PENGARUH PENGGUNAAN FESES SAPI DAN CAMPURAN LIMBAH ORGANIK LAIN SEBAGAI PAKAN ATAU MEDIA TERHADAP PRODUKSI KOKON DAN BIOMASA CACING TANAH Eisenia fetida SAVIGNY

SKRIPSI
ERNI FARIDA

JURUSAN ILMU NUTRISI DAN MAKANAN TERNAK
FAKULTAS PETERNAKAN
INSTITUT PERTANIAN BOGOR
2000
...Sungguhnya sesuatu kesulitan ada kemudahan,
Nah, apabila kau telah selesai (dari sesuatu
kesulitan), kemudianlah dorong sungguh-sungguh
andaseh yang lien. Dan hanya kepada
Tuhaanmu lah hadapnya kau berharap
(Q.S. Alun Nasyah, 6:8)

Ku persembahkan untuk
Mamah, Bapak, Ka Irwan,
dan semua yang selalu dekat di hatiku....
Juga untuk semua pembaca....
RINGKASAN

Pembimbing Utama : Dr. Ir. H. Suryahadi, DEA
Pembimbing Anggota : Ir. Mashur, MS

Penelitian ini bertujuan untuk mendapatkan jenis pakan atau media terbaik dengan penggunaan feses sapi dan campuran limbah organik lain terhadap produksi kokon (butir) dan biomassa (jumlah dan bobot) cacing tanah Eisenia fetida.

Penelitian ini dilaksanakan di Kelurahan Bertais, Cakranegara-Mataram pada bulan Januari sampai Maret 2000. Media budidaya cacing tanah dianggap sama dengan pakan, yaitu : (1) feses sapi 100 % (FS 100), (2) campuran feses sapi 50 % dan jerami padi 50 % (CSJP 50), (3) campuran feses sapi 50 % dan limbah organik pasir 50 % (CSP 50), (4) campuran feses sapi 50 % dan limbah organik rumah tangga 50 % (CSRT 50) dan (5) campuran feses sapi 50 % dan isi rumen 50 % (CSIR 50). Cacing tanah yang digunakan adalah Eisenia fetida Savigny dewasa dengan padi penebaran 25 gram per kotak sarang. Panen dilakukan 40 hari setelah cacing tanah ditebar pada media yang telah mengalami fermentasi aerob selama 21 hari.

Rancangan percobaan yang digunakan adalah Rancangan Acak Lengkap, terdiri dari 5 perlakuan (jenis media atau pakan) dengan 3 kali ulangan. Untuk mengetahui pengaruh perlakuan terhadap peubah (produksi kokon dan biomassa) dilakukan Analisis Ragam (ANOVA) dan pengaruh perlakuan yang nyata dilanjutkan dengan uji kontras ortogonal.

Hasil penelitian ini menunjukkan bahwa jenis media atau pakan memberikan pengaruh yang sangat nyata (P<0.01) terhadap produksi kokon (butir) dan jumlah cacing tanah (ekor) dan berpengaruh nyata (P<0.05) terhadap bobot cacing tanah (gram). Produksi kokon tertinggi dihasilkan oleh media campuran kotoran sapi - limbah rumah tangga (CSRT 50) sedangkan biomassa tertinggi dihasilkan oleh media feses sapi 100% (FS 100).
ABSTRACT

ERNI FARIDA. D02496033. Implication of using cow faeces and its combination with other organic wastes as medium or feed for cocoon production and biomass of *Eisenia fetida* Savigny earthworm. Thesis. Faculty of Animal Science, Bogor Agriculture University.

Main Advisor : Dr. Ir. H. Suryahadi, DEA
Co. Advisor : Ir. Mashur, MS

Eisenia fetida is one of earthworm species that can be produced commercially in Indonesia. Refers to Gaddie and Dauglas (1977) it is better using *Eisenia fetida* to be grown in faeces and its combination with other organic wastes medium, because of its natural habitat in cattle faeces. Inspite of using organic waste, it is necessary to find out the most suitable medium for earthworm growth.

The research is intended to obtain the best medium using cow faeces and its combination with other organic wastes for cocoon production and biomass of *Eisenia fetida* earthworm.

The research was conducted from January to March, 2000 in Kelurahan Berta, Cakranegara, Mataram. The combinations of medium in which the feed is available are: (1) 100% cow faeces, (2) 50% cow faeces and 50% rice straw, (3) 50% cow faeces and 50% traditional market waste, (4) 50% cow faeces and 50% domestic household waste and (5) 50% cow faeces and 50% rumen contents. The nutrient content of those medium were analyzed after aerobic fermentation treatment for 21 days. Then *Eisenia fetida* was inoculated to the medium, and cropped after 40 days.

Completely Randomized design by 5 treatments and 3 replications were used in this research. The data was evaluated by analysis of variance (ANOVA) and the significant different was analyzed by Ortogonal contrast test.

In this research, the medium gave significant result to cocoon production (P<0.01) and to earthworm biomass (P<0.05). The medium in which of combination 50% cow faeces and 50% domestic household waste resulted the highest cocoon production, while the highest biomass was produced from 100% cow faeces medium.
PENGARUH PENGGUNAAN FESES SAPI DAN CAMPURAN LIMBAH ORGANIK LAIN SEBAGAI PAKAN ATAU MEDIA TERHADAP PRODUKSI KOKON DAN BIOMASSA CACING TANAH *Eisenia fetida* SAVIGNY

Oleh:
Erni Farida
D 02496 033

Skripsi ini telah disidangkan di hadapan Komisi Ujian Lisan pada tanggal 14 Agustus 2000 dan telah disetujui oleh:

Pembimbing Utama

[Signature]

Dr. Ir. H. Suryahadi, DEA

Pembimbing Anggota

[Signature]

Ir. Mashuri, MS

Ketua Jurusan

Ilmu Nutrisi dan Makanan Ternak
Fakultas Peternakan
Institut Pertanian Bogor

[Signature]

Dr. Ir. Nahrowi Ramli, MSc.

Dekan

Fakultas Peternakan
Institut Pertanian Bogor

[Signature]

Prof. Dr. Ir. H. Soedarmadi H. MSc.
PENGARUH PENGGUNAAN FESES SAPI DAN CAMPURAN LIMBAH ORGANIK LAIN SEBAGAI PAKAN ATAU MEDIA TERHADAP PRODUKSI KOKON DAN BIOMASSA CACING TANAH *Eisenia fetida* SAVIGNY

Skripsi ini merupakan salah satu syarat untuk memperoleh gelar Sarjana Peternakan pada Fakultas Peternakan Institut Pertanian Bogor

Oleh
ERNI FARIDA
D 02496 033

JURUSAN ILMU NUTRISI DAN MAKANAN TERNAK
FAKULTAS PETERNAKAN
INSTITUT PERTANIAN BOGOR
2000
RIWAYAT HIDUP

Penulis dilahirkan pada tanggal 2 September 1977 di Bogor, sebagai anak kedua dari tiga bersaudara, karunia Illahi yang diberikan kepada Bapak Didin Sjahbani, SH dan Ibu Tedja Wulan.

Pendidikan Dasar diawali di SDN Cipaku Bogor dan selesaikan di SDN Rawa Aren Jaya, Bekasi, kemudian Pendidikan Sekolah Menengah Pertama diakhiri di SMP 1 Lombok Tengah. Selama Sekolah Menengah Atas Penulis menempuh pendidikan di SMA I Mataram, NTB.

Selama menjadi mahasiswa, Penulis aktif di Club Profesi Makanan Ternak (tahun 1996-1997), Pengurus HIMASITER (Himpunan Mahasiswa Ilmu Nutrisi dan Makanan Ternak) (tahun 1997-1999) dan aktif dalam Unit Kegiatan bola volley IPB.
PRAKATA

Bismillaahirrahmaani'taali,

Alhamdulillah, rasa syukur tak terhingga Penulis panjatkan kehadirat Allah SWT, atas segala rahmat dan karunia-Nya sehingga skripsi ini dapat terselesaikan.

Skripsi ini disusun dalam rangka melengkapi tugas akademik dan merupakan salah satu syarat meraih gelar Sarjana Peternakan di Fakultas Peternakan, IPB. Hasil penelitian ini diharapkan menjadi informasi kepada masyarakat umum untuk mendayagunakan limbah yang umum ditemui sehari-hari dengan memanfaatkan cacing tanah sebagai hewan *decomposer*, sehingga cacing tanah maupun media *vermicomposting* akan bermanfaat dalam rangka pengembangan pertanian di masyarakat.

