PARTISIPASI PERGURUAN TINGGI DALAM PENGEMBANGAN BIODIESEL DAN BIOETHANOL DI INDONESIA

Dr. Ir. Erliza Hambali *

*Surfactant and Bioenergy Research Center, IPB

I. Pendahuluan

Dalam penyesuaian harga suatu komoditi dalam negeri dengan kemampuan daya beli masyarakat, pada umumnya Pemerintah melakukan subsidi terhadap komoditi tersebut. BBM sebagai komoditi vital merupakan salah satu komoditi yang disubsidi oleh Pemerintah. Hampir semua masyarakat masyarakat Indonesia sangat tergantung terpantung terhadap BBM baik untuk kegiatan memasak, transportasi, maupun untuk kegiatan industri. Pada tahun 2006 Pemerintah alokasi dana subsidi BBM mencapai 54,3 trilyun dengan jumlah minyak yang disubsidi sebesar 41 juta kilo liter (14 juta kiloliter solar, 17 juta kiloliter premiun, dan 10 juta kiloliter minyak tanah).

Tingginya harga minyak dunia menyebabkan harga BBM di dalam negeri meningkat. Hal inilah yang melatarbelakangi kenaikan harga BBM pada tanggal 1 Oktober 2005 yang lalu. Melambungnya harga BBM tersebut sungguh sangat memberatkan baik masayarakat maupun industri terlebih lagi bagi masyarakat di daerah-daerah terpencil. Pasca kenaikan BBM, harga BBM di beberapa daerah terpencil dapat mencapai 2 – 8 kali lebih tinggi dibandingkan di daerah perkotaan. Pada Tabel 29 dan 30 disajikan harga BBM dibeberapa daerah terpencil di Indonesia.

Tabel 29. Harga Minyak Tanah Dibeberapa Daerah di Indonesia

Nama daerah	Harga (Rp)/liter	Nama daerah	Harga (Rp)/liter
Malimping	4.500	Wamena	20.000
Garut Selatan	6.000	Selayar (Sulsel)	3.500
Pulau Sanger	12.000	Kotamobagu (Sulut)	4.000
Tidore	15.000	Langsalama (Aceh)	6.000

Tabel 30. Harga Solar Dibeberapa Daerah di Indonesia

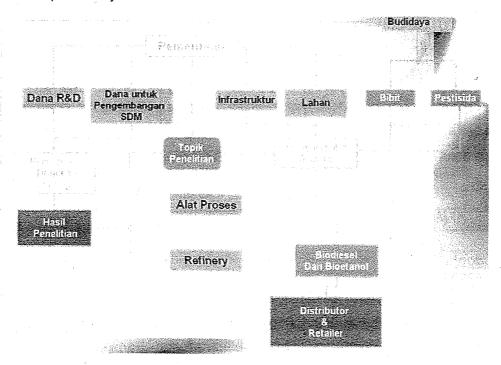
Nama daerah	Harga (Rp)/liter
Yahukimo, Papua	20.000
Seruyan, Kalimantan	6.500
Mentok, Bangka Belitung	6.000
Pulau Medang	5.000
Brebes	4.600
Balikpapan	6.000

Biodiesel adalah bahan bakar dari minyak nabati yang memiliki sifat menyerupai solar dan prospektif untuk dikembangkan sebagai sumber energi alternatif pensubstitusi solar. Pengembangan biodiesel dapat mensubstitusi sebagian ataupun seluruh pemakaian bahan bakar solar. Pada tahun 2007 – 2010, mulai akan diberlakukan subtitusi biodiesel dalam solar sekitar 5 % dan 10 % (biodiesel 5 % dan 10 %, solar 95 % dan 90 %).

