Dia yang menguasai laut supaya kamu makan daging (ikan) yang lembut dan supaya kamu keluarlah dari dalamnya perhiasan yang kamu pakai dan engkau ikat kapal berlayar di laut dan supaya kamu mencari karunia Allah (rezeki), mudah-mudahan kamu berterimakasih kepada-Nya.
(Q.S. An-Nahl: 14)

"Telah kuraih dehlasnya do'a ayah bunda, "Telah kuraih asa di tengah gelombang sumatera.
SALAM: Hjang Hadi
STUDI TENTANG SEBARAN CAHAYA LAMPU TL DALAM AIR
DENGAN SUMBER SOLAR CELL SYSTEM PADA
PENGOPERASIAN BAGAN APUNG

Oleh:
UJANG HOLIL
C05495020

SKRIPSI
Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana
Pada Fakultas Perikanan dan Ilmu Kelautan

PROGRAM STUDI PEMANFAATAN SUMBERDAYA PERIKANAN
FAKULTAS PERIKANAN DAN ILMU KELAUTAN
INSTITUT PERTANIAN BOGOR
2000
RINGKASAN

Penelitian ini bertujuan untuk mengetahui proses transformasi energi surya menjadi energi listrik sebagai sumber cahaya lampu bawah air pada pengoperasian bagan apung, mengetahui kualitas cahaya listrik yang dihasilkan dari sumber Solar Cell System, mengetahui pengaruh warna dan kedalaman penurunan lampu terhadap komposisi hasil tangkapan, mengetahui jumlah energi yang dibutuhkan untuk pengoperasian bagan apung serta membandingkan hasil tangkapan antara bagan bersumber cahaya Solar Cell System dengan bagan bersumber cahaya lampu petromaks (bagan konvensional). Manfaat yang diharapkan dari penelitian ini adalah dapat meningkatkan produksi perikanan bagan apung di Pelabuhanratu melalui pertimbangan biaya produksi, kenyamanan kerja, keefektifan dan kualitas cahaya yang digunakan, serta dapat meningkatkan kesejahteraan nelayan bagan apung melalui pemanfaatan hasil kemajuan teknologi.

Salah satu kendala pengoperasian Solar Cell System adalah kendala sosial, yaitu tidak terjaminnya keamanan akan komponen-komponen Solar Cell System yang diinstalasi langsung pada konstruksi bagan di tengah laut.
Hasil uji Kruskal-Wallis terhadap komposisi hasil tangkapan menunjukkan keputusan yang berlawanan antara dua perlakuan (Tabel 1).

Tabel 1. Hasil uji statistik nonparametrik Kruskal-Wallis untuk komposisi hasil tangkapan

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Pengamatan</th>
<th>H_{hitung}</th>
<th>$H_{(0.05, \nu = k-1)}$</th>
<th>$H_{(0.01, \nu = k-1)}$</th>
<th>Keputusan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warna</td>
<td>bobot (gram)</td>
<td>16,48</td>
<td>7,82</td>
<td>11,36**</td>
<td>Tolak H_0</td>
</tr>
<tr>
<td></td>
<td>jumlah (ekor)</td>
<td>6,10</td>
<td>7,82</td>
<td>-</td>
<td>Terima H_0</td>
</tr>
<tr>
<td>Kedalaman</td>
<td>bobot (gram)</td>
<td>4,69</td>
<td>5,99</td>
<td>-</td>
<td>Terima H_0</td>
</tr>
<tr>
<td></td>
<td>jumlah (ekor)</td>
<td>13,92</td>
<td>5,99</td>
<td>9,21**</td>
<td>Tolak H_0</td>
</tr>
</tbody>
</table>

Perbedaan keputusan hipotesis uji yang dihasilkan dari dua perlakuan disebabkan antara lain oleh adanya keragaman ukuran individu dari spesies ikan yang tertangkap, musim ikan, intensitas cahaya, arus dan gelombang, keragaan teknis dari lampu bawah air dan pengoperasian underwater cammera. Demikian pula komposisi jenis yang dihasilkan dari dua perlakuan menunjukkan adanya keragaman. Ini membuktikan bahwa setiap spesies ikan menyukai warna dan intensitas tertentu (Hela dan Laevastu, 1970). Daya tembus cahaya pada lapisan perairan berbeda antara warna yang satu dengan warna lainnya. Hasil pengukuran iluminasi tertinggi yaitu pada kedalaman 2 meter, dan warna hijau cahaya paling dalam menembus perairan, yaitu mencapai 9 meter. Sementara untuk perlakuan kedalaman penurunan lampu, nilai iluminasi tertinggi ditunjukkan pada saat posisi lampu di kedalaman 0 meter.

Agar dapat membandingkan hasil tangkapan yang diperoleh dari kedua jenis cahaya, maka disarankan untuk melakukan penelitian lanjutan pada kondisi musim ikan. Disamping itu, untuk mendapatkan informasi tentang karakteristik cahaya lampu tenaga surya yang lebih obyektif, maka perlu melakukan pengukuran iluminasi lebih teliti dan menggunakan alat yang lebih sensitif. Untuk mendapatkan penampakan lampu bawah air yang baik, hendaknya dilakukan penelitian menggunakan konstruksi lampu yang sesuai dengan kondisi perairan.
SKRIPSI

Judul Skripsi : Studi Tentang Sebaran Cahaya Lampu TL Dalam Air dengan Sumber Solar Cell System pada Pengoperasian Bagan Apung
Nama Mahasiswa : Ujang Holil
NRP : C 05495020
Program Studi : Pemanfaatan Sumberdaya Perikanan

Disetujui:
I. Komisi Pembimbing,

Ir. Diniah, M.Si
Ketua

Ir. Kusman Mangunstikarto, M.Sc
Anggota

II. Fakultas Perikanan dan Ilmu Kelautan IPB,

Ir. Diniah, M.Si
Ketua Program Studi

Dr. Ir. Indra Jaya, M.Sc
Pembantu Dekan I

Tanggal Lulus : Januari 2000
KATA PENGANTAR

Tulisan ini merupakan salah satu syarat untuk memperoleh gelar sarjana pada Fakultas Perikanan dan Ilmu Kelautan Institut Pertanian Bogor.

Pada kesempatan ini penulis mengucapkan terimakasih kepada:

(1) Ir.Diniah, M.Si dan Ir. Kusman Mangunsukarto, M.Sc. selaku Komisi Pembimbing yang telah memberikan arahan dan bimbingannya dalam menyelesaikan skripsi ini;

(2) Abah dan Ibu tercinta, Teh Afiah serta adikku Hambali, Siti Fatimah, Siti Jubaidah, Siti Solihat dan Kak Cucun Gamma Sunarman yang telah memberikan dorongan moril dan materi selama penulis melakukan studi hingga selesaiya skripsi ini;

(3) Ibu Erni Nirwan, Ibu Sally Darmin serta keluarga besar Yayasan Nurul Hikmah di Komplek Ligamas Indah, Pasar Minggu Jakarta Selatan, yang telah memberikan bantuan dana dalam menyelesaikan skripsi ini;

(5) Dr.Ir. H.M. Fedi Alfadi Sondita, M.Sc., Ir. Wazir Maware, M.Si. dan Eko Sri Wiyono, S.Pi. sebagai Anggota Tim Penguji dalam Ujian Skripsi penulis, dan telah memberikan kritik dan saran untuk perbaikan tulisan ini;

(6) Drs. Zainal Abidin, Mah Yayah, Nyai Khaeriyati dan adikku Mumu, Ida, Erna dan Iwan S. yang telah memberikan dorongan do'a selama penulis melakukan studi hingga dapat menyelesaikan skripsi ini;

(7) Bapak Iwan dan Teh Eneng Habsah yang selalu memberikan motivasi;

(9) Bang Amat, Jajang, Arik dan Syarif sebagai rekan kerja pada kegiatan penelitian;

(10) Pihak-pihak yang tidak dapat disebutkan satu per satu.

Penulis menyadari tulisan ini masih jauh dari sempurna, untuk itu saran dan kritik yang bersifat membangun sangatlah diharapkan. Semoga tulisan ini bermanfaat bagi yang memerlukan.