Pada kesempatan yang berbahagia ini Penulis menyampaikan terimakasih yang sebesar-besarnya, kepada:

1. Bapak Dr. Ir. H. Suryahadi, DEA sebagai pembimbing utama sekaligus menjadi pembimbing akademik dan Bapak Ir. Mashur, MS sebagai pembimbing anggota, yang dengan sepenuh hati telah membimbing, membagi pengalaman dan meluangkan waktu selama penelitian dan penyusunan skripsi ini.

2. Ibu Ir. Sumiati, MS sebagai dosen penguji saat seminar maupun ujian akhir dan Bapak Ir. Salundik, MS sebagai dosen penguji pada ujian akhir, atas masukan dan kebaikannya sampai penulis dapat menyelesaikan tugas akhir ini. Untuk Guru-guruku dan Dosen-dosenku yang telah memberikan Ilmu dan Bimbingannya.

4. Teman-teman “Nutrisi 33” (Hasta, Ucu, Emay, Diana, Udin, Tris, Ron-ron, Wulan, Nana.....dan semuanya) juga kak Hisbi, teman-teman “Jaika 90” (M’ Nik, M’ Rateh, Ida, Isk, Linda, Lale....dan semuanya) atas kebersamaan dan motivasinya selama ini, tak lupa juga buat teman-teman di Mataram.

Penulis juga mengucapkan terimakasih pada berbagai pihak yang tidak dapat disebutkan satu-persatu. Semoga Skripsi ini dapat bermanfaat bagi Pembaca dan kekurangan yang ada pada tulisan ini hendaknya menjadi perbaikan untuk karya tulis selanjutnya.

Bogor, Agustus 2000

Penulis
DAFTAR ISI

<table>
<thead>
<tr>
<th>Bab</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>RINGKASAN</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>RIWAYAT HIDUP</td>
<td>vi</td>
</tr>
<tr>
<td>PRAKATA</td>
<td>vii</td>
</tr>
<tr>
<td>DAFTAR TABEL</td>
<td>xi</td>
</tr>
<tr>
<td>DAFTAR GAMBAR</td>
<td>xii</td>
</tr>
<tr>
<td>DAFTAR LAMPIRAN</td>
<td>xiii</td>
</tr>
<tr>
<td>PENDAHULUAN</td>
<td>1</td>
</tr>
<tr>
<td>Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td>Tujuan Penelitian</td>
<td>3</td>
</tr>
<tr>
<td>Kegunaan Penelitian</td>
<td>3</td>
</tr>
<tr>
<td>Hipotesis</td>
<td>3</td>
</tr>
<tr>
<td>TINJAUAN PUSTAKA</td>
<td></td>
</tr>
<tr>
<td>Cacing Tanah Eisenia foetida</td>
<td>4</td>
</tr>
<tr>
<td>Faktor-faktor Lingkungan yang Mempengaruhi Produksi Kokon dan Biomassa Cacing Tanah</td>
<td>7</td>
</tr>
<tr>
<td>Limbah Organik sebagai Media atau Pakan Cacing Tanah</td>
<td>10</td>
</tr>
<tr>
<td>Pengomposan</td>
<td>12</td>
</tr>
<tr>
<td>Pemanenan Cacing Tanah</td>
<td>14</td>
</tr>
<tr>
<td>Produksi Kokon dan Biomassa</td>
<td>14</td>
</tr>
</tbody>
</table>
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Nomor</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pengaruh Temperatur terhadap Lama Menetas Kokon (Eisenia foetida)</td>
<td>9</td>
</tr>
<tr>
<td>2.</td>
<td>Kandungan Zat Makanan Media Setelah Fermentasi Tiga Minggu</td>
<td>22</td>
</tr>
<tr>
<td>3.</td>
<td>Rataan Penyusutan Bahan Organik Media Setelah Fermentasi Tiga Minggu dengan Berat Awal 2000 gram</td>
<td>23</td>
</tr>
<tr>
<td>4.</td>
<td>Rataan Temperatur, Kelembaban dan Derajat Keasaman Media Selama Pemeliharaan Cacing Tanah</td>
<td>24</td>
</tr>
<tr>
<td>5.</td>
<td>Rataan Produksi Kokon (Butir) Setelah 40 Hari Pemeliharaan</td>
<td>26</td>
</tr>
<tr>
<td>6.</td>
<td>Rataan Biomassa dalam Jumlah (ekor) dan Bobot (gram) Cacing Tanah Setelah 40 Hari Pemeliharaan</td>
<td>31</td>
</tr>
<tr>
<td>Nomor</td>
<td>Teks</td>
<td>Halaman</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>1.</td>
<td>Histogram Rataan Produksi Kokon Setelah 40 Hari Pemeliharaan.....</td>
<td>26</td>
</tr>
<tr>
<td>2.</td>
<td>Histogram Rataan Jumlah Cacing Tanah (ekor) Setelah 40 Hari Pemeliharaan</td>
<td>31</td>
</tr>
<tr>
<td>3.</td>
<td>Histogram Rataan Bobot Cacing Tanah (gram) Setelah 40 Hari Pemeliharaan</td>
<td>32</td>
</tr>
<tr>
<td>Nomor</td>
<td>Teks</td>
<td>Halaman</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>Analisis Ragam Pengaruh Media atau Pakan terhadap Produksi Kokon</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>Uji Kontras Ortogonal Pengaruh Media atau Pakan terhadap Produksi Kokon</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>Jumlah Cacing Tanah Induk (ekor) Sebelum Pemeliharaan dan Sesudah 40 Hari Pemeliharaan</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>Analisis Ragam Pengaruh Media atau Pakan terhadap Jumlah Cacing Tanah</td>
<td>44</td>
</tr>
<tr>
<td>5</td>
<td>Uji Kontras Ortogonal Pengaruh Media atau Pakan terhadap Jumlah Cacing Tanah</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>Jumlah Anak Cacing Tanah (ekor) Setelah 40 Hari Pemeliharaan</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td>Analisis Ragam Pengaruh Media atau Pakan terhadap Bobot Cacing Tanah Setelah 40 Hari Pemeliharaan</td>
<td>46</td>
</tr>
<tr>
<td>8</td>
<td>Uji Kontras Ortogonal Pengaruh Media atau Pakan terhadap Bobot Cacing Tanah Setelah 40 Hari Pemeliharaan</td>
<td>46</td>
</tr>
<tr>
<td>9</td>
<td>Bobot Induk Cacing Tanah (gram) Setelah 40 Hari Pemeliharaan</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td>Bobot Anak Cacing Tanah (gram) Setelah 40 Hari Pemeliharaan</td>
<td>47</td>
</tr>
</tbody>
</table>
PENDAHULUAN

Latar Belakang

Sehubungan dengan penggunaan berbagai limbah organik, maka perlu dilakukan penelitian untuk mengkaji pengaruh penggunaan foses sapi dan campuran limbah organik lain sebagai pakan atau media cacing tanah *Eisenia foetida*.
Tujuan Penelitian

Penelitian ini bertujuan untuk mendapatkan jenis media atau pakan terbaik dalam menghasilkan kokon dan biomassa (jumlah dan bobot) tertinggi dengan memanfaatkan feses sapi dan campuran limbah organik lain sebagai media atau pakan cacing tanah *Eisenia fetida*.

Kegunaan Penelitian

Hasil penelitian ini diharapkan dapat menjadi salah satu sumber informasi bagi masyarakat dalam mengembangkan budidaya cacing tanah *Eisenia fetida*.

Hipotesis

Diduga bahwa penggunaan feses sapi dan campuran limbah organik lain sebagai media atau pakan berpengaruh terhadap produksi kokon dan biomassa (jumlah dan bobot) cacing tanah *Eisenia fetida*.
TINJAUAN PUSTAKA

Cacing Tanah (*Eisenia foetida*)

Ciri morfologi *Eisenia foetida* adalah panjang tubuh berkisar antara 32-130 mm dengan diameter 2-4 mm, jumlah segmen antara 80-110, bentuk tubuh silindris, jumlah seta per segmen delan dan tipe *prostomium epilobus*. *Eisenia foetida* berwarna merah, ungu atau coklat dengan bagian dorsal berpigmen merah-coklat atau tidak berpigmen dengan warna antar segmen kuning (Lee, 1959).