Indonesia memiliki beragam sumber minyak nabati yang dapat dimanfaatkan sebagai bahan baku biodiesel diantaranya adalah minyak sawit, minyak kelapa, dan minyak jarak pagar. Jarak pagar (Jatropha curcas Linn.) merupakan salah satu sumber minyak nabati yang sangat prospektif untuk dimanfaatkan sebagai bahan baku biodiesel. Hal ini karena minyak jarak pagar memiliki kandungan minyak yang tinggi (hingga 50 %) dan minyak pagar bukan termasuk minyak pangan (non edible oil) sehingga pemanfaatannya sebagai biodiesel tidak akan mengganggu penyediaan kebutuhan minyak makan nasional, kebutuhan industri oleokimia, dan ekspor CPO. Pemanfaatan biodiesel dan minyak bakar berbahan baku minyak jarak pagar (Jatropha curcas Linn.) sebagai energi terbarukan merupakan solusi tepat karena disamping dapat menghadapi kelangkaan energi fosil pada masa sekarang dan masa yang akan datang, pengembangan jarak pagar sebagai bahan baku biodiesel dapat menurunkan angka pengangguran dan mengurangi tingkat kemiskinan yang masing - masing kini mencapai 10,45 % dan 17, 75 %. Disamping itu pengembangan budidaya jarak pagar dapat memanfaatkan potensi lahan marginal Indonesai yang mencapai 23, 24 juta Ha dan dapat mendukung pengembangan Desa Mandiri Energi (DME) melalui diversifikasi produk turunannya.

Tabel 30. Potensi Lahan Kritis Indonesia

No	PROPINSI	DALAM KAWASAN	LUAR KAWASAN
		(Ha)	(Ha)
1	NAD	24,990	326,025
2	SUMUT	227,146	241,997
3	RIAU	77,961	256,907
4	SUMBAR	20,936	110,219
5	JAMBI	172,046	544,101
6	BENGKULU	78,724	499,819
7	SUMSEL dan BANGKA	1,183,179	2,278,661
8	LAMPUNG	203,887	95,270
9	JABAR dan BANTEN	5,966	362,828
10	JATENG	11,102	349,725
11	DI YOGYA	749	33,918
12	JATIM	349,168	953,211
13	KALBAR	1,25,724	1,811,004
13	KALBAR	1,25,724	1,811,004
14	KALSEL	353,781	221,602
15	KALTIM	953,814	824,968
16	KALTENG	50,652	1,708,181
17	SULUT dan GORONTALO	79,594	155,498
18	SULTENG	260,07	153,151
19	SULSEL	581,297	451,505
20	SULTRA	53,752	188,059
21	BALI	9,953	23,472
22	NTB	54,520	224,178
23	NTT	299,291	1,057,466
24	-MALUKU	180,036	514,875
25	IRJA	1,649,309	1,719,594
26	DKI JAKARTA	-	-
JUMLAH		8,136,647	15,106,234


www.dephut.go.id

Pemerintah juga memfokuskan dalam pengembangan bioetanol sebagai energi alternatif. Etanol sebagai bahan bakar adalah pilihan yang tepat karena etanol memenuhi persyaratan sebagai bahan bakar transportasi yaitu mudah penanganan (handling) dan tinggi kandungan energinya dalam satuan massa dan volume. Produksi etanol dapat dilakukan secara sintetis yaitu dengan melakukan reaksi kimia elementer untuk mengubah bahan baku menjadi etanol, yang biasanya berasal dari pengilangan minyak bumi. Cara memproduksi etanol yang lain adalah

dengan proses fermentasi dengan bantuan aktivitas kehidupan mikroorganisme untuk mengubah bahan baku menjadi etanol (dikenal dengan bioetanol).

Bahan baku untuk membuat bioetanol adalah hasil pertanian berupa karbohidrat yang dibagi dalam 3 golongan, pertama yaitu bahan yang mengandung turunan gula antara lain molase, gula tebu, gula bit, dan sari buah anggur. Kedua adalah bahan yang mengandung pati seperti biji-bijian (gandum), kentang, tapioka, sagu dan yang ketiga adalah bahan yang mengandung selulosa seperti kayu, kapas dan limbah pertanian lain seperti bagase dan tandan kosong kelapa sawit.