Bogor, 18 Januari 2000

Penulis
DAFTAR ISI

KATA PENGANTAR .. i

DAFTAR ISI .. iii

DAFTAR TABEL .. v

DAFTAR GAMBAR ... vii

DAFTAR LAMPIRAN .. viii

I PENDAHULUAN .. 1
 1.1 Latar Belakang .. 1
 1.2 Tujuan Penelitian .. 3
 1.3 Manfaat Penelitian ... 4

II TINJAUAN PUSTAKA ... 5
 2.1 Deskripsi Alat Tangkap Bagan Apung 5
 2.2 Pengoperasian Bagan Apung .. 5
 2.3 Karakteristik Cahaya di Dalam Air .. 7
 2.4 Reaksi Ikan Terhadap Cahaya .. 9
 2.5 Energi Surya .. 10

III METODOLOGI PENELITIAN ... 12
 3.1 Waktu dan Tempat Penelitian .. 12
 3.2 Bahan dan Alat Penelitian .. 12
 3.3 Metode Penelitian .. 13
 3.3.1 Metode Pengumpulan Data .. 13
 3.3.2 Metode Analisis Data .. 15

IV KEADAAN UMUM DAERAH PENELITIAN 18
 4.1 Kondisi Oseanografi Perairan Pelabuhanratu 18
 4.2 Keadaan Umum Perikanan Tangkap 18
 4.3 Keadaan Perikanan Bagan Apung ... 19
 4.3.1 Deskripsi Unit Penangkapan BaganApung 19
 4.3.2 Volume dan Kontribusi Produksi 21
 4.3.3 Metode Pengoperasian Bagan Apung 22
 4.3.4 Daerah dan Musim Penangkapan 24
V HASIL DAN PEMBAHSAN ... 26

5.1 Deskripsi dan Teknik Instalasi Solar Cell System pada Bagan Apung 26
5.1.1 Komponen Solar Cell System ... 26
 5.1.1.1 Modul Fotovoltaik ... 27
 5.1.1.2 Baterai ... 29
 5.1.1.3 Alat Pengatur Energi Baterai atau Battery Charge
 Regulator (BCR) .. 29
 5.1.1.4 Beban Listrik Solar Cell System ... 30
5.1.2 Instalasi dan Pemeliharaan Solar Cell System pada Bagan Apung 33
 5.1.2.1 Tahapan Pelaksanaan Instalasi Solar Cell System 34
 5.1.2.2 Pemeliharaan .. 36
5.2 Kualitas Cahaya Solar Cell System ... 37
5.3 Komposisi Hasil Tangkapan .. 43
5.4 Pembahasan ... 45
 5.4.1 Hubungan antara Komposisi Hasil Tangkapan dengan warna,
 Kedalaman Lampu dan Penyebaran Iluminasi Cahaya 45
 5.4.2 Faktor yang Mempengaruhi Komposisi Hasil Tangkapan 47
 5.4.3 Faktor yang Mempengaruhi Penyebaran Iluminasi Cahaya 50
 5.4.4 Teknik Pengeluaran Energi atau Pemakaian Daya Solar Cell
 System ... 50
 5.4.5 Kendala Pengoperasian Solar Cell System 51

VI KESIMPULAN DAN SARAN .. 52
 6.1 Kesimpulan .. 52
 6.2 Saran .. 54

DAFTAR PUSTAKA .. 56

RIWAYAT HIDUP ... 58

LAMPIRAN ... 59
<table>
<thead>
<tr>
<th>Tabel</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Warna dan Panjang Gelombang Cahaya</td>
<td>7</td>
</tr>
<tr>
<td>2. Hubungan antara Fluksi radiant (ω) dengan Fluksi cahaya (lumen) dari Bola Lampu Pijar dan Lampu Neon (TL)</td>
<td>8</td>
</tr>
<tr>
<td>5. Jenis Ikan yang Umum Tertangkap oleh Bagan di Pelabuhanratu</td>
<td>21</td>
</tr>
<tr>
<td>7. Fishing ground Bagan Apung dan Kedalaman Perairan di Teluk Pelabuhanratu</td>
<td>24</td>
</tr>
<tr>
<td>8. Contoh Pemakaian Beban Listrik Optimum untuk Solar Cell System</td>
<td>33</td>
</tr>
<tr>
<td>9. Iluminasi Cahaya (lux) dari Lampu Warna Putih Menurut Kedalaman Pengukuran</td>
<td>37</td>
</tr>
<tr>
<td>10. Iluminasi Cahaya (lux) dari Lampu Warna Hijau Menurut Kedalaman Pengukuran</td>
<td>38</td>
</tr>
<tr>
<td>11. Iluminasi Cahaya (lux) dari Lampu Warna Merah Menurut Kedalaman Pengukuran</td>
<td>39</td>
</tr>
<tr>
<td>12. Iluminasi Cahaya (lux) dari Lampu Warna Kuning Menurut Kedalaman Pengukuran</td>
<td>40</td>
</tr>
<tr>
<td>13. Iluminasi Cahaya (lux) dari 2 Lampu Putih pada Perlakuan Kedalaman 0 meter</td>
<td>41</td>
</tr>
<tr>
<td>14. Iluminasi Cahaya (lux) dari 2 Lampu Putih pada Perlakuan Kedalaman 1 meter</td>
<td>42</td>
</tr>
</tbody>
</table>
15. Iluminasi Cahaya (lux) dari 2 Lampu Putih pada Perlakuan Kedalaman 2 meter ..42

16. Komposisi Hasil Tangkapan Berdasarkan Perlakuan Warna Lampu44

17. Komposisi Hasil Tangkapan Berdasarkan Perlakuan Kedalaman Penurunan Lampu ..44

18. Hasil Uji Statistik nonparametrik Kruskal-Wallis ..44

19. Jenis Ikan yang Tertangkap Berdasarkan Perlakuan Warna dan Kedalaman Penurunan Lampu ...45
<table>
<thead>
<tr>
<th>Gambar</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stasiun Pengukuran Iluminasi Cahaya ... 14</td>
</tr>
<tr>
<td>2</td>
<td>Proses Pengoperasian Bagan Apung di Pelabuhanratu 23</td>
</tr>
<tr>
<td>3</td>
<td>Teknik Pemindahan Bagan Apung di Pelabuhanratu 25</td>
</tr>
<tr>
<td>4</td>
<td>Blok Diagram Sistem AC ... 26</td>
</tr>
<tr>
<td>5</td>
<td>Sistem Rangkaian Transformasi Energi Surya pada Solar Cell System 27</td>
</tr>
<tr>
<td>6</td>
<td>Bagian-bagian Komponen Dalam Modul Fotovoltaik 28</td>
</tr>
<tr>
<td>7</td>
<td>Alat Pengatur Energi Baterai (BCR) ... 30</td>
</tr>
<tr>
<td>8</td>
<td>Konstruksi Lampu Bawah Air Tenaga Surya ... 31</td>
</tr>
<tr>
<td>9</td>
<td>Kurva untuk Menentukan Lama Pemakaian Beban 32</td>
</tr>
<tr>
<td>10</td>
<td>Posisi Pemasangan Modul Fotovoltaik pada Bagan Apung 35</td>
</tr>
<tr>
<td>11</td>
<td>Kurva Penyebaran Iluminasi Cahaya (lux) dari Lampu Warna Putih 38</td>
</tr>
<tr>
<td>12</td>
<td>Kurva Penyebaran Iluminasi Cahaya (lux) dari Lampu Warna Hijau 38</td>
</tr>
<tr>
<td>13</td>
<td>Kurva Penyebaran Iluminasi Cahaya (lux) dari Lampu Warna Merah 39</td>
</tr>
<tr>
<td>14</td>
<td>Kurva Penyebaran Iluminasi Cahaya (lux) dari Lampu Warna Kuning 40</td>
</tr>
<tr>
<td>15</td>
<td>Kurva Penyebaran Iluminasi Cahaya (lux) dari 2 Lampu Putih pada Kedalaman 0 meter ... 41</td>
</tr>
<tr>
<td>16</td>
<td>Kurva Penyebaran Iluminasi Cahaya (lux) dari 2 Lampu Putih pada Kedalaman 1 meter ... 42</td>
</tr>
<tr>
<td>17</td>
<td>Kurva Penyebaran Iluminasi Cahaya (lux) dari 2 Lampu Putih pada Kedalaman 2 meter ... 43</td>
</tr>
</tbody>
</table>
DAFTAR LAMPIRAN

