MEMPELAJARI PENGARUH KONSENTRASI NaOH DAN WAKTU PADA
PERLAKUAN ALKALI TERHADAP MUTU AGAR-AGAR DARI RUMPUT LAUT
Gracilaria verrucosa

Oleh
AMNIDAR
F 21. 0541

1989
FAKULTAS TEKNOLOGI PERTANIAN
INSTITUT PERTANIAN BOGOR
BOGOR

RINGKASAN

Tujuan penelitian ini adalah untuk menentukan kondisi pemucatan rumput laut terbaik dan mempelajari pengaruh perlakuan alkali terhadap rendemen dan beberapa parameter mutu agar-agar. Penelitian dilakukan dalam dua tahap yaitu penelitian pendahuluan dan penelitian utama. Penelitian pendahuluan bertujuan untuk menentukan komposisi kimia bahan baku dan menentukan cara pemucatan terbaik. Pada penelitian utama dipelajari pengaruh konsentrasi NaOH (1.5, 2.5, 3.5 persen) dan waktu perlakuan alkali (1, 2, 3 jam) terhadap rendemen, kadar abu, kadar galaktosa, warna, logam berbahaya dan karakteristik gel agar-agar. Rancangan percobaan yang digunakan pada penelitian utama adalah rancangan acak lengkap Faktorial 3 x 3 x 2 dengan model tetap.

Dari hasil penelitian pendahuluan pemucatan terbaik diperoleh pada kondisi konsentrasi CaOCl$_2$ 1 persen, waktu 2 jam dan dilakukan terhadap rumput laut basah. Analisa sidik ragam menunjukkan bahwa konsentrasi NaOH dan waktu perlakuan alkali berpengaruh nyata terhadap rendemen, kekuatan gel, kekerasan gel, kohesivitas gel, titik pembentukan gel dan
titik leleh. Rendemen tertinggi yaitu 17.32 persen, dipero-leh pada konsentrasi NaOH 1.5 persen dan perlakuan 1 jam. Titik pembentukan gel, titik leleh dan kekerasan gel ter-tinggi diperoleh pada perlakuan konsentrasi NaOH 3.5 persen dan waktu perlakuan 3 jam dengan nilai masing-masing 37.30\textdegree C, 88.63\textdegree C dan 8 545.45 dyne/cm2. Kekuatan gel ter-tinggi (491.73 g/cm2) dan kohesivitas gel tertinggi (5.00 mm) diperoleh pada perlakuan konsentrasi NaOH 2.5 persen dan waktu perlakuan 3 jam. Kadar abu dan kadar galaktosa rata-rata diperoleh 7.74 persen dan 50.48 persen dan keduanya tidak dipengaruhi oleh perlakuan alkali. Tepung agar-agar yang dihasilkan berwarna kuning muda sampai coklat muda dan tidak mengandung logam berbahaya.
DAFTAR ISI

<table>
<thead>
<tr>
<th>Bab</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kata Pengantar</td>
<td>v</td>
</tr>
<tr>
<td>Daftar Tabel</td>
<td>vii</td>
</tr>
<tr>
<td>Daftar Gambar</td>
<td>viii</td>
</tr>
<tr>
<td>Daftar Lampiran</td>
<td>ix</td>
</tr>
<tr>
<td>I. PENDAHULUAN</td>
<td>1</td>
</tr>
<tr>
<td>II. TINJAUAN PUSTAKA</td>
<td>3</td>
</tr>
<tr>
<td>A. RUMPUT LAUT</td>
<td>3</td>
</tr>
<tr>
<td>B. AGAR-AGAR</td>
<td>7</td>
</tr>
<tr>
<td>C. PEMBUATAN AGAR-AGAR</td>
<td>17</td>
</tr>
<tr>
<td>D. KEGUNAAN AGAR-AGAR</td>
<td>23</td>
</tr>
<tr>
<td>E. STANDAR MUTU AGAR-AGAR</td>
<td>25</td>
</tr>
<tr>
<td>III. METODE PENELITIAN</td>
<td>29</td>
</tr>
<tr>
<td>A. BAHAN DAN ALAT</td>
<td>29</td>
</tr>
<tr>
<td>B. METODE</td>
<td>30</td>
</tr>
<tr>
<td>C. RANCANGAN PERCOBAAN</td>
<td>32</td>
</tr>
<tr>
<td>IV. HASIL DAN PEMBAHASAN</td>
<td>35</td>
</tr>
<tr>
<td>A. PENELITIAN PENDAHULUAN</td>
<td>35</td>
</tr>
<tr>
<td>B. PENELITIAN UTAMA</td>
<td>39</td>
</tr>
<tr>
<td>V. KESIMPULAN DAN SARAN</td>
<td>57</td>
</tr>
<tr>
<td>A. KESIMPULAN</td>
<td>57</td>
</tr>
<tr>
<td>B. SARAN</td>
<td>58</td>
</tr>
<tr>
<td>DAFTAR PUSTAKA</td>
<td>59</td>
</tr>
<tr>
<td>LAMPIRAN</td>
<td>63</td>
</tr>
</tbody>
</table>
DAFTAR TABEL

Tabel 1. Komposisi *Gracilaria* .. 7

Tabel 2. Tingkat konsentrasi NaOH, waktu perlakuan dan kekuatan gel yang dihasilkan dari beberapa spesies *Gracilaria* .. 19

Tabel 3. Standar mutu agar-agar .. 27

Tabel 4. Standar mutu salah satu jenis agar-agar ekspor Jepang .. 28

Tabel 5. Hasil analisa proksimat *Gracilaria verrucosa* 35

Tabel 6. Hasil pemucatan *Gracilaria verrucosa* dengan dengan bahan pemucat CaOCl₂ dan berbagai kondisi pemucatan .. 37
DAFTAR GAMBAR

Gambar 1. Spesies ganggang merah yang menghasilkan agar-agar 4

Gambar 2. *Orciaria verrucosa* .. 5

Gambar 3. Struktur kimia klorofil .. 6

Gambar 4. Ikatan β-1,3 dan α-1,4 pada unit monomer agarosa 8

Gambar 5. Agarobiosa dan neoagarobiosa 9

Gambar 6. Struktur agar-agar .. 10

Gambar 7. Mekanisme pembentukan gel 12

Gambar 8. Perubahan rantai polimer galaktan akibat penggantian 3,6-anhidro-L-galaktosa dengan L-galaktosa-6-sulfat 14

Gambar 9. Diagram alir ekstraksi agar-agar 34

Gambar 10. Histogram pengaruh konsentrasi NaOH dan waktu perlakuan alkali terhadap rendemen . 40

Gambar 11. Histogram pengaruh konsentrasi NaOH dan waktu perlakuan alkali terhadap kekuatan gel .. 44

Gambar 12. Histogram pengaruh konsentrasi NaOH dan waktu perlakuan alkali terhadap kekerasan gel ... 46

Gambar 13. Histogram pengaruh konsentrasi NaOH dan waktu perlakuan alkali terhadap kohesivitas gel .. 49

Gambar 14. Histogram pengaruh konsentrasi NaOH dan waktu perlakuan alkali terhadap temperatur pembentukan gel 51

Gambar 15. Histogram pengaruh konsentrasi NaOH dan waktu perlakuan alkali terhadap temperatur leleh .. 53

Gambar 16. Grafik pembacaan karakteristik gel pada rekorder "Curd-meter" 76
DAFTAR LAMPIRAN

Lampiran 1. Diagram proses ekstraksi agar-agar ... 64
Lampiran 2. Diagram proses ekstraksi agar-agar dengan metoda penekanan ... 65
Lampiran 3. Diagram proses ekstraksi agar-agar dengan metoda pembekuan ... 66
Lampiran 4. Diagram proses ekstraksi agar-agar ... 67
Lampiran 5. Diagram proses ekstraksi agar-agar ... 68
Lampiran 6. Bahan kimia yang digunakan ... 69
Lampiran 7. Prosedur analisa proksimat bahan baku ... 70
Lampiran 8. Prosedur analisa proksimat bahan baku (lanjutan) ... 71
Lampiran 9. Prosedur analisa proksimat bahan baku (lanjutan) ... 72
Lampiran 10. Prosedur analisa proksimat bahan baku (lanjutan) ... 73
Lampiran 11. Prosedur analisa tepung agar-agar ... 74
Lampiran 12. Prosedur analisa tepung agar-agar (lanjutan) ... 75
Lampiran 13. Prosedur analisa tepung agar-agar (lanjutan) ... 76
Lampiran 14. Prosedur analisa tepung agar-agar (lanjutan) ... 77
Lampiran 15. Prosedur analisa tepung agar-agar (lanjutan) ... 78
Lampiran 16. Rekapitulasi data hasil penelitian agar-agar ... 79
Lampiran 17. Rekapitulasi data hasil penelitian agar-agar (lanjutan) ... 80
Lampiran 18a. Analisa sidik ragam rendemen agar-agar ... 81
Lampiran 18b. Uji Beda Nyata Terkecil (BNT) pengaruh konsentrasi NaOH terhadap rendemen 81
Lampiran 19a. Uji Beda Nyata Terkecil (BNT) pengaruh waktu perlakuan alkali terhadap rendemen 82
Lampiran 19b. Analisa sidik ragam kadar abu 82
Lampiran 20a. Analisa sidik ragam kadar galaktosa ... 83
Lampiran 20b. Analisa sidik ragam kekuatan gel 83
Lampiran 21a. Uji beda Tukey pengaruh konsentrasi NaOH terhadap kekuatan gel 84
Lampiran 21b. Uji beda Tukey pengaruh waktu perlakuan alkali terhadap kekuatan gel 84
Lampiran 22. Uji beda Tukey pengaruh interaksi konsentrasi NaOH dengan waktu perlakuan alkali terhadap kekuatan gel 85
Lampiran 23a. Analisa sidik ragam kekerasan gel 86
Lampiran 23b. Uji beda Tukey pengaruh konsentrasi NaOH terhadap kekerasan gel 86
Lampiran 24. Uji beda Tukey pengaruh waktu perlakuan alkali terhadap kekerasan gel 87
Lampiran 25. Uji beda Tukey pengaruh interaksi konsentrasi NaOH dengan waktu perlakuan alkali terhadap kekerasan gel 88
Lampiran 26a. Analisa sidik ragam kohesivitas gel 89
Lampiran 26b. Uji beda Tukey pengaruh konsentrasi NaOH terhadap kohesivitas gel 89
Lampiran 27. Uji beda Tukey pengaruh waktu perlakuan alkali terhadap kohesivitas gel 90
Lampiran 28. Uji beda Tukey pengaruh interaksi konsentrasi NaOH dengan waktu perlakuan alkali terhadap kohesivitas gel 91
Lampiran 29a. Analisa sidik ragam "gelling point" 92
Lampiran 29b. Uji beda Tukey pengaruh konsentrasi NaOH terhadap "gelling point" 92
Lampiran 30a. Uji beda Tukey pengaruh waktu perlakuan alkali terhadap "gelling point" 93
Lampiran 30b. Analisa sidik ragam "melting point" . . . 93
Lampiran 31a. Uji beda Tukey pengaruh konsentrasi NaOH terhadap "melting point" 94
Lampiran 31b. Uji beda Tukey pengaruh waktu perlakuan alkali terhadap "melting point" 94
Lampiran 32. Uji beda Tukey pengaruh interaksi konsentrasi NaOH dengan waktu perlakuan alkali terhadap "melting point" 95

Agar-agar mempunyai banyak kegunaan, seperti dalam produk makanan, industri farmasi, kertas, tekstil, logam dan penggunaan di laboratorium. Agar-agar tersebut digunakan sebagai penstabil, pengemulsi, bahan pembentuk gel, bahan penjernih, media kultur mikroba, media kultur jaringan dan sebagainya (Chapman dan Chapman, 1980; Gliksman, 1983).

dan potensi Indonesia sebagai penghasil rumput laut, maka perlu dilakukan usaha pengembangan pengolahan rumput laut menjadi agar-agar. Masalah yang sering timbul dalam memproduksi agar-agar terutama dari rumput laut jenis *Gracilaria* adalah kesukaran memperoleh agar-agar yang mempunyai karakteristik gel yang baik, seperti kekuatan, kekerasan dan kohesivitas gel yang tinggi. Salah satu penyebabnya yaitu ester sulfat yang terdapat dalam agar-agar.

Ester sulfat dalam agar-agar terikat pada atom karbon keenam (C6) dari L-galaktosa. Adanya ester sulfat pada C6 akan menyebabkan rantai polimer membentuk suatu tekukan, sehingga akan menghambat pembentukan gel (Glicksman, 1983).

Ester sulfat pada C6 rantai galaktosa dapat dihilangkan dengan perlakuan alkali. Bersamaan dengan hilangnya ester sulfat akan terbentuk cincin 3,6-anhidro-galaktosa yang mempunyai rantai lurus, sehingga pembentukan gel akan mudah terjadi (Guiseley et al., 1980).

Penelitian ini bertujuan untuk menentukan kondisi pemupukan rumput laut terbaik dan mempelajari pengaruh konsentrasi alkali dan waktu proses selama perlakuan dengan alkali terhadap rendemen dan mutu tepung agar-agar yang dihasilkan dari rumput laut jenis *Gracilaria*. Untuk mencapai tujuan ini, metode ekstraksi yang digunakan adalah hasil modifikasi metode ekstraksi Pillay (1977) dan Sri Istni et al. (1986).
II. TINJAUAN PUSTAKA

A. RUMPUT LAUT

Rumput laut atau ganggang laut adalah salah satu tanaman yang termasuk Divisi Thallophyta. Thallophyta diklasifikasikan menjadi empat kelas, yaitu : (1) Chlorophyceae (ganggang hijau), (2) Cyanophyceae (ganggang biru), (3) Rhodophyceae (ganggang merah) dan (4) Phaeophyceae (ganggang coklat).

Ganggang merah dan ganggang coklat adalah tanaman laut yang penting, karena mengandung polisakarida yang tidak terdapat pada tanaman lain dan tersedia dalam jumlah yang besar sehingga sangat mendukung untuk pengadaan bahan baku suatu industri. Polisakarida yang terdapat dalam ganggang merah dan ganggang coklat diantarnya adalah algin, karagenan, funoran, laminarin, fucoidin dan agar-agar.

Agar-agar merupakan karbohidrat struktural yang terdapat dalam dinding sel rumput laut. Pada tanaman tersebut, agar-agar kemungkinan berperan dalam pertukaran
ion (ion exchange) dan proses dialisa (Selby dan Wynne, 1973). Sand dan Glicksman (1973) menyusun spesies dari Rhodophyceae yang potensi sebagai sumber agar-agar dan digunakan secara komersial, seperti yang terlihat pada Gambar 1.

Gambar 1. Spesies ganggang merah penghasil agar-agar (Sand dan Glicksman, 1973)

Salah satu jenis rumput laut yang sangat potensial sebagai penghasil agar-agar adalah Gracilaria verrucosa. G. verrucosa mempunyai kerangka tubuh (thalli) berbentuk silinder dan bercabang. Pada batas percabangan umumnya bentuk "thalli" agak mengecil. Substansi "thalli" menye-
rupai gel atau lunak seperti tulang rawan (Kadi dan Atmadja, 1988).

Dalam ganggang merah terdapat α- dan β-karoten dengan penghubung santofil, lutein dan zeasantin (Goodwin, 1974). Dari hasil penelitian Brown dan McLachlan (1982) jenis karoten yang terdapat dalam Gracilaria yaitu β-karoten, anterasantin, violasantin, kryptopsantin dan zeasantin dengan jumlah total 0.021-0.030 persen berat kering.

Gambar 3. Struktur kimia klorofil (Eskin et al., 1971)

Komposisi *Gracilaria* dari Indonesia yang sudah dite- liti disajikan pada Tabel 1.

Tabel 1. Komposisi Gracilaria

<table>
<thead>
<tr>
<th>Jenis Komponen</th>
<th>Gracilaria (%)</th>
<th>Jumlah</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kadar air</td>
<td>19.01</td>
<td>14.55 - 24.09</td>
</tr>
<tr>
<td>Protein</td>
<td>4.17<sup>c</sup></td>
<td>3.05 - 4.05</td>
</tr>
<tr>
<td>Karbohidrat</td>
<td>42.59</td>
<td>-</td>
</tr>
<tr>
<td>Lemak</td>
<td>9.54</td>
<td>0.11 - 0.37</td>
</tr>
<tr>
<td>Serat kasar</td>
<td>10.51</td>
<td>-</td>
</tr>
<tr>
<td>Abu</td>
<td>14.81</td>
<td>7.64 - 13.75</td>
</tr>
<tr>
<td>Agar-agar</td>
<td>-</td>
<td>74.36 - 97.55</td>
</tr>
</tbody>
</table>

^a Soegiarto (1968)
^b Susanto et al. (1978)
^c 6.25 x N total

B. AGAR - AGAR

1. Struktur agar-agar

Agar-agar merupakan suatu heteropolisakarida linier yang mempunyai berat molekul 120 000 dan tersusun dari dua fraksi utama yaitu agarosa dan agaropektin. Kandungan agarosa pada agar-agar yaitu berkisar antara 50-90 persen dan perbandingan komposisi agarosa dan agaropektin tergantung kepada spesies ganggang merah (Glicksman, 1983; Rees, 1969).
Gambar 4. Ikatan β-1,3 dan α-1,4 pada unit monomer agarosa (Chapman dan Chapman, 1980)

Agarosa adalah komponen agar-agar yang responsif terhadap pembentukan gel. Agarosa merupakan suatu polisakarida netral yang disusun oleh unit dasar berulang D-galaktosa dengan ikatan β-1,3 dan 3,6-anhidro-L-galaktosa dengan ikatan α-1,4. (Gambar 4). Agrosa juga mengandung metil-D-galaktosa dalam bentuk 6-O-metil-D-galaktosa dengan jumlah 1-20 persen atau 4-O-metil-L-galaktosa, tergantung pada jenis ganggang merah (Glicksman, 1983).

neoagarotetraosa 50 persen dan neoagaroheksaosa 42 persen.

Gambar 5. Agarobiosa dan neoagarobiosa
(Mackie dan Preston, 1974)

Agaropektin mempunyai kesamaan dengan agarosa, tetapi beberapa 3,6-anhidro-L-galaktosa diganti dengan L-galaktosa-6-sulfat dan beberapa D-galaktosa diganti dengan asam piruvat asetal sebagai 4,6-O-(1-karboksi-
Gambar 6. Struktur agar-agar: (a) agarosa, (1→3) D-galaktosa dan (1→4) anhidro-L-galaktosa; (b) "methylated agarose", (1→3) 6-O-metil-D-galaktosa dan (1→4) anhidro-L-galaktosa; "pyruvated agarose", (1→3) 4,6-O-(1-karboksistemidene)-D-galaktosa dan (1→4) anhidro-L-galaktosa; "sulfated galaktan", (1→3) D-galaktosa dan (1→4) L-galaktosa-6-sulfat (Luxton, 1977 di dalam Chapman dan Chapman, 1980).

Pemisahan agarosa dari agaropektin sudah banyak dilakukan, dengan pertimbangan bahwa agarosa adalah komponen yang penting dalam pembentukan gel. Metoda pemisahan yang sudah digunakan yaitu asetilasi dalam kloroform, pengendapan agaropektin oleh garam amonium, pengendapan agarosa oleh polietilen glikol dan fraksinasi dengan kromatografi. Pengendapan agaropektin dengan garam amonium digunakan secara komersil
untuk memproduksi agarosa (Glicksman, 1983; Meer, 1980; Rees, 1989).

2. Sifat dan pembentukan gel agar-agar

Gel agar-agar dapat dibentuk oleh larutan yang sangat encer, mengandung 1 persen fraksi agar-agar. Agar-agar bahkan dapat membentuk gel pada konsentrasi 0.04 persen. Suatu larutan yang mengandung 1.5 persen fraksi agar-agar dapat membentuk gel pada suhu 32°C-39°C dan tidak meleleh dibawah suhu 85°C (Glicksman, 1983).

Mekanisme pembentukan agar-agar sampai saat ini belum diketahui dengan pasti, tetapi diduga sama dengan pembentukan gel karagenan. Ada tiga tahap pembentukan gel karagenan maupun agar-agar, yang dikemukakan oleh Glicksman, 1982 dan Glicksman, 1983), yaitu:

(1) Pada saat larutan atau sol agar-agar berada di atas titik leleh, struktur polimernya membentuk suatu gulungan acak (random coil).
(2) Pada pendinginan, gulungan acak akan membentuk pilinan ganda (double helix). Pada keadaan ini atom-atom hidrogen pada tiga kutub dari 3,8-anhidro-L-galaktosa mendesak molekul untuk membentuk pilinan. Interaksi dari pilinan-pilinan ini menyebabkan terbentuknya gel. (3) Pada pendinginan
selanjutnya, pilinan ganda akan bersregiasi membentuk struktur tiga dimensi sehingga gel menjadi lebih keras.

Gambar 7. Mekanisme pembentukan gel
(a) struktur "random coil"
(b) struktur "double helix"
(c) struktur tiga dimensi
(Rees, 1969 di dalam Glicksman, 1983)

Ada beberapa hal yang mempengaruhi sifat gel agar-agar, yaitu suhu, konsentrasi, pH, gula dan ester sulfat. Gel agar-agar bersifat reversibel terhadap suhu, dimana pada suhu di atas titik leleh fasa gel akan berubah menjadi fasa sol dan sebaliknya. Tetapi fasa transisi dari gel ke sol atau dari sol ke gel
tidak berada pada suhu yang sama. Suhu pembentukan gel (gelling point) berada jauh di bawah suhu saat gel meleleh (melting point). Perbedaan yang jauh antara suhu leleh dan suhu pembentukan gel disebut dengan gejala histeresis (Rees, 1989; Glicksman, 1983).

Menurut Meer (1980), suhu leleh agar-agar dan agaroid pada konsentrasi 1.5 persen berkisar antara 60-97°C dan suhu pembentukan gel di atas 20°C. Variasi kedua suhu tersebut tergantung pada spesies rumput laut dan kondisi proses pengolahan rumput laut menjadi agar-agar. Konsentrasi agar-agar berpengaruh terhadap kekuatan, fleksibilitas dan kekerasan gel. Peningkatan konsentrasi akan meningkatkan kekuatan dan kekerasan gel serta menurunkan fleksibilitas. Menurut Whyte et al. (1984) peningkatan konsentrasi agar-agar dari 0.25 persen menjadi 2.0 persen akan meningkatkan kekuatan gel 4.8 g menjadi 968 g, meningkatkan kekerasan 1.0 g/mm² menjadi 298 g/mm² dan menurunkan fleksibilitas 7 708 mm/g menjadi 30 mm/g.

Gula, pH dan ester sulfat akan mempengaruhi kekuatan gel agar-agar. Penurunan pH akan menyebabkan kekuatan gel berkurang. Peningkatan jumlah gula akan menyebabkan gel lebih keras tetapi kohesivitas teksturnya lebih rendah (Glicksman, 1983).

Menurut Chapman dan Chapman (1980), semakin tinggi kandungan ester sulfat dalam agar-agar semakin
berkurang kekuatan gelnya. Penggantian 3,6-anhidro-L-galaktosa dengan L-galaktosa-6-sulfat menyebabkan rantai polimer membentuk suatu tekukan (Gambar 7). Rantai polimer yang tidak lurus tersebut akan mengham-bat terbentuknya pilinan ganda, sehingga akan menurun-kan kekuatan gel.

Agar-agar yang berasal dari rumput laut Gracilaria mempunyai kekuatan gel yang lebih rendah dari Gelidium. Kim dan Henriques (1979) di dalam Chapman dan Chapman (1980) memperoleh kekuatan gel agar-agar dari Gracilaria verrucosa 111-520 g/cm² dan dari Gelidium 692 g/cm².

Gambar 8. Perubahan rantai polimer galaktan akibat penggantian 3,6-anhidro-L-galaktosa dengan L-galaktosa-6-sulfat (Rees, 1989)
3. Viskositas

4. Kelarutan

Agar-agar dengan kemurnian tinggi tidak larut dalam air pada suhu 25°C, tetapi akan mengembang dengan baik. Agar-agar sedikit larut dalam etanolamin dan larut pada formamida. Agar-agar dari *Gracilaria* sp. yang diberi perlakuan dengan 5-10 volume etanol, kemudian dikeringkan sampai tidak begitu kering akan larut dalam air pada suhu 25°C dan membentuk gel tanpa membutuhkan pemanasan. Agar-agar kering akan larut dalam air maupun pelarut lain pada suhu 97-100°C (Selby dan Wynne, 1973).

5. Kompatibilitas

Kompatibilitas dalam hal ini berarti kemampuan untuk membentuk flok dan tidak terdegradasi jika dicampur dengan bahan lain. Agar-agar yang mendekati
netral mempunyai sifat kompatibilitas dengan sebagian besar gum lain dan protein (Selby dan Wynne, 1973).

Selanjutnya Selby dan Wynne (1973) mengemukakan bahwa pada pH 3, agar-agar panas akan membentuk flok dengan gelatin. Natrium alginat dan pati dapat menurunkan kekuatan gel agar-agar, sedangkan dekstrin dan sukrosa berpengaruh sebaliknya. "Locust bean gum" mempunyai efek sinergis terhadap kekuatan gel agar-agar. Pencampuran 0.15 persen "locust bean gum" dengan agar-agar akan meningkatkan tegangan putus gel agar-agar 50-200 persen.

Gelatin, "Russian isinglass" dan gum karaya sedikit menurunkan kekuatan gel agar-agar. Gliserol, sorbitol, alkanolamin, 1,2,6 heksanetriol dan sejumlah besar garam-garam juga sedikit mempengaruhi kekuatan gel (Meer, 1980; Selby dan Wynne, 1973).

6. Sifat mekanik listrik

Agar-agar secara kuantitatif diflokulasi dengan adanya elektrolit oleh 10 volume etanol, 2-propanol dan aseton. Agar-agar juga di "salting out" mendekati jenuh oleh natrium sulfat, magnesium sulfat dan amonium sulfat. Flokulasi agar-agar oleh elektrolit yang belum dikeringkan berada dalam tingkat metastabil, sehingga dapat terdispersi dalam air dingin atau pelerut lain. Pada temperatur flokulasi dan konsentrasi
elektrolit yang lebih tinggi kelarutan gumpalan akan berkurang (Meer, 1980).

Beberapa senyawa ammonia dapat menyebabkan keke-
ruhan dan pengendapan agaropektin. Pada pH 1.5-2.5,
agar-agar akan diendapkan oleh asam tanat dan asam mo-
libdat (Selby dan Wynne, 1973).

C. PEMBUATAN AGAR-AGAR

Secara garis besar pembuatan agar-agar dibedakan
menjadi empat metode, yaitu metoda pembekuan, metode
penekanan, metode pengeringan langsung dan metode osmosis
listrik. Proses untuk keempat metode tersebut pada da-
sarnya meliputi kegiatan perlakuan pendahuluan, ekstrak-
si, pengambilan ekstrak dan pengerengan. Perbedaan keem-
pat metode di atas terletak pada proses pengambilan eks-
trak dan jenis bahan baku yang digunakan (Lampiran 1)

1. Perlakuan pendahuluan

a. Pembersihan rumput laut

Rumput laut yang baru dipanen dibersihkan dari
kotoran-kotoran yang menempel, seperti pasir, ka-
rang-garam, kulit kerang dan lain-lain. Pencucian
sebaiknya dilakukan dengan air laut, agar kandungan
agar-agarnya tidak rusak. Sesudah dicuci, rumput
laut langsung dijenur. Rumput laut tidak diperbo-
lehkan ditumpuk dalam kondisi basah, sebab akan
busuk. Pengeringan rumput laut dilakukan sampai kadar air 25-28 persen (Sri Istini et al., 1986; Trubus, 1989).

b. Perlakuan dengan alkali

Nelson et al. (1983) menggunakan beberapa tingkat konsentrasi NaOH dan lama perlakuan dengan alkali terhadap jenis rumput laut yang berbeda (Tabel 2). Suhu perlakuan yaitu 90°C.
Tabel 2. Tingkat konsentrasi NaOH, waktu perlakuan dan kekuatan gel yang dihasilkan dari beberapa spesies Gracilaria

<table>
<thead>
<tr>
<th>Spesies</th>
<th>NaOH (%</th>
<th>Waktu (menit)</th>
<th>Kekuatan Gel (g/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. arctica</td>
<td>5</td>
<td>60</td>
<td>< 100</td>
</tr>
<tr>
<td>G. edulis</td>
<td>1</td>
<td>30</td>
<td>78 – 100</td>
</tr>
<tr>
<td>G. lichenoides</td>
<td>5</td>
<td>90</td>
<td>240 – 340</td>
</tr>
<tr>
<td>G. salicornis</td>
<td>5</td>
<td>60</td>
<td>88 – 100</td>
</tr>
<tr>
<td>G. budgettii</td>
<td>3</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>G. coracopitida</td>
<td>3</td>
<td>60</td>
<td>110 – 195</td>
</tr>
<tr>
<td>G. verrucosa</td>
<td>3</td>
<td>60</td>
<td>145 – 170</td>
</tr>
</tbody>
</table>

Nelson et al. (1983)

Durairatman et al. (1981) menggunakan NaOH 2 persen pada proses perlakuan alkali terhadap Gracilaria sjoestedtii Kylin pada suhu 80 °C selama 3 jam. Pillay (1977) Di dalam Chapman dan Chapman (1960) menggunakan KOH 0.1 persen terhadap Gracilaria verrucosa dan Gelidiella sp. Proses perlakuan alkali dilakukan dengan mendidihkan rumput laut dalam larutan KOH. Kekuatan gel yang diperoleh yaitu 125 g/cm² untuk G. verrucosa pada konsentrasi 1.6 persen dan 300 g/cm² untuk Gelidiella sp.

Perlakuan dengan alkali tidak selalu diikuti dengan peningkatan kekuatan gel. Hasil penelitian Whyte dan Englar (1980) terhadap Gracilaria verrucosa, perlakuan alkali menurunkan kekuatan gel
agar-agar dari 138 g/cm² (tanpa perlakuan alkali) menjadi 110 g/cm².

2. Ekstraksi

Ekstraksi agar-agar dilakukan dengan menggunakan air panas, dimana hal ini didasarkan kepada sifat gel dan kelarutannya. Agar-agar mempunyai gugus hidrofilik ester sulfat yang rendah dan gugus hidrofobik 3,6-anhidro-L-galaktosa yang tinggi, sehingga agar-agar tidak larut dalam air dingin (Towle, 1973).

Ekstraksi agar-agar dapat dilakukan dalam suasana asam, basa dan netral, tergantung pada jenis rumput laut yang digunakan. Kim dan Henriques (1979) di dalam Chapman dan Chapman (1980) mengekstrak Gracilaria verrucosa dalam suasana netral. Penetralan dilakukan dengan merendam rumput laut dalam 0,3 persen NH₄SO₄, kemudian ekstraksi dilakukan pada suhu 100°C selama 90 menit.

Beberapa perusahaan agar-agar di Inggris menggunakan asam hidroklorat untuk ekstraksi. Di Australia, ekstraksi Gracilaria dilakukan dalam larutan natrium
fosfat pada pH di bawah 5 dan lama ekstraksi 2-4 jam (Chapman dan Chapman, 1980).

Menurut Chapman (1970) ekstraksi agar-agar dapat dilakukan dalam H₂SO₄ 3 persen (pH 6.3-7) dengan perbandingan bahan dan air 1 : 15 dan lama ekstraksi 90 menit. Sri Istini et al. (1986) merendam *Gracilaria* sp. dalam H₂SO₄ 10 persen.

Menurut Gandaatnadja (1984) ekstraksi agar-agar dari *Gelidium* yang memberikan hasil terbaik yaitu dengan CH₃COOH 0.05-0.1 persen selama 30-40 menit dan jumlah air pengekstrak 25 kali bobot bahan. Ekstraksi agar-agar dapat juga dilakukan dalam air tanpa penambahan bahan kimia. Sand dan Glicksman (1973) mengekstrak agar-agar dari *Gracilaria* dengan air mendidih dan jumlah air yang digunakan 20 kali bobot bahan.
4. Pengambilan ekstrak

Pengambilan ekstrak agar-agar banyak dilakukan dengan metode pembekuan. Metode ini didasarkan kepada sifat sineresis agar-agar, yaitu sifat kecenderungan untuk membebaskan pelarutnya. Sifat ini menyebabkan agar-agar tidak stabil dalam siklus pembekuan (Guiseley et al., 1980; Glicksman, 1983).

Ekstrak agar-agar yang diperoleh dari proses ekstraksi disaring dan dibiarkan membentuk pada suhu kamar. Gel yang terbentuk kemudian dibekukan pada suhu -10°C. Menurut Gandaatmadja (1984) pembekuan dilakukan pada suhu -7°C selama 18 jam dan Sri Istini et al. (1986) pada suhu -20°C.

Blok-blok gel beku selanjutnya dilelehkan sehingga kristal es mencair. Agar-agar tidak larut dalam air dingin, sehingga pemisahan dapat dilakukan dengan mudah.

5. Pemucatan

Selanjutnya Chapman dan Chapman (1980) mengemukakan bahwa pemucatan dapat juga dilakukan dengan penambahan Natrium peroksida (Na₂O₂) atau natrium
hipoklorit (NaOCl) 1 persen. Gandaatmadja (1964) melakukan pемucatan dengan hidrogen peroksida (H₂O₂) 3 persen. Pемucatan dilakukan dengan merendam bahan baku dalam larutan pemucat selama 18 jam dan dilakukan sebelum proses ekstraksi.

D. KEGUNAAN AGAR-AGAR

Agar-agar mempunyai banyak kegunaan seperti pada industri makanan, media kultur mikroba, industri farmasi, penggunaan di laboratorium dan lain-lain. Penggunaan agar-agar tersebut didasarkan pada sifat agar-agar, dian-
taranya kemampuan membentuk gel pada konsentrasi rendah, mempunyai nilai histeresis yang tinggi, tahan terhadap degradasi mikroba dan reaktivitas yang rendah terhadap bahan lain.

Pada industri makanan, agar-agar digunakan karena kemampuannya membentuk gel dan mempunyai stabilitas yang tinggi. Produk makanan yang menggunakan agar-agar yaitu kembang gula, daging kaleng, biskuit dan lain-lain. Agar-agar digunakan sebagai pelapis permukaan produk pada daging kaleng dan biskuit. Tujuan pelapisan tersebut adalah untuk mencegah kerusakan pada saat sterilisasi yang dilakukan pada suhu 240°F selama 1.5 jam. Jika gelatin yang digunakan, maka akan terurai pada suhu dan tekanan tinggi serta tidak akan membentuk gel pada saat pendinginan. Agar-agar akan membentuk gel pada suhu 30-
32°C dan tidak meleleh di bawah suhu 95°C serta tidak terurai karena panas (Okazaki, 1971; Meer, 1980).

Agar-agar juga banyak digunakan untuk keperluan media pertumbuhan mikroba. Sifat agar-agar yang penting untuk penggunaan ini adalah nilai histeresis yang tinggi, mempunyai gel yang kenyal dan kuat, tidak terurai akibat metabolisme mikroba dan mempunyai kestabilan serta kejernihan yang tinggi. Pada penggunaan sebagai kultur cair, agar-agar mampu menghambat masuknya oksigen sehingga cocok untuk pertumbuhan mikroba anaerobik (Meer, 1980).

Dalam bidang kedokteran gigi, agar-agar sering digunakan sebagai bahan pembuat cetakan gigi. Kegunaan agar-agar pada bidang ini di dasarkan kepada sifat elastisitas, histeresis dan kekuatan gelnya. Nilai histeresis penting untuk pemanasan pada saat pembuatan dan pencetakan pada suhu 40-50°C, dimana temperatur yang masih
ditoleransi oleh daging mulut. Selain sebagai cetakan gigi agar-agar juga digunakan untuk pembuatan peralatan lain yang mempunyai bentuk rumit (Okazaki, 1971; Meer, 1980).

Penggunaan agar-agar pada laboratorium yang penting adalah untuk elektroforesis, kromatografi dan mikrotomi jaringan tanaman. Pada elektroforesis agar-agar digunakan sebagai media perpindahan dan sebagai pelarut. Perpindahan elektroforesis protein melalui agar-agar digunakan untuk melarutkan kembali feritin, ovalbumin, haemoglobin dan pepsin. Agar-agar juga digunakan untuk menggabungkan ikatan epiklohidrin karboksimetil dan dimetilaminoetil pada elektroforesis dan kromatografi protein (Meer, 1980).

E. STANDAR MUTU AGAR-AGAR

Agar-agar yang diperdagangkan terdapat dalam berbagai bentuk, seperti dalam bentuk granula, bubuk, batang
kuning pucat dan tidak berbau. Di Indonesia standar mutu agar-agar sudah dicantumkan dalam Standar Industri Indonesia (SII) (Tabel 3). Spesifikasi fisik agar-agar juga dideskripsikan dalam "Food Chemical Codex" (1981) yang meliputi kandungan arsen, kadar abu tidak larut asam, kadar abu total, gelatin, logam berat, bahan asing tidak larut, timah, susut pengeringan, pati dan penyerapan air. Persyaratan spesifikasi tersebut dapat dilihat pada Tabel 3.

<table>
<thead>
<tr>
<th>Spesifikasi</th>
<th>SII</th>
<th>Persyaratan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kadar air maks. (%)</td>
<td>15 - 21</td>
<td></td>
</tr>
<tr>
<td>Kadar abu maks. (%)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Abu tak larut asam mks. (%)</td>
<td>-</td>
<td>6.5</td>
</tr>
<tr>
<td>Gelatin</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>Pati</td>
<td>-</td>
<td>negatif</td>
</tr>
<tr>
<td>Karbohidrat sebagai galaktosa (%)</td>
<td>30</td>
<td>negatif</td>
</tr>
<tr>
<td>Logam berat maks. (ppm) negatif</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Arsen maks. (ppm) negatif</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Bahan asing tidak larut mks. (%)</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Timah maks. (ppm)</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Susut pengeringan</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Penyerapan air</td>
<td>-</td>
<td>negatif</td>
</tr>
<tr>
<td>Zat warna tambahan</td>
<td>yang diizinkan untuk makanan dan minuman</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\text{Anonim (1978)}\)
\(^b\text{Anonim (1981)}\)
Tabel 4. Standar mutu salah satu jenis agar-agar ekspor Jepang^a

<table>
<thead>
<tr>
<th>Spesifikasi</th>
<th>Superior</th>
<th>no.1</th>
<th>no.2</th>
<th>no.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warna</td>
<td>putih</td>
<td>putih ke-kuningan</td>
<td>putih ke-kuningan</td>
<td>kuning coklat</td>
</tr>
<tr>
<td>Keseragaman mutu dan ukuran</td>
<td>seragam</td>
<td>seragam</td>
<td>kurang seragam</td>
<td>tidak seragam</td>
</tr>
<tr>
<td>Kekuatan gel (g/cm<sup>2</sup>)</td>
<td>> 600</td>
<td>> 350</td>
<td>> 250</td>
<td>> 150</td>
</tr>
<tr>
<td>Kadar air (%)</td>
<td>< 22</td>
<td>< 22</td>
<td>< 22</td>
<td>< 22</td>
</tr>
<tr>
<td>Protein (%)</td>
<td>< 0.5</td>
<td>< 1.5</td>
<td>< 2.0</td>
<td>< 3.0</td>
</tr>
<tr>
<td>Abu (%)</td>
<td>< 4.0</td>
<td>< 4.0</td>
<td>< 4.0</td>
<td>< 4.0</td>
</tr>
<tr>
<td>Bahan tidak meleleh pada air mendidih</td>
<td>< 0.5</td>
<td>< 2.0</td>
<td>< 3.0</td>
<td>< 4.0</td>
</tr>
</tbody>
</table>

^aOkazaki (1971)
III. METODE PENELITIAN

A. BAHAN DAN ALAT

1. Bahan

Pada penelitian ini digunakan bahan baku rumput laut jenis *Gracilaria verrucosa* yang dibeli dari PT Bantimurung Indah, yaitu perusahaan pembudidayaan kolektor, pengolah dan ekspor rumput laut di Sulawesi Selatan.

Bahan-bahan kimia yang digunakan untuk analisa bahan baku, untuk proses ekstraksi dan untuk analisa agar-agar disajikan pada Lampiran 15.

2. Alat

Alat yang digunakan untuk analisa kandungan kimia bahan baku adalah cawan porcellin, oven, “soxhlet”, tanur, alat destruksi dan destilasi protein serta alat-alat gelas seperti Erlenmeyer, gelas piala, labu takar, gelas ukur, pipet dan buret.

B. METODE

1. Penelitian Pendahuluan

Penelitian pendahuluan bertujuan untuk menentukan komposisi kimia bahan baku dan menentukan kondisi pemucatan terbaik. Analisa komposisi kimia (analisa proksimat) meliputi analisa kadar air, kadar abu, kadar protein, kadar serat kasar, kadar karbohidrat. Prosedur analisa proksimat terdapat pada lampiran.

Jenis bahan pemucat yang digunakan yaitu kalsium hipoklorit (CaOCl₂) 1%. Pemucatan dilakukan dengan cara sebagai berikut.
(1). Bahan baku kering sebanyak 30 g direndam dalam 600 ml CaOCl₂ 1% selama 1 jam, 2 jam dan 4 jam.
(2). Bahan baku kering sebanyak 30 g direndam dalam 600 ml air selama 30 menit, kemudian direndam dalam 600 ml CaOCl₂ 1% selama 1 jam, 2 jam dan 4 jam.

Pengamatan dilakukan secara visual terhadap rumput laut dan kondisi yang menghasilkan rumput laut yang paling pucat digunakan pada proses selanjutnya.

2. Penelitian utama

Pada penelitian utama dipelajari pengaruh konsentrasi NaOH dan waktu perlakuan alkali terhadap rendemen dan mutu agar-agar. Metode ekstraksi yang

Sebanyak 100 gr bahan baku kering yang sudah dipucatkan dimasukkan ke dalam gelas piala yang berisi 2 000 ml larutan alkali yang bersuhu 90°C. Larutan alkali yang digunakan yaitu NaOH 1.5, 2.5 dan 3.5 persen dan lama pemanasan 1, 2 dan 3 jam.

Rumput laut setelah proses perlakuan alkali dicuci sampai air cucianya tidak berwarna, kemudian dihancurkan selama 30 detik dengan menggunakan blender hingga membentuk pasta. Ke dalam pasta rumput laut tersebut kemudian ditambahkan 1 500 ml akuades, untuk selanjutnya diekstraksi.

Sebelum proses ekstraksi, pH larutan diturunkan menjadi 6, yang dibuat dengan menambahkan asam asetat (CH₃COOH). Ekstraksi dilakukan pada suhu 98 - 100°C selama 2.5 jam. Untuk mencegah timbulnya kerak di dasar wadah pengekstrak digunakan pengaduk berputar (agitator) dengan kecepatan 120 rpm. Sepuluh menit sebelum ekstraksi selesai ditambahkan diatomae sebanyak 125 gram dan diaduk merata. Pasta rumput laut di "press" pada tekanan 80 Bar, kemudian ke dalam filtrat ditambahkan 12.5 g KCl, dan diaduk selama 10 menit. Filtrat diiarkan membentuk gel selama 18-24 jam. Gel yang terbentuk dibekukan dalam "freezer" yang bersuhu
yang bersuhu -10 - 0\(^\circ\)C selama 40 - 48 jam.

Pelelehan dilakukan di atas kain saring pada suhu 5-10\(^\circ\)C. Agar-agar yang dipisahkan dikeringkan dalam oven dengan suhu 55-60\(^\circ\)C hingga bobotnya tetap, selanjutnya di giling dengan menggunakan blender sampai menjadi tepung. Pengamatan yang dilakukan pada tahap ini meliputi rendemen, kadar abu, kadar galaktosa, kekuatan gel, kekerasan gel, kohesivitas gel, titik pembentukan gel (gelling point), titik leleh (melting point), logam berbahaya dan warna.

C. RANCANGAN PERCOBAAN

Rancangan percobaan yang digunakan adalah rancangan acak lengkap dengan percobaan faktorial 3 x 3 dan dua kali ulangan. Model umum rancangan tersebut adalah (Sudjana, 1985):

\[
Y_{ijk} = \mu + C_i + T_j + CT_{ij} + \epsilon_{k(ij)}
\]

\[Y_{ijk} = \text{respon pengamatan pengaruh taraf ke-}i \text{ faktor C,}
\]

\[\text{taraf ke-}j \text{ faktor T pada percobaan ke-}k.\]

\[\mu = \text{pengaruh rata-rata yang sebenarnya}\]
\[C_i = \text{pengaruh perlakuan dari taraf ke-}i\text{ faktor } C \]
(konsentrasi NaOH : C1, C2 dan C3)

\[T_j = \text{pengaruh perlakuan dari taraf ke-}j\text{ faktor } T \]
(waktu perlakuan alkali : T1, T2 dan T3).

\[CT_{ij} = \text{pengaruh interaksi antara taraf ke-}i\text{ faktor } C \]
dan taraf ke-}j\text{ faktor } T. \]

\[Ek(ij) = \text{pengaruh dari unit percobaan ke-}k\text{ dalam } ij \]

Asumsi model yang digunakan adalah: berharga tetap,

\[\sum_{i=1}^{3} A_i = \sum_{j=1}^{3} B_j = \sum_{i=1}^{3} AB_{ij} = \sum_{j=1}^{3} AB_{ij} = 0 \]

\[\text{dan } \epsilon_{kij} \sim \text{DNI}(0, \sigma^2) \]

Hipotesa yang harus diuji adalah:

\[H_1 : A_i = 0 ; \ (i = 1, 2, 3) \]

\[H_2 : B_j = 0 ; \ (j = 1, 2, 3) \]

\[H_3 : AB_{ij} = 0 ; \ (i = 1, 2, 3 \text{ dan } j = 1, 2, 3) \]
Gracilaria verrucosa
100 gr
↓
Pencucian
↓
Pengeringan
(50 - 55°C; 12 jam)
↓
(2000 ml CaOCl₂ 1%)
Pencucatan waktu 2 jam
↓
NaOH 1.5, 2.5
(20°C; 1, 2 dan 3 jam)
↓
(1 500 ml akuades)
Penghancuran
(30 detik)
↓
Ekstraksi
(php : 6.0; 98-100°C; 2.5 jam)
↓
Diatomae
Filtrasi
(Filter press : 80 bar)
↓
12.5 gram KCl
Filtrat
↓
Pemcentuhan gel
(18-24 jam)
↓
Pembekuan
(-10°C - 0°C; 40-48 jam)
↓
Peleleh es
↓
Pengeringan
↓
Penepungan
↓
Tepung agar-agar

Gambar 9. Diagram alir ekstraksi agar-agar
IV. HASIL DAN PEMBAHASAN

A. PENELITIAN PENDAHULUAN

1. Analisa komposisi kimia bahan baku

<table>
<thead>
<tr>
<th>Jenis kandungan</th>
<th>Jumlah (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kadar abu</td>
<td>7.90</td>
</tr>
<tr>
<td>Kadar lemak</td>
<td>2.53</td>
</tr>
<tr>
<td>Kadar serat kasar</td>
<td>9.19</td>
</tr>
<tr>
<td>Kadar protein (6.25N)</td>
<td>9.94</td>
</tr>
<tr>
<td>Kadar karbohidrat</td>
<td>70.44</td>
</tr>
</tbody>
</table>

Hasil analisa komposisi kimia bahan baku berbeda dengan hasil analisa komposisi kimia Gracilaria sp. yang dilakukan oleh Soegiarto (1968) serta Susanto (1978) yang disajikan pada Tabel 1. Perbedaan
tersebut kemungkinan disebabkan karena perbedaan asal bahan baku, umur panen dan tingkat pertumbuhan.

Kadar abu yang diperoleh berasal dari garam-garam air laut yang berdifusi ke dalam jaringan rumput laut. Kadar garam suatu perairan tergantung pada besarnya penguapan, pergerakan air laut dan aliran air tawar ke perairan tersebut.

Pada *Gracilaria verrucosa*, karbohidrat sebagian besar terdiri dari agar-agar dan serat kasar yang merupakan selulosa. Dari Tabel 5 diperoleh kadar karbohidrat jauh lebih besar dari kadar serat kasar. Menurut Towle (1973) rumput laut merupakan tanaman primitif yang sedikit mengandung selulosa sebagai jaringan pendukung.
2. Pemilihan cara pemucatan

Hasil pemucatan pada penelitian ini disajikan pada Tabel 4.

Tabel 4. Hasil pemucatan *Gracilaria verrucosa* dengan bahan pemucat CaOCl₂ dan berbagai kondisi pemucatan

<table>
<thead>
<tr>
<th>Bahan baku</th>
<th>Waktu (jam)</th>
<th>Warna rumput laut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rumput laut kering</td>
<td>1</td>
<td>kuning kehijauan</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>kuning</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>kuning</td>
</tr>
<tr>
<td>Rumput laut basah</td>
<td>1</td>
<td>kuning kehijauan</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>kuning muda</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>kuning muda</td>
</tr>
</tbody>
</table>

Pemucatan dengan CaOCl₂ pada dasarnya mendegradasi klorofil dan karoten secara oksidasi. Menurut Eskin et al. (1971) oksigen dapat mendegradasi klorofil menjadi senyawa tidak berwarna yang disebut klorin dan purpurin. Proses degradasi klorofil oleh oksigen diawali dengan proses feofitinisasi atau pembentukan klorofilid. Proses feofitinisasi hanya terjadi pada klorofil ekstrak dan tidak terjadi pada jaringan tanaman. Pembentukan klorofilid terjadi karena bantuan enzim klorofilase, dengan reaksi sebagai berikut:

\[
\text{Klorofil} + \text{H}_2\text{O} \xrightarrow{\text{klorofilase}} \text{klorofilid} + \text{fitol}
\]
Klorofilid dengan adanya asam lemah akan melepaskan ion Mg dari pusat klorofilid dan membentuk feoforbid. Feoforbid selanjutnya berubah menjadi klorin dan purpurin dengan bantuan oksigen.

Hasil penelitian pada Tabel 4 menunjukkan bahwa pemucatan terbaik diperoleh pada kondisi waktu 2 jam dan dilakukan terhadap rumput laut basah. Peningkatan waktu lebih dari dua jam tidak mempengaruhi warna rumput laut. Hal ini kemungkinan disebabkan reaksi oksidasi sudah berlangsung sempurna selama dua jam dengan bahan pengoksidasi yang ada.

Pemucatan rumput laut basah memberikan hasil yang lebih baik. Dari keterangan Eskin et al. (1971), pada rumput laut basah digunakan sudah terbentuk klorofilid, sehingga pada saat perendaman dalam CaOCl₂ klorofilid segera teroksidasi membentuk klorin dan purpurin.
B. PENELITIAN UTAMA

1. Rendemen

Hasil analisa sidik ragam menunjukkan bahwa konsentrasi NaOH dan waktu perlakuan alkali berpengaruh nyata terhadap rendemen. Peningkatan konsentrasi NaOH dan waktu perlakuan mengakibatkan rendemen semakin berkurang. Rendemen tertinggi (17.32 persen) diperoleh pada perlakuan konsentrasi NaOH 1.5 jam dan waktu perlakuan alkali 1 jam. Rendemen terendah (13.09 persen) diperoleh pada perlakuan konsentrasi NaOH 3.5 persen dan waktu perlakuan 3 jam.

Dari hasil uji BNT rendemen yang diperoleh pada konsentrasi NaOH 1.5 persen tidak berbeda nyata dengan konsentrasi NaOH 2.5 persen dan konsentrasi NaOH 2.5 persen tidak berbeda nyata dengan konsentrasi NaOH 3.5 persen. Tetapi konsentrasi NaOH 1.5 persen berbeda nyata dengan konsentrasi NaOH 3.5 persen.

Penurunan rendemen tersebut diduga karena sebagian agar-agar terekstrak dan terdepolimerisasi.
Gambar 10. Histogram pengaruh konsentrasi NaOH dan waktu perlakuan alkali terhadap rendemen

Pada penelitian ini penurunan rendemen hingga perlakuan konsentrasi NaOH 3.5 persen dan waktu 3 jam kemungkinan disebabkan sebagian agar-agar terekstrak pada perlakuan alkali. Hal ini dapat dihubungkan dengan semakin meningkatnya sifat gel agar-agar dengan meningkatnya konsentrasi NaOH dan waktu perlakuan alkali. Penurunan rendemen akibat depolimerisasi akan diikuti dengan penurunan sifat gel agar-agar (Whyte dan Englar, 1980).

2. Kadar abu

Kadar abu yang terkandung pada suatu produk menunjukkan tingkat kemurnian produk tersebut. Tingkat kemurnian sangat dipengaruhi oleh komposisi dan kandungan mineralnya.

Dari hasil analisa sidik ragam, konsentrasi NaOH dan waktu perlakuan alkali tidak berpengaruh terhadap kadar abu agar-agar. Kadar abu agar-agar yang dipero-leh berkisar antara 5.29 - 11.75 persen dan rata 7.74 persen. Nilai ini lebih tinggi yang disyaratkan oleh SII, tetapi sebagian termasuk ke dalam standar FCC.
Kadar abu dalam agar-agar berasal dari garam-garam yang melekat pada rumput laut dan tidak tercuci pada saat pembersihan. Kadar abu pada penelitian ini diduga, juga berasal dari KCl yang ditambahkan untuk proses netralisasi dan Na₂SO₄ yang dihasilkan dari proses perlakuan alkali.

Pada saat pencairan es, tidak semua air dapat keluar dari ekstrak agar-agar, sehingga pada saat pengeringan KCl dan Na₂SO₄ yang larut tertinggal dalam agar-agar. Jumlah air yang terbawa oleh ekstrak agar-agar tergantung pada keadaan gel sebelum pembekuan dan kesempurnaan proses pembekuan. Gel yang tidak kuat dan proses pembekuan yang tidak sempurna, menyebabkan jumlah air pada ekstrak agar-agar akan besar. Akibat variasi ini maka kadar abu yang diperoleh cukup beragam (Lampiran 16), apalagi pada saat pengambilan ekstrak tidak dilakukan pemerahan untuk mengeluarkan air.

3. Kadar galaktosa

Hasil analisa sidik ragam terhadap kadar galaktosa menunjukkan bahwa konsentrasi NaOH dan waktu perlakuan alkali tidak berpengaruh terhadap kadar galaktosa. Kadar galaktosa yang diperoleh berkisar antara 47.43-56.48 persen.
Pada penelitian ini pengukuran kadar galaktosa dilakukan dengan metoda Luff-Schoorl. Prinsip metoda Luff-Schoorl yaitu menghidrolisa rantai karbohidrat oleh asam.

Perlakuan alkali hanya berpengaruh terhadap perubahan bentuk galaktosa terutama dari L-galaktosa-6-sulfat menjadi 3,6-anhidro-galaktosa. Galaktosa dalam berbagai bentuk, berbagai ukuran rantai polimer dan yang sudah terhidrolisa menjadi monosakarida akan terdeteksi semua dengan metoda Luff-Schoorl. Hal ini dapat menjelaskan sebab tidak berpengaruhnya perlakuan alkali terhadap kadar galaktosa.

4. Kekuatan gel

Kekuatan gel (gel strength) pada analisa ini dinyatakan sebagai "breaking force". Kekuatan gel merupakan beban maksimum yang dibutuhkan untuk memecah matrik polimer pada daerah yang dibebani (Whyte dan Englar, 1980).

Dari hasil analisa sidik ragam, konsentrasi NaOH dan waktu perlakuan alkali berpengaruh nyata terhadap kekuatan gel. Kekuatan gel terendah (56.04 g/cm²) diperoleh pada perlakuan konsentrasi NaOH 1.5 persen dan waktu perlakuan 1 jam. Kekuatan gel tertinggi (491.73 g/cm²) diperoleh pada perlakuan konsentrasi NaOH 2.5 persen dan waktu perlakuan 3 jam.
Gambar 11. Histogram pengaruh konsentrasi NaOH dan waktu perlakuan alkali terhadap kekuatan gel
Kekuatan gel cenderung meningkat dengan meningkatnya konsentrasi NaOH, meningkatnya waktu perlakuan alkali dan meningkatnya konsentrasi NaOH yang diikuti dengan peningkatan waktu perlakuan alkali. Tetapi dari uji beda Tukey perlakuan konsentrasi NaOH 2.5 persen, waktu 3 jam; konsentrasi NaOH 3.5 persen, waktu 2 jam dan konsentrasi NaOH 3.5 persen, waktu 3 jam tidak berbeda nyata. Hasil penelitian ini menunjukkan bahwa pada perlakuan konsentrasi NaOH 2.5 persen dan waktu 3 jam atau konsentrasi NaOH 3.5 persen dan waktu 2 jam, reaksi NaOH dengan ester sulfat sudah berlangsung sempurna atau pembentukan 3,6 anhidro-L-galaktosa sudah mencapai titik jenuh. Pada saat ini terjadi perubahan rantai dari bertekuk menjadi lurus. Peningkatan konsentrasi NaOH yang diikuti dengan peningkatan waktu perlakuan waktu lebih lanjut tidak akan meningkatkan kekuatan gel.

5. Kekerasan gel

Kekerasan gel didefinisikan sebagai beban pada setiap unit jarak yang dibutuhkan untuk memecah permukaan gel (Whyte dan Englar, 1980).

Analisa sidik ragam hasil penelitian menunjukkan bahwa konsentrasi NaOH, waktu perlakuan alkali dan interaksi keduaanya berpengaruh nyata terhadap kekerasan gel. Peningkatan konsentrasi NaOH dan waktu
Gambar 12. Histogram pengaruh konsentrasi NaOH dan waktu perlakuan alkali terhadap kekerasan gel
perlakuan alkali cenderung untuk meningkatkan kekerasan gel. Tetapi pada kondisi tertentu, peningkatan konsentrasi NaOH dan waktu perlakuan tidak meningkatkan kekuatan gel secara nyata. Keadaan ini dapat dilihat dari uji beda Tukey, dimana perlakuan konsentrasi NaOH 3.5 persen, waktu 3 jam; konsentrasi NaOH 2.5 persen, waktu 3 jam dan konsentrasi NaOH 3.5 persen, waktu 2 jam tidak berbeda nyata. Kekerasan gel tertinggi diperoleh pada perlakuan konsentrasi NaOH 3.5 persen dan waktu perlakuan 3 jam yaitu 8 545.45 dyne/cm² dan kekerasan gel terendah (1 400.03 dyne/cm²) terjadi pada konsentrasi NaOH 1.5 persen dan waktu perlakuan 1 jam.

6. Kohesivitas gel

Kohesivitas gel adalah deformasi permukaan gel yang dihubungkan dengan setengah beban pemuatan yang memberikan kesempatan untuk melakukan perluasan, dimana gel dapat dirusak sebelum elemen elastisitasnya diputus (Whyte dan Englar, 1980). Kohesivitas gel berhubungan dengan kekerasan dan kekuatan gel. Pada saat perubahan kekuatan gel dan kekerasan gel sebanding, maka kohesivitas tidak banyak berubah.

Analisa sidik ragam terhadap kohesivitas gel menunjukkan bahwa konsentrasi NaOH, waktu perlakuan alkali dan interaksi keduanya berpengaruh nyata terhadap kohesivitas gel. Hal ini menunjukkan bahwa kecenderungan perubahan kekuatan gel tidak sebanding dengan perubahan kekerasan gel. Kohesivitas gel tertinggi diperoleh pada perlakuan konsentrasi NaOH 2.5 persen dan waktu perlakuan 3 jam dengan nilai 5 mm dan kohesivitas terendah diperoleh pada perlakuan konsentrasi NaOH 1.5 persen dan waktu perlakuan 1 jam dengan nilai 2.78 mm. Peningkatan konsentrasi NaOH cenderung untuk meningkatkan kohesivitas gel. Dari uji beda Tukey kohesivitas gel pada perlakuan konsentrasi NaOH 2.5 persen, waktu 3 jam; konsentrasi NaOH 3.5 persen, waktu 2 jam dan konsentrasi NaOH 3.5 jam, waktu 3 jam tidak berbeda nyata.
Gambar 13. Histogram pengaruh konsentrasi NaOH dan waktu perlakuan alkali terhadap kohesivitas gel
7. Titik pembentukan gel (gelling point)

Titik pembentukan gel adalah temperatur saat terjadinya peralihan dari fasa sol ke fasa gel dimana pada keadaan ini terjadi perubahan konformasi gulungan acak (random coil) menjadi rantai berpilin ganda (double helix). Pilihan ganda selanjutnya akan berag-regasi membentuk struktur tiga dimensi.

Konsentrasi NaOH dan waktu perlakuan alkali ber-pengaruh nyata terhadap titik pembentukan gel. Semakin tinggi konsentrasi NaOH dan waktu perlakuan alkali maka titik pembentukan gel akan semakin tinggi. Dari uji beda Tukey konsentrasi NaOH 2.5 persen, waktu 3 jam; konsentrasi NaOH 3.5 persen, waktu 3 jam dan konsentrasi NaOH 3.5 persen, waktu 2 jam tidak berbeda nyata.

Titik pembentukan gel berhubungan dengan kadar metoksil yang terkandung dalam agar-agar. Peningkatan kadar metoksil pada agarosa akan meningkatkan titik pembentukan gel (Guiseley, 1970).

Metoksil pada agar-agar terdapat dalam monometilgalaktosa. Pada agar-agar dari Gracilaria verrucosa monometilgalaktosa berada dalam bentuk 6-O-metil-galaktosa. Perlakuan alkali terhadap Gracilaria verrucosa dapat meningkatkan kandungan 6-O-metil-galaktosa dari 17.3 menjadi 17.5 persen dan titik
Gambar 14. Histogram pengaruh konsentrasi NaOH dan waktu perlakuan alkali terhadap temperatur pembentukan gel
pembentukan gel meningkat dari 37.1°C menjadi 39.8°C (Whyte dan Englar, 1980).

Menurut Craigie et al. (1984) perlakuan alkali terhadap Gracilaria verrucosa meningkatkan jumlah 6-O-metil-galaktosa dari 0.75 persen menjadi 0.78 persen. Nelson et al. (1983) menggunakan 3 persen NaOH selama 1 jam terhadap Gracilaria verrucosa. Agar-agar yang diperoleh mempunyai titik pembentukan gel 38-40°C.

Pada penelitian ini titik pembentukan gel terendah yaitu 28.57°C yang diperoleh pada perlakuan konsentrasi NaOH 1.5 persen dan waktu 1 jam serta titik pembentukan gel teringgi (37.3°C) diperoleh pada perlakuan konsentrasi NaOH 3.5 persen dan waktu 3 jam. Nilai ini lebih rendah dari yang diperoleh oleh dua peneliti di atas. Hal ini mungkin disebabkan asal bahan baku dan kondisi proses yang berbeda.

8. Titik leleh (melting point)

Titik leleh adalah temperatur saat terjadi nyawa penguraian daerah simpulan (junction zones) menja di struktur pilinan ganda dan selanjutnya berubah menjadi konformasi gulungan acak.

Konsentrasi NaOH dan waktu perlakuan alkali ber pengaruh nyata terhadap temperatur leleh. Titik leleh terendah yaitu 78.53°C yang diperoleh
Gambar 15. Histogram pengaruh konsentrasi NaOH dan waktu perlakuan alkali terhadap temperatur leleh.
pada konsentrası NaOH 1.5 persen dan waktu perlakuan 1 jam. Semakin tinggi konsentrası NaOH dan waktu perlakuan alkali, titik leleh yang diperoleh semakin tinggi. Titik leleh tertinggi diperoleh pada konsentrası NaOH 3.5 jam dan waktu perlakuan 3 jam. Dari uji beda Tukey pada perlakuan konsentrası NaOH 3.5 persen, waktu 2 jam; konsentrası NaOH 3.5 persen, waktu 3 jam dan konsentrası NaOH 2.5 persen, waktu 3 jam tidak berbeda nyata terhadap titik leleh.

Titik leleh dipengaruhi oleh bobot molekul bahan dan ikatan hidrogen yang terdapat pada bahan tersebut. Bobot molekul yang tinggi akan menyebabkan temperatur leleh semakin tinggi (Glicksman, 1982).

Selanjutnya Glicksman (1982) mengemukakan bahwa ikatan hidrogen terjadi antara oksigen pada atom karbon kedua dari suatu rantai polimer polisakarida dengan oksigen pada atom karbon kedua rantai polimer polisakarida lainnya. Akibat adanya ikatan hidrogen ini akan terbentuk jaringan polimer yang kompleks, sehingga untuk mengurangi jaringan tersebut dibutuhkan temperatur yang tinggi. Pada pembahasan terdahulu dinyatakan bahwa hingga kondisi tertentu semakin tinggi konsentrası NaOH dan waktu perlakuan alkali semakin banyak L-galaktosa-6-sulfat yang dikonversi menjadi 3,6-anhidro-L-galaktosa. Kadar 3,6-anhidro-L-galaktosa yang tinggi menyebabkan keteraturan rantai polimer
semakin tinggi. Hal ini memungkinkan untuk terjadinya ikatan hidrogen yang lebih banyak antar rantai polimer yang berdekatan, sehingga terbentuk jaringan polimer yang komplek dan kuat.

9. Warna dan logam berat

Agar-agar yang diperoleh pada penelitian ini berwarna kuning muda sampai coklat muda. Dari hasil pengukuran dengan "Whyteness-meter", warna agar-agar yang dihasilkan berkisar 39-51 persen. Warna coklat pada agar-agar diduga disebabkan oleh sisa perlakuan alkali yang tidak keluar waktu pencucian. Pada saat pencairan es tidak semua air yang keluar, sehingga waktu pengeringan warna yang terlarut tertinggal pada agar-agar.

Nelson et al. (1983) melakukan perendaman rumput laut selama 15 jam pada air mengalir setelah perlakuan alkali. Tujuan perendaman tersebut adalah agar rumput laut yang akan diekstrak berwarna putih. Pada penelitian ini hanya dilakukan pencucian hingga air cucian tidak berwarna.

Logam yang digolongkan sebagai logam berat disantaranya Pb, Cu, Hg dan As. Logam berat yang terdapat pada agar-agar berasal dari bahan baku terutama yang diperoleh dari perairan yang tercemar. Dari hasil penelitian, agar-agar yang berasal dari semua perlaku-
an tidak ada yang mengandung logam berat. Hal ini diduga karena bahan baku yang digunakan berasal dari perairan yang cukup bersih (perairan Sulawesi Selatan). Selain itu proses ekstraksi yang digunakan cukup kompleks, sehingga logam berat yang mungkin ada pada bahan baku, keluar pada saat proses.
V. KESIMPULAN DAN SARAN

A. KESIMPULAN

Analisis sidik ragam menunjukkan bahwa konsentrasi NaOH dan waktu perlakuan alkali berpengaruh nyata terhadap rendemen, kekuatan gel, kekerasan gel, kohesivitas gel, temperatur pembentukan gel dan temperatur leleh. Rendemen tertinggi (17.32 persen) diperoleh pada konsentrasi NaOH 1.5 persen dan waktu perlakuan 1 jam. Temperatur pembentukan gel, temperatur leleh dan kekerasan gel tertinggi diperoleh pada perlakuan konsentrasi NaOH 3.5 persen dan waktu perlakuan 3 jam dengan nilai masing-masing 37.30°C, 88.63°C dan 8 545.45 dyne/cm². Kekuatan gel tertinggi (491.73 g/cm²) dan kohesivitas gel tertinggi (5.00 mm) diperoleh pada perlakuan konsentrasi NaOH 2.5 persen dan waktu perlakuan 3 jam. Kadar abu dan kadar galaktosa rata-rata yaitu 7.74 persen dan 50.48
persen serta kedua nya tidak dipengaruhi oleh perlakuan alkali. Tepung agar-agar yang dihasilkan berwarna kuning muda sampai coklat muda dan tidak mengandung logam berat.

B. SARAN

Sebagai kelanjutan dari penelitian ini disarankan untuk mencuci rumput laut sampai putih setelah perlakuan alkali, agar warna tepung agar-agar yang diperoleh lebih putih. Untuk mengurangi kadar abu disarankan agar penge- luaran air dilakukan semaksimal mungkin pada saat pengambilan ekstrak agar-agar setelah pembekuan. Hasil penelitian perlu penggandaan skala dan dilakukan studi kelayakan nanya.
DAFTAR PUSTAKA

LAMPIRAN
Lampiran 1. Diagram proses ekstraksi agar-agar
(Okazaki, 1971)

Rumput laut campuran → Gelidium → Gracilaria

Pencucian → Ekstraksi → Gelasi

Pemotongan gel → Pemukatan

Pembekuan → Penekaran

Pencairan es → Dehidrasi osmosis listrik

Pengeringan langsung

Pengeringan

Penghancuran

Pengemasan
Lampiran 2. Diagram proses ekstraksi agar-agar dengan metoda penekanan (Okazaki, 1871)

1. **Gracilaria**
2. Pencucian
3. Perlakuan alkali
4. Pencucian
5. Ekstraksi
6. Penyaringan
7. Gelasi
8. Pemotongan gel
9. Dehidrasi I (oil pressure)
10. Dehidrasi II (water pressure)
11. **NaOCl**
12. Pemucatan
13. Pengeringan
14. Penepungan
15. Pengemasan
16. Inspeksi
17. Pemasaran
Diagram proses ekstraksi agar-agar dengan metoda pembekuan (Okazaki, 1971)

- **Gelidium**
 - Pencucian
 - Ekstraksi
 - Filtrasi
 - Gelasi
 - Pemotongan gel
 - Pembekuan (-10°C - -20°C)
 - Pencairan es dengan air panas
 - NaOCl
 - Pemucatan
 - Pengeringan
 - Pengemasan
 - Inspeksi
 - Pemasaran
Lampiran 4. Diagram proses ekstraksi agar-agar
(Gandaatmaja, 1984)

```
Gelidium sp.

Pencucian

Penjemuran

$H_2O_2$ 3%

Perendaman

Rumput laut bersih

$CH_3COOH$ 0.05-0.1%

Ekstraksi (30 menit)

$NaHSO_3$ 0.06%

Penjernihan

Penyaringan

Sentrifusi

Pembekuan (-70°C - 18 jam)

Pencairan es

Pengeringan

Penepungan

Tepung agar-agar
```
Lampiran 5. Diagram proses ekstraksi agar-agar (Sri Istini et al., 1986)

\[Gracilaria\ sp./Hypnea\ sp. \]

\[\text{Pembersihan} \]

\[\text{Kaporit 0.25\%} \rightarrow \text{Perendaman (4-6 jam)} \]

\[\rightarrow \text{Pencucian} \]

\[\text{H}_2\text{SO}_4\ 10\% \rightarrow \text{Perendaman} \]

\[\text{CH}_3\text{COOH}\ 0.25\% \rightarrow \text{Perebusan} \]

\[\rightarrow \text{Pengepresan (Filter press)} \]

\[\rightarrow \text{Pembekuan (Suhu : -20oC)} \]

\[\rightarrow \text{Pencairan es/Pengepresan} \]

\[\rightarrow \text{Pengeringan} \]

\[\rightarrow \text{Penepungan} \]

\[\text{Tepung agar-agar} \]
Lampiran 6. Bahan kimia yang digunakan

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis bahan kimia</th>
<th>Spesifikasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Petroleumbenzen</td>
<td>cairan tidak berwarna</td>
</tr>
<tr>
<td>2.</td>
<td>H₂SO₄</td>
<td>cairan tidak berwarna</td>
</tr>
<tr>
<td>3.</td>
<td>NaOH (teknis)</td>
<td>kristal putih</td>
</tr>
<tr>
<td>4.</td>
<td>NaOH (pa)</td>
<td>kristal putih</td>
</tr>
<tr>
<td>5.</td>
<td>K₂SO₄</td>
<td>kristal putih</td>
</tr>
<tr>
<td>6.</td>
<td>CuSO₄</td>
<td>kristal biru</td>
</tr>
<tr>
<td>7.</td>
<td>HCl</td>
<td>cairan tidak berwarna</td>
</tr>
<tr>
<td>8.</td>
<td>Na₂SO₄</td>
<td>kristal kuning muda</td>
</tr>
<tr>
<td>9.</td>
<td>Amilum</td>
<td>bubuk putih</td>
</tr>
<tr>
<td>10.</td>
<td>Na₂S₂O₃·5H₂O</td>
<td>kristal putih</td>
</tr>
<tr>
<td>11.</td>
<td>KI</td>
<td>kristal putih</td>
</tr>
<tr>
<td>12.</td>
<td>Luff</td>
<td>cairan biru</td>
</tr>
<tr>
<td>13.</td>
<td>Silicon</td>
<td>cairan putih kental</td>
</tr>
<tr>
<td>14.</td>
<td>CaOCl₂</td>
<td>bubuk putih</td>
</tr>
<tr>
<td>15.</td>
<td>CH₃COOH</td>
<td>cairan tidak berwarna</td>
</tr>
<tr>
<td>16.</td>
<td>KCl</td>
<td>kristal putih</td>
</tr>
</tbody>
</table>
Lampiran 7. Prosedur analisa proksimat bahan baku

A. PENETAPAN KADAR AIR (A. O. A. C., 1970)

Cawan kosong dan tutupnya dikerlingkan dalam oven selama 10 menit dan didinginkan dalam desikator, kemudian ditimbang. Sebanyak 5 g sampel ditimbang dan disebarkan dalam cawan diatas. Cawan beserta isinya ditempatkan di dalam oven yang bersuhu 100 - 102°C selama 6 jam dan dihindarkan kontak dengan dinding oven.

Cawan dan isinya kemudian dipindahkan ke dalam desikator untuk didinginkan. Setelah dingin ditimbang kembali. Selanjutnya dikeringkan dalam oven sampai berat tetap.

Perhitungan : Kadar air (%) = \(\frac{\text{Kehilangan berat (g)}}{\text{Berat sampel (g)}} \times 100 \)

B. PENETAPAN TOTAL ABU (A. O. A. C., 1970)

Cawan pengabuan yang terbuat dari nikel, platina atau silika disiapkan, kemudian dibakar dalam tanur dengan suhu 550°C. Cawan yang sudah didinginkan selanjutnya ditimbang. Sebanyak 3 - 5 g sampel ditimbang dan dibakar dalam tanur pengabuan. Pembakaran dilakukan sampai terdapat warna abu-abu atau sampai beratnya tetap.

Perhitungan : Total abu (%) = \(\frac{\text{Berat abu (g)}}{\text{Berat sampel (g)}} \times 100 \)
Lampiran 7. Prosedur analisa proksimat bahan baku (lanjutan)

C. PENETAPAN KADAR LEMAK (A. O. A. C., 1970)

Prinsip metode ini adalah melarutkan lemak dalam pelarut organik. Setelah pelarutnya diuapkan, lemak ditimbang dan dihitung persentasenya.

Labu lemak yang ukurannya sesuai dengan alat ekstraksi soxhlet dikeringkan dalam oven, didinginkan dalam desikator kemudian ditimbang. Sebanyak 5 g sampel ditimbang dan dibungkus dengan kertas saring, selanjutnya ditempatkan di dalam alat soxhlet dan alat kondensor dipasang di atasnya. Pelarut organik dituangkan ke dalam labu lemak secukupnya, sesuai dengan ukuran soxhlet yang digunakan. Refluk dilakukan selama 5 jam.

Pelarut yang bercampur lemak didestilasi dan pelarutnya ditampung. Selanjutnya labu lemak yang berisi hasil ekstraksi dipanaskan dalam oven pada suhu 105°C. Setelah kering, labu dan lemak ditimbang dan berat lemak dapat dihitung.

Perhitungan : Kadar lemak (%) = \(\frac{\text{Berat lemak (g)}}{\text{Berat sampel (g)}} \times 100 \)

D. PENETAPAN SERAT KASAR (A. O. A. C., 1970)

Sampel yang bebas lemak ditimbang sebanyak 2 g dan dipindahkan ke dalam Erlenmeyer 800 ml. Ke dalam
Lampiran 8. Prosedur analisa proksimat bahan baku (lanjutan)

Erlenmeyer tersebut ditambahkan 0.5 gr asbes yang telah dipijarkan dan 3 tetes zat anti buih. Kemudian ditambahkan larutan 0.255 N H₂SO₄ mendidih dan ditutup dengan pendingin balik. Didihkan selama 30 menit dengan kadang-kadang digoyang.

Lampiran 9. Prosedur analisa proksimat bahan baku (lanjutan)

Perhitungan : Berat serat kasar = berat residu

E. PENETAPAN KADAR PROTEIN DENGAN METODE KJELDAHL MIKRO

Sejumlah 0.1 gram bahan baku dan 2 gram katalis \(\text{Na}_2\text{SO}_4 : \text{CuSO}_4 \) dimasukkan ke dalam labu Kjeldahl, kemudian ditambahkan 2.5 ml \(\text{H}_2\text{SO}_4 \) pekat campuran tersebut kemudian didestruksi sampai cairan dalam labu menjadi jernih.

Sampel selanjutnya didinginkan dan ditambahkan sejumlah air secara perlahan-lahan dan didinginkan kembali. Isi labu dipindahkan ke alat destilasi yang sudah dibilas dengan air, lalu ditambahkan 15 ml \(\text{NaOH} \) 50 persen. Distilat ditampung dengan 25 ml \(\text{HCl} \) 0.02 N. Destilasi dilakukan sampai volume cairan penampung menjadi dua kali semula dengan \(\text{NaOH} \) 0.02 N serta indikator mengsel. Dengan cara yang sama dibuat blanko.

\[
\text{N total (\%)} = \frac{(\text{ml blanko}-\text{ml NaOH})\times0.02\times14.007\times100}{\text{mg sampel}}
\]
Lampiran 10. Prosedur analisa tepung agar-agar

A. PROSEDUR ANALISA LOGAM BERBAHAYA (SII, 1978)

Sejumlah 2-3 g sampel diabukan dalam cawan platina. Abu yang terbentuk dilarutkan dalam asam asetat 30 persen selanjutnya larutan ditetesi dengan Na₂S, hasilnya dibandingkan dengan blanko (akuades ditetesi Na₂S). Warna hitam pada larutan menunjukkan adanya logam berbahaya.

B. KADAR KARBOHIDRAT (SII, 1978)

Sejumlah 1 g contoh dimasukkan ke dalam erlenmeyer 500 ml dan kemudian ditambahkan 200 ml HCL 3 persen. Campuran tersebut dipanaskan dalam pendingin tegak selama 3 jam, selanjutnya didinginkan dan dinetralkan dengan 13 ml NaOH 50 persen. Larutan dibuat sedikit asam, diencerkan hingga volume 500 ml dan disaring.

Lampiran 11. Prosedur analisa tepung agar-agar (lanjutan)

Galaktosa (%) = \[
\frac{\text{mg galaktosa} \times 250/10 \times 100}{\text{mg sampel}}
\]

C. PENGUKURAN KEKUATAN, KEKERASAN DAN KOHESIVITAS GEL

Gel agar-agar disiapkan menurut metoda Hoyle (1978) dengan sedikit modifikasi. Larutan agar-agar disiapkan dengan konsentrasi 1.5 persen, kemudian dipanaskan selama 10 menit di atas pemanas yang dilengkapi dengan pengaduk. Berat total sebelum dan setelah pemanasan dijaga konstan. Larutan panas dimasukkan ke dalam cetakan yang berdiameter 3 cm dan tinggi 4 cm. Larutan agar-agar dibiarankan membentuk gel selama satu malam.

Pengukuran dilakukan dengan menggunakan "Curd meter". Gel dari cetakan ditempatkan pada alat pengukur. Kondisi pengukuran yang digunakan yaitu:
(1) Batang penekan berdiameter 5.0 mm dengan luas permukaan (S) 19.63 mm² dan keliling (L) 15.71 mm.
(2) Beban dan pegas 200 gram.
(3) Laju penetrasi batang penekan sebesar 0.36 cm/detik. Setelah posisi batang penekan tepat di tengah permukaan gel, "Curd meter" diaktifkan sampai dengan batang penekan penembus permukaan gel. Pembacaan dilakukan melalui grafik rekorder (Gambar :5).
Lampiran 12. Prosedur analisa tepung agar-agar (lanjutan)

Dari gambar 8 tersebut dapat diperoleh beberapa karakteristik gel yang diukur, yaitu kekuatan gel (Breaking strength), kekerasan gel (Hardness), dan kohesivitas gel (Cohesivity).

Derajat invasi (mm)

Gambar 16. Grafik pembacaan karakteristik gel pada recorder "Curd meter"

Berdasarkan gambar di atas, karakteristik gel dihitung sebagai berikut:

1. Kekuatan gel (Breaking strength) = \(\frac{F}{S} \times 2 \text{ g/cm}^2 \)
2. Kekerasan gel (Hardness) = \(\frac{A_2}{A_1} \times \frac{k}{L} \text{ dyne/cm}^2 \)
3. Kohesivitas gel (Cohesivity) = \(A_3 \text{ mm} \)

D. PENGUKURAN "GELLING POINT" DAN "MELTING POINT"

"Gelling point" adalah suhu pembentukan gel, sedangkan "melting point" adalah suhu pembentukan gel.
Lampiran 13. Prosedur analisa tepung agar-agar (lanjutan)

1. Pengukuran "gelling point" (Zabik dan Aldrich, 1969)

Pengukuran "gelling point" dilakukan dengan metoda untuk pengukuran "gelling pont" karagenan dan sedikit modifikasi. Larutan agar-agar panas dengan konsentrasi 1.5 persen diisikan ke dalam tabung reaksi berdiameter 1 cm atau lebih. Tabung reaksi berisi larutan agar-agar tersebut dimasukan ke dalam bak pendinginan dengan laju pendinginan 1°C per menit. Selama pendinginan tabung reaksi tersebut sewaktu-waktu dimiringkan sambil diamati larutan karagenan didalamnya. Jika setelah dimiringkan 45°C agar-agar di dalamnya tidak mengalir, dengan cepat termometer disisipkan ke dalam tabung reaksi tersebut. Suhu tertinggi yang teramati dicatat sebagai "gelling point".

2. "Melting point" (Kobayashi dan Nakahama, 1985).

Tabung reaksi berisi gel agar-agar hasil pengukuran "gelling point" bagian atasnya disumbat/ditutup rapat dan didiamkan selama 1 jam sampai terbentuk gel dengan sempurna. Tabung reaksi tersebut kemudian dimasukkan ke dalam bak pemanasan (water bath) dalam posisi terbalik, laju pemanasan diusahakan 1°C per menit. Pada saat gel di puncak tabung reaksi tiba-
Lampiran 14. Prosedur analisa tepung agar-agar (lanjutan)
tiba jatuh, suhu air di dalam "water bath" dengann
segera dicatat sebagai "melting point".

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Rendemen (%)</th>
<th>Kadar abu (%)</th>
<th>Kadar karbohidrat (%)</th>
<th>Kekuatan gel (g/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1T1U1</td>
<td>17.20</td>
<td>7.48</td>
<td>52.66</td>
<td>57.06</td>
</tr>
<tr>
<td>C1T1U2</td>
<td>17.43</td>
<td>7.44</td>
<td>47.98</td>
<td>55.02</td>
</tr>
<tr>
<td>C1T2U1</td>
<td>16.10</td>
<td>8.33</td>
<td>52.93</td>
<td>112.07</td>
</tr>
<tr>
<td>C1T2U2</td>
<td>16.03</td>
<td>5.29</td>
<td>56.48</td>
<td>126.37</td>
</tr>
<tr>
<td>C1T3U1</td>
<td>13.27</td>
<td>6.61</td>
<td>49.25</td>
<td>261.84</td>
</tr>
<tr>
<td>C1T3U2</td>
<td>15.25</td>
<td>7.82</td>
<td>48.08</td>
<td>247.56</td>
</tr>
<tr>
<td>C2T1U1</td>
<td>14.98</td>
<td>6.77</td>
<td>51.35</td>
<td>151.81</td>
</tr>
<tr>
<td>C2T1U2</td>
<td>15.52</td>
<td>6.87</td>
<td>49.42</td>
<td>156.90</td>
</tr>
<tr>
<td>C2T2U1</td>
<td>14.19</td>
<td>7.41</td>
<td>49.25</td>
<td>288.34</td>
</tr>
<tr>
<td>C2T2U2</td>
<td>15.42</td>
<td>7.00</td>
<td>50.96</td>
<td>318.90</td>
</tr>
<tr>
<td>C2T3U1</td>
<td>13.32</td>
<td>7.87</td>
<td>50.15</td>
<td>529.30</td>
</tr>
<tr>
<td>C2T3U2</td>
<td>14.95</td>
<td>8.97</td>
<td>51.17</td>
<td>454.16</td>
</tr>
<tr>
<td>C3T1U1</td>
<td>14.21</td>
<td>6.28</td>
<td>47.61</td>
<td>224.15</td>
</tr>
<tr>
<td>C3T1U2</td>
<td>15.40</td>
<td>7.91</td>
<td>53.21</td>
<td>231.28</td>
</tr>
<tr>
<td>C3T2U1</td>
<td>14.03</td>
<td>7.55</td>
<td>49.45</td>
<td>486.03</td>
</tr>
<tr>
<td>C3T2U2</td>
<td>14.69</td>
<td>10.22</td>
<td>47.43</td>
<td>417.48</td>
</tr>
<tr>
<td>C3T3U1</td>
<td>11.95</td>
<td>5.87</td>
<td>52.23</td>
<td>502.80</td>
</tr>
<tr>
<td>C3T3U2</td>
<td>14.22</td>
<td>11.75</td>
<td>49.15</td>
<td>481.03</td>
</tr>
</tbody>
</table>
Lampiran 17. Rekapitulasi data hasil penelitian agar-agar (lanjutan)

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Kekerasan gel (dyne/cm²)</th>
<th>Kohesivitas gel (mm)</th>
<th>"Gelling point" (°C)</th>
<th>"Melting point" (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1T1U1</td>
<td>1 386.16</td>
<td>3.85</td>
<td>27.6</td>
<td>76.0</td>
</tr>
<tr>
<td>C1T1U2</td>
<td>1 413.89</td>
<td>3.70</td>
<td>29.5</td>
<td>77.1</td>
</tr>
<tr>
<td>C1T2U1</td>
<td>2 827.78</td>
<td>3.60</td>
<td>30.3</td>
<td>78.3</td>
</tr>
<tr>
<td>C1T2U2</td>
<td>2 781.68</td>
<td>3.75</td>
<td>29.4</td>
<td>77.9</td>
</tr>
<tr>
<td>C1T3U1</td>
<td>4 818.83</td>
<td>4.40</td>
<td>33.4</td>
<td>81.8</td>
</tr>
<tr>
<td>C1T3U2</td>
<td>4 889.39</td>
<td>4.10</td>
<td>33.6</td>
<td>81.6</td>
</tr>
<tr>
<td>C2T1U1</td>
<td>2 685.20</td>
<td>4.30</td>
<td>32.0</td>
<td>78.3</td>
</tr>
<tr>
<td>C2T1U2</td>
<td>2 827.76</td>
<td>4.20</td>
<td>32.3</td>
<td>79.5</td>
</tr>
<tr>
<td>C2T2U1</td>
<td>6 203.96</td>
<td>3.65</td>
<td>35.3</td>
<td>82.6</td>
</tr>
<tr>
<td>C2T2U2</td>
<td>6 109.98</td>
<td>4.00</td>
<td>34.5</td>
<td>83.4</td>
</tr>
<tr>
<td>C2T3U1</td>
<td>8 358.57</td>
<td>5.10</td>
<td>35.8</td>
<td>87.2</td>
</tr>
<tr>
<td>C2T3U2</td>
<td>7 730.30</td>
<td>4.90</td>
<td>35.9</td>
<td>87.3</td>
</tr>
<tr>
<td>C3T1U1</td>
<td>4 712.96</td>
<td>3.90</td>
<td>32.3</td>
<td>78.0</td>
</tr>
<tr>
<td>C3T1U2</td>
<td>4 745.58</td>
<td>4.00</td>
<td>34.0</td>
<td>81.5</td>
</tr>
<tr>
<td>C3T2U1</td>
<td>8 236.07</td>
<td>5.05</td>
<td>36.2</td>
<td>88.4</td>
</tr>
<tr>
<td>C3T2U2</td>
<td>7 035.75</td>
<td>4.85</td>
<td>35.1</td>
<td>86.1</td>
</tr>
<tr>
<td>C3T3U1</td>
<td>9 270.41</td>
<td>4.55</td>
<td>37.5</td>
<td>88.5</td>
</tr>
<tr>
<td>C3T3U2</td>
<td>7 820.48</td>
<td>4.90</td>
<td>37.1</td>
<td>88.6</td>
</tr>
</tbody>
</table>
Lampiran 18a. Analisa sidik ragam rendemen agar-agar

<table>
<thead>
<tr>
<th>Sumber variasi</th>
<th>db</th>
<th>JK</th>
<th>RJK</th>
<th>Fhitung</th>
<th>F_{tabel}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a=0.05</td>
</tr>
<tr>
<td>Perlakuan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>9.94</td>
<td>4.97</td>
<td>5.76*</td>
<td>4.26</td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>11.85</td>
<td>5.83</td>
<td>6.90*</td>
<td>4.26</td>
</tr>
<tr>
<td>C x T</td>
<td>4</td>
<td>2.03</td>
<td>0.51</td>
<td>0.59</td>
<td>3.63</td>
</tr>
<tr>
<td>Kesalahan</td>
<td>9</td>
<td>7.72</td>
<td>0.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>31.54</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Berbeda nyata

Lampiran 18b. Uji beda nyata terkecil (BNT) pengaruh konsentrasi NaOH terhadap rendemen

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Rata-rata</th>
<th>Beda</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>15.88</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>14.73</td>
<td>1.15</td>
</tr>
<tr>
<td>C3</td>
<td>14.08</td>
<td>1.80**</td>
</tr>
</tbody>
</table>

$BNT(\alpha=0.05) = 1.21$
$BNT(\alpha=0.01) = 1.74$

Berbeda sangat nyata
Lampiran 19a. Uji beda beda nyata terkecil (BNT) pengaruh waktu perlakuan alkali terhadap rendemen

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Rata-rata</th>
<th>Beda</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>15.79</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>15.08</td>
<td>0.71</td>
</tr>
<tr>
<td>T3</td>
<td>13.83</td>
<td>1.96**</td>
</tr>
</tbody>
</table>