Masalah yang dihadapi dalam memproduksi bioetanol adalah masalah biaya produksi yang tidak efisien (biaya produksi tinggi). Oleh karena itu perlu ditemukan proses produksi bioetanol dari pati sagu yang efisien, baik pada proses hidrolisis pati, proses fermentasi untuk menghasilkan bioetanol maupun proses pemurnian bioetanol sehingga dapat diaplikasikan sebagai bahan campuran bensin. Proses produksi yang optimal dan efisien dengan biaya yang rendah untuk menghasilkan produk yang memenuhi standar mutu bioetanol sebagai bahan bakar perlu dikembangkan, sehingga penggunaan bioetanol sebagai bahan bakar alternatif di Indonesia dapat terwujud.

Gambar 18. Sistem keterkaitan pengembangan biodiesel dan bioetanol

II. Kontribusi Perguruan Tinggi dalam pengembangan BBN

Pengembangan bahan bakar nabati juga tidak terlepas dari peran serta dan dukungan Perguruan Tinggi dan Lembaga litbang dalam kegiatan penelitian dan pengembangan tanaman penghasil dan produk olahannya. Kontribusi Perguruan Tinggi dan Lembaga Litbang di bidang riset, bidang sosialisasi, bidang konsultasi dan bantuan teknis, bidang penyediaan SDM dan peningkatan kemampuan SDM, bidang service analisis dan kerjasama dengan pihak industri.

Beberapa riset yang sudah dilakukan oleh berbagai perguruan tinggi dan lembaga litbang dalam rangka pengembanganbiodiesel dan bioetanol adalah sebagai berikut.

a. Institut Pertanian Bogor

Institut Pertanian Bogor sudah melakukan beberapa riset yang berkaitan dengan pengembangan biodiesel dan bioetanol Riset-riset yang telah dilakukan adalah sebagai berikut :

- 1. Studi Kelayakan Budidaya Kelapa Sawit 12.000 Ha
- 2. Studi Kelayakan Prosesing Kelapa Sawit dengan Kapasitas 60 ton TBS/jam
- 3. Studi Kelayakan Biodiesel Kapasitas 60.000 Ton/tahun
- 4. Studi Kelayakan Budidaya Jarak Pagar 100.000 Ha
- 5. Studi Kelayakan Budidaya Jarak Pagar 10.000 Ha
- 6. Kajian Umum Pengembanga Budidaya Jarak Pagar 7.000 Ha
- 7. Kajian Pembangunan Kebun Bibit Jarak Pagar 6 Ha
- 8. Studi Kelayakan Pembangunan Kebun Benih Bersertifikat 5 Ha
- 9. Studi Kelayakan Pembangunan Kebun Benih Bersertifikat 500 Ha
- 10. Pra Studi Kelayakan Budidaya Jarak Pagar Skala Komersial 100.000 Ha
- 11. Pengembangan Biodiesel dan Peluangnya di Negara Berkembang
- 12. Kajian Core Adsorption dalam Proses Oil Well Stimulation pada Enhanced Oil Recovery dengan Menggunakan Surfaktan Metil Ester Sulfonat Berbasis Minyak Kelapa Sawit
- 13. Pemanfaatan Gliserol sebagai Byproduct Biodiesel pada Pembuatan Sabun Transparan
- 14. Pemanfaatan Minyak Jarak sebagai Bahan Baku Minyak Bakar, PPO, dan Biodiesel
- 15. Pengembangan Proses Pretreatment dan Refining untuk menurunkan Asam Lemak Bebas pada Minyak Jarak Pagar
- Pengembangan Proses Biodiesel dengan Menggunakan Minyak Goreng, Minyak Kelapa, Minyak Jarak, CPO, dan Minyak Jelantah sebagai Bahan Bakunya
- 17. Pemetaan Budidaya Jarak Pagar di NTT
- 18. Mempelajari Pengaruh Frekuensi Penggorengan dan Jenis Bahan Pangan Terhadap Stabilitas Minyak Goreng
- 19. Analisis Kandungan Etanol, FAME, dan Mikrobiologi dalam B5 dan B10