<table>
<thead>
<tr>
<th>Lampiran</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Peta Lokasi Penelitian</td>
<td>59</td>
</tr>
<tr>
<td>3. Bobot (gram) dan Jumlah (ekor) Hasil Tangkapan untuk Perlakuan Warna dan Kedalaman Penurunan Lampu</td>
<td>61</td>
</tr>
<tr>
<td>4. Contoh Perhitungan Uji Kruskal-Wallis untuk Perlakuan Warna Lampu pada Pengamatan Bobot Hasil Tangkapan</td>
<td>62</td>
</tr>
<tr>
<td>5. Contoh Perhitungan Uji Kruskal-Wallis untuk Perlakuan Warna Lampu pada Pengamatan Jumlah Hasil Tangkapan</td>
<td>63</td>
</tr>
<tr>
<td>6. Contoh Perhitungan Uji Kruskal-Wallis untuk Perlakuan Kedalaman Penurunan Lampu pada Pengamatan Bobot Hasil Tangkapan</td>
<td>64</td>
</tr>
<tr>
<td>7. Contoh Perhitungan Uji Kruskal-Wallis untuk Perlakuan Kedalaman Penurunan Lampu pada Pengamatan Jumlah Hasil Tangkapan</td>
<td>65</td>
</tr>
<tr>
<td>8. Hasil Pengukuran Iluminasi Cahaya (lux) dari Lampu Warna Putih dan Hijau</td>
<td>66</td>
</tr>
<tr>
<td>9. Hasil Pengukuran Iluminasi Cahaya (lux) dari Lampu Warna Merah dan Kuning</td>
<td>67</td>
</tr>
<tr>
<td>10. Hasil Pengukuran Iluminasi Cahaya (lux) dari 2 Lampu Putih pada Kedalaman 0 meter dan 1 meter</td>
<td>68</td>
</tr>
<tr>
<td>11. Hasil Pengukuran Iluminasi Cahaya (lux) dari 2 Lampu Warna Putih pada Kedalaman 2 meter</td>
<td>69</td>
</tr>
<tr>
<td>12. Gambar Posisi Pemasangan Modul Fotovoltaik pada Konstruksi Bagan Apung</td>
<td>70</td>
</tr>
<tr>
<td>13. Gambar Penampakan Lampu Bawah Air Solar Cell System</td>
<td>71</td>
</tr>
<tr>
<td>14. Gambar Konstruksi Lampu Bawah Air dan Modul Fotovoltaik</td>
<td>72</td>
</tr>
</tbody>
</table>
I PENDAHULUAN

1.1 Latar belakang

Sub sektor perikanan merupakan salah satu tumpuan harapan yang dapat menjamin kelangsungan hidup manusia, baik dewasa ini maupun di masa yang akan datang. Disamping itu perikanan merupakan suatu kegiatan ekonomi yang diharapkan dapat memenuhi kebutuhan hidup masyarakat melalui peningkatan pendapatan.

Menurut Azis et al. (1998) potensi sumberdaya ikan laut Indonesia, tidak termasuk ikan hias, diduga sebesar 6,17 juta ton per tahun, sementara produksi tahunan ikan laut Indonesia pada tahun 1997 mencapai 3,59 juta ton. Ini berarti bahwa tingkat pemanfaatan sumberdaya ikan laut Indonesia baru mencapai 58,19%. Apabila tingkat pemanfaatan maksimum dimungkinkan sampai 90%, maka masih tersedia peluang pengembangan sebesar 31,18% dari potensi sumberdaya yaitu sebesar 1,96 juta ton per tahun.

Samudera Hindia merupakan wilayah pengelolaan perikanan yang memiliki potensi sumberdaya ikan pelagis kecil sebesar 429,03 ribu ton dengan tingkat pemanfaatan 41,73% (Azis et al., 1998). Perairan Pelabuhanratu adalah salah satu daerah produksi perikanan yang berjarak kira-kira 58 kilometer dari kota Sukabumi, dan perairan ini terdapat di sekitar wilayah pengelolaan tersebut. Oleh karena itu Pelabuhanratu termasuk wilayah perairan yang memiliki peluang cukup tinggi dalam hal pemanfaatan sumberdaya ikan pelagis kecil.

Bagan adalah salah satu alat tangkap yang dioperasikan pada malam hari dengan bantuan cahaya. Alat ini bertujuan untuk memanfaatkan kelompok ikan pelagis kecil. Pengoperasian bagan dengan alat bantu cahaya dimaksudkan untuk menarik perhatian ikan yang bersifat fototaksis positif, karena pada umumnya ikan pelagis kecil memiliki respon yang cukup tinggi terhadap cahaya.

Sampai saat ini pengoperasian bagan di Pelabuhanratu masih menggunakan lampu petromaks sebagai alat bantu penangkapan dengan bahan bakar minyak tanah.
Jumlah lampu yang biasa dioperasikan berkisar antara 3 – 6 buah lampu dan dapat menghabiskan bahan bakar minyak tanah antara 8 – 15 liter per trip.

Diantara energi yang baru dan terbarukan yang memiliki kemungkinan untuk dikembangkan di Indonesia adalah energi surya. Selama ini pemanfaatan dan pengembangan energi surya yang dikoordinasi oleh Badan Pengkajian dan Penerapan Teknologi (BPPT) diterapkan pada penerangan rumah penduduk atau Solar Home System (SHS) di daerah-daerah yang jauh dari jangkauan PLN, sistem pompa air, sistem komunikasi radio dan lain sebagainya.

Solar Cell System pada pengoperasian bagan apung digunakan sebagai pembangkit tenaga listrik untuk mengumpulkan dan memikat ikan. Dalam hal ini Solar Cell System masih dalam taraf penelitian, yaitu pengoperasian lampu tenaga
surya dengan sistem lampu bawah air. Gunarso (1985) mengemukakan bahwa pengoperasian lampu bawah air lebih efektif dari pada lampu yang dioperasikan di atas permukaan, karena tidak banyak cahaya yang hilang akibat adanya pantulan di permukaan air dan penghamburan cahaya oleh gelombang permukaan.

Selain karena hal di atas, pengoperasian lampu bawah air tenaga surya dalam perikanan bagan apung mempunyai beberapa keuntungan, diantaranya:

1. sumber energi yang digunakan sangat melimpah dan cuma-cuma;
2. sistem yang dikembangkan bersifat modular sehingga dapat dengan mudah diinstalasi dan diperbesar kapasitasnya;
3. perawatannya mudah;
4. tidak menimbulkan polusi, baik suara maupun udara;
5. dirancang bekerja secara otomatis sehingga dapat diterapkan di berbagai tempat;
6. kehandalan sistemnya tinggi.

Dari berbagai keuntungan tersebut di atas, rupanya sangat relevan jika diterapkan pada perikanan bagan. Untuk itu penulis melakukan kegiatan uji coba penangkapan ikan dengan bagan apung menggunakan sistem lampu bawah air tenaga surya yang berlokasi di perairan Pelabuhanratu Kabupaten Sukabumi.

1.2 Tujuan Penelitian

Kegiatan penelitian ini bertujuan untuk:

1. mengetahui rangkaian proses transformasi energi surya menjadi energi listrik sebagai sumber cahaya lampu bawah air dalam pengoperasian bagan apung;
2. mengetahui jumlah energi yang dibutuhkan untuk pengoperasian bagan apung dari sumber Solar Cell System;
3. mengetahui pengaruh warna dan kedalaman lampu terhadap komposisi hasil tangkapan bagan apung;
4. membandingkan hasil tangkapan antara bagan dengan sumber cahaya Solar Cell System dan bagan dengan sumber cahaya lampu petromaks (bagan konvensional).
1.3 Manfaat Penelitian

Manfaat yang diharapkan dari penelitian ini diantaranya:
(1) dapat meningkatkan produksi perikanan bagan dengan mempertimbangkan biaya produksi, kenyamanan kerja serta kualitas dan keefektifan cahaya yang digunakan;
(2) sebagai masukan untuk penelitian lebih lanjut dalam rangka pemanfaatan kemajuan teknologi.
II TINJAUAN PUSTAKA

2.1 Deskripsi Alat Tangkap Bagan Apung

Di Indonesia bagan termasuk kategori alat yang produktif dan banyak dioperasikan di perairan pantai. Banyak para ahli yang mendefinisikan bagan berdasarkan karakteristik yang terdapat pada alat tangkap tersebut.

Menurut Friedman (1986), liftnet adalah alat penangkap ikan yang dioperasikan dengan cara dinaikkan atau ditarik dari posisi horizontal yang ditenggelamkan untuk menangkap ikan yang ada di atasnya dengan menyaring air.

Komponen alat tangkap bagan terdiri dari jaring bagan, rumah bagan (anjung-anjang), lampu dan serok. Pada bagan terdapat alat penggulung atau roller yang berfungsi untuk menurunkan atau mengangkat jaring (Subani dan Barus, 1989).

2.2 Pengoperasian Bagan Apung

Von Brandt (1984) menyatakan bahwa keberhasilan penangkapan ikan menggunakan alat bantu cahaya ditentukan oleh teknik penangkapan, kondisi perairan dan lingkungan, serta kondisi cahaya yang digunakan untuk memikat ikan.