Sistem pencernaan cacing tanah kurang sempurna. Kemampuannya dalam menghancurkan limbah organik selain ditentukan oleh enzim amilase, protease, selulase, dan kitinase yang dihasilkan dari saluran pencernaanannya, juga banyak

Organ eksresi terpenting cacing tanah adalah nefrida, yang menyaring bahan-bahan tidak berguna dari cairan coelom dan mensekresikannya sebagai urin yang mengandung amonia dan urca. Selain itu cacing tanah juga mensekresikan bahan yang mengandung nitrogen tinggi melalui dinding tubuh sebagai mukus. Kira-kira
setengah dari total nitrogen diekresikan per hari dalam mokus ini (Edward dan Lofty, 1977).

Darrah cacing tanah terdiri dari cairan plasma yang berisi sel darah putih (leukosit) dan darah merah (haemoglobin). Sistem peredaran darahnya adalah tertutup karena darah mengalir ke bagian-bagian tubuh melalui pembuluh darah. Darah dialirkan dari lima pasang jantung ke saluran darah perut untuk dikirim kebagian-bagian tubuh. Darah kembali masuk jantung melalui saluran darah punggung. Dalam proses peredaran darah terjadi pengangkutan zat makanan dan oksigen ke sel-
sel atau jaringan tubuh dengan melepaskan CO₂ ke udara. Darah yang mengandung O₂ akan masuk kembali ke dalam jantung (Rukmana, 1999).

Faktor-faktor Lingkungan yang Mempengaruhi Produksi Kokon dan Biomassa Cacing Tanah

Lee (1985) membagi faktor-faktor lingkungan yang berpengaruh terhadap kehidupan cacing tanah menjadi dua yaitu: (1) lingkungan fisik meliputi kelembaban, temperatur, cahaya, tekstur tanah, kebutuhan O₂ dan CO₂ untuk pernafasan, (2) lingkungan kimia meliputi C, N, C/N ratio, pH, konsentrasi elektrolit dan potensial oksidasi reduksi. Menurut Simandjuntak dan Waluyo (1982) media sebagai tempat hidup cacing tanah harus memiliki beberapa faktor yang saling terkait satu dengan yang lain untuk mendukung kehidupannya, yaitu: pakan, temperatur, kelembaban, derajat keasaman (pH), aerasi, cahaya, kepadatan populasi dan pemangsa (predator).

Ketersediaan Pakan

Dalam pemberian pakan perlu disesuaikan dengan biologi dan tingkah laku cacing tanah. Oleh karena itu beberapa hal yang harus diperhatikan adalah: memberikan pakan dipermukaan media, menutup permukaan media, memberikan pakan sesuai dengan potensi dan daya makannya, memberikan pakan yang
mengandung air 75% dan bahan padat 25%, mengaduk media supaya pakan tercampur merata dan aerasi dapat berjalan baik (Rukmana, 1999).

Temperatur

Sihombing (2000) cacing tanah *Eisenia fetida* tergolong spesies yang peka terhadap temperatur lingkungan hidupnya, salah satu contoh adalah temperatur sangat berperan terhadap lama menetas kokon seperti yang ditunjukkan dalam Tabel 1.

<table>
<thead>
<tr>
<th>Temperatur Media (°C)</th>
<th>Lama Menetas (Hari)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-30</td>
<td>12-14</td>
</tr>
<tr>
<td>20</td>
<td>36</td>
</tr>
<tr>
<td>15</td>
<td>49</td>
</tr>
<tr>
<td>10</td>
<td>112</td>
</tr>
</tbody>
</table>

Sumber: Sihombing (2000)

Kelembaban

Derajat Keasaman Media (pH)

Keasaman media yang ideal bagi cacing tanah adalah 6-7,2 dimana bakteri dalam tubuh cacing tanah dapat bekerja optimal untuk mengubah atau memecah bahan makanan sehingga membantu cacing tanah yang hanya memiliki sedikit enzim pencerna (Palungkun, 1999). *Eisenia fetida* menyukai pH netral sampai sedikit
alkali, yaitu pH 7,0–8,0. Keasaman media dapat diatasi dengan menambahkan kapur (CaCO₃), sedangkan bila media alkalis dapat ditambahkan sisa–sisa lumut, kertas koran, air hujan dan sisa buah-buahan yang mengandung asam (Sihombing, 1999).

Hasil penelitian Meliyani (1999) dengan menggunakan feses sapi yang difermentasi selama tiga minggu, maka penambahan kapur memberikan pengaruh yang nyata terhadap bobot tubuh cacing tanah dan jumlah kokon. Level pemberian kapur terbaik adalah 3%.

Limbah Organik sebagai Media atau Pakan Cacing Tanah

Limbah merupakan bahan sisa aktivitas kehidupan manusia, hewan, maupun tumbuhan yang terbuang dan belum mempunyai nilai ekonomis. Keberadaan limbah dapat menimbulkan dampak negatif terhadap lingkungan, yaitu sebagai penyebab polusi dan timbulnya penyakit.

Bahan organik yang kurang dimanfaatkan seperti daun-daunan, limbah rumah tangga, limbah pertanian, kotoran ternak dan sisa-sisa makanan ternak maupun manusia dan berbagai limbah industri dapat ditingkatkan pemanfaatannya melalui cacing tanah, asalkan limbah tersebut terhindar dari bahan-bahan yang berbahaya seperti cuka, asam, garam, air sabun, cat dan sebagainya (Sihombing, 2000).

Cara lain untuk meningkatkan daya guna dan hasil guna dari limbah ternak adalah sebagai media budidaya cacing tanah. Waluyo et al., (1990) berpendapat metode pengolahan sampah dengan beternak cacing tanah merupakan metode daur ulang yang sempurna, lebih murah, alami dan tidak merusak lingkungan. Kotoran
hewan merupakan habitat utama cacing tanah dan hampir sempurna sebagai makanan maupun sarang (Sihombing, 2000). Penggunaan kotoran hewan 100% merupakan media reproduksi yang bertujuan untuk merangsang produksi kokon agar populasi cacing menjadi lebih banyak (Palungkun, 1999).

Menurut Schemidt et al., (1988) seekor sapi perah menghasilkan feses 7-8% dari bobot badan setiap hari. Markel (1981) menyatakan bahwa seekor sapi menghasilkan feses 36-45 kg per hari dengan total bahan padat 18-30%, pH 6,6-6,8 dan nisbah C/N 18. Menurut Abbot dan Parker (1981) feses sapi perah berdasarkan bahan keringnya mengandung N 1,65%, P 0,50% dan K 2,30% serta protein kasar 10,30%.

Penggunaan jerami padi sebagai campuran media untuk beternak cacing tanah cukup potensial, karena dengan pengomposan terlebih dahulu (sebelum media ditanam cacing), maka kualitas jerami padi akan meningkat. Jerami padi juga sebagai sumber serat yang akan memperbaiki porositas media, yang dibutuhkan untuk mempertahankan kelembaban media. Hasil penelitian Muslichah (1994) menunjukkan bahwa fermentasi aerob jerami padi selama tiga minggu dengan menggunakan mikroba asal tanah menurunkan serat kasar terbaik (serat kasar 27,95%) daripada tanpa fermentasi (serat kasar 32,13%).

Penggunaan limbah rumah tangga sebagai media cacing tanah harus memenuhi syarat untuk pakan yaitu rasa asin, minyak dan pedasnya tidak berlebihan (Palungkun, 1999). Dalam penggunaannya, limbah organik rumah tangga dapat dicuci terlebih dahulu, untuk menghindari zat-zat yang tidak disukai cacing tanah.

Sampah organik pasar termasuk tipe sampah yang digolongkan berdasarkan bahan nutrisinya, berbentuk padat dan cair yang berasal dari kegiatan perdagangan di pasar (Hadiwiyoto, 1983) serta mengandung unsur karbon yang relatif tinggi, tercermin dari C/N-nya yaitu 41,2 (LP-IPB, 1986).

Pengomposan

Cacing tanah lebih menyukai bahan organik yang sedang mengalami proses dekomposisi, daripada yang sudah terdekomposisi atau masih terlalu segar (Minnich, 1977). Oleh karena itu, media yang digunakan untuk cacing tanah sebaiknya mengalami dekomposisi terlebih dahulu. Susanti (1995) menyatakan adanya kecenderungan peningkatan bobot badan, produksi kokon dan persentase penyusutan media seiring dengan bertambahnya lama pengomposan (waktu pengomposan 0 sampai 4 minggu) sebelum media ditanam cacing tanah.

