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Abstract

Electrical Impedance Tomography, as an Inverse Problem, is calculation of the resistivity
distribution due to given boundary potential and current density distribution. Most of the
inverse problem are ill-posed, since the measurement data are limited and imperfect. This
paper describes a regularization technique for solving the ill-posed problem appeared in the
inverse EIT. In this regularization technique, a smoothing function with a regularization
parameter, is penalizing the objective function in order to obtain a regularized resistivity
update equation. The regularization parameter can be chosen from a-posteriori information.
We made comparison of 3 methods, the first method can be thought of as a discrepancy
principle, where we select an initial value of the regularization parameter by trial and error
technique. The second and third methods are methods adopted from Linear ill-posed prob-
lem, with a posteriori information characters. We presents numerically the reconstruction
using artificially generated data.
Keywords: Inverse Problems; Nonlinear ill-posed; Tikhonov Regularization ; Reconstruction
Algorithms; a-posteriori parameter.
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1 Introduction

Electrical Impedance Tomography (EIT) is a
computerized tomographic imaging technique
which is able to reconstruct an image of the dis-
tribution of electrical impedance such as resis-
tivity from a knowledge of the boundary volt-
age and current on the object. EIT offers a pos-
sibility of realizing a low cost and safe imaging
system, because it uses non-ionizing radiation
and requires relatively simple hardware. Some
promising fields of this technique are biomedi-
cal engineering, geophysics, non-destructive test,
industrial process, humanitarian demining etc.
The problem of image reconstruction in EIT
is broken into a forward and inverse problem.
The forward problem involves finding the po-
tential distribution given the resistivity distri-
bution and certain boundary condition. The
inverse problem calculates the resistivity dis-
tribution given measured potential an current
density distribution. In this study, we employ
the Finite Element Method (FEM) to solve the
forward problem, and (Tikhonov Regulariza-
tion) method to find the inverse solution where
it minimizes, iteratively, an objective function
to obtain the update resistivity distribution equa-
tion.
Almost all of the inverse problem are ill-posed.
In this case, the matrix to be inverted in the
equation for calculating the update resistivity
distribution is ill-conditioned. This leads to so-
lution of that equation may not exist, or al-
though a solution does exist, it does not stable.
We adopt the well-known Tikhonov regulariza-
tion technique to solve the ill-posed problem.
We introduce a stabilizing or a smoothing func-
tion with a regularization parameter to the ob-
jective function, then by minimizing the value
of the objective function we will obtain a reg-
ularized resistivity update equation.
This study can be seen as a continuation of [2]
in the context of [7], it is worth to notes that
[3] studied Tikhonov Regularization to solve
EIT problem studying coefficients mathemat-
ical regularity. In [8] and [9] which is forbear
of [7], they did not address in details on how to
choose the regularization parameter.

2 Reconstruction Technique

Calculation of Resistivity Distribution

To calculate the internal resistivity distribution
of an object from boundary potential and cur-
rent data, we evaluate iteratively an objective
function that describes the error between the
voltage response of the real object and that of
the model. The objective function is defined as

Π(ρk) =
1

2
(νe(ρ

k) − ν0)
T (νe(ρ

k) − ν0) (1)

Where ν0 is the potential vector measured from
the boundary object, νe(ρ

k) is the potential
vector calculated from the model of resistivity
distribution. To minimize the objective func-
tion Π(ρk), we set its derivative to zero, i.e. :

Π′(ρk) =
∂Π(ρk)

∂ρk
= 0, (2)

where

∂Π(ρk)

∂ρk
=

∂Π(ρk)

∂νe(ρk)
∂νe(ρ

k)∂ρk

= [ν ′
e(ρ

k)]T [νe(ρ
k) − ν0],

where ν ′
e(ρ

k) is the Jacobian matrix. We take
Taylor series expansion of Π(ρk) about the cur-
rent point ρk then we obtain the following equa-
tion,

Π′(ρk+1) ≈ Π′(ρk) +
∞
∑

k=2

∂Πn(ρk)

∂ρn

(∆ρk)n

n!
, (4)

We keep the linear term, then we obtain the
following equation

Π′(ρk+1) ≈ Π′(ρk) + Π′′(ρk)∆ρk = 0, (5)

The update resistivity equation can be given
by

∆ρk = −[Π′′(ρk)]−1Π′(ρk), (6)

where :
ρk+1 = ρk + ∆ρk.