Workshop Nasional Bisnis Biodiesel dan Bioethanol di Indonesia Jakarta, 21 November 2006

Sedangkan penelitian yang sedang dikembangkan adalah sebagai berikut :

- 1. Pemanfaatan Gliserin sebagai Pelumas Automotive Dinamis dan Statis
- 2. Optimasi Proses Pemurnian Biodiesel Menggunakan Cleaning Agent
- 3. Pemanfaatan Gliserin sebagai Bahan Baku Pembuatan Surfaktan Gliserol Karbonat
- 4. Pengembangan Gliserin sebagai Bahan PLA Analog (Bioplastik)
- 5. Pengembangan Bungkil Jarak Pagar sebagai Industrial Biobriket
- 6. Optimasi Proses Produksi Biodiesel dengan Menggunakan Katalis Padat
- 7. Optimasi Proses Produksi Biodiesel dengan Menggunakan Gelombang Energi Mikro
- 8. Dampak Kebijakan Pengembangan Jarak Pagar dalam Mengurangi Pengangguran
- 9. Dampak Kebijakan Pengembangan Jarak Pagar untuk Meningkatkan Industri Kecil dan Menengah
- 10. Pemanfaatan Gliserol sebagai *Byproduct* pada Pembuatan Biodiesel untuk Pembuatan Alkohol
- 11. Studi Viabilitas Polen terhadap Kunjungan Serangga Polinator dan Persentase Keberhasilan Penyerbukan Bunga Jarak Pagar
- 12. Peningkatan Ketahanan tehadap Hama Penyakit Jarak Pagar Melalui Teknik Seleksi Bertahap
- 13. Pengembangan Program Komputer untuk Optimalisasi Plant Proses Produksi Biodiesel
- 14. Pengembangan Design Proses Kontrol Biodiesel Plant
- 15. Keragaman Genetika Plasma Nutfah dan Hasil Uji Multi Lokasi Jarak Pagar di Beberapa Sentra Pengembangan
- 16. Optimasi Pengembangan Jatropha curcas dengan menggunakan Kombinasi Pupuk Hijau dan Pengendali Hama
- 17. Pengaruh Dosis Pupuk Organik pada Pertumbuhan Tanaman Jarak Pagar
- 18. Pengaruh Jenis Tanah pada Pertumbuhan Tanaman Jarak Pagar
- 19. Studi Lokasi Penempatan Unit Press Biji Jarak Pagar (Sentralisasi atau Desentralisasi)
- 20. Peningkatan Produktivitas Jarak Pagar Melalui Pemuliaan Tanaman secara Konvensional dan Induksi Mutasi
- 21. Kajian proses pembuatan bioetanol dari molase dan sagu

b. Institut Teknologi Bandung

- Kajian produksi biodiesel skala laboratorium (200 ml)
- Kajian produksi biodiesel skala pilot plant (100 600 l/hari)
- Uji coba penggunaan biodiesel pada kendaraan penelitiannya
- Pembuatan reaktor biodiesel pada skala 50 L/batch
- Pengembanan reaktor kontinyu untuk produksi biodiesel
- Pengembangan minyak nabati menjadi biodiesel skala besar

- Pengembangan skala produksi biodiesel 50 L/batch dengan sistem multistage dan temperatur tidak seragam
- Pengembangan aditif biodiesel untuk menurunkan titik tuang
- Pengembangan sistem ekstraksi minyak nabati untuk mendukung unit pengolahan yang ada
- Kajian aspek aplikasi biodiesel pada motor diesel seperti uji ketahanan dan unjuk kerja motor diesel pada motor satu silinder dan multisilinder
- · Pembuatan kompor minyak jarak
- Penyusunan Usulan SNI Biodiesel Indonesia

c. Institut Teknologi Surabaya

- Uji karakteristik semprotan biodiesel pada injektor mesin
- Uji karakteristik pembakaran dan uji durability engine
- Desain pabrik biodiesel 50.000 ton per tahun

d. UPN Veteran

- Ujicoba biodiesel sebagai pengganti minyak tanah pada kompor
- Desain kompor biodiesel
- Pembuatan biodiesel skala kecil menengah

e. BPPT

- Desain peralatan ekstraksi minyak jarak kapasitas 2,5 ton
- Pengelolaan kebun percobaan di PUSPITEK dengan bibit hasil pemuliaan BATAN
- Biodiesel plant kapasitas 1,5, 3, dan 8 ton/hari
- Uji properti dan road test biodiesel
- Paket desain plant biodiesel kapasitas ≥ 30.000 ton/tahun dan instrumen pendukungnya
- Karekteristik untuk kerja dan emisi mesin diesel berbahan bakar minyak jarak pagar
- Uji biodiesel pada mesin common rail, uji pelumasan, stabilitas oksidasi dan pengurangan emisi NOx
- Desain peralatan pengolah limbah biodiesel skala plant 3 ton/hari
- Uji coba biodiesel pada 23 bus BPPT
- Pengembangan biodiesel pada bus dan kendaraan operasional BPPT

Workshop Nasional Bisnis Biodiesel dan Bioethanol di Indonesia Jakarta, 21 November 2006

f. BATAN

- Rekayasa genetik benih biji jarak
- · Pembuatan biodiesel dari jarak pagar
- Sosialisasi biodiesel
- Rektor biodiesel skala Pilot Plant

g. Litbang Ketenagalistrikan PT. PLN

- Pra-study pemanfaatan biodiesel jarak pagar pada PLTD di NTB
- Konsep kebijakan pengguna biodiesel jarak pagar pada PLTD

h. DJLPE DESDM

- Kajian Potensi Biodiesel
- Rancangan standar nasional indonesia tentang syarat mutu biodiesel
 Indonesia
- Kajian makroekonomi biodiesel
- Sosialisasi pada kendaraan dinas DESDM Perum DAMRI

i. Puslitbangbun DEPTAN

- Roadmap penyediaan benih jarak pagar
- Pengumpulan plasma nutfah
- Pengadaan benih terseleksi, pemuliaan dan pengendalian hama

j. Lemigas

- Uji program, uji performance, uji ketahanan dan road test
- Reaktor biodiesel skala pilot plant

k. LIPI

- Uji performance dan opasitas biodiesel
- Reaktor biodiesel skala 500 L/batch
- Reduksi NOx

Dalam pelaksanaan penelitian ini, Perguruan Tinggi dan Lembaga Litbang melakukan kerjasama dengan perusahaan dan pemerintah daerah. Saat ini, Institut Pertanian Bogor telah mejalin kerjasama dengan Pemerintah daerah Kutai Kartanegara, PT. Petrotek Migasindo, PT. PN VIII, PT. RNI, PT. Rekayasa Industri,

Bakrie Capital Holding Company, PT. Biodiesel Austindo, PT. Bumi Mas (Sinar Mas Group), PT. BEE, PT. Tracon Industry, DEPPERIN, PT. Adev Prima Mandiri, Eka Tjipta Foundation, dan Biomac Shd BhD. Sedangkan Institut Teknologi Bandung juga melakukan kerjasama dengan Toray Foundation, DEPPERIN, PT. Conoco Philips, BALITKA, OSAKA GAS Foundation, MAKSI (Rusnas), PT. REKAYASA INDUSTRI, dan DIKTI DEPDIKNAS.

DAFTAR PUSTAKA

Brown, R. C. 2003. Biorenewable Resources: Engineering New Products from Agriculture, Lowa State Press. USA.

Departemen Perindustrian. 2006. Pengembangan Industri Biodiesel di Indonesia. Di dalam Prosiding Simposium Biodiesel indonesia. Pusat Penelitian Surfaktan dan Bioenergi, Bogor.

Hui, Y. H. 1996. Bailey's Industrial Oil and Fat Products : Edible Oil and Fat Products Processing Technology. New York. John Wiley & Sons, Inc. Vol. 2

www.dephut.go.id.

www.itb.ac.id.

www.lipi.go.id.

www.bppt.go.id.