Penangkapan ikan menggunakan bagan hanya dilakukan pada malam hari (light fishery), terutama pada saat gelap bulan, dan menggunakan lampu sebagai alat bantu penangkapan. Lampu berfungsi untuk mengumpulkan ikan pada satu titik atau tempat untuk kemudian dilakukan penangkapan (Subani dan Barus, 1989). Ada beberapa jenis lampu yang biasa digunakan oleh nelayan bagan di Indonesia, seperti oncor atau obor, lampu petromaks atau carosene pressure lamp dan lampu listrik yang penggunaannya masih terbatas.
Pada prinsipnya cahaya dalam pengoperasian bagan dimaksudkan untuk mengumpulkan ikan pada suatu daerah penangkapan (catchable area) tertentu, lalu penangkapan dilakukan menggunakan alat jaring (Ayodhya, 1974). Selanjutnya dijelaskan bahwa penangkapan dengan atraktor cahaya ini akan dapat memberikan daya guna yang maksimal dengan beberapa persyaratan, antara lain:

1. mampu mengumpulkan ikan yang berada pada jarak yang jauh, baik horizontal maupun vertikal;

2. ikan tersebut hendaklah diusahakan berkumpul di sekitar sumber cahaya yang memungkinkan ikan tertangkap;

3. setelah ikan terkumpul diusahakan ikan tersebut menetap pada jangka waktu tertentu, minimum saat alat tangkap diangkat;

4. ikan yang sudah terkumpul pada sumber cahaya diusahakan tidak meloloskan diri atau menyebar.

Berdasarkan keefektifan cahaya dalam pengoperasian bagan, Nomura dan Yamazaki (1977) mengatakan bahwa dengan menggunakan cahaya sebagai pemikat ikan, maka:

1. nelayan tidak susah lagi untuk mencari-cari ikan;

2. hasil tangkapan cenderung lebih pasti jumlahnya dan cenderung meningkat, tetapi tergantung pada pengetahuan dan keterampilan nelayan;

3. menghemat waktu dan lain-lain.

2.3 Karakteristik Cahaya di dalam Air

Menurut teori Maxwell, cahaya menyebar dalam bentuk gelombang elektromagnetik dengan kecepatan sekitar 300.000 kilometer/detik. Panjang gelombang berkisar antara 7800 - 3600 Å (1 Å = 10⁻¹⁰ meter) dan frekuensi berkisar antara 3,87 x 10¹⁴ - 8,35 x 10¹⁴ Hz (Ben Yami, 1976).

<table>
<thead>
<tr>
<th>Warna Cahaya</th>
<th>Panjang Gelombang (angstrom)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultraviolet</td>
<td>Lebih pendek dari 3900</td>
</tr>
<tr>
<td>Violet</td>
<td>3900 – 4550</td>
</tr>
<tr>
<td>Biru</td>
<td>4550 – 4920</td>
</tr>
<tr>
<td>Hijau</td>
<td>4920 – 5770</td>
</tr>
<tr>
<td>Kuning</td>
<td>5770 – 5970</td>
</tr>
<tr>
<td>Orange</td>
<td>5970 – 6220</td>
</tr>
<tr>
<td>Merah</td>
<td>6220 – 7700</td>
</tr>
<tr>
<td>Infra merah</td>
<td>Lebih panjang dari 7700</td>
</tr>
</tbody>
</table>

Sumber : Ben Yami (1976)

Dari enam warna cahaya tersebut dijelaskan bahwa cahaya biru dan hijau paling dalam menembus lapisan perairan, sementara cahaya merah dan ungu akan terabsorpsi oleh air hanya beberapa meter (2 - 3 meter) setelah menembus permukaan
laut. Pada kondisi dan kecerahan yang sama dengan cahaya merah, cahaya biru masih mempunyai intensitas sebesar 10% pada kedalaman 100 meter.

Menurut Nikorov (Kristjonson, 1968) dan Ben Yami (1976), aspek teknik cahaya yang diperhitungkan dan satuan intensitas internasional yang dipakai adalah:

1. intensitas cahaya dengan satuan candela (cd);
2. iluminasi cahaya dengan satuan lux (lx);
3. kuat penyinaran dengan satuan lumen (lm).

Sears dan Zemansky vide Husin (1979) menjelaskan bahwa intensitas cahaya (cd) dari suatu titik sumber cahaya adalah fluksi cahaya (lm) yang dipancarkan per satuan sudut ruang (steradian) yang diformulasikan dalam bentuk:

\[
I = \frac{F(lumen)}{W(steradian)} = \text{candela(cd)}
\]

dimana

\[
I = \text{intensitas cahaya (cd)}
\]

\[
F = \text{fluksi cahaya atau kuat penerangan (lm)}
\]

\[
W = \text{fluksi radiant atau sudut ruang (ω)}
\]

Tabel 2 memperlihatkan hubungan antara radiant (ω) dengan lumen (lm) untuk lampu-lampu bola pijar dan lampu neon (TL).

Tabel 2. Hubungan antara Fluksi radiant (ω) dengan Fluksi cahaya (lumen) dari Bola Lampu Pijar dan Lampu Neon (TL)

<table>
<thead>
<tr>
<th>Fluksi radiant (ω)</th>
<th>Fluksi Cahaya (lumen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lampu pijar</td>
</tr>
<tr>
<td>25</td>
<td>260</td>
</tr>
<tr>
<td>40</td>
<td>460</td>
</tr>
<tr>
<td>100</td>
<td>1630</td>
</tr>
<tr>
<td>200</td>
<td>3650</td>
</tr>
<tr>
<td>500</td>
<td>9950</td>
</tr>
</tbody>
</table>

Sumber: Sears dan Zemansky vide Husin (1979)
Selanjutnya dijelaskan bahwa hubungan antara fluksi cahaya atau kuat penerangan (lm) dengan daya lampu yang digunakan (watt) disebut efesiensi cahaya dengan satuan lumen per watt. Efesiensi dari sumber cahaya tidak selalu sama tergantung dari panjang gelombang cahaya yang dipancarkan.

Iluminasi suatu sumber cahaya akan menurun dengan semakin meningkatnya jarak dari sumber cahaya tersebut dan nilainya akan berkurang apabila cahaya memasuki media air (Ben Yami, 1976). Sementara Nybakken (1988) berpendapat bahwa kedalaman penetrasi cahaya dalam laut tergantung pada beberapa faktor, antara lain, absorpsi cahaya oleh partikel-partikel air, panjang gelombang cahaya, kecerahan perairan, pemantulan cahaya oleh permukaan laut serta lintang geografis dan musim.

2.4 Reaksi Ikan terhadap Cahaya

Tertariknya ikan pada cahaya disebabkan oleh beberapa hal, antara lain untuk mencari intensitas cahaya optimum, investigatory reflex, untuk mencari makanan dan untuk bergerombol (Verheyen vide Johnson, 1968 dan Woolhead vide Ben Yami, 1976). Peristiwa berkumpulnya ikan di bawah sumber cahaya (Ayodhya, 1981) dapat dibedakan menjadi:

1. Peristiwa langsung, yaitu berkumpulnya ikan karena tertarik oleh cahaya lampu yang digunakan atau ikan bersifat fototaksis positif;
2. Peristiwa tidak langsung, yaitu berkumpulnya ikan karena tujuan mencari makanan (feeding) yang disebabkan adanya plankton dan ikan kecil yang terpikat cahaya.

Ikan yang tertarik pada cahaya umumnya menyukai cahaya yang terang dan tenang. Cahaya yang tidak tenang (**flickering light**) seperti cahaya petir, lampu senter (**flash light**) yang dihidupmatikan akan menakutkan atau setidaknya mengganggu syaraf ikan (Subani, 1983).

Ikan umumnya sangat peka terhadap cahaya yang datang dari arah dorsal. Ikan tidak menyukai cahaya yang datang dari arah ventral atau bawah tubuhnya. Bila keadaannya tidak memungkinkan untuk turun ke arah sumber cahaya, ikan menyebar ke arah horizontal (Parish **vide** Gunarso, 1985).

2.5 Energi Surya

Menurut Tim Fotovoltaik BPPT (1995), sinar matahari yang tiba di permukaan bumi mempunyai sifat sebagai gelombang dan partikel energi (foton). Radiasi matahari yang merupakan sejumlah foton yang dipancarkan per satuan luas pada waktu tertentu, dengan mudah diubah menjadi energi panas dan dapat pula diubah menjadi energi listrik melalui konversi fotovoltaik oleh sel surya.