The Hessian matrix, Π′′, is expressed as

Π′′(ρk) = [ν ′
e(ρ

k)]T [ν ′
e(ρ

k)] + [ν ′′
e (ρk)]

{

I × [νe(ρ
k) − ν0]

}

, (7)

where × denotes Kronecker matrix product.
The second term can be omitted since it is rela-
tively small and difficult to evaluate. Thus (7)
can be expressed as :

Π′′(ρk) = [ν ′
e(ρ

k)]T [ν ′
e(ρ

k)] (8)

Substituting (3) and (8) to the updation equa-
tion of resistivity distribution, we arrive at

∆ρk = [[ν ′
e(ρ

k)]T [ν ′
e(ρ

k)]]−1

[ν ′
e(ρ

k)]T [νe(ρ
k) − ν0]. (9)

Calculation of Boundary Potential Vec-
tor

For a given resistivity distribution ad bound-
ary condition, i.e., the potential and current
density on the boundary, the potential distri-
bution inside the object follows the governing
equation,

∇ ·
1

ρ
∇Φ = 0, in Ω (10)

with overdetermined boundary conditions :

Φ = Φ0; on ∂Ω (11)

1

ρ

∂Φ

∂η
= J0; on ∂Ω, (12)

where Φ is the potential distribution within
the medium, Φ0 is the boundary potential and
J0 is the boundary current density, and η de-
notes normal unit vector pointed outward on
the boundary. To solve the governing equa-
tion, we utilize the FEM. The region is triangu-
lated using triangular element, under assump-
tion that the electrical properties is homoge-
neous and isotropic. The FEM yields a system
of linear algebraic equations :

Y · x = I (13)

where Y is the admittance matrix, x is a volt-
age distribution vector, and I is current vector.

The boundary potential data of the model can
be calculated as follows,

νe(ρ) = Tr vec(x) (14)

where Tr denotes a transformation matrix. The
value of νe(ρ) will be compared with the voltage
measurement data in the reconstruction algo-
rithm.

3 Ill-Posed Problem

Regularization Technique

Resistivity update equation can be expressed
as :

ATAx = ATy (15)

where

A = [ν ′
e(ρ

k)];

x = ∆ρk;

y = [νe(ρ
k) − ν0].

We consider that the vector x is an unknown
function in a space X, and a vector y is in
a space Y. To solve the linear equation, we
need to calculate the inverse of ATA that con-
tain the Jacobian. The Jacobian matrix is a
function of the resistivity distribution, the in-
jected current, the geometry object, and the
boundary potential Since the limitation of that
information for y, we can not obtain the ap-
proximate solution from inverting the matrix
(AT A). This is because, mathematically, the
operator A may not belong to the mapping of
X − Y, then x may not exists, or although x
does exist, it does not stable, that is a small
perturbation on the data, i.e., the boundary
potential measurement data ν0, will cause a
large changes in the solution of update resistiv-
ity distribution. Consequently, the problem is
ill-posed, or the matrix AT A is ill-conditioned,
namely the ratio between the maximum eigen-
value and the minimum one is very large.
We adopt the well-known Tikhonov regular-
ization method to solve the ill-posed problem.
Here, a smoothing function Λ(ρk) is introduced
to the objective function, then the (1) equation
turns into :



Π(ρk) =
1

2
(νe(ρ

k)−ν0)
T (νe(ρ

k)−ν0)+αΛ(ρk).

(16)
where Λ(ρk) provides the information of resis-
tivity distribution to the objective function as a
prior information, α is a regularization param-
eter which is a positive number. We define the
smoothing function as a function of the update
resistivity distribution as follows,

Λ(ρk) = (∆ρk)T Σ(∆ρk), (17)

where Σ is a positive definite matrix. By min-
imizing the new objective function, we obtain
the following resistivity update equation.

∆ρk = [[ν ′
e(ρ

k)]T [ν ′
e(ρ

k)] + 4αΣ]−1

[ν ′
e(ρ

k)]T [νe(ρ
k) − ν0]. (18)

Observe that the equations (18) differs to (9)
in term of [4αΣ]. The matrix in (18) is more
well-conditioned as α is a positive number and
Σ is a positive definite matrix.

Parameter Selection Rule

The problem in the regularization technique is,
how to determine the regularization parame-
ter. Since when the parameter is too large, the
solution will significantly be deviated from the
correct solution, and when the parameter is too
small, it does not significantly relax the prob-
lem.

1. Here, we select an initial value by trial
and error technique and then we multi-
ply it by a positive number, say γ, that
larger than 1.0 when the value of objec-
tive function at step (k+1)−st is smaller
than the step k−th. Thus if the value of
objective function converges to the small
value, the regularization parameter also
converges to zero zero and the regular-
ized update equation becomes the origi-
nal equation. The algorithm for selection
of the regularization can be written as fol-
lows :

Step 1. Set initially α > 0, γ > 1.0
Step 2. IF Π(ρk+1) < Π(ρk) THEN

αk+1 = αk/γ
ELSEIF Π(ρk+1) ≥ Π(ρk) THEN

αk+1 = αk × γ
ENDIF

2. For each update, we solve the updating
equation (15), using non-stationary iter-
ative Tikhonov [1], i.e. :

x0 = 0

xl+1 = (A∗A) + αI)−1(αxl + A∗y),

where A denotes Jacobian terms and y as
in the update equation (15). Brakhage’s
reccomends the following, as cited in [6],
on how to choose the parameter :

αl =
||A∗(Axl−1 − y)||2

||Axl−1 − y||

3. In [4], it cited that Engl and Gferer sug-
gests a strategy to pick regularization pa-
rameter for linear ill-posed problem us-
ing Tikhonov Regularization, by finding
roots of the following :

α3[(ν(ρk) − ν0)]
t

[(αI + A · A∗)]−3[ν(ρk) − ν0] = δ2

where δ denotes ’measurement error’. In
the current programming, we employ au-
tomatic differentiation [5] in Newton-Raphson
methods to find the roots α in the formula
above.

Numerical Test

We study the algorithms with respective pa-
rameter choices using three artificially gener-
ated data sets. The first test is two regions of
contrast medium representing two phase medium
inside a pipe. The second test is a distribu-
tion of conductivities with rapidly oscillated to-
wards a boundary. And the third test is arti-
ficially shows a lateral slice of chest configura-
tion. We shows the three test cases together



with element triangulation used to generates
data artificially using finite element methods.
For each cases, we compare the nonlinear de-
fects error for each outer iterations :

dk = ‖ν(ρk) − ν0‖.

In each tests, the outer iteration is terminated
at 11th iteration, before computational error
dominates leads to unintelligible results. Fur-
thermore in this study, we pick δ = 1e−6 as the
test cases doesn’t contains measurement error.

Conclusion and Future Works.

From our numerical studies, we conclude that
two a posteriori parameter choices outperform
discrepancy methods. However, there is no in-
dication which one of the two strategies is the
best. From this study, it is left open to studying
how to stopped the iteration using a posteriori
strategy as suggested by [4]. Furthermore, it
would be of our interest to use the reconstruc-
tion algorithms for real data.
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Figure 1: Element triangulation of unit circle domain. On the left is a fine finite element
triangulation of the unit circle, on this triangulation sets of artificial data are generated for
reconstruction later. While the coarse triangulation on the right side is the one we used for
piecewise constant resistivity during reconstruction.
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Figure 2: The nonlinear defect error vs iterations for each parameter selection on each cases.
From left to right indicates cases number. On each graphs, ’+’ is for the discrepancy principles,
’x’ is for non-stationary iterative Tikhonov, and ’◦’ for the third criteria.
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Figure 3: Top row shows resistivity distribution of an artificially generated data, and columns
from left indicating each cases tested. The second row are numerical reconstruction obtained
using discrepancy principle, the third row are the resulting reconstruction using non-stationary
Iterative Tikhonov, and the last row the result from the third chosen criterion for a posteriori
parameter choice. All reconstruction stopped at 11th iteration.