Lampiran 19b. Analisa sidik ragam kadar abu

<table>
<thead>
<tr>
<th>Sumber variasi</th>
<th>db</th>
<th>JK</th>
<th>RJK</th>
<th>Phitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>6.8</td>
<td>3.4</td>
<td>0.08</td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>1.54</td>
<td>0.77</td>
<td>0.02</td>
</tr>
<tr>
<td>C x T</td>
<td>4</td>
<td>2.45</td>
<td>0.81</td>
<td>0.01</td>
</tr>
<tr>
<td>Kesalahan</td>
<td>9</td>
<td>406.48</td>
<td>45.16</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>417.27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 20a. Analisa sidik ragam kadar galaktosa

<table>
<thead>
<tr>
<th>Sumber variasi</th>
<th>db</th>
<th>JK</th>
<th>RJK</th>
<th>Fhitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>5.78</td>
<td>2.89</td>
<td>0.59</td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>3.65</td>
<td>1.83</td>
<td>0.37</td>
</tr>
<tr>
<td>C x T</td>
<td>4</td>
<td>41.85</td>
<td>10.46</td>
<td>2.13</td>
</tr>
<tr>
<td>Kesalahan</td>
<td>9</td>
<td>44.29</td>
<td>4.92</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>95.57</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 20b. Analisa sidik ragam kekuatan gel

<table>
<thead>
<tr>
<th>Sumber variasi</th>
<th>db</th>
<th>JK</th>
<th>RJK</th>
<th>Fhitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>18 873.37</td>
<td>94 365.19</td>
<td>122.62**</td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>208 998.06</td>
<td>104 499.04</td>
<td>135.79**</td>
</tr>
<tr>
<td>C x T</td>
<td>4</td>
<td>23 851.89</td>
<td>5 962.92</td>
<td>7.75**</td>
</tr>
<tr>
<td>Kesalahan</td>
<td>9</td>
<td>8 925.96</td>
<td>769.55</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>428 506.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 21a. Uji beda Tukey pengaruh konsentrasi NaOH terhadap kekuatan gel

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Rata-rata</th>
<th>Beda</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td>387.46</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>316.57</td>
<td>70.89</td>
</tr>
<tr>
<td>C1</td>
<td>143.86</td>
<td>243.80**</td>
</tr>
</tbody>
</table>

$T(\alpha = 0.05) = 77.48$
$T(\alpha = 0.01) = 106.51$

Lampiran 21b. Uji beda Tukey pengaruh waktu perlakuan alkali terhadap kekuatan gel

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Rata-rata</th>
<th>Beda</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>409.45</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>292.20</td>
<td>117.25**</td>
</tr>
<tr>
<td>T1</td>
<td>146.04</td>
<td>263.41**</td>
</tr>
</tbody>
</table>

Lampiran 22. Uji beda Tukey pengaruh interaksi konsentrasi NaOH dengan waktu perlakuan alkali terhadap kekuatan gel

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Rata-rata</th>
<th>Beda</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2T3</td>
<td>491.73</td>
<td></td>
</tr>
<tr>
<td>C3T3</td>
<td>481.92</td>
<td>9.81</td>
</tr>
<tr>
<td>C3T2</td>
<td>452.76</td>
<td>30.97</td>
</tr>
<tr>
<td>C2T2</td>
<td>303.62</td>
<td>188.11**</td>
</tr>
<tr>
<td>C1T3</td>
<td>254.71</td>
<td>237.02**</td>
</tr>
<tr>
<td>C3T1</td>
<td>227.72</td>
<td>264.01**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.89</td>
</tr>
<tr>
<td>C2T1</td>
<td>154.38</td>
<td>337.37**</td>
</tr>
<tr>
<td>C1T2</td>
<td>120.22</td>
<td>371.15**</td>
</tr>
<tr>
<td>C1T1</td>
<td>58.04</td>
<td>435.68**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>198.87**</td>
</tr>
</tbody>
</table>

$T(\alpha=0.05) = 109.85$
$T(\alpha=0.01) = 143.59$
Lampiran 23a. Analisa sidik ragam kekerasan gel

<table>
<thead>
<tr>
<th>Sumber variasi</th>
<th>db</th>
<th>JK</th>
<th>RJK</th>
<th>Fhitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>48 550 848.20</td>
<td>24 275 424.10</td>
<td>109.90**</td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>53 481 946.33</td>
<td>26 740 973.17</td>
<td>121.06**</td>
</tr>
<tr>
<td>C x T</td>
<td>4</td>
<td>3 205 303.42</td>
<td>801 325.86</td>
<td>3.63*</td>
</tr>
<tr>
<td>Kesalahan</td>
<td>9</td>
<td>1 987 933.65</td>
<td>220 881.52</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>107 226 031.60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 23b. Uji beda Tukey pengaruh konsentrasi NaOH terhadap kekerasan gel

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Rata-rata</th>
<th>Beda</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td>6 970.21</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>5 652.63</td>
<td>1 317.58**</td>
</tr>
<tr>
<td>C1</td>
<td>3 019.66</td>
<td>3 950.55** 2 632.97**</td>
</tr>
</tbody>
</table>

\[T(\alpha = 0.05) = 1 312.68 \]
\[T(\alpha = 0.01) = 1 804.53 \]
Lampiran 24. Uji beda Tukey pengaruh waktu perlakuan alkali terhadap kekerasan gel

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Rata-rata</th>
<th>Beda</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>7 148.00</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>5 532.57</td>
<td>1 615.43**</td>
</tr>
<tr>
<td>T1</td>
<td>2 961.93</td>
<td>4 186.07**</td>
</tr>
</tbody>
</table>
Lampiran 25. Uji beda Tukey pengaruh interaksi konsentrasi NaOH dengan waktu perlakuan alkali terhadap kekerasan gdl

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Rata-rata</th>
<th>Beda</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3T3</td>
<td>654.45</td>
<td></td>
</tr>
<tr>
<td>C2T3</td>
<td>6044.44</td>
<td>501.01</td>
</tr>
<tr>
<td>C3T2</td>
<td>7635.91</td>
<td>909.54</td>
</tr>
<tr>
<td>C2T2</td>
<td>6158.97</td>
<td>2388.46</td>
</tr>
<tr>
<td>C1T3</td>
<td>4854.11</td>
<td>3691.34</td>
</tr>
<tr>
<td>C3T1</td>
<td>4728.27</td>
<td>8181.18</td>
</tr>
<tr>
<td>C1T2</td>
<td>2804.84</td>
<td>5740.61</td>
</tr>
<tr>
<td>C2T1</td>
<td>2758.48</td>
<td>5788.96</td>
</tr>
<tr>
<td>C1T1</td>
<td>1400.03</td>
<td>8145.42</td>
</tr>
</tbody>
</table>

\[\text{T(\alpha=0.05)} = 1.881.03 \]
\[\text{T(\alpha=0.01)} = 2.432.38 \]
Lampiran 26a. Analisa sidik ragam kohesivitas gel

<table>
<thead>
<tr>
<th>Sumber variasi</th>
<th>db</th>
<th>JK</th>
<th>RJK</th>
<th>Fhitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>1.31</td>
<td>0.66</td>
<td>22.00**</td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>1.46</td>
<td>0.73</td>
<td>24.33**</td>
</tr>
<tr>
<td>C x T</td>
<td>4</td>
<td>1.44</td>
<td>0.36</td>
<td>12.00**</td>
</tr>
<tr>
<td>Kesalahan</td>
<td>9</td>
<td>0.24</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>4.45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T(α=0.05) = 0.48
T(α=0.01) = 0.67

Lampiran 26b. Uji beda Tukey pengaruh konsentrasi NaOH terhadap kohesivitas gel

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Rata-rata</th>
<th>Beda</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td>4.54</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>4.36</td>
<td>0.18</td>
</tr>
<tr>
<td>C1</td>
<td>3.90</td>
<td>0.64*</td>
</tr>
</tbody>
</table>
Lampiran 27. Uji beda Tukey pengaruh waktu perlakuan alkali terhadap kohesivitas gel

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Rata-rata</th>
<th>Beda</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>4.66</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>4.15</td>
<td>0.51*</td>
</tr>
<tr>
<td>T1</td>
<td>3.99</td>
<td>0.67**</td>
</tr>
</tbody>
</table>
Lampiran 28. Uji beda Tukey pengaruh interaksi konsentrasi NaOH dengan waktu perlakuan alkali terhadap kohesivitas gel

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Rata-rata</th>
<th>Beda</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2T3</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>C3T2</td>
<td>4.85</td>
<td>0.05</td>
</tr>
<tr>
<td>C3T3</td>
<td>4.73</td>
<td>0.27</td>
</tr>
<tr>
<td>C1T3</td>
<td>4.25</td>
<td>0.75*</td>
</tr>
<tr>
<td>C2T1</td>
<td>4.25</td>
<td>0.75*</td>
</tr>
<tr>
<td>C3T1</td>
<td>3.95</td>
<td>1.05**</td>
</tr>
<tr>
<td>C2T2</td>
<td>3.83</td>
<td>1.17**</td>
</tr>
<tr>
<td>C1T2</td>
<td>3.68</td>
<td>1.32**</td>
</tr>
<tr>
<td>C1T1</td>
<td>2.78</td>
<td>2.22**</td>
</tr>
</tbody>
</table>

$T(\alpha=0.05) = 0.68$
$T(\alpha=0.01) = 0.90$
Lampiran 29a. Analisa sidik ragam "gelling point"

<table>
<thead>
<tr>
<th>Sumber variasi</th>
<th>db</th>
<th>JK</th>
<th>RJK</th>
<th>Phitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>73.87</td>
<td>36.84</td>
<td>72.23**</td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>54.91</td>
<td>27.46</td>
<td>53.83**</td>
</tr>
<tr>
<td>C x T</td>
<td>4</td>
<td>3.96</td>
<td>0.99</td>
<td>1.94</td>
</tr>
<tr>
<td>Kesalahan</td>
<td>9</td>
<td>4.63</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>137.17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lampiran 29b. Uji beda Tukey pengaruh konsentrasi NaOH terhadap "gelling point"

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Rata-rata</th>
<th>Beda</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td>35.36</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>34.28</td>
<td>1.08</td>
</tr>
<tr>
<td>C1</td>
<td>30.63</td>
<td>4.73**</td>
</tr>
</tbody>
</table>

T(α=0.05) = 1.99
T(α=0.01) = 2.74
Lampiran 30a. Uji beda Tukey pengaruh waktu perlakuan alkali terhadap "gelling point"

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Rata-rata</th>
<th>Beda</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>35.55</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>34.44</td>
<td>2.11*</td>
</tr>
<tr>
<td>T1</td>
<td>31.27</td>
<td>4.26**</td>
</tr>
</tbody>
</table>

Lampiran 30b. Analisa sidik ragam "melting point"

<table>
<thead>
<tr>
<th>Sumber variasi</th>
<th>db</th>
<th>JK</th>
<th>RJK</th>
<th>Frhitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>129.00</td>
<td>64.50</td>
<td>53.31**</td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td>168.84</td>
<td>84.42</td>
<td>69.77**</td>
</tr>
<tr>
<td>C x T</td>
<td>4</td>
<td>20.08</td>
<td>5.02</td>
<td>4.15**</td>
</tr>
<tr>
<td>Kesalahan</td>
<td>9</td>
<td>10.88</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>328.80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lampiran 31a. Uji beda Tukey pengaruh konsentrasi NaOH terhadap "melting point"

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Rata-rata</th>
<th>Beda</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3</td>
<td>85.21</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>83.03</td>
<td>2.18</td>
</tr>
<tr>
<td>C1</td>
<td>78.76</td>
<td>6.45**</td>
</tr>
</tbody>
</table>

$T(\alpha=0.05) = 3.07$
$T(\alpha=0.01) = 4.22$

Lampiran 31b. Uji beda Tukey pengaruh waktu perlakuan alkali terhadap "melting point"

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Rata-rata</th>
<th>Beda</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3</td>
<td>85.86</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>82.76</td>
<td>3.1*</td>
</tr>
<tr>
<td>T3</td>
<td>78.39</td>
<td>7.47**</td>
</tr>
</tbody>
</table>
Lampiran 32. Uji beda Tukey pengaruh interaksi NaOH dengan waktu perlakuan alkali terhadap "melting point"

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Rata-rata</th>
<th>Beda</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3T3</td>
<td>88.63</td>
<td></td>
</tr>
<tr>
<td>C2T3</td>
<td>87.25</td>
<td>1.38</td>
</tr>
<tr>
<td>C3T2</td>
<td>87.23</td>
<td>1.40</td>
</tr>
<tr>
<td>C2T2</td>
<td>82.98</td>
<td>5.65*</td>
</tr>
<tr>
<td>C1T3</td>
<td>81.70</td>
<td>6.93**</td>
</tr>
<tr>
<td>C3T1</td>
<td>79.78</td>
<td>8.65**</td>
</tr>
<tr>
<td>C2T1</td>
<td>78.88</td>
<td>9.75**</td>
</tr>
<tr>
<td>C1T2</td>
<td>78.07</td>
<td>10.56**</td>
</tr>
<tr>
<td>C1T1</td>
<td>78.53</td>
<td>12.10**</td>
</tr>
</tbody>
</table>

\[
T(\alpha=0.05) = 4.36 \\
T(\alpha=0.01) = 5.69
\]