Penyinaran matahari maksimum (Tim Fotovoltaik BPPT, 1995) adalah radiasi matahari yang jatuh langsung pada suatu permukaan bidang tegak lurus menghadap matahari atau daya per satuan luas. Peristiwa ini dapat terjadi di daerah-daerah yang dekat dengan catulistiwa di permukaan bumi seperti di Indonesia. Besaran ini biasa diukur dalam watt per meter persegi, sedangkan ukuran dari energi surya yang diterima di daerah tertentu pada suatu periode waktu tertentu diukur dalam satuan kilowatt jam meter persegi per hari (kwh/m² per hari). Ukuran tersebut merupakan jumlah dari penyinaran matahari dalam sehari, biasa disebut insolasi. Energi dari radiasi matahari yang tiba di permukaan atmosfir dapat mencapai harga konstanta surya sebesar 1350 watt/m² dan hal ini akan berlangsung terus menerus sepanjang tahun.

III METODOLOGI PENELITIAN

3.1 Waktu dan Tempat Penelitian

Kegiatan penelitian ini dilakukan di kawasan perairan Pelabuhanratu, tepatnya di Desa Pelabuhanratu yang terletak di daerah pantai dengan posisi geografi 6°50’ - 7°30’ LS dan 106°10’ - 106°30’ BT.

3.2 Bahan dan Alat Penelitian

Bahan utama yang digunakan pada penelitian ini terdiri atas satu unit bagan apung dan dua unit Solar Cell System.

Spesifikasi bagan apung yang digunakan adalah sebagai berikut:
- ukuran panggung bagan di bagian bawah 10 x 10 meter dan 9,5 x 9,5 meter di bagian atas;
- ukuran jaring bagan atau waring 9 x 9 x 2,5 meter;
- ukuran mata waring 0,2 inci.

Beberapa komponen Solar Cell System yang dioperasikan adalah
(1) empat buah modul fotovoltaik dengan kapasitas maksimum masing-masing 50 Wp;
(2) dua buah baterai asam timbal sebagai penyimpan energi bertegangan nominal 12 V DC dan kapasitas nominal 70 Ah;
(3) dua buah alat pengukur energi baterai atau Battery Charge Regulator (BCR);
(4) empat buah lampu TL 20 Watt 220 V dan Inverter 12 V DC yang telah dilapisi tabung akrilik sebagai sistem lampu bawah air.
Alat ukur yang digunakan dalam proses penelitian diantaranya:

(1) timbangan duduk, untuk menimbang bobot hasil tangkapan;
(2) *Marine Lux Meter* model OSK 16648, digunakan untuk mengukur iluminasi cahaya lampu;
(3) Quesioner;
(4) Alat tulis dan lembar pengisian data;
(5) Alat dokumentasi.

3.3 Metode Penelitian

Metode yang digunakan pada penelitian ini adalah uji coba penangkapan ikan atau *experimental fishing*. Dalam hal ini, peneliti melakukan kegiatan dan pengamatan secara langsung terhadap objek-objek penelitian pada pengoperasian bagan apung. Objek penelitian yang dimaksud adalah unit PLTS yang meliputi kegiatan instalasi dan proses pengoperasian lampu bawah air sebagai alat bantu penangkapan.

3.3.1 Metode Pengumpulan Data

Proses pengambilan data primer dilakukan dengan membentuk dua kelompok perlakuan, yaitu:

(1) perlakuan terhadap warna lampu dengan jumlah lampu dan kedalaman yang sama, satu buah lampu di kedalaman satu meter);
(2) perlakuan terhadap kedalaman penurunan lampu dengan jumlah dan warna lampu yang sama, dua buah lampu berwarna putih.

Perlakuan berdasarkan kedalaman penurunan lampu dilakukan menggunakan dua lampu putih (total 40 watt) pada tiap-tiap *setting*. Kedalaman lampu yang ditetapkan adalah 0 meter dengan ujung atas lampu di permukaan air, 1 meter dan 2 meter di bawah permukaan air. Teknik penurunan dilakukan dengan cara yang sama dengan perlakuan warna.

Proses pengukuran iluminasi cahaya dilakukan pada permulaan *setting* setelah lampu ditempatkan atau diturunkan pada posisi yang telah ditetapkan, atau lokasi pengukuran iluminasi cahaya ditetapkan di sekitar konstruksi bagan (Gambar 1). Pengukuran terdekat dari sumber cahaya pada perlakuan warna adalah di pusat bagan, sedangkan pada perlakuan kedalaman penurunan lampu terletak pada posisi 1 meter dari pusat bagan. Sementara lokasi pengukuran iluminasi yang lain sama untuk kedua perlakuan, yaitu sudut bagan, tengah diagonal, tengah tepi dan tepi bagan.

![Gambar 1. Stasiun Pengukuran Iluminasi Cahaya](image-url)
Kegiatan pengambilan data baik penimbangan bobot (gram) maupun perhitungan jumlah (ekor) hasil tangkapan dilakukan setiap proses **hauling** dan **brailling** berakhir untuk setiap ulangan.

Dengan keterbatasan waktu yang ada, uji coba peroperasian lampu bawah air tenaga surya hanya dapat dilakukan selama 8 trip. Perlakuan terhadap warna lampu diuji cobakan selama 5 hari pertama dan 3 hari berikutnya digunakan untuk uji coba terhadap perlakuan kedalaman penurunan lampu.

Data yang diperoleh dari kedua kelompok perlakuan meliputi pengamatan terhadap bobot hasil tangkapan dan jumlah ikan hasil tangkapan. Beberapa asumsi yang digunakan dalam proses pengumpulan data ini adalah

1. tingkat kepekaan atau respon ikan terhadap rangsangan cahaya dianggap konstan;
2. kondisi dan kepadatan penyebaran populasi ikan merata dan konstan selama penelitian berlangsung;
3. kondisi fisik perairan dianggap homogen.

3.3.2 Metode Analisis Data

Waktu yang dipersingkat dari jumlah waktu yang direncanakan menyebabkan perolehan data tidak maksimal. Keterbatasan waktu ini pula mengakibatkan jumlah ulangan yang diperoleh dari kedua kelompok perlakuan tidak sama. Perlakuan menggunakan warna lampu diperoleh data masing-masing tiga ulangan untuk warna putih, empat ulangan untuk warna hijau, empat ulangan untuk warna merah dan tiga ulangan untuk warna kuning. Sedangkan pada perlakuan kedalaman penurunan lampu masing-masing diperoleh empat ulangan untuk kedalaman 0 meter, tiga ulangan untuk kedalaman 1 meter dan tiga ulangan untuk kedalaman 2 meter.

Statistik yang digunakan untuk penarikan kesimpulan atas data yang diperoleh adalah statistika nonparametrik. Uji yang digunakan adalah Kruskal Wallis. Pemilihan metode ini dengan pertimbangan banyak faktor yang tidak dapat dikontrol yang mempengaruhi hasil penelitian seperti ombak, arus, kecerahan perairan dan musim. Disamping itu, statistik nonparametrik merupakan statistik yang bebas
sebaran, artinya tidak diperlukan prosedur yang bergantung pada suatu sebaran induk tertentu (Steel and Torrie, 1993).

Statistik nonparametrik memiliki sejumlah kelebihan (Steel and Torrie, 1993), yaitu:

1. Bila hanya dapat dibuat asumsi yang lemah mengenai sebaran yang mendasari datanya, maka statistik nonparametrik layak digunakan, dengan kata lain statistik nonparametrik berlaku pada semua kemungkinan sebaran;
2. Kadang-kadang karena kurang memadainya skala pengukuran, hanya dapat dilakukan sedikit dari mengklasifikasikan data. Dalam hal demikian uji nonparametrik mungkin yang terbaik yang dapat digunakan;

Hipotesis uji yang digunakan bagi data bobot dan jumlah ikan hasil tangkapan adalah

1. Untuk perlakuan empat warna lampu
 \[H_0 : \mu_{\text{putih}} = \mu_{\text{hijau}} = \mu_{\text{merah}} = \mu_{\text{kuning}} \]
 \[H_1 : \text{keempat perlakuan lampu memberikan pengaruh yang berbeda} \]

2. Untuk perlakuan kedalaman penurunan lampu
 \[H_0 : \mu_{0\text{meter}} = \mu_{1\text{meter}} = \mu_{2\text{meter}} \]
 \[H_1 : \text{ketiga perlakuan kedalaman memberikan pengaruh yang berbeda} \]

Kriteria uji (Steel and Torrie, 1993) adalah

\[
H = \frac{12}{n(n+1)} \sum \frac{R_i^2}{ni} - 3(n+1)
\]

dimana

- \(n_i \) = banyaknya pengamatan dalam contoh ke-\(i \); \(i = 1,2,3,..., k \)
- \(n \) = total pengamatan
- \(R_i \) = jumlah pangkat dalam contoh ke-\(i \)
- \(H \) menyebar sebagai \(\chi^2 \) (Chi quadrat) dengan \(k - 1 \) derajat bebas.
Penentuan daerah penolakan bagi hipotesis di atas adalah

- terima H_0, tolak H_1, jika $H < \chi^2_\alpha$ dengan $\nu = k - 1$
- tolak H_0, terima H_1, jika $H > \chi^2_\alpha$ dengan $\nu = k - 1$.

Statistik dapat menolong peneliti untuk menyimpulkan apakah suatu perbedaan yang diperoleh benar-benar berbeda secara signifikan ataupun kesimpulan yang diambil representatif untuk memberikan infrensi terhadap populasi tertentu. Tetapi harus disadari bahwa statistik hanya merupakan alat bukan sebagai tujuan dari analisis. Karena itu janganlah statistik dijadikan sebagai tujuan yang menentukan komponen-komponen penelitian yang lain (Nazir, 1988).
IV KEADAAN UMUM DAERAH PENELITIAN

4.1 Kondisi Oceanografi Perairan Pelabuhanratu

Kondisi perairan pada saat penelitian dapat dikatakan tidak menentu. Hal ini terlihat dari perubahan kecerahan air dan arus yang terjadi beberapa kali setiap malam. Karakteristik perairan seperti arah dan kecepatan arus, suhu dan safinitas di tempat kegiatan uji coba dilakukan tidak dapat dijelaskan sehingga digunakan untuk mengukur karakteristik perairan tersebut yaitu Recording Current Meter (RCM) tidak dapat bekerja sebagaimana mestinya.

4.2 Keadaan Umum Perikanan Tangkap

Pelabuhan Pelabuhanratu adalah salah satu Pelabuhan Perikanan Nusantara yang terletak di sebelah selatan Pulau Jawa. Berbagai unit penangkapan ikan dengan jumlah yang cukup besar telah dioperasikan di daerah ini. Unit penangkapan tersebut adalah jaring insang (gillnet), jaring lingkar (purse seine), pancing, jaring angkat (liftnet), jaring kantong (bagnet) dan lain-lain.

Secara umum teknologi dan peralatan yang digunakan dalam pengoperasian alat tangkap di Pelabuhanratu tergolong masih tradisional. Disamping itu, jangkauan operasinya masih terbatas di daerah pantai sehingga ketergantungan nelayan terhadap sumberdaya di daerah pantai sangat besar.

Tingkat pengetahuan nelayan Pelabuhanratu dapat dikatakan masih rendah terhadap deskripsi potensi dan kesediaan teknik yang digunakan sebagai alat ekonomi. Dengan demikian kemampuan nelayan begitu monoton dengan pola bisnisnya dan jarang sekali melihat peluang bisnis yang lebih besar. Keadaan ini ditunjukkan oleh perkembangan jumlah alat tangkap dan tingkat produksi yang relatif stagnan dari tahun ke tahun. Berdasarkan catatan Kantor Pelabuhan Perikanan Nusantara Pelabuhanratu,
perkembangan jumlah alat tangkap secara keseluruhan dan tingkat produksi perikanan tahun 1993 -1997 disajikan pada Tabel 3.

Tingkat pemanfaatan sumberdaya ikan oleh berbagai alat tangkap yang ada secara umum masih rendah. Hal ini terlihat dari produksi rata-rata ikan laut sebesar 3.042,23 ton per tahun selama enam tahun terakhir. Rendahnya tingkat pemanfaatan ini disebabkan oleh rendahnya produktivitas berbagai alat tangkap yang ada, disamping pendidikan dan keterampilan yang dimiliki nelayan masih terbatas dan masih memerlukan bimbingan.

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Jumlah Alat Tangkap (unit)</th>
<th>Volume Produksi (Kg)</th>
<th>Produktivitas (Kg/unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>627</td>
<td>3.118.782</td>
<td>4.974,13</td>
</tr>
<tr>
<td>1994</td>
<td>615</td>
<td>3.424.725</td>
<td>5.568,66</td>
</tr>
<tr>
<td>1995</td>
<td>618</td>
<td>3.521.745</td>
<td>5.698,62</td>
</tr>
<tr>
<td>1996</td>
<td>650</td>
<td>3.424.725</td>
<td>5.209,81</td>
</tr>
<tr>
<td>1997</td>
<td>528</td>
<td>4.134.871</td>
<td>7.831,20</td>
</tr>
</tbody>
</table>

Sumber : Kantor PPN Pelabuhanratu, 1999

4.3 Keadaan Perikanan Bagan Apung

4.3.1 Deskripsi Unit Penangkapan Bagan Apung

Tabel 4. Perkembangan Jumlah Alat Tangkap Bagan di PPN Pelabuhanratu

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Jumlah Alat Tangkap Bagan</th>
<th>Total Alat Tangkap</th>
<th>Persentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>34</td>
<td>627</td>
<td>5,4</td>
</tr>
<tr>
<td>1994</td>
<td>13</td>
<td>615</td>
<td>2,1</td>
</tr>
<tr>
<td>1995</td>
<td>13</td>
<td>618</td>
<td>2,1</td>
</tr>
<tr>
<td>1996</td>
<td>155</td>
<td>650</td>
<td>23,8</td>
</tr>
<tr>
<td>1997</td>
<td>97</td>
<td>528</td>
<td>8,4</td>
</tr>
<tr>
<td>1998</td>
<td>97</td>
<td>482</td>
<td>20,1</td>
</tr>
</tbody>
</table>

Sumber: Kantor PPN Pelabuhanratu, 1999

Berdasarkan pengertian dan fungsinya, ketiga komponen tunit penangkapan bagan dapat dijelaskan sebagai berikut:

(1) Alat tangkap bagan apung terdiri atas tiga bagian utama, yaitu panggung bagan, jaring bagan atau waring dan alat bantu penangkapan.

Panggung bagan merupakan bangunan berbentuk piramida terpotong, terbuat dari bambu yang dirangkai dengan ikatan tali tambang atau tali kawat. Pada bagian atas panggung bagan terdapat rumah bagan dan roller. Rumah bagan berfungsi sebagai tempat berlindung nelayan sekaligus sebagai tempat mengamati kehadiran ikan sebelum pengangkatan jaring. Roller berfungsi sebagai alat penggulung tali pada proses penurunan dan pengangkatan jaring.

Jaring bagan atau waring terbuat dari bahan polypropylene dengan ukuran mata jaring berkisar antara 0,2 – 0,4 inci. Waring berbentuk kubus terbuka yang diikatan pada sebuah bingkai bambu. Empat sudut di bagian atasnya digantungkkan pada roller dan empat sudut di bagian bawahnya diberi pemberat.

Alat bantu penangkapan yang digunakan nelayan Pelabuhanratu selama ini adalah lampu petromaks dengan bahan bakar minyak tanah. Lampu ini berfungsi sebagai pemikat atau pengumpul ikan untuk kemudian diangkat dengan jaring. Jumlah lampu yang dioperasikan berkisar antara 3 – 6 buah ;

(2) Kapal atau perahu yang digunakan pada perikanan bagan apung di Pelabuhanratu adalah jenis kapal motor diesel (inboard) yang terbuat dari kayu berkekuatan 16 HP. Fungsi kapal adalah sebagai alat transportasi dari fishing base atau TPI ke bagan atau sebaliknya dan untuk mengangkut hasil tangkapan ke TPI. Tidak setiap unit bagan
apung memiliki kapal sendiri, akan tetapi nelayan bagan menyumbangkan sebesar 20% dari hasil tangkapannya per trip sebagai sewa;

(3) Nelayan bagan adalah orang yang mengoperasikan bagan, umumnya hanya satu orang dalam satu bagan. Secara umum ada dua kategori nelayan bagan, yaitu nelayan pemilik dan nelayan buruh. Nelayan pemilik atau biasa disebut sebagai juragan adalah orang yang memiliki alat tangkap bagan, ada yang mengoperasikannya sendiri ada pula yang mengulikannya kepada orang lain. Nelayan buruh adalah nelayan yang semata-mata sebagai kuli untuk mengoperasikan dengan sistem bagi hasil sebesar 50% dari pendapatan usaha.

4.3.2 Volume dan Kontribusi Produksi Perikanan

Alat tangkap bagan apung termasuk alat yang mempunyai tingkat selektivitas yang rendah dalam produksi perikanan, karena alat tangkap ini memiliki ukuran mata jaring yang relatif lebih kecil dibandingkan dengan alat tangkap yang lain. Oleh karena itu jenis ikan pelagis yang dapat ditangkap oleh jaring bagan relatif lebih beragam. Jenis ikan pelagis kecil yang umum tertangkap oleh bagan apung disajikan pada Tabel 5.

<table>
<thead>
<tr>
<th>Nama Indonesia</th>
<th>Nama Latin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layang</td>
<td>Decapterus. Sp</td>
</tr>
<tr>
<td>Tembang</td>
<td>Sardinella fimbriata</td>
</tr>
<tr>
<td>Teri</td>
<td>Stolephorus sp</td>
</tr>
<tr>
<td>Cumi-cumi</td>
<td>Loligo sp</td>
</tr>
<tr>
<td>Layur</td>
<td>Trichiurus savala</td>
</tr>
<tr>
<td>Selar</td>
<td>Caranx sp</td>
</tr>
<tr>
<td>Belanak</td>
<td>Mugil sp</td>
</tr>
<tr>
<td>Tongkol (lisong)</td>
<td>Auxis thazard</td>
</tr>
<tr>
<td>Julung-julung</td>
<td>Hemirhamphus sp</td>
</tr>
<tr>
<td>Dan lain-lain</td>
<td></td>
</tr>
</tbody>
</table>

Sumber: Kantor PPN Pelabuhanratu, 1999

Berdasarkan data statistik Kantor PPN Pelabuhanratu, diketahui ada lima jenis ikan yang mendominasi hasil tangkapan bagan, yaitu tembang (Sardinella fimbriata), layang (Decapterus sp), layur (Trichiurus savala), lisong (Auxis thazard) dan pepetek

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Produksi bagan</th>
<th>Produksi semua Alat Tangkap</th>
<th>Persentase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>105624</td>
<td>592063</td>
<td>17,84</td>
</tr>
<tr>
<td>1994</td>
<td>54406</td>
<td>480752</td>
<td>11,32</td>
</tr>
<tr>
<td>1995</td>
<td>109849</td>
<td>930084</td>
<td>11,81</td>
</tr>
<tr>
<td>1996</td>
<td>106001</td>
<td>999739</td>
<td>10,60</td>
</tr>
<tr>
<td>1997</td>
<td>149894</td>
<td>1805390</td>
<td>8,30</td>
</tr>
</tbody>
</table>

Sumber : Kantor PPN Pelabuhanratu, 1999

4.3.3 Metode Pengoperasian Bagan Apung

Bagan merupakan salah satu alat yang sifatnya pasif. Metode penoperasiananya cukup mudah dan sederhana serta cukup dilakukan oleh satu orang. Kegiatan pengoperasian bagan meliputi:

1. Persiapan, nelayan menuju bagan dengan menggunakan perahu. Biasanya berangkat dari TPI antara pukul 15.00 – 16.00 WIB. Setelah sampai di bagan nelayan mempersiapkan lampu, jaring dan peralatan lain yang diperlukan;

2. Setting, yaitu proses penurunan jaring menggunakan roller sampai kedalaman yang diinginkan, biasanya antara 8 – 12 meter. Setelah jaring diturunkan nelayan menyalakan lampu petromaks atau jenis lampu lain guna memikat atau menarik ikan agar berkumpul di bawah sumber cahaya;

3. Hauling, yaitu proses pengangkatan jaring setelah direndam beberapa saat (soaking period). Pada awalnya jaring di tarik perlahan-lahan, kemudian semakin dekat ke permukaan penarikan jaring semakin dipercepat guna menjaga ikan lolos;
Brailing, proses pengambilan hasil tangkapan menggunakan cidukan atau serok. Dari dalam serok ikan disortir berdasarkan jenisnya dan selanjutnya dimasukkan pada keranjang yang berbeda. Setelah ikan diangkat, jaring diturunkan kembali untuk melakukan proses berikutnya.

Sumber: Juniarti, 1995

Gambar 2. Proses Pengoperasian Bagan Apung di Pelabuhanratu
4.3.4 Daerah dan Musim Penangkapan

Jangkauan operasi bagan apung pada umumnya berkisar di daerah pantai atau wilayah perairan yang letaknya tidak jauh dari pantai. Di Pelabuhanratu terdapat beberapa fishing ground untuk pengoperasian bagan apung dengan kedalaman berkisar antara 10 - 30 meter, fishing ground tersebut masih di sekitar Teluk Pelabuhanratu (Tabel 7). Jarak dari fishing base ke fishing ground bagan relatif dekat, sehingga tidak membutuhkan waktu yang lama untuk menempuhnya.

<table>
<thead>
<tr>
<th>Perairan</th>
<th>Kedalaman (meter)</th>
<th>Waktu tempuh dari TPT (jam)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samudera Beach Hotel</td>
<td>> 30</td>
<td>1</td>
</tr>
<tr>
<td>Dermaga</td>
<td>10 - 25</td>
<td>>1</td>
</tr>
<tr>
<td>Jampang</td>
<td>15 - 20</td>
<td>1</td>
</tr>
<tr>
<td>Cisolok</td>
<td>10 - 15</td>
<td>1</td>
</tr>
<tr>
<td>Karang Hawu Luar</td>
<td>15 - 20</td>
<td>1</td>
</tr>
</tbody>
</table>

Pemilihan lokasi fishing ground bagan apung ditentukan oleh keberadaan ikan atau migrasi ikan. Pada kondisi tidak musim ikan, terkadang nelayan bagan memperluas daerah operasinya atau berpindah ke daerah lain, seperti perairan Binuangeun dan perairan Bayah di wilayah Kabupaten Lebak. Sistem pemindahan bagan apung dalam pemilihan fishing ground adalah dengan cara ditarik oleh kapal atau perahu diesel, seperti terlihat pada Gambar 3.

Dalam kegiatan produksi perikanan di Pelabuhanratu dikenal tiga musim ikan dalam setahun, yaitu musim puncak, musim paceklik dan musim peralihan. Musim puncak biasa disebut musim raya, biasanya terjadi antara bulan September – November. Musim paceklik terjadi pada bulan Desember – Februari, sedangkan musim peralihan atau musim sedang biasanya terjadi pada bulan Maret – Agustus.
Sumber: Juniarti, 1995

Gambar 3. Teknik Pemindahan Bagan Apung di Pelabuhanratu
V HASIL DAN PEMBAHASAN

5.1 Deskripsi dan Teknik Instalasi Solar Cell System pada Bagan Apung

Solar Cell System yang dioperasikan pada perikanan bagan merupakan salah satu aplikasi Pembangkit Listrik Tenaga Surya (PLTS) yang berfungsi sebagai sumber energi cahaya. Cahaya yang dihasilkan melalui sistem lampu bawah air digunakan untuk memikat dan mengumpulkan ikan sebelum dilakukan penangkapan dengan jaring.

5.1.1 Komponen Solar Cell System

![Diagram Solar Cell System](image)

Gambar 4. Blok diagram sistem AC

Komponen utama dari SBS terdiri atas modul fotovoltaik sebagai catutdaya yang menghasilkan energi dari masukan sejumlah energi matahari, baterai sebagai penyimpan dan pengkondisian energi, alat pengatur energi baterai atau Battery Charge Regulator (BCR) sebagai pengatur otomatis serta menjaga kehandalan sistem
dan yang terakhir adalah beban listrik. Sebagai suatu sistem rangkaian proses transformasi energi oleh komponen-komponen di atas dapat dilihat pada Gambar 5.

![Diagram Solar Cell System](image)

Sumber: Tim Fotovoltaik BPPT, 1995
Gambar 5. Sistem Rangkaian Transformasi Energi pada Solar Cell System

5.1.1.1 Modul Fotovoltaik

Sel surya akan selalu memproduksi energi listrik bila disinari matahari. Energi matahari tersedia terus menerus sehingga arus listrik akan dialirkan ke beban terus menerus. Semakin besar radiasi matahari yang mengenai sel surya, maka semakin besar pula arus yang dihasilkan oleh sel tersebut. Karena sel surya tidak akan pernah habis atau rusak dalam membangkitkan listrik, maka sel surya harus dilindungi dengan baik sehingga usia pakainya lebih lama.
Modul fotovoltaik yang banyak dipakai di Indonesia adalah jenis silikon kristal, baik yang berbentuk kristal polisilikon (polikristal) maupun kristal tunggal silikon (monokristal). Setiap jenis modul fotovoltaik mempunyai perbedaan dalam efisiensi yaitu perbandingan antara daya yang dihasilkan oleh modul dengan radiasi yang dapat ditangkapnya, seperti pada monokristal 12 – 18 % dan pada polikristal silikon 10 – 15 %.

Kemampuan energi yang dapat dihasilkan oleh sebuah modul fotovoltaik sangat bergantung pada kondisi radiasi matahari, yaitu berkisar antara 140 – 160 watt jam per hari. Untuk mendapatkan keluaran energi listrik yang maksimum maka permukaan modul fotovoltaik harus selalu mengarah ke matahari. Di Indonesia, hal ini cukup dilakukan dengan memiringkan modul fotovoltaik tersebut ke suatu arah dengan sudut kemiringan sebesar lintang geografinya.

Spesifikasi modul fotovoltaik yang direkomendasi oleh Badan Pengkajian dan Penerapan Teknologi untuk sumber cahaya bagan adalah
- daya puncak nominal adalah 50 Wp dengan toleransi 5% ;
- menghasilkan energi sebesar 160 Wh dengan toleransi 10% pada insolasi rata-rata 4,5 KWh/m² per hari;
- tegangan nominal \((V_{nom}) \) lebih dari 12 V;
- tegangan terbuka \((V_{oc}) \) lebih dari 18 V;
- arus pada daya puncak 3 A dengan toleransi 5 %.

5.1.1.2 Baterai

Seperti halnya pada SHS, baterai untuk pengoperasian bagan lebih tepat berfungsi sebagai penyimpan energi listrik secara kimia di siang hari dan berfungsi sebagai catudaya di malam hari. Baterai terdiri atas sejumlah sel elektrokimia yang mempunyai dua buah elektroda yang direndam di dalam larutan kimia elektrolit dan akan memproduksi arus listrik bila ada beban diantara elektroda.

Banyak jenis baterai yang dapat dipakai untuk sistem PLTS, diantaranya yang paling ekonomis adalah jenis baterai asam timbal \((lead acid) \). Oleh karena Solar Cell system cukup sederhana dalam penerapannya serta tidak memerlukan kehandalan yang tinggi, maka baterai yang dipergunakan dapat dipilih dari jenis asam timbal untuk starter (baterai mobil) yang mempunyai karakteristik arus pelepasan cukup tinggi, harga cukup murah dan energi yang dapat diambil sampai kapasitas 80%.
Baterai asam timbal starter yang dapat dipakai untuk Solar Cell system sebaiknya memenuhi spesifikasi, yaitu memiliki tegangan nominal sebesar 12 V DC dan kapasitas nominal lebih besar dari 70 Ah.

5.1.1.3 Alat Pengatur Energi Baterai atau Battery Charge Regulator (BCR)

Pada Solar Cell system, alat pengatur energi baterai (BCR) (Gambar 7) diperlukan untuk menjaga kesetimbangan energi di baterai dengan cara mengatur tegangan maksimal dan minimal dari baterai tersebut. Alat ini berfungsi juga untuk memberikan pengamanan terhadap sistem, yaitu proteksi terhadap pengisian berlebih (over discharge) oleh beban, mencegah terjadinya arus balik ke modul fotovoltaik, melindungi terhadap terjadinya hubungan-singkat pada beban listrik dan sebagai interkoneksi dari komponen-komponen lainnya.
Energi listrik yang dihasilkan oleh modul fotovoltaik sangat terbatas, maka perlu untuk mengatur secara cermat dalam pemakaian energi pada sistem ini. Dari pengalaman didapat bahwa komponen PLTS yang paling sensitif dalam kasus ini adalah BCR dan baterai.

Sumber: Tim Fotovoltaik BPPT, 1995
Gambar 7. Alat Pengatur Energi Baterai (BCR)

Spesifikasi BCR yang direkomendasikan oleh Badan Pengkajian dan Penerapan Teknologi untuk Solar Cell system ini adalah
- tegangan nominal dari BCR sebesar 12 V DC;
- arus konsumsi BCR harus lebih kecil dari 0,2 % kapasitas maksimum beban;
- kapasitas pengisian harus dapat mencapai 6 A;
- kapasitas pengosongan harus dapat mencapai 6 A;
- dapat bekerja baik sampai pada temperatur 40° C.

5.1.1.1 Beban Listrik Solar Cell System

Pemakaian beban sistem PLTS sudah dirancang dengan perhitungan yang seimbang antara energi listrik yang dihasilkan dari modul, rugi-rugi sistem dan energi listrik yang dapat dimanfaatkan. Selama ini jenis beban yang dapat dicatat dalam sistem PLTS adalah lampu penerangan (TL) bentuk tabung, yaitu lampu TL 110/220 V 10 watt dan 20 watt.
Penggunaan jenis beban listrik untuk pengoperasian bagan apung dengan sistem lampu bawah air perlu dirancang khusus guna menghindari kerusakan atau kebocoran oleh air laut. Konstruksi lampu yang dioperasikan dalam penelitian ini (Gambar 8) terdiri atas komponen utama yaitu lampu TL 220 V 20 watt, inverter, tabung akrilic warna bening, tiga batang besi kecil (behel), dua keping besi sebagai penutup, kaca film, dan kabel. Cara pembuatan dari lampu tersebut adalah sebagai berikut:

1. menghubungkan lampu TL 220 V 20 watt pada inverter;
2. agar tidak tembus air, lampu dilapisi tabung acrilik warna bening;
3. no.1 dan no.2 ditutup oleh dua keping besi;
4. untuk mendapatkan konstruksi yang kuat, kedua keping besi dihubungkan menggunakan tiga batang besi kecil;
5. pada keping besi bagian atas dibuat bolong kecil sebagai jalur kabel menuju BCR, sedangkan keping bagian bawah diberi gantungan pemberat;
6. guna menjaga air ke dalam, setiap celah diberi lem paralon;
7. untuk mewarnai lampu, tabung acrilik dilapisi kaca film berwarna.

Gambar 8. Kontruksi Lampu Bawah Air Solar Cell system
Sampai saat ini kontruksi lampu seperti di atas belum terdapat di pasaran, sehingga belum banyak digunakan. Perusahaan yang sudah memproduksi lampu tersebut melalui pesanan adalah PT. SOLR dan PT. CILENGKA.

Keterbatasan kapasitas modul dalam menghasilkan energi listrik, menuntut pemakai untuk mengatur pengeluaran energi tersebut sesuai beban yang digunakan. Penghitungan lama pemakaian beban secara sederhana dapat dilihat pada Gambar 9. Bila mengambil harga insolasi (kwh/m²) per hari dan daya per jam dari beban yang akan dinyalakan (watt/hour), maka dengan menarik garis tegak lurus ke atas dari harga insolasi dan kemudian mendatar ke samping kanan hingga memotong garis beban yang diinginkan, akan dapat dilihat lama pemakaian maksimum dari beban tersebut.

Konsumsi daya yang berbeda untuk berbagai jenis beban harus diatur sedemikian rupa, sehingga keseimbangan energi dalam baterai terjaga. Tabel 8 adalah salah satu contoh atau petunjuk cara pemakaian beban yang dipilih sesuai untuk masukan energi dari modul fotovoltaik sebanyak 160 watt jam per hari.

Gambar 9. Kurva untuk Menentukan Lama Pemakaian Beban Listrik
Tabel 8. Contoh Pemakaian Beban Listrik Optimum untuk Solar Cell System

<table>
<thead>
<tr>
<th>Jenis Beban</th>
<th>Daya (Watt)</th>
<th>Lama pemakaian</th>
<th>Jumlah Pemakaian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lampu TL 220V</td>
<td>..................</td>
<td>..................jam</td>
<td>..................wh</td>
</tr>
<tr>
<td>Lampu TL 220V</td>
<td>..................</td>
<td>..................jam</td>
<td>..................wh</td>
</tr>
<tr>
<td>Lampu TL 220V</td>
<td>..................</td>
<td>..................jam</td>
<td>..................wh</td>
</tr>
<tr>
<td>Total pemakaian listrik maksimum:</td>
<td></td>
<td></td>
<td>..................wh</td>
</tr>
</tbody>
</table>

Sumber: Tim Fotovoltaik BPP Teknologi, 1995

5.1.2 Instalasi dan Pemeliharaan Solar Cell System pada Bagian Apung

Ada beberapa hal yang perlu diperhatikan sebelum pemasangan atau instalasi Solar Cell system agar dapat bekerja efektif dan memuaskan, yaitu:

(1) mempersiapkan bahan-bahan yang diperlukan;

(2) melakukan pemeriksaan situasi bagan, yaitu memeriksa konstruksi yang tepat dan kuat guna memasang struktur penyapu modul fotovoltaik agar mendapatkan titik yang paling efisien dilihat dari bentangan kabel menuju baterai penyimpan dan beban;

(3) agar tidak terjadi kesalahan pada pemasangan awal baterai yang dapat menyebabkan kerusakan, maka perlu diperhatikan beberapa ketentuan tentang pemakaian baterai, diantaranya: memeriksa spesifikasi teknis baik mereka maupun kapasitas nominal, memeriksa kondisi cairan elektrolit dan sebagainya;

(4) mempersiapkan dan memeriksa kabel yang akan dipakai sesuai dengan yang telah ditentukan serta menyeragamkