II. TINJAUAN PUSTAKA

PROTEASE MIKROBA

Mikroba yang dapat dimanfaatkan untuk memproduksi protease diantaranya Bacillus licheniformis, B. stearothermophilus, B. pumilus, Mucor miehei, Aspergillus oryzae dan A. niger. Berdasarkan data yang ada, penjualan proteinase dari mikrobiai yang merupakan proteinase bakterial alkalin

```
PEPTIDASE
  \[\text{karboksipeptidase serin} \rightarrow \text{karboksipeptidase metal}\]
  \[\text{aminopeptidase} \]
  \[\text{proteinase serin} \rightarrow \text{proteinase aikali; proteinase mikroba; proteinase tapiokokal}\]

PROTEINASE
  \[\text{proteinase thiol} \rightarrow \text{proteinase tapiokokal; proteinase serupa pepsin}\]
  \[\text{proteinase asam} \rightarrow \text{proteinase aikali; proteinase mikroba; proteinase mikroba II}\]

```
PROTEASE *Bacillus pumilus*

Enzim protease alkalin (basal), yang termasuk kelompok protease serin, kebanyakan aktif pada pH tinggi (sekitar 10), sensitif dengan DFD (Diisopropil F.PO₄) dan inhibitor dari kentang, tapi tidak sensitif dengan TLCK (Tosyl L-Lisin Chloromethyl Ketone) atau TPCK (Tosyl L-Phenylalanine Chloromethyl Ketone) dan merupakan inhibitor tripsin spesifik. Enzim ini spesifik terhadap residu asam amino aromatik dan hidrofobik seperti tirosin, fenilalanin atau leusin pada sisi karboksil. Mempunyai berat molekul 15000 sampai 30000 Dalton dan titik isoelektrik mendekati pH 9.0 (Fogarty, 1983).

Bacillus pumilus menghasilkan enzim yang disebut Subtilisin Carlsberg yang termasuk dalam kelompok protease alkalin. Enzim ini dikristalisasi oleh Gunterberg dan Ottensen (1952) dan digunakan secara luas pada industri detergen. Enzim Subtilisin Carlsberg ini mempunyai rantai peptida tunggal dengan 274 asam amino dan tidak mengandung asam amino

Disamping itu *B. pumilus* juga menghasilkan enzim yang termasuk protease netral golongan metalo enzim. Enzim ini secara luas tersebar pada mikroorganisme. Sifat-sifat enzim ini yaitu mengandung sebuah atom logam esensial (umumnya seng/Zn), pH optimumnya sekitar 7.0, spesifik terhadap ikatan hidrofobik asam amino pada grup amino dalam peptida dan menunjukan aktifitas yang tinggi dengan FAGLA (Furylacroliglycylleucinamide). Enzim ini tidak memiliki aktifitas amidase maupun aktifitas esterolitik terhadap p-nitrophenyl ester (Ward, 1983).

EKSTRAKSI DAN PEMURNIAN

Tahap awal dalam ekstraksi dan pemurnian enzim adalah fermentasi mikrobial. Tujuannya adalah produksi enzim oleh mikroba dalam media spesifik. Dalam tahap ini perlu diperhatikan bahwa seluruh rangkaian tahap inokulasi dan inkubasi harus dilakukan secara aseptik untuk memperkecil resiko kontaminasi dari luar (Fardiaz, 1989).

Ekstraksi mengacu pada pembebasan sejumlah enzim dari sel-sel atau bagian-bagian sel. Ekstraksi dapat dilakukan
1. Dilarang menggunakankan atau seluruh Undang-Undang
b. Penggunaan tidak memperhatikan konsep yang wajar

2. Hak cipta milik IPB (Institut Pertanian Bogor)

Hak Cipta Dilindungi Undang-Undang

b. Penggunaan tidak memperhatikan konsep yang wajar

Bogor Agricultural University

... dengan cara mekanik, fisik ataupun gangguan oleh bahan-bahan kimia terhadap suatu sel atau membran sel. Hal ini dapat dilakukan apabila hendak memindahkan beberapa komponen dari dinding atau membran sel, sehingga terjadi kebocoran. Untuk enzim intra dan ekstra selular, adalah penting untuk memodifikasi cairan alami dari medium untuk dapat menyempurnakan proses disosiasi tersebut (Patel, 1985).