Golueke (1975) mendefinisikan pengomposan sebagai proses dekomposisi bahan organik secara biologi di bawah kondisi lingkungan yang terkontrol. Proses dekomposisi yang terjadi dapat berlangsung secara aerobik maupun anaerobik. Reaksi yang terjadi pada proses pengomposan secara aerobik adalah sebagai berikut:

\[
\text{Aktivitas} \quad \text{Bahan organik} \quad \xrightarrow{\text{Mikroorganisme}} \quad \text{CO}_2 + \text{H}_2\text{O} + \text{Hara} + \text{Humus} + \text{Energi}
\]

Faktor lingkungan yang mempengaruhi proses pengomposan adalah kelembaban, temperatur, derajat keasaman (pH), konsentrasi dan ketersediaan

Pemanenan Cacing Tanah

Produksi Kokon dan Biomasa

MATERI DAN METODE

Bahan dan alat

Alat yang digunakan adalah kotak sarang berupa pot tanah liat atau gerabah dengan ukuran volume lima liter media, termometer tanah, termometer ruang, soil tester, timbangan (Triple Beam Balance kapasitas 261 gram dan Sartorius kapasitas lima kilogram), plastik penutup, ember, hand sprayer, parang, karung goni, wadah plastik, pisau.
Tempat dan Waktu

Analisis laboratorium kandungan zat-zat makanan bahan media atau pakan cacing tanah dilaksanakan di Laboratorium Balai Penelitian Bioteknologi Tanaman Pangan Cimanggu Bogor.

Metode Penelitian

Pembuatan Media atau Pakan Cacing Tanah

Dalam penelitian ini media budidaya dianggap sama dengan pakan, artinya selain sebagai tempat hidup juga berfungsi sebagai pakan cacing tanah.

Jenis media atau pakan yang dikaji dalam penelitian ini adalah:

1. Feses sapi 100% (FS 100)
2. Campuran feses sapi 50% dan jerami padi 50% (CSJP 50)
3. Campuran feses sapi 50% dan limbah organik pasar 50% (CSP 50)
4. Campuran feses sapi 50% dan limbah organik rumah tangga 50% (CSRT 50)
5. Campuran feses sapi 50% dan isi rumen 50% (CSIR 50)

Pembuatan media dilakukan dengan menyiapkan bahan organik media. Feses sapi dan isi rumen segar dapat langsung digunakan, sedangkan limbah organik pasar, limbah organik rumah tangga dan jerami padi segar dicuci dengan air kemudian ditirisakan dan dipotong dengan ukuran 2-3 cm. Media yang difermentasi
sebanyak 2 kg, sebagai media awal bagi cacing tanah. Masing-masing bahan dengan berat 2 kg untuk perlakuan yang tidak dicampur (100% kotoran sapi) dan 1 kg untuk perlakuan campuran kotoran sapi dengan limbah organik lain (50% : 50%) dimasukan ke dalam pot tanah liat (kotak sarang) kemudian ditambahkan kapur masing-masing 0.3% atau 3 g/kg media. Bahan media diaduk hingga merata, selanjutnya difermentasi selama tiga minggu. Media yang telah difermentasi dianalisis kandungan zat makanannya (analisis proksimat), N, C, K, P, rasio C/N, dan kandungan bahan organik. Selama fermentasi bahan media atau pakan diaduk seminggu sekali.

Penanaman dan Pemeliharaan Cacing Tanah

Media yang telah selesai fermentasi diangin-anginkan selama tiga hari untuk mengurangi panas dan gas-gas yang masih ada. Setelah itu dilakukan uji biologis untuk mengetahui apakah media tersebut sesuai atau tidak untuk kehidupan cacing tanah. Uji biologis dilakukan dengan cara mengambil contoh media sebanyak 50 gram ke dalam mangkuk plastik dan selanjutnya dimasukan lima ekor cacing tanah. Apabila dalam waktu 2 X 24 jam cacing tanah tersebut tidak mati, maka media sudah dapat digunakan sebagai media atau pakan cacing tanah.

Cacing tanah dipelihara dalam kotak sarang berupa pot tanah liat, dengan berat 25 g/kotak sarang. Penebaran dilakukan dengan membuat lubang di tengah media, setelah itu lubang ditutup kembali. Selama pemeliharaan dilakukan dua kali penambahan media, yaitu pada hari ke-10 hingga jumlah media atau pakan 1500
gram, dan hari ke-20 sehingga total media untuk pemeliharaan sebanyak 2500 gram. Pembalikan media atau pakan dilakukan pada hari ke-10, 20 dan 30.

Untuk menghindari dari beberapa predator dan mengurangi penguapan, kotak kotak sarang (yang ditempatkan pada lantai) ditutup dengan karung plastik dan disekeliling kotak sarang diberi kapur pembasmi insektisida (*Miraculous Insecticide Chalk*). Seluruh kotak sarang ditempatkan dalam kandang budidaya yang beratap alang-alang.

Selama berlangsung penelitian dilakukan pengukuran temperatur lingkungan kandang, temperatur, kelembaban dan derajat keasaman (pH) media. Pengukuran suhu lingkungan dilakukan setiap hari pada pukul 06.00, 13.00 dan 20.00. Sedangkan pengukuran temperatur, pH dan kelembaban media dilakukan pukul 13.00 dalam waktu dua hari sekali. Apabila suhu media ataupun lingkungan di dalam kandang mengalami peningkatan, maka dilakukan penyemprotan air dengan handsprayer terhadap media untuk menjaga kestabilan temperatur dan kelembaban media.

Pemanenan Cacing Tanah

Panen dilakukan 40 hari setelah pemeliharaan cacing tanah dengan menghitung jumlah kokon (butir), biomassa dalam jumlah (ekor) dan bobot (gram). Pengambilan cacing tanah dilakukan dengan metode *handsorting*.

Parameter yang Diukur

Parameter yang diukur dalam penelitian ini adalah:

1. Produksi kokon (butir)
2. Biomassa dinyatakan dalam jumlah (ekor) dan bobot (gram)
Rancangan Percobaan dan Analisis Data

Rancangan percobaan yang digunakan pada penelitian ini adalah Rancangan Acak Lengkap (RAL), terdiri dari lima perlakuan (jenis media atau pakan) dengan tiga kali ulangan.

Model matematika yang digunakan untuk menggambarkan pengaruh jenis bahan atau pakan cacing tanah terhadap produksi kokon dan bobot biomassa pada percobaan ini adalah :

\[Y_{ij} = \mu + \tau_i + \varepsilon_{ij} \]

keterangan :

\(Y_{ij} \) = perlakuan jenis pakan atau media ke-\(i \) ulangan ke-\(j \)
\(\mu \) = rataan umum
\(\tau_i \) = pengaruh jenis pakan atau media cacing tanah ke-\(i \) (\(i = 1,2,3,4,5 \))
\(\varepsilon_{ij} \) = galat percobaan

Untuk mengetahui pengaruh perlakuan terhadap parameter yang diamati, dilakukan Analisis Ragam (ANOVA) (Steel dan Torrie, 1993). Selanjutnya pengaruh perlakuan yang nyata dilanjutkan dengan Uji Kontras Ortonal.
HASIL DAN PEMBAHASAN

Faktor-faktor yang Mempengaruhi Produksi Kokon dan Biomassa
(Kondisi Umum Media Penelitian)

Ketersediaan Pakan atau Media

Hasil fermentasi bahan media atau pakan selama tiga minggu menunjukkan bahwa telah terjadi penyusutan media, warna media telah berubah dari asalnya, media tidak berbau busuk atau menyengat dan hal terpenting adalah tersedianya nutrien bagi cacing tanah seperti disajikan pada Tabel 2.

<table>
<thead>
<tr>
<th>Zat Makanan (%)</th>
<th>Media Perlakuan</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FS 100</td>
<td>CSJP 50</td>
<td>CSP 50</td>
<td>CSRT 50</td>
<td>CSIR 50</td>
</tr>
<tr>
<td>Kadar air</td>
<td>15.37</td>
<td>14.85</td>
<td>15.52</td>
<td>18.67</td>
<td>16.08</td>
</tr>
<tr>
<td>Kadar abu</td>
<td>51.97</td>
<td>38.1</td>
<td>41.74</td>
<td>40.30</td>
<td>33.74</td>
</tr>
<tr>
<td>Serat kasar</td>
<td>16.21</td>
<td>15.90</td>
<td>21.54</td>
<td>16.20</td>
<td>18.44</td>
</tr>
<tr>
<td>Protein kasar</td>
<td>10.62</td>
<td>10.86</td>
<td>11.73</td>
<td>13.73</td>
<td>11.50</td>
</tr>
<tr>
<td>Lemak</td>
<td>0.54</td>
<td>0.35</td>
<td>0.05</td>
<td>0.17</td>
<td>0.18</td>
</tr>
<tr>
<td>Kadar N</td>
<td>1.70</td>
<td>1.74</td>
<td>1.88</td>
<td>2.20</td>
<td>1.84</td>
</tr>
<tr>
<td>Kadar C</td>
<td>26.68</td>
<td>34.59</td>
<td>32.37</td>
<td>33.13</td>
<td>36.31</td>
</tr>
<tr>
<td>Rasio C/N</td>
<td>15.69</td>
<td>19.88</td>
<td>17.22</td>
<td>15.06</td>
<td>20.01</td>
</tr>
<tr>
<td>Bahan organik</td>
<td>45.85</td>
<td>59.49</td>
<td>55.67</td>
<td>57.05</td>
<td>63.31</td>
</tr>
<tr>
<td>Phosfor</td>
<td>0.49</td>
<td>0.30</td>
<td>0.53</td>
<td>0.53</td>
<td>0.67</td>
</tr>
<tr>
<td>Kalium</td>
<td>1.11</td>
<td>1.10</td>
<td>1.26</td>
<td>1.32</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Keterangan:
FS 100 = Feses sapi 100 %
CSJP 50 = Campuran feses sapi 50 % dan jerami padi 50 %
CSP 50 = Campuran feses sapi 50 % dan limbah organik pasar 50 %
CSRT 50 = Campuran feses sapi 50 % dan limbah organik rumah tangga 50 %
CSIR 50 = Campuran feses sapi 50 % dan isi rumen 50 %

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Media atau Pakan</th>
<th>Rataan jumlah media (gram)</th>
<th>Rataan persentase penyusutan (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FS 100</td>
<td>963</td>
<td>51.2</td>
</tr>
<tr>
<td>2</td>
<td>CSJP 50</td>
<td>1053</td>
<td>47.2</td>
</tr>
<tr>
<td>3</td>
<td>CSP 50</td>
<td>507</td>
<td>74.7</td>
</tr>
<tr>
<td>4</td>
<td>CSRT 50</td>
<td>607</td>
<td>66.5</td>
</tr>
<tr>
<td>5</td>
<td>CSIR 50</td>
<td>767</td>
<td>61.7</td>
</tr>
</tbody>
</table>
Temperatur, Kelembaban, dan Derajat keasaman (pH) Media

Rataan temperatur, kelembaban dan pH media selama pemeliharaan cacing tanah disajikan dalam Tabel 4.

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Media atau Pakan</th>
<th>Rataan Temperatur (°C)</th>
<th>Rataan Kelembaban (%)</th>
<th>Rataan Derajat keasaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FS 100</td>
<td>27.8 ± 0.656</td>
<td>59.4 ± 14.597</td>
<td>6.3 ± 0.325</td>
</tr>
<tr>
<td>2</td>
<td>CSJP 50</td>
<td>27.4 ± 0.507</td>
<td>63.4 ± 13.200</td>
<td>6.3 ± 0.423</td>
</tr>
<tr>
<td>3</td>
<td>CSP 50</td>
<td>27.6 ± 0.604</td>
<td>50.1 ± 21.912</td>
<td>6.6 ± 0.215</td>
</tr>
<tr>
<td>4</td>
<td>CSRT 50</td>
<td>27.9 ± 0.597</td>
<td>56.5 ± 21.488</td>
<td>6.5 ± 0.399</td>
</tr>
<tr>
<td>5</td>
<td>CSIR 50</td>
<td>27.8 ± 0.470</td>
<td>57.1 ± 18.556</td>
<td>6.5 ± 0.310</td>
</tr>
</tbody>
</table>

Temperatur media selama penelitian berkisar 27.4-27.9°C dengan rataan 27.7°C dan keragaman 0.189. Temperatur lingkungan kandang selama penelitian adalah pagi hari berkisar 24-28.5°C, siang hari berkisar 27-34°C sedangkan malam hari pada kisaran 25-30°C. Temperatur tersebut akan mempengaruhi kondisi media, karena media akan mengalami evaporasi yang lebih tinggi dengan meningkatnya temperatur.

Kelembaban media selama penelitian berkisar 50.8-60.9% dengan rataan 56.9% dan keragaman 3.78. Kelembaban media dipengaruhi oleh kandungan serat media yang akan menciptakan rongga-rongga. Rongga-rongga tersebut akan terisi oleh udara dan air sehingga dapat mempertahankan kelembaban. Selama
pemeliharaan cacing tanah, kelembaban media CSJP 50 lebih stabil dari pada media lain.

Cacing tanah sangat sensitif terhadap keasaman media, pH media pada kisaran 6,3–6,6 dengan rataan 6,4 dan keragaman 0,105. Pengukuran pada berbagai media membawa hasil pH cenderung seragam, hal tersebut sebagai pertanda bahwa pemberian kapur sebanyak 0,3% per kg media pada fermentasi bahan media, mampu menetralisir pH. Keseragaman pH tersebut dapat menggambarkan bahwa dari segi pH, cacing tanah yang dicobakan memiliki daya adaptasi yang tidak jauh berbeda, sehingga tinggal bagaimana faktor lain akan mempengaruhinya.

Aerasi media pada FS 100, CSIR 50 dan CSJP 50 lebih baik ditunjukkan dari struktur media yang lebih remah dan halus daripada CSRT 50 dan CSP 50 yang cenderung berbentuk bubur dan memadat. Kondisi media tersebut dipengaruhi oleh bahan penyusunnya. Namun dengan pembalikan terhadap semua media, akan mencegah terakumulasinya asam dan zat yang tidak disukai atau membahayakan cacing tanah dan aerasi akan berjalan lebih baik. Hal ini menunjang aktivitas cacing tanah untuk lebih aktif dalam mencari makan maupun mencari pasangan untuk perkawinan.
Pengaruh Jenis Media atau Pakan terhadap Produksi Kokon dan Biomassa Cacing Tanah

Produksi Kokon

Pemeliharaan cacing tanah selama 40 hari menghasilkan rataan produksi kokon yang disajikan dalam Tabel 5 dan dalam bentuk histogram pada Gambar 1.

Tabel 5. Rataan Produksi Kokon (butir) setelah 40 Hari Pemeliharaan

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Media atau Pakan</th>
<th>Kokon (butir)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kotoran sapi 100%</td>
<td>115.0<sup>a</sup></td>
</tr>
<tr>
<td>2</td>
<td>Campuran kotoran sapi 50% dan jerami padi 50%</td>
<td>59.7<sup>a</sup></td>
</tr>
<tr>
<td>3</td>
<td>Campuran kotoran sapi 50% dan limbah organik pasar 50%</td>
<td>207.7<sup>b</sup></td>
</tr>
<tr>
<td>4</td>
<td>Campuran kotoran sapi 50% dan limbah organik rumah tangga 50%</td>
<td>318.3<sup>b</sup></td>
</tr>
<tr>
<td>5</td>
<td>Campuran kotoran sapi 50% dan isi rumen 50%</td>
<td>100.0<sup>a</sup></td>
</tr>
</tbody>
</table>

Keterangan: Superskrip yang berbeda pada kolom yang sama menunjukkan pengaruh media atau pakan berbeda sangat nyata (P<0.01)

Gambar 1. Histogram Rataan Produksi Kokon setelah 40 Hari Pemeliharaan
Hasil analisis ragam (Lampiran 1) menunjukkan bahwa produksi kokon sangat nyata dipengaruhi oleh jenis pakan atau media. Melalui uji kontras ortogonal (Lampiran 2) memperlihatkan bahwa media CSRT 50 dan CSP 50 berbeda sangat nyata \((P < 0.01) \) dengan ketiga jenis media lainnya. Di antara media FS 100, CSJP 50 dan CSIR 50 tidak memberikan pengaruh yang berbeda nyata.

Media CSRT 50 menghasilkan kokon tertinggi sangat erat kaitannya dengan ketersediaan (kualitas dan kuantitas) pakan. Kualitas zat makanan CSRT 50 terutama kandungan protein kasar sangat menunjang untuk menghasilkan kokon tertinggi. Keeratan hubungan protein kasar dengan produksi kokon terbukti pada media CSRT 50 dan CSP 50 dengan kandungan protein kasar lebih tinggi dari media lain menghasilkan rataan jumlah kokon lebih banyak. Media CSRT 50 rata-rata menghasilkan 318 kokon dengan kandungan protein kasar 13.73% dan media CSP 50 dengan kandungan protein kasar 11.73% menghasilkan rata-rata jumlah kokon 207

Selama 40 hari pemeliharaan, rataan jumlah cacing tanah dewasa pada media CSRT 50 mengalami penambahan (Lampiran 3), sehingga potensi cacing tanah dewasa untuk melakukan perkawinan dan menghasilkan kokon semakin tinggi. Selain itu peningkatan jumlah cacing tanah pada media CSRT 50 tidak sepesat media FS 100 dan CSJP 50, hal ini menjadikan jumlah media semakin tersedia untuk cacing tanah dan kondisi media yang lebih lapuk dan basah mempermudah cacing tanah untuk mengkonsumsi pakan. Jadi dengan didukung oleh kualitas dan kuantitas pakan atau media yang baik, maka setiap cacing tanah dewasa pada media CSRT 50 akan mampu memproduksi kokon sampai menjelang pemanenan.

Media CSJP 50 merupakan media yang menghasilkan kkokon terendah. Kondisi media CSJP 50 terutama tekstur media yang berserat akan menciptakan aerasi lebih baik yang berpengaruh terhadap kecepatan reproduksi cacing tanah

Temperatur media selama penelitian berkisar 27.4–27.9°C merupakan kisaran normal dengan diimbangi oleh kecukupan air media. Media CSRT 50 sebagai penghasil kokon tertinggi memiliki rataan temperatur media (27.9°C) yang paling mendekati temperatur optimal, hal tersebut sangat menunjang untuk kegiatan reproduksi yang optimal. Gates (1972) menyatakan bahwa cacing tanah *Eisenia fetida* dewasa dapat berkembangbiak pada temperatur 32°C dan temperatur 28°C merupakan temperatur optimal.

bahwa kelembaban yang dibutuhkan cacing tanah adalah 50-80%. Kelembaban selama penelitian dapat dikatakan pada kisaran normal untuk memproduksi kokon, walaupun belum mencapai kelembaban optimum. Kisaran normal menunjukkan bahwa aktivitas menghasilkan kokon tidak terganggu oleh kelembaban media. Kelembaban yang rendah dapat dialami oleh media sebelum dilakukan penyemprotan air.

Biomassa Cacing Tanah

Biomassa yang dihasilkan selama pemeliharaan 40 hari adalah dalam satuan jumlah (ekor) dan bobot (gram) cacing tanah. Biomassa tersebut menggambarkan populasi cacing tanah yang terdapat dalam setiap media, hal ini sesuai pendapat Anas (1990) bahwa cara yang paling baik untuk menyatakan populasi adalah dalam jumlah dan bobot. Rataan biomassa yang dihasilkan disajikan dalam Tabel 6 dan dalam bentuk histogram pada Gambar 2 dan 3.
Tabel 6. Rataan Biomassa dalam Jumlah (ekor) dan Bobot (gram) Cacing Tanah setelah 40 hari Pemeliharaan

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Media atau Pakan</th>
<th>Rataan jumlah (ekor)</th>
<th>Rataan bobot (gram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FS 100</td>
<td>937.3a</td>
<td>50.53b</td>
</tr>
<tr>
<td>2</td>
<td>CSJP 50</td>
<td>924.3d</td>
<td>41.23a</td>
</tr>
<tr>
<td>3</td>
<td>CSP 50</td>
<td>161.0a</td>
<td>35.17a</td>
</tr>
<tr>
<td>4</td>
<td>CSRT 50</td>
<td>402.0b</td>
<td>42.52a</td>
</tr>
<tr>
<td>5</td>
<td>CSIR 50</td>
<td>608.3c</td>
<td>49.87b</td>
</tr>
</tbody>
</table>

Keterangan: Superskrip yang berbeda pada kolom yang sama menunjukkan pengaruh media atau pakan berbeda nyata (P<0.05)

Gambar 2. Histogram Rataan Jumlah Cacing Tanah (ekor) Setelah 40 Hari Pemeliharaan
Rataan jumlah anak dan induk yang dihasilkan selama pemeliharaan 40 hari adalah 606,6 ekor dengan variasi 335,7 ekor. Hasil analisis ragam (Lampiran 4) menunjukkan setiap jenis media memberikan pengaruh yang sangat nyata \((P < 0.01) \) terhadap jumlah cacing tanah. Melalui uji kontras ortogonal (Lampiran 5) terlihat bahwa media FS 100, CSJP 50 dan CSIR 50 memberikan jumlah cacing tanah diatas rata-rata dan perbandingan media FS 100 dan CSJP 50 berbeda sangat nyata terhadap media CSIR 50. Media CSRT 50 dan CSP 50 keduanya memberi pengaruh yang berbeda nyata.

Gambar 3. Histogram Rataan Bobot Cacing Tanah (gram) Setelah 40 hari Pemeliharaan

Jumlah anak yang dihasilkan pada setiap jenis media (Lampiran 6) ditentukan oleh beberapa faktor, seperti jumlah kokon yang mampu menetas dan kondisi media yang mendukung untuk kehidupan cacing tersebut. Kecenderungan bahwa media yang menghasilkan jumlah anak yang rendah dari rataan (media CSP 50 dan CSRT 50) menghasilkan jumlah kokon yang lebih tinggi, hal ini sangat berhubungan dengan daya tetas kokon. Selain itu anak cacing membutuhkan adaptasi yang lebih baik daripada cacing tanah dewasa, sehingga kondisi media akan sangat
menentukan agar dapat bertahan hidup dan berkembang. Pada media CSP 50 dan CSRT 50 banyak ditemukan predator berupa "belatung" yang kemungkinan disebabkan oleh bahan-bahan media yang membusuk, sehingga anak cacing akan bersaing dalam mendapatkan nutrien media dan ruang hidup. Hal ini menjadi salah satu penyebab rendahnya jumlah anak yang dihasilkan.

Rataan bobot cacing tanah pada setiap jenis media adalah 43.86 gram dengan keragaman 6.42 gram. Hasil analisis ragam pengaruh media terhadap bobot (gram) cacing tanah (Lampiran 7) memperlihatkan bahwa jenis media memberikan pengaruh yang nyata (P<0.05). Melalui uji kontras ortogonal (Lampiran 8), pengaruh media FS 100 dan CSIR 50 berbeda sangat nyata dibandingkan dengan media lain.

Media FS 100 menghasilkan biomassa tertinggi yang menunjukkan bahwa jumlah cacing tanah yang tinggi diikuti oleh tingginya bobot cacing tanah. Kotoran hewan merupakan habitat utama cacing tanah dan hampir sempurna sebagai makanan maupun sarang (Sihombing, 2000). Lebih lanjut Palungkun (1999) kotoran hewan 100% merupakan media reproduksi yang bertujuan untuk merangsang produksi kokon agar populasi cacing tanah menjadi lebih banyak. Gaddie dan Douglas (1975) menyatakan bahwa kotoran hewan khususnya sapi merupakan bahan media untuk habitat cacing tanah yang sangat baik dibandingkan kotoran hewan lainnya. Kotoran ternak mengandung enzim yang dapat meningkatkan kerjanya sistem pencernaan. Faktor lain yang menunjang media FS 100 menghasilkan biomassa tertinggi adalah media FS 100 menghasilkan jumlah anak tertinggi. Dengan kondisi media yang sangat sesuai dan mendukung, maka anak tersebut akan mengikuti fase pertumbuhan yang cepat dan diikuti oleh pertambahan bobot badan yang tinggi. Bobot per anak
cacing tanah yang dihasilkan media FS 100 tertinggi (Lampiran 9), sehingga bobot anak dan induk pada akhir pemeliharaan tertinggi dari media lain.

Media CSJP 50 menghasilkan jumlah anak yang tidak berbeda nyata dengan media FS 100, namun bobot cacing yang dihasilkan tidak setinggi pada media FS 100. Hal ini menunjukkan bahwa peningkatan jumlah cacing tanah tidak selalu berkorelasi positif dengan bobot cacing tanah. Dalam hal ini bobot induk per ekor sangat menentukan, karena media CSJP 50 menghasilkan bobot induk per ekor terendah yang diperlihatkan pada Lampiran 10 dan total bobot induk pada akhir pemeliharaan mengalami penurunan (25 menjadi 19.6 gram). Selain itu jumlah anak cacing yang tinggi tidak diikuti penambahan bobot yang tinggi seperti media kotoran sapi 100\% karena dari segi performance anak cacing tersebut lebih kecil dan ramping dari anak cacing media lain. Porositas media CSJP 50 memang menunjang untuk mempertahankan kelembaban dan sirkulasi udara yang lebih baik, namun ketersediaan zat makanan yang akan menetukan bobot cacing tanah.

