REVIEW PEMBUATAN ASAM POLILAKTAT (PLA) DARI GLISEROL
SEBAGAI HASIL SAMPING INDUSTRI BIODIESEL

Endang Warsiki dan Obie Farобie*
Pusat Penelitian Sulfatkan dan Bioenergi, LPPM - Institut Pertanian Bogor*

ABSTRAK

Kesadaran penduduk dunia terhadap pentingnya lingkungan hidup semakin meningkat seiring dengan meningkatnya masalah lingkungan seperti sampah plastik. Beberapa hasil riset menunjukkan akan biodegradable plastik telah menjadi primadona sebagai pengganti plastik konvensional. Data Badan Pusat Statistik (BPS) menunjukkan bahwa produksi plastik biodegradable diproyeksikan akan mencapai 1,2 juta ton atau menjadi 1/10 dari total produksi bahan plastik pada tahun 2010.

Polimer biodegradable yang telah diproduksi berasal dari jenis poliester alifatik dan aromatik. Poliester biodegradable yang telah diproduksi secara komersial adalah polihidroksialkanoanoat (PHA), poli (ε-kaprolakton) (PCL), polisasmlakat (PLA), polihidroksi butirat (PHB), polihidrokxi heksanoat (PHH), polihidrokxi valerat (PHV) dan polibutilensuksinat (PBS) dari jenis poliester alifatik, serta alifatik-aromatik kopoliosis (AAC) dan poliethylene tereftlat termodifikasi (PET) (Nolan 2002). Polisasmlakat menjadi kandidat yang menjanjikan sebagai bahan alam terbaru (renewable resources) untuk pembuatan plastik. Pengunaan PLA sebagai bahan pembuat plastik tentu saja akan mengurangi masalah yang diakibatkan oleh sampah plastik berbahan petroleum.

PLA diperoleh dari polimerisasi asam lakat, sedangkan asam lakat dapat diproduksi dari proses enzimatis atau kimiai berbahan baku pari. Bahan lain yang berpotensi adalah gliserol. Dalam 5 tahun terakhir ini terdapat peningkatan jumlah yang cukup drammatis akan produksi biodiesel dan gliserol sebagai akibat usaha penggantian bahan bakar fosil menjadi bahan bakar bio. Akibatnya, harga gliserol turun tajam dari US $ 0,5 per lb tahun 2000 menjadi US $ 0,35 per lb.

Pemanfaatan gliserol sebagai bahan baku PLA selain memberikan nilai tambah tinggi juga sebagai upaya pemanfaatan limbah industri biodiesel sekaligus memberikan manfaat sebagai bahan plastik yang ramah lingkungan. Jalur sintesis PLA dari gliserol dilakukan dengan 2 tahap, yaitu: (i) hidroisis dan oksidasi reduksi gliserol menjadi asam lakat dan (ii) polimerisasi asam lakat menjadi PLA. Diharapkan, PLA berbahan gliserol dapat memberikan solusi mengeni masalah penanganan limbah gliserol yang diperoleh dari pembuatan biodiesel. Makalah ini akan membahas tentang perkembangan PLA dalam 10 tahun terakhir sekaligus mendesain proses untuk produksi PLA berbahan gliserol.

Kata kunci: PLA, asam lakat, gliserol, biodiesel, polimerisasi
PENDAHULUAN

Polimer biodegradable yang telah diproduksi berasal dari jenis poliester alifatik dan aromatik. Poliester biodegradable yang telah diproduksi secara komersial adalah polihidroksialkanoat (PHA), poli (ε-kaprolaktion) (PCL), poliasamalaktat (PLA), polihidroksi butirat (PHB), polihidroksi heksanoat (PHH), polihidroksi valerat (PHV), dan polibutilensuksinat (PBS) dari jenis poliester alifatik serta alifatik-aromatik copoliester (AAC) dan polietilena tereftalat termodifikasi (PET) (Nolan, 2002). Poliasamalaktat menjadi kandidat yang menjanjikan sebagai bahan alam terbaru (renewable resources) untuk pembuatan plastik. Sampai saat ini PLA diproduksi dari bahan alam seperti pati-patian (Gray, 2006). Penggunaan PLA sebagai bahan pembuat plastik tentu saja akan mengurangi masalah yang diakibatkan oleh sampah plastik berbahaya baku minyak bumi yang tidak terdegradasi oleh mikroba tanah.

Penggunaan PLA tidak hanya terbatas pada bahan pembuat plastik biodegradable. Namun, PLA dapat pula dikembangkan sebagai bahan penyalut atau pengukung obat (Robani, 2004; Lu dan Chen, 2004), industri medis, dan industri tekstil. Aplikasi PLA sebagai bahan pengganti plastik konvensional masih belum maksimal karena harganya relatif tinggi. Tingginya harga PLA dapat dikarenakan proses pembuatannya yang memakan biaya yang tinggi. Oleh karena itu, penyederhanaan dan pengoptimalan dalam pembuatan PLA perlu diteliti lebih lanjut guna mengurangi biaya pembuatan PLA.

PLA dapat dibuat dengan tiga cara, yaitu polikondensasi langsung dari asam laktat (Hyon et al., 1997; Kallian et al., 1996), polimerisasi azeotrop (Dutkiewicz et al., 2003; Poikakis et al., 2002), dan polimerisasi pembukaan
cincin laktida yang merupakan dimer siklik asam laktat (Yamaguchi dan Tamahiro, 1996; Ohara dan Makoto, 1998; Fridman et al., 1994; Mehta et al., 1998; Hyon et al., 1997). Sejauh ini asam laktat disintesa baik secara kimia maupun enzimatis dengan bahan baku pati atau gula. Pencarian bahan baku berpotensi seperti gliserol sangat perlu dikembangkan. Produksi biodiesel yang terus meningkat seiring dengan kesadaran manusia akan pencarian bahan baku bakar bio pengganti fosil akan meningkatkan produksi gliserol. Diketahui, produksi gliserol adalah 10% dari produksi biodiesel. Sayangnya, belum banyak penelitian maupun tulisan yang membahas tentang pengembangan gliserol sebagai bahan baku pembuatan PLA. Sampai saat ini gliserol diproses menjadi etanol, 1,3 propanadiol, trigliserol, dan poligliserol. Oleh karena makalah ini akan membahas tentang (i) gliserol dan manfaatnya; (ii) sintesa asam laktat; (iii) poliasamlaktat dan (iv) rancangan metoda pembuatan PLA dari gliserol.

TINJAUAN PUSTAKA

Gliserol

Gliserol (1, 2, 3-propanatriol) atau disebut juga gliserin merupakan senyawa alkohol trihidrat (Gambar 1). Gliserol berwujud cairan jernih, higroskopis, kental, dan terasa manis. Gliserol terdapat pada susunan minyak dan lemak nabati maupun hewani namun jarang ditemukan dalam bentuk tersendiri. Gliserol menyusun minyak dan lemak setelah berkombinasi dengan asam lemak seperti asam stearat, asam oleat, asam palmitat, dan asam laurat (Kern, 1966).

\[
\text{HO-CH-CH-CH}_2-\text{OH} \\
\text{OH}
\]

Perkembangan industri biodiesel di Indonesia yang semakin pesat akan menyebabkan melimpahnya produk samping berupa gliserol, yaitu sebesar 10% dari biodiesel yang dihasilkan. Pada tahun 2009, gliserol yang dihasilkan oleh industri biodiesel Indonesia diperkirakan mencapai 72 juta liter per tahun dan menjadi tidak bernilai jual. Konversi gliserol menjadi produk lain perlu dilakukan untuk menghindari timbulnya masalah lingkungan akibat buangan gliserol, selain juga meningkatkan efisiensi industri biodiesel. Asam polilaktat (PLA) merupakan
salah satu produk yang bermanfaat yang diperoleh dari gliserol hasil samping pembuatan biodiesel.

Gliserol memiliki banyak kegunaan, di antaranya sebagai emulsifier, agen pelembut, plasticizer, dan stabilizer es krim; sebagai pelembab kulit, pasta gigi, dan obat batuk; sebagai media pengecual pada reaksi pembekuan sel darah merah, sperma, kornea, dan jaringan lainnya; sebagai tinta printing; dan bahan aditif pada industri pelapis dan cat; sebagai bahan antibakteri, sumber nutrisi dalam proses fermentasi, dan bahan baku untuk nitogliserin.

Gliserol sebagai produk samping pembuatan biodiesel dapat dimodifikasi menjadi berbagai macam senyawa (Gambar 2). Salah satunya adalah dapat dibuat menjadi asam polilaktat (PLA).

Gambar 2. Bagan alir pemanfaatan gliserol.
Asam laktat (asam 2-hidroksi propanoat) merupakan senyawa organik yang dihasilkan dari proses fermentasi karbohidrat oleh mikroorganisme tertentu.

Menurut Chanal (1999), asam laktat (asam 2-hidroksi propanoat) adalah asam hidroksi karboksilat yang mengandung sebuah karbon asimetrik sehingga dapat dijumpai dalam bentuk D-asam laktat, L-asam laktat, dan D,L-asam laktat (Gambar 3).

Gambar 3. Rumus molekul D (-) dan L (+) asam laktat

Asam laktat dapat dihasilkan melalui sintesis kimia atau dengan proses fermentasi. Reaksi dasar dari proses sintesis kimia adalah mengubah laktotonitril (asetildehida sianhidrin) menjadi asam laktat. Beberapa metode kimia yang memungkinkan sintesis asam laktat adalah degradasi gula dengan alkali seperti NaOH, interaksi asetatdehida dan karbonmonoksida pada suhu dan tekanan yang dinaikkan, dan hidrolisis asam α-kloropropionat (Merk et al., 1967). Fermentasi untuk menghasilkan asam laktat melibatkan bakteri tertentu seperti Lactobacillus bulgaricus, Bacillus lactis aerogenes, dan Bacillus delbruckii dengan substrat glukosa, sukrosa atau fruktosa. (Jay, 1978). Keseluruhan reaksinya adalah sebagai berikut:

\[
\text{C}_6\text{H}_{12}\text{O}_6 + 2 \text{ADP} + 2 \text{H}_3\text{PO}_4 \rightarrow 2 \text{CH}_3\text{COOCH} + 2\text{ATP} + 2 \text{H}_2\text{O} + 4 \text{H}^+ \\
\text{Asam piruvat}
\]

\[
2 \text{CH}_3\text{COO} + 2 \text{NADH} + 2 \text{H}^+ \rightarrow 2 \text{CH}_3\text{CHOHCOO} + 2 \text{NAD}^+
\]

Asam laktat

Poliasamlaktat (PLA)

PLA merupakan poliester alifatik serbaguna yang tersusun dari monomer asam laktat. PLA telah dikenal sejak tahun 1932. PLA pertama kali disintesis oleh Wallace Carothers, peneliti Dupont, dengan cara memanaskan asam laktat pada kondisi vakum. PLA merupakan poliester termoplastik linear yang mengandung ikatan ester dan diproduksi dari sumber yang dapat diperbaharui. Ikatan ester tersebut menyebabkan PLA dapat terdegradasi secara hidrolisis baik melalui reaksi kimia maupun secara enzimatik (Pandey, 2004). Degradasi PLA juga
dapat terjadi secara alami baik oleh panas, cahaya, dan bakteri. Selain itu, PLA juga dapat terdegradasi dalam tubuh tanpa menimbulkan efek yang berbahaya. PLA yaitu asam laktat dapat terhidrolisis menjadi monomernya akibat adanya pemanasan. Sifat fisik dan mekanis PLA disajikan pada Tabel 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bobot molekul (Daltons)</td>
<td>100.000-300.000</td>
</tr>
<tr>
<td>Suhu Transisi gelas (Tg, °C)</td>
<td>55 – 70</td>
</tr>
<tr>
<td>Titik Leleh (°C)</td>
<td>130 – 215</td>
</tr>
<tr>
<td>Kristalinitas (%)</td>
<td>10 – 40</td>
</tr>
<tr>
<td>Densitas</td>
<td>1.25</td>
</tr>
<tr>
<td>Yield Strength, MPa</td>
<td>49</td>
</tr>
<tr>
<td>Elongasi (%)</td>
<td>2.5</td>
</tr>
<tr>
<td>Kekuatan akhir (MPa)</td>
<td>53</td>
</tr>
<tr>
<td>Kekuatan fleksur (Mpa)</td>
<td>88</td>
</tr>
</tbody>
</table>

Gambar 4. Struktur kimia PDLLA (Arches, 2006)

PLA mudah untuk terdegradasi dan diserap di dalam tubuh sehingga banyak diaplikasikan dalam bidang medis, yaitu benang bedah, penyembuhan patah tulang, dan regenerasi jaringan tubuh (Balckom et al., 2002; Zang et al. dalam Radano et al., 2000). Selain itu, PLA dapat dimanfaatkan sebagai penyalaikut, serat, film, dan bahan pengemas (Drumright et al., 2000).

Penggunaan PLA sebagai bahan pengemas dapat mengurangi masalah akibat sampah karena PLA dapat terdegradasi secara alami baik oleh panas,
cahaya, maupun bakteri (Zhoong et al., 1999). Degradasi PLA tergantung pada waktu degradasi tersebut. Lee et al. (2005) melaporkan bahwa degradasi PLA secara hidrolisis akan menyebabkan pengurangan massa PLA yang berbanding lurus dengan waktu degradasi.

PLA dapat digunakan dalam industri medis karena PLA bersifat biokompatibilitas, tidak beracun, serta tidak menimbulkan mutasi dan alergi (Arches, 2006). PLA yang masuk ke dalam tubuh akan mengalami metabolisme dan masuk ke dalam siklus asam sitrat menjadi CO₂ dan H₂O (Gambar 6) (Peltoniemi, 2000).

![Diagram of Polyglycolic acid metabolism](image)

PLA dapat diaplikasikan sebagai bahan pengukung obat. Namun, PLA memiliki tingkat kerapuhan yang cukup tinggi sehingga efektivitasnya berkurang. Kelemahan ini dapat ditutupi dengan cara blending dengan polimer biodegradable lainnya. Adapun polimer biodegradable yang telah dicampur dengan PLA adalah poliasamglikolat (Kiremitçi & Deniz, 1998), Polihidroksibutirat-co-hidroksivalerat (PHBV) (Ferreira et al., 2001), PCL, dan pati (Gattin et al., 2001).

3. RANCANGAN METODE PEMBUATAN PLA BERBAHAN GLISEROL

Sejauh ini PLA baru dikembangkan dari asam laktat yang baik disintesa secara kimia maupun enzimatis. Pencarian bahan baku berpotensi selain pati dan gula untuk produksi PLA sangat diperlukan. Glicerol disinyalir dapat disintesa menjadi asam laktat yang selanjutnya dipolimerisasi menjadi PLA. Produksi biodiesel yang akan terus meningkat di tahun-tahun yang akan datang,
tentu saja akan menyebabkan peningkatan gliserol yang akan dihasilkan sebagai hasil samping. Oleh karena itu pemanfaatan gliserol sebagai bahan baku PLA cukup menarik untuk dikembangkan. Dari beberapa literatur yang berhasil dikumpulkan, belum ada metode paten atau yang sudah dikembangkan untuk keperluan ini. Oleh karena ini tulisan ini mencoba mendesain proses sintesa secara kimia asam laktat dari gliserol yang selanjutnya polimerisasi atau polikondensasi asam laktat tersebut menjadi PLA. Adapun proses sintesa asam laktat dari gliserol (Gambar 7) dan proses polimerisasi asam laktat menjadi PLA(Gambar 8) yang dikembangkan adalah sebagai berikut:

\[
\text{HO-CH-CH(OH)_2} \rightarrow \text{CH(OH)_3} \rightarrow \text{CH_3CH(OH)_2} \rightarrow \text{H_2O}^{-1}
\]

Gambar 7. Proses sintesa asam laktat dari gliserol

(i) Perlindungan gliserol dengan asetaldehida
Perlindungan gliserol dengan asetaldehida ditujukan untuk melindungi 2 gugus OH dalam gliserol. Dengan demikian hanya ada satu gugus OH yang dimungkinkan untuk direduksi menjadi CH\textsubscript{3} oleh reduktor kuat seperti LiAlH\textsubscript{4} (Litium Aluminium Hidrida).

(ii) Hidrolisis asam
Asetaldehida hanya berperan sebagai pelindung sehingga molekul ini dapat dilepaskan kembali dengan proses hidrolisis dalam suasana asam dan menghasilkan 1,2 dihidroksi propanol.
(iii) Oksidasi basa

Oksidasi 1,2 dihidroksi propat dalam suasana basa dilakukan dengan oksidator kuat KMnO$_4$ membentuk asam piruvat.

(iv) Reduksi

Sebagai proses akhir, asam piruvat direduksi menjadi asam laktat.

\[
\text{O} \quad \text{H}_2\text{O} \quad \text{HO} \quad \text{CH} \quad \text{CH}_3 \\
\text{HO} \quad \text{CO} \quad \text{CH} \quad \text{CH}_3 \\
\text{CH}_3 \quad \text{OH} \quad \text{CH} \quad \text{CH}_3
\]

PLA BM rendah (2.000-10.000) Agen perpanjangan rantai

\[
\text{HO} \quad \text{CO} \quad \text{CH}_3 \\
\text{CH}_3 \quad \text{OH} \quad \text{CH} \quad \text{CH}_3 \\
\text{CH}_3 \quad \text{OH}
\]

PLA BM tinggi > 100.000

\[
\text{HO} \quad \text{CO} \quad \text{CH}_3 \\
\text{CH}_3 \quad \text{OH} \quad \text{CH} \quad \text{CH}_3
\]

+ Polimerisasi pembukaan cincin

\[
\text{HO} \quad \text{CO} \quad \text{CH}_3 \\
\text{CH}_3 \quad \text{OH} \quad \text{CH} \quad \text{CH}_3
\]

Depolimerisasi

\[
\text{HO} \quad \text{CO} \quad \text{CH}_3 \\
\text{CH}_3 \quad \text{OH} \quad \text{CH} \quad \text{CH}_3
\]

Laktida

Gambar 8 Metode Polimerisasi PLA (Auras 2003, Garlotta 2002)

Sintesis PLA dari asam laktat dapat dilakukan melalui tiga metode polimerisasi yang berbeda (Auras, 2003; Garlotta, 2002) yaitu:

(i) Polikondensasi langsung

Polimerisasi langsung dilakukan dengan berbagai macam cara, yaitu polikondensasi asam laktat dalam pelarut organik pada kondisi tekanan atmosfer dan tekanan tereduksi (Dutkiewicz et al., 2003), polikondensasi langsung asam laktat tanpa katalis (Fukuzaki et al, dalam Gonzales et al., 1999), dan melt polycondensation (Kimura et al. dalam Lee et al., 2005).

(2) Polimerisasi kondisi azeotropik
Polikondensasi satu tahap yang dilakukan dengan menggunakan pelarut azeotrop.

(3) Polimerisasi pembuakan cincin.

Pada proses ini PLA disintesis melalui tiga tahap, yaitu polikondendasi laktat (prepolimerisasi), depolimerisasi membentuk dimer siklik (laktida), dan dilanjutkan dengan polimerisasi laktida sehingga diperoleh PLA.

DAFTAR PUSTAKA

MW, Tan HT, Chandrasekaran M, Ooi CP. 2005. Synthesis and characterisation of PLLA by melt polycondensation using binary catalyst system. SIMTech technical reports. 6(3): 40-44