Proses ekstraksi dapat dilakukan dengan berbagai macam cara. Menurut Wang et al. (1979), metode-metode yang dapat digunakan dalam proses ekstraksi adalah metode disrupsi baik secara mekanik maupun non mekanik. Tetapi, pengembangan skala mekanik yang digunakan pada tingkat laboratorium pada umumnya tidak memuaskan. Yang lebih memberikan harapan untuk digunakan sebagai dasar prosedur pada industri adalah metode non mekanik. Beberapa metode mekanik yang dapat digunakan adalah liquid shear (ultrasound, mechanical agitation, pressure) dan solid shear (grinding, pressure). Sedangkan metode non mekanik yang dapat digunakan adalah desikasi (air drying, vacuum drying, freeze drying, solvent drying); lisis (physical, chemical dan enzymatic).

Proses lain yang dapat digunakan untuk ekstraksi enzim adalah dengan metode pengendapan (precipitation). Menurut Wang et al. (1979), presipitasi adalah suatu metode menggunakan penambahan reagen atau mengubah kondisi lingkungan yang menyebabkan protein meninggalkan larutan dan membentuk partikel yang tidak larut dalam bentuk endapan. Dalam enzimologi, istilah tersebut tidak berhubungan dengan konota-
si spesifik tentang perubahan ikatan kimia yang umum terdapat dalam kimia. Sebenarnya, metode pengendapan enzim dapat dilakukan dengan berbagai cara. Diantaranya berbasis dari penambahan garam netral dan alkohol ataupun perubahan pH sampai dengan reaksi kimia spesifik ion logam dan reagen organik.

Salah satu metode tertua dan umum digunakan dalam pemurnian dan fraksinasi protein adalah pengendapan dalam larutan garam netral dengan menggunakan prinsip "salting out". Istilah "salting out" menjelaskan pengendapan protein pada konsentrasii garam netral tinggi. Pereaksi (garam netral) yang umum digunakan adalah ammonium dan sodium sulfat \((\text{NH}_4)_2\text{SO}_4\) dan \(\text{Na}_2\text{SO}_4\). Keuntungan penggunaan ammonium sulfat adalah bahan tersebut murah harganya dan memiliki solubilitas yang tinggi. Sedangkan penggunaan sodium sulfat terbatas karena harus digunakan pada 35-40°C untuk memperoleh solubilitas yang memadai (Scopes, 1987).

Reagen lain yang dapat juga digunakan dalam metode presipitasi ini adalah pelarut organik (metanol, etanol dan isopropanol) yang merupakan presipit yang penting dalam industri; polimer berberat molekul tinggi (destran dan polietilen glikol); reagen ion logam dan kompleks (Mn\(^{2+}\)) dan spesifik agen (streptomisin) (Wang et al., 1979).

Kelarutan enzim dapat pula diubah dengan memvariasikan suhu dan pH (kekuatan ionik dipertahankan tetap). Pada umumnya, kelarutan protein meningkat dengan kenaikan suhu. Karena enzim secara umum menunjukkan ketergant
tungan suhu secara normal, maka perubahan suhu jarang digunakan dalam metode presipitasi. Tetapi perbedaan stabilitas enzim pada suhu yang lebih tinggi dan denaturasi oleh panas, sering digunakan untuk pengendapan yang bersifat irreversibel. Metode pengendapan dengan variasi suhu menguntungkan untuk skala industri karena murah dan mudah (Patel, 1985).

Ultracentrifugasi merupakan proses sentrifugasi pada kecepatan putaran yang tinggi untuk pemisahan solid-likuid.
Ultrasentrifugasi dapat memisahkan makromolekul yang terlarut dari larutan dan memungkinkan diperolehnya hasil resolusi pemisahan yang baik. Pada dasarnya, ultrasentrifugasi juga memanfaatkan adanya perbedaan densitas dari partikel yang terdapat dalam larutan yang dengan kecepatan putaran tinggi akan saling terpisah.

Metode ultrasentrifugasi baik digunakan untuk memisahkan enzim dari larutan filtrat kasar yang diperoleh setelah fermentasi, sebelum enzim tersebut dimurnikan. Dan walaupun memiliki hasil resolusi yang baik, metode ini juga memiliki kelemahan yaitu adanya panas yang ditimbulkan dari perputaran sehingga dapat mempengaruhi struktur kompleks enzim. Hal ini, biasanya dicegah dengan membuat suhu lingkungan rendah (sekitar 4 - 10°C) (Wang et al., 1979).

Kromatografi didefinisikan oleh Scopes (1987), sebagai suatu bentuk penyaringan secara seragam dari suatu cairan melalui kolom yang terdiri dari beberapa substansi yang terpisah, yang secara selektif menahan komponen tertentu dari cairan. Dalam penggunaannya, prinsip pemurnian/pemisahan protein (enzim) dengan kolom kromatografi penukar ion adalah
adanya pengikatan protein oleh resin kolom dengan adanya gaya elektrostatik antara muatan permukaan protein dengan sejumlah kluster grup bermuatan dalam resin. Ion-ion yang berada pada permukaan protein yang muatannya berlawanan dengan ion pada permukaan matriks resin saling berikatan dan segera dielusi keluar dari kolom kromatografi, sedangkan gugus besar protein tetap tertinggal di dalam kolom (Scopes, 1987).

Pada kromatografi dengan resin penukar ion ini, ada beberapa faktor yang turut menentukan keberhasilan pemurnian/pemisahan protein, diantaranya adalah jenis sampel dan kolom yang digunakan, buffer (jenis, pH, kekuatan ion dan konsentrasi), ukuran dan dimensi kolom dan lain-lain (Scopes, 1987). Kolom yang dapat dipakai untuk kromatografi ini adalah DEAE Sephadex A-50 dan Amberlite penukar anion dan kation. Beberapa spesifikasi dari kolom-kolom tersebut dapat dilihat pada tabel 1.
<table>
<thead>
<tr>
<th>Jenis Resin</th>
<th>Spesifikasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. DEAE Sephadex A-50</td>
<td>1) Matriks material: dextran kapasitas: 3 - 4 mmol/gr limit: berat molekul rata-rata 2 \times 10^5 harga: US $ 150/100 gr</td>
</tr>
<tr>
<td>2. Amberlite penukar anion 2)</td>
<td>Matriks material: polistiren kapasitas: 1.4 meq/ml; 3.8 meq/gr bentuk ionik: klorida harga: US $ 10.9/100 gr</td>
</tr>
<tr>
<td>3. Amberlite penukar kation 3)</td>
<td>Matriks material: polistiren kapasitas: 2.5 meq/ml; 8.1 meq/gr bentuk ionik: sodium harga: US $ 6.1/100 gr</td>
</tr>
</tbody>
</table>

Sumber: Pharmacia 3) Sumber: Sigma

Begitu halnya dengan kolom yang dapat juga digunakan untuk pemurnian kromatografi penukar ion dapat dilihat pada tabel 2.

<table>
<thead>
<tr>
<th>Jenis Resin</th>
<th>Jenis Bakteri</th>
<th>Kemipatan Pemurnian</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sephadex G-100</td>
<td>B. stearothermophilus NRRL B 1172</td>
<td>24.97 kali</td>
</tr>
<tr>
<td>2. DEAE Sephadex A-50</td>
<td>B. stearothermophilus BC511</td>
<td>4.09 kali</td>
</tr>
<tr>
<td>Sephadex G-100</td>
<td>B. stearothermophilus ATCC 12980</td>
<td>4.50 kali</td>
</tr>
<tr>
<td>Hidroksiapatit</td>
<td>B. subtilis</td>
<td>-</td>
</tr>
<tr>
<td>Duolite C-10</td>
<td>B. subtilis</td>
<td>-</td>
</tr>
<tr>
<td>DEAE Sephadex</td>
<td>B. licheniformis</td>
<td>195 kali</td>
</tr>
</tbody>
</table>

Dalam pemurnian, setelah tahap ekstraksi dan pengendapan, dilakukan tahap penghilangan garam dari filtrat (desalting), pemekatan (dengan pengeringan) dan analisa kemurnian enzim. Rangkaian proses ini merupakan finishing operation (Wang et al., 1979). Tahap tersebut secara umum dilakukan untuk enzim ekstraselular. Finishing operation terutama dilakukan dalam dunia perdagangan enzim oleh suatu perusahaan.

Proses desalting dilakukan untuk mencegah rasa dan reaksi yang tidak diinginkan dalam penggunaan produk enzim untuk industri makanan dan pemakaian klinis. Desalting juga penting dalam tahap pertengahan isolasi enzim. Istilah desalting juga digunakan secara luas untuk menjelaskan perpindahan setiap molekul kecil dari enzim dalam proses tersebut tanpa membedakan apakah molekul tersebut merupakan ion atau molekul kecil lain (Thenawijaya, 1990). Desalting dapat dilakukan menggunakan metode 2 membran, dialisis dan ultrafiltrasi.

Secara teoritis, ultrafiltrasi lebih baik dari dialisis. Hal ini dikarenakan dalam prosesnya, ultrafiltrasi tidak menentang sejumlah tertentu konsentrasi garam yang terdapat pada sisi filtrat membran. Akan tetapi, konsentrasi garam dapat diperlakukan pada tingkat rendah di dalam dialisis dengan menggunakan suatu aliran air yang cepat pada sisi filtrat. Penggunaan air deionisasi penting dalam dialisis untuk menghindari kontaminan logam dengan mengalir-balikannya melalui mem-
Dialisis dapat digunakan untuk meng"up-grade" enzim-enzim komersial yang mempunyai kandungan garam tinggi. Sebagai contoh, aktivitas protease Alkalase ditingkatkan dari 1,65 x 10^5 u/g sampai ke 2,4 x 10^6 u/g (sekitar 15 kali lipat) dengan dialisis yang dilikuti liofilisasi. Sementara itu, montase dapat ditingkatkan aktivitas spesifiknya sebesar 2 kali lipat dengan dialisis (Keay et al., 1989). Namun tidak dijelaskan apakah kandungan garam yang tinggi berasal dari medium pertumbuhan, presipitasi dengan garam ataukah ditambahkan garam secara sengaja untuk pemasaran. Kantung dialisis yang digunakan dapat berupa kulit sosis atau selofan.

Namun, menurut Wang et al. (1979), seperti halnya ultrafiltrasi, dialisis dapat secara nyata menyebabkan sejumlah penurunan aktifitas enzim. Dalam dialisis, hal ini mungkin dikarenakan oleh kontaminasi pada membran atau penghambatan aliran oleh fase pada perbatasan membran.

ELEKTROFORESIS

Fraksi yang dihasilkan dari kolom kromatografi, dilakukan pengujian kemurniannya serta penentuan berat molekul dari tiap fraksi yang dihasilkan dengan cara elektroforesis. Elektroforesis adalah suatu cara untuk memisahkan fraksi-fraksi suatu zat berdasarkan migrasi partikel bermuatan atau ion-ion makromolekul di bawah pengaruh medan listrik (Pomeranz dan Meloan, 1980). Migrasi tersebut dapat terjadi karena perbedaan ukuran, bentuk, muatan atau sifat kimia molekul tersebut. Dalam pemisahan berdasarkan muatan,
molekul-molekul protein yang mempunyai muatan berbeda akan terpisah selama bergerak ke arah elektroda yang polaritasnya berlawanan dengan muatan molekul tersebut (Boyer, 1986).

Gel poliakrilamid merupakan salah satu tipe gel elektroforesis, disamping gel pati dan gel diskontinu. PAGE dapat dipergunakan untuk uji homogenitas, estimasi BM, mobilitas relatif, muatan netto dan koefisien difusi apparent (Maurer, 1974). Menurut Mayes (1987), homogenitas protein paling baik diuji dengan PAGE.

Gel poliakrilamid diperoleh dengan cara polimerisasi akrilamid dengan adanya sejumlah kecil "cross linking agent" N,N'-metilen-bis-akrilamid dan ammonium persulfat sebagai katalisator. Selain itu diperlukan TEMED (Tetrametil Etilendiamin) yang juga bertindak sebagai katalis terutama dalam mengawali terjadinya polimerisasi (Nur dan AdiJuwana, 1988).

Variasi yang terkenal dalam PAGE adalah SDS-PAGE, yaitu PAGE dilakukan pada sampel yang terdenaturasi (Mayes, 1987). SDS (Sodium Dodesil Sulfat) merupakan anionik deterjen yang bersama dengan β-merkaptoetanol dan pemanasan menyebabkan r usaknya struktur tiga dimensi protein. Hal ini disebabkan oleh terpecahnya ikatan disulfida yang selanjutnya
1. Daftar Cita Dibundung! Undang-Undang c. Pengumpulan sedikit merujuk kepada penelitian perubahan yang diwarisi PB.
2. Diterbitkan untuk memperlihatkan tepat mengungkap sedikit merujuk kepada penelitian perubahan yang diwarisi PB.