Media CSIR 50 cukup potensial untuk menghasilkan biomassa yang baik, karena menghasilkan jumlah cacing tanah diatas rata-rata dengan bobot akhir yang tinggi. Isi rumen merupakan media potensial untuk cacing tanah. Komposisi zat makanan isi rumen sapi Ongole yang diberi pakan jerami padi adalah: bahan kering 100 \%; protein kasar 8-8.45\%; lemak kasar 1.23-1.79\%; serat kasar 33.53-34.11\%; kadar abu 16.19-17.20 \%; BETN 31.11-33.51\% (Abbas, 1987). Melalui fermentasi, maka CSIR 50 memiliki kandungan protein kasar yang lebih tinggi yaitu 11.50 \% dan serat kasar menjadi 18.44 \%, hal tersebut suatu keuntungan bagi cacing tanah. Media CSIR 50 menghasilkan jumlah anak yang relatif tinggi dan tingkat kematian
yang rendah. Bila dibandingkan dengan hasil penelitian Subekti (1996) dalam media campuran kotoran sapi dan isi rumen (50%:50%) tingkat kematian cacing tanah yang dipelihara kali ini lebih rendah.

Tingkat kepadatan populasi yang rendah dan ketersediaan zat makanan sangat menunjang media CSP 50 menghasilkan bobot induk per ekor tertinggi seperti yang ditunjukkan pada Lampiran 9. Kualitas zat makanan terutama protein kasar sangat mendukung kebutuhan fisiologis, karena sebagai hewan yang kandungan protein tubuhnya tinggi, tentu sangat membutuhkan protein yang tinggi pula untuk menunjang pertumbuhannya, seperti pernyataan Catalan (1981) bahwa kotoran ternak sebagai sumber protein dan mineral dalam penggunaannya sebagai media dicampur dengan kompos yang berasal dari campuran sayur-sayuran, buah-buahan dan potongan rumput mengandung selulosa dan vitamin yang dibutuhkan untuk pertumbuhan cacing tanah. Media CSP 50 menghasilkan biomassa terendah karena memang jumlah cacing tanah yang dihasilkan sangat berbeda nyata dibandingkan dengan media lainnya (terendah) sehingga bobot total (induk dan anak) lebih rendah dari media lain.

Kisaran temperatur 27.4–27.9 °C merupakan temperatur yang umumnya masih baik untuk kehidupan cacing tanah, seperti pendapat Edward dan Lofty (1977) bahwa diwilayah bermusim, cacing tanah hidup pada kisaran temperatur 21-29 °C di luar batas tersebut cacing tanah akan melakukan dormansi atau tidur. Media FS 100 memiliki temperatur media 27,8 °C yang merupakan temperatur yang mendekati optimal untuk kegiatan reproduksi, disisi lain kondisi media seperti aerasi yang baik
dan kandungan zat makanan media akan menunjang FS 100 untuk menghasilkan biomassa tertinggi.

KESIMPULAN DAN SARAN

Kesimpulan

Setiap jenis media atau pakan memiliki potensi dalam budidaya cacing tanah karena dapat mendukung untuk pertumbuhan dan reproduksi. Jenis media atau pakan memberikan pengaruh yang sangat nyata (P<0.01) terhadap produksi kokon (butir) dan jumlah cacing tanah (ekor) dan berpengaruh nyata (P<0.05) terhadap bobot cacing tanah (gram).

Produksi kokon tertinggi dihasilkan dari media campuran kotoran sapi dan limbah organik rumah tangga (CSRT 50) sedangkan biomassa tertinggi dihasilkan oleh media feses sapi 100% (FS 100).

Saran

Parameter yang diukur, perlu diamati secara periodik misalnya dalam interval waktu 10 hari untuk mengetahui perkembangan kehidupan cacing tanah.

Perlu mengetahui laju reproduksi pada setiap media dengan melihat jumlah anak dan daya tetas kokon.
DAFTAR PUSTAKA

Lembaga Penelitian IPB. 1986. Laporan akhir pekerjaan penelitian skala lapangan pemasnahan dan pendayagunaan sampah kota secara biologis dengan ternak untuk model penerapan. IPB.

LAMPIRAN
Lampiran 1. Analisis Ragam Pengaruh Media atau Pakan terhadap Produksi Kokon

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>F tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td>4</td>
<td>129099.00</td>
<td>32274.933</td>
<td>6.88**</td>
<td>3.48</td>
</tr>
<tr>
<td>Galat</td>
<td>10</td>
<td>46926.00</td>
<td>4692.600</td>
<td></td>
<td>5.99</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>176025.73</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

***) Berpengaruh sangat nyata pada selang kepercayaan 99% (P<0.01)

Lampiran 2. Uji Kontras Ortogonal Pengaruh Media atau Pakan terhadap Produksi Kokon

<table>
<thead>
<tr>
<th>Komponen media</th>
<th>Produksi Kokon Setiap Media</th>
<th>JK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FS 100</td>
<td>CSJP 50</td>
</tr>
<tr>
<td></td>
<td>345</td>
<td>179</td>
</tr>
<tr>
<td>FS 100, CSJP 50, CSIR 50 vs CSP 50, CSRT 50</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>CSJP 50 vs FS 50, CSIR 50</td>
<td>+1</td>
<td>-2</td>
</tr>
<tr>
<td>CSIR 50 vs FS 100</td>
<td>+1</td>
<td>0</td>
</tr>
<tr>
<td>CSP 50 vs CSRT 50</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Anova Uji Kontras Ortogonal

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F.05</th>
<th>F.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td>4</td>
<td>129099.00</td>
<td>32274.933</td>
<td>6.88**</td>
<td>3.48</td>
<td>5.99</td>
</tr>
<tr>
<td>FS 100, CSJP 50, CSIR 50 vs CSP 50, CSRT 50</td>
<td>1</td>
<td>105815.51</td>
<td>105815.51</td>
<td>22.549**</td>
<td>4.96</td>
<td>10.04</td>
</tr>
<tr>
<td>CSJP 50 vs FS 50, CSIR 50</td>
<td>1</td>
<td>4576.06</td>
<td>4576.06</td>
<td>0.98</td>
<td>4.96</td>
<td>10.04</td>
</tr>
<tr>
<td>CSIR 50 vs FS 100</td>
<td>1</td>
<td>337.50</td>
<td>337.50</td>
<td>0.07</td>
<td>4.96</td>
<td>10.04</td>
</tr>
<tr>
<td>CSP 50 vs CSRT 50</td>
<td>1</td>
<td>18370.67</td>
<td>18370.67</td>
<td>3.9</td>
<td>4.96</td>
<td>10.04</td>
</tr>
<tr>
<td>Galat</td>
<td>10</td>
<td>46926.00</td>
<td>4692.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>176025.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

***) Berpengaruh sangat nyata pada selang kepercayaan 99%

Hasil : FS 100^a CSJP 50^a CSP 50^b CSRT 50^b CSIR 50^a

43
Lampiran 3. Jumlah Induk Cacing Tanah (ekor) Sebelum Pemeliharaan dan Sesudah 40 hari Pemeliharaan

<table>
<thead>
<tr>
<th>Jenis Media</th>
<th>Jumlah sebelum (ekor)</th>
<th>Jumlah sesudah (ekor)</th>
<th>Persen kematian induk (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ulangan ke-</td>
<td>Rata-</td>
<td>Ulangan ke-</td>
</tr>
<tr>
<td></td>
<td>1 2 3</td>
<td>rata 1 2 3</td>
<td>rata 1 2 3</td>
</tr>
<tr>
<td>FS 100</td>
<td>48 56 55</td>
<td>56.33</td>
<td>42 52 64</td>
</tr>
<tr>
<td>CSJP 50</td>
<td>63 73 65</td>
<td>67</td>
<td>65 65 53</td>
</tr>
<tr>
<td>CSP 50</td>
<td>72 49 55</td>
<td>58.67</td>
<td>68 43 53</td>
</tr>
<tr>
<td>CSRT 50</td>
<td>51 54 59</td>
<td>54.67</td>
<td>50 54 62</td>
</tr>
<tr>
<td>CSIR 50</td>
<td>81 66 78</td>
<td>75</td>
<td>89 60 76</td>
</tr>
</tbody>
</table>

