Use of electrospray ionization mass spectrometry for profiling of crude oil effects on the phospholipid molecular species of two marine bacteria

Nicolas Mazzella¹, Josiane Molinet¹, Agung Dhamar Syakti², Alain Dodi³, Jean-Claude Bertrand⁴, Pierre Doumenq¹*

¹Laboratoire de Chimie Analytique de l'Environnement, UMR 6171, IFR PMSE 112, Europôle de l’Arbois, BP 80, 13545 Aix-en-Provence Cedex 4, France
²Bogor Agricultural University, Gedung Rektorat Lt.2, Kampus IPB Darmaga, Bogor, Indonesia
³Laboratoire d'Analyses Radiochimiques et Chimiques, Commissariat à l'Énergie Atomique, Centre d'études de Cadarache, 13108 St Paul lez Durance, France
⁴Laboratoire d'Océanologie de Marseille, UMR 6535, case 901, Faculté des sciences de Luminy, Université de la Méditerranée, 13288 Marseille Cedex 9, France

email: Pierre Doumenq (pierre.doumenq@univ.u-3mrs.fr)

*Correspondence to Pierre Doumenq, Laboratoire de Chimie Analytique de l'Environnement, UMR 6171, IFR PMSE 112, Europôle de l'Arbois, BP 80, 13545 Aix-en-Provence Cedex 4, France.

Abstract

We investigated the membrane lipid composition of two hydrocarbon-degrading gram-negative bacterial strains (Pseudomonas nautica IP 617 and Marinobacter hydrocarbonoclasticus) initially cultured on a soluble substrate, then on petroleum hydrocarbons, and finally taken back onto the soluble substrate. For the two strains, the growth on petroleum and the return to the initial medium showed major, but comparable, qualitative and quantitative modifications of the intact phospholipid molecular species (IPMS) composition. Furthermore, since bacterial membranes are mainly made up of phospholipids, these modifications reflected hydrocarbon assimilation, restoration abilities and membrane fluidity adaptation. The electrospray ionization mass spectrometry (ESI-MS) analysis of intact phospholipid provided some new information (e.g. sn fatty acyl chain distribution) that could not be assessed by the classical fatty acid analysis. Moreover, such information should be particularly helpful with regards to bacterial taxonomy and xenobiotic toxicity studies. Copyright © 2005 John Wiley & Sons, Ltd.

Received: 4 July 2005; Revised: 4 October 2005; Accepted: 4 October 2005