum banyak diteliti.

Peningkatan kandungan senyawa Fe dan Zn melalui penurunan senyawa anti nutrisi dapat dilakukan dengan mengembangkan varietas rendah senyawa anti nutrisi maupun melalui rekayasa genetika. Namun teknik biofortifikasi melalui penurunan senyawa anti nutrisi mempunyai beberapa kendala. Senyawa nutrisi seperti fitat dan polifenol mempunyai peranan yang penting pada tubuh manusia
sebagai senyawa anti kanker dan dapat menurunkan resiko serangan penyakit jantung dan diabetes (Welch, 2002). Oleh karena itu, pemulia tanaman dan ahli bioteknologi harus memikirkan kemungkinan-kemungkinan negatif yang terjadi apabila dilakukan perubahan anti nutrisi pada tanaman pangan sebelum mengusahakannya untuk peningkatan kandungan mikro nutrisi.

Peningkatan Konsentrasi Promotor

<table>
<thead>
<tr>
<th>No.</th>
<th>Promotor</th>
<th>Hasil</th>
<th>Sumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Asam Askorbat</td>
<td>Peningkatan kandungan AA pada tanaman pangan mengurangi malnutrisi terutama Fe</td>
<td>Frossard et al., 2000</td>
</tr>
<tr>
<td></td>
<td>(AA)</td>
<td>Aplikasi pupuk N secara berlebih berpengaruh negatif terhadap kandungan AA</td>
<td>Frossard et al., 2000</td>
</tr>
<tr>
<td>3.</td>
<td>Asam Askorbat</td>
<td>530 klon akar singkong memiliki kandungan AA bervariasi dari 0-75 mg/kg berat basah, rata-rata 80.9 mg/kg sehingga terdapat potensi pemulian umbi tanaman singkong yang mengandung AA tinggi</td>
<td>Chavez et al., 1999</td>
</tr>
<tr>
<td></td>
<td>(AA)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 4. | Fe, Zn - Beta karoten - Asam amino (methionin, sistein, histidin, dan lisin) - Lemak dan lipid | • Fe dan Zn merupakan promotor ketersediaan vitamin A
• Beta karoten merupakan senyawa yang dapat meningkatkan penyerapan Fe pada manusia
• Asam amino merupakan promotor senyawa Fe dan atau Zn
• Lemak dan lipid promotor Vitamin A | Welch, 2002 |

Keterangan: Disarikan dari Berbagai Sumber

Gambar 6. Mekanisme Penerapan Teknologi Biofortifikasi pada Tanaman Singkong untuk Menekan Malnutrisi (Fe, Zn; dan Beta karoten).

Keterangan:
- : Disarikan dari Berbagai Sumber
+ : Pengurangan
+ : Penambahan
KESIMPULAN DAN SARAN

Kesimpulan

Strategi biofortifikasi untuk meningkatkan kandungan zat gizi mikro (Fe, Zn, beta karoten) pada tanaman singkong dapat dilakukan melalui: peningkatan kandungan Fe, Zn, dan beta karoten pada bagian tanaman yang dikonsumsi, menurunkan kandungan senyawa anti nutrisi yang dapat menghambat ketersediaan Fe, Zn, dan beta karoten serta dengan meningkatkan kandungan senyawa promotor.

Metode peningkatan kandungan Fe, Zn, dan beta karoten pada bagian tanaman yang dikonsumsi dapat dilakukan dengan aplikasi pemupukan, pemuliaan konvensional dan pendekatan rekayasa genetik. Pemupukan dilakukan dengan memberikan pupuk makro dan mikro. Pemuliaan konvensional dilakukan melalui pengumpulan plasma nutfah, seleksi, pengujian, dan perbanyakan. Pendekatan rekayasa genetika dilakukan melalui karakterisasi dan pemasukan gen tertentu yang mengkode Fe, Zn, dan beta karoten.

Menurunan kandungan senyawa anti nutrisi yang menghambat penyerapan Fe, Zn, dan beta karoten dilakukan dengan menurunkan konsentrasi asam fitat, tanin, logam berat (Co, Hg, Pb) melalui teknik rekayasa genetika atau teknik pemuliaan secara konvensional.

Metode peningkatan konsentrasi promotor dilakukan dengan meningkatkan senyawa yang menstimulasi penyerapan mikro nutrisi pada tubuh manusia. Beberapa bahan organik tertentu dapat menstimulasi penyerapan hara mikro pada tubuh manusia yaitu: asam askorbat, β-karoten, protein sistein (cysteine), dan asam amino.
Saran

Berdasarkan analisis dan sintesis pada pembahasan yang telah dilakukan, maka dapat diherent beberapa rekomendasi untuk dikaji dan ditindaklanjuti, yaitu:

1. Pemuliaan tanaman singkong perlu dilakukan untuk meningkatkan kandungan Fe, Zn dan beta karoten pada bagian yang dikonsumsi.

2. Perlu dilakukan kajian terhadap pertambahan tanaman singkong secara klonal pada hasil pemuliaan.

3. Perlu dilakukan kajian yang lebih jauh dan mendalam mengenai pemanfaatan teknologi biofortifikasi pada tanaman singkong terhadap status gizi masyarakat.

4. Perlu dilakukan kajian dan penelitian mengenai potensi tanaman singkong untuk menyediakan mikro nutrisi selain Fe, Zn, dan beta karoten.

5. Perlu adanya partisipasi baik dari peneliti, pemerintah, investor, petani dan masyarakat untuk mengembangkan tanaman singkong yang kaya kandungan mikro nutrisi.
DAFTAR PUSTAKA

Long, J and M. BaÈEnziger. 1999. The potential for increasing Fe and Zn density of maize through plant breeding, in Improving human nutrition through agriculture: the role of international agricultural research. Workshop yang diselenggarakan oleh International Rice Research Institute, Los Banos, Philippines dan diorganisasikan oleh International Food Policy Research Institute. 5-7 Oktober.

DAFTAR RIWAYAT HIDUP

Penulis I
Nama : Tri Handayani
Tempat/Tanggal Lahir : Malang, 6 Mei 1984
Jenis Kelamin : Perempuan
Alamat Asal : Jl. Cemara Pentris No. 16 Rt.01/Rw.06
 Sidomulyo Batu Malang 65317
Alamat Sekarang : Pondok Rizqi, Jl. Babakan Raya I RT. 03/01
 No.174 Darmaga Bogor 16680
No. Telp/HP : (0251) 420514 / 081382835104
Email : inay_aster@yahoo.com

Prestasi :
• Finalis National Inovation Contest (NIC) 2007 Institut Teknologi Bandung 21-23 Februari 2007
• Lolos PKMP DIKTI Tingkat Nasional tahun 2006
• Juara Harapan 1 Lomba Inovasi Iptek Mahasiswa (LIIM) Universitas Gajah Mada 28-29 Desember 2006

Karya yang Pernah Dilombakan:
• Studi Pemanfaatan Filter Cahaya dan Teknik Cutting untuk Meningkatkan Kualitas Warna dan Bentuk Tajuk Sansevieria trifasciata var. Lilian True pada Fase Pembibitan (PKMP DIKTI tahun 2007)
• Pemanfaatan Larutan CuSO₄ sebagai Filter Cahaya pada Teknologi Kultur Jaringan (NIC ITB tahun 2007)
• Pemanfaatan Larutan CuSO₄ sebagai Filter Cahaya dalam Induksi Organogenesis Tanaman Hias secara In Vitro (LIIM UGM tahun 2006)
Prestasi:

- Finalis Innovative Enttrepreneurship Challenges – 2 (IEC-2) Institut Teknologi Bandung 20 April 2007
- Juara II Lomba Inovasi Teknologi Lingkungan (LITL) Institut Teknologi Sepuluh November Surabaya 25-28 Maret 2007
- Finalis National Innovation Contest (NIC) 2007 Institut Teknologi Bandung 21-23 Februari 2007
- Lolos PKMP DIKTI Tingkat Nasional tahun 2006
- Juara Harapan I Lomba Inovasi Iptek Mahasiswa (LIIM) Universitas Gajah Mada 28-29 Desember 2006
- Finalis Lomba Karya Tulis Mahasiswa (LKTM) Bidang IPA pada PIMNAS XIX 26-29 Juli 2006 UMM Jawa Timur
- Juara II Lomba Karya Tulis Mahasiswa (LKTM) Bidang IPA Tingkat Wilayah B tahun 2006
- Juara I Lomba Karya Tulis Mahasiswa (LKTM) Bidang IPA Tingkat IPB tahun 2006
- Juara II Lomba Inovasi Teknologi Lingkungan (LITL) Institut Teknologi Sepuluh November tahun 2006
- Lolos PKMP DIKTI Tingkat Nasional (Penulis II tahun 2005)

Karya yang Pernah Dilombakan:

- Bioctile sebagai Alternatif Jamban Hemat Air (LITL ITS; 2007)
• Studi Pemanfaatan Filter Cahaya dan Teknik Cutting untuk Meningkatkan Kualitas Warna dan Bentuk Tajuk Sansevieria trifasciata var. Lilian True pada Fase Pembijitan (PKMP DIKTI tahun 2007)

• Pemanfaatan Larutan CuSO₄ sebagai Filter Cahaya pada Teknologi Kultur Jaringan (NIC ITB tahun 2007)

• Pemanfaatan Larutan CuSO₄ sebagai Filter Cahaya dalam Induksi Organogenesis Tanaman Hias secara In Vitro (LIIM UGM tahun 2006)

• Vertilkultur, Teknologi Produksi Sayuran yang Efisien, Ekonomis dan Ramah Lingkungan (LITL ITS tahun 2006)

• Pemanfaatan Potensi Tanaman Sansevieria sebagai Penyerap Polutan untuk Meningkatkan Kualitas Kesehatan Manusia dan Lingkungan (LKTM Bidang IPA tahun 2006)

• Seleksi Berbagai Varietas Sansiviera sebagai Alternatif Bahan Lotion Pengusir Nyamuk (PKMP DIKTI tahun 2005)