Lampiran 4. Analisis Ragam Pengaruh Media atau Pakan terhadap Jumlah Cacing Tanah

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>F tabel 0.05</th>
<th>F tabel 0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td>4</td>
<td>1352287.6</td>
<td>338071.9</td>
<td>20.55**</td>
<td>3.71</td>
<td>6.55</td>
</tr>
<tr>
<td>Galat</td>
<td>10</td>
<td>164532.0</td>
<td>164532.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>151681.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**) Berpengaruh sangat nyata pada selang kepercayaan 99% (P<0.01)

Lampiran 5. Uji Kontras Ortogonal Pengaruh Media atau Pakan terhadap Jumlah Cacing Tanah

<table>
<thead>
<tr>
<th>Komponen media</th>
<th>Jumlah cacing tanah (ekor)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FS 100</td>
</tr>
<tr>
<td>CSP 50, CSRT 50 vs FS 100, CSJP 50, CSIR 50</td>
<td>+2</td>
</tr>
<tr>
<td>CSP 50 vs CSRT 50</td>
<td>0</td>
</tr>
<tr>
<td>CSIR 50 vs FS 100, CSJP 50</td>
<td>+1</td>
</tr>
<tr>
<td>CSJP 50 vs FS 100</td>
<td>+1</td>
</tr>
</tbody>
</table>
Anova Uji Kontras Ortogonal

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F.05</th>
<th>F.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td>4</td>
<td>1352287.6</td>
<td>338071.9</td>
<td>20.55**</td>
<td>3.71</td>
<td>6.55</td>
</tr>
<tr>
<td>CSP 50, CSRT 50 vs FS 100, CSJP 50, CSIR 50</td>
<td>1</td>
<td>1056900.1</td>
<td>1056900.1</td>
<td>64.23**</td>
<td>4.96</td>
<td>10.04</td>
</tr>
<tr>
<td>CSP 50 vs CSRT 50</td>
<td>1</td>
<td>87121.5</td>
<td>87121.5</td>
<td>5.29*</td>
<td>4.96</td>
<td>10.04</td>
</tr>
<tr>
<td>CSIR 50 vs FS 100, CSJP 50</td>
<td>1</td>
<td>208012.5</td>
<td>208012.5</td>
<td>12.64**</td>
<td>4.96</td>
<td>10.04</td>
</tr>
<tr>
<td>CSJP 50 vs FS 100</td>
<td>1</td>
<td>253.5</td>
<td>253.5</td>
<td>0.015</td>
<td>4.96</td>
<td>10.04</td>
</tr>
<tr>
<td>Galat</td>
<td>10</td>
<td>16453.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>151681.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

***) Berpengaruh sangat nyata pada selang kepercayaan 99%
*) Berpengaruh sangat nyata pada selang kepercayaan 95%
Hasil: FS 100 d, CSJP 50 d, CSP 50 a, CSRT 50 b, CSIR 50 c

Lampiran 6. Jumlah Anak Cacing Tanah (ekor) Setelah 40 Hari Pemeliharaan

| Jenis Media | Jumlah Anak (ekor) | Ulangan ke-
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>FS 100</td>
<td>629</td>
<td>1105</td>
</tr>
<tr>
<td>CSJP 50</td>
<td>935</td>
<td>874</td>
</tr>
<tr>
<td>CSP 50</td>
<td>134</td>
<td>2</td>
</tr>
<tr>
<td>CSRT 50</td>
<td>364</td>
<td>400</td>
</tr>
<tr>
<td>CSIR 50</td>
<td>509</td>
<td>529</td>
</tr>
</tbody>
</table>

Lampiran 7. Analisis Ragam Pengaruh Media atau Pakan terhadap Bobot Cacing tanah Setelah 40 hari Pemeliharaan

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F Hitung</th>
<th>F tabel</th>
<th>F tabel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td>4</td>
<td>494.539</td>
<td>123.63</td>
<td>4.09*</td>
<td>3.71</td>
<td>6.55</td>
</tr>
<tr>
<td>Galat</td>
<td>10</td>
<td>302.494</td>
<td>30.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>797.033</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

***) Berpengaruh sangat nyata pada selang kepercayaan 99% (P<0.01)
Lampiran 8. Uji Kontras Ortogonal Pengaruh Media atau Pakan terhadap Bobot Cacing Tanah Setelah 40 Hari Pemeliharaan

<table>
<thead>
<tr>
<th>Komponen media</th>
<th>Bobot cacing tanah (gram)</th>
<th>JK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FS 100</td>
<td>CSJP 50</td>
</tr>
<tr>
<td></td>
<td>151.6</td>
<td>123.7</td>
</tr>
<tr>
<td>CSJP 50, CSP 50, CSRT 50 vs FS 100, CSIR 50</td>
<td>+3</td>
<td>-2</td>
</tr>
<tr>
<td>CSP 50 vs CSJP 50, CSRT 50</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>CSJP 50 vs CSRT 50</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>CSIR 50 vs FS 100</td>
<td>+1</td>
<td>0</td>
</tr>
</tbody>
</table>

Anova Uji Kontras Ortogonal

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>db</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F.05</th>
<th>F.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan</td>
<td>4</td>
<td>494.539</td>
<td>123.630</td>
<td>4.09*</td>
<td>3.48</td>
<td>5.99</td>
</tr>
<tr>
<td>CSJP 50, CSP 50, CSRT 50 vs FS 100, CSIR 50</td>
<td>1</td>
<td>401.111</td>
<td>401.111</td>
<td>13.26**</td>
<td>4.96</td>
<td>10.04</td>
</tr>
<tr>
<td>CSP 50 vs CSJP 50, CSRT 50</td>
<td>1</td>
<td>90.227</td>
<td>90.227</td>
<td>2.98</td>
<td>4.96</td>
<td>10.04</td>
</tr>
<tr>
<td>CSJP 50 vs CSRT 50</td>
<td>1</td>
<td>2.535</td>
<td>2.535</td>
<td>0.08</td>
<td>4.96</td>
<td>10.04</td>
</tr>
<tr>
<td>CSIR 50 vs FS 100</td>
<td>1</td>
<td>0.667</td>
<td>0.667</td>
<td>0.02</td>
<td>4.96</td>
<td>10.04</td>
</tr>
<tr>
<td>Galat</td>
<td>10</td>
<td>302.494</td>
<td>30.249</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**) Berpengaruh sangat nyata pada selang kepercayaan 99%
*) Berpengaruh nyata pada selang kepercayaan 95%
Hasil : FS 100^b CSJP 50^a CSP 50^a CSRT 50^a CSIR 50^b

Lampiran 9. Bobot Induk Cacing Tanah (gram) Setelah 40 hari Pemeliharaan

<table>
<thead>
<tr>
<th>Jenis Media</th>
<th>Bobot Induk (gr)</th>
<th>Bobot induk per ekor (gram)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ulangan ke-</td>
<td>Rata-rata</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>FS 100</td>
<td>17.8</td>
<td>22.6</td>
</tr>
<tr>
<td>CSJP 50</td>
<td>20.8</td>
<td>19.4</td>
</tr>
<tr>
<td>CSP 50</td>
<td>35.7</td>
<td>30.0</td>
</tr>
<tr>
<td>CSRT 50</td>
<td>30.1</td>
<td>32.8</td>
</tr>
<tr>
<td>CSIR 50</td>
<td>41.4</td>
<td>26.5</td>
</tr>
</tbody>
</table>
Lampiran 10. Bobot Induk Cacing (gram) Tanah Setelah 40 Hari Pemeliharaan

<table>
<thead>
<tr>
<th>Jenis Media</th>
<th>Bobot Anak (gram)</th>
<th>Bobot per ekor (gram)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ulangan ke-</td>
<td>Rata-rata</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>FS 100</td>
<td>25</td>
<td>34.9</td>
</tr>
<tr>
<td>CSJP 50</td>
<td>24.3</td>
<td>20.6</td>
</tr>
<tr>
<td>CSP 50</td>
<td>2.6</td>
<td>0.1</td>
</tr>
<tr>
<td>CSRT 50</td>
<td>14.5</td>
<td>12</td>
</tr>
<tr>
<td>CSIR 50</td>
<td>14.8</td>
<td>15.5</td>
</tr>
</tbody>
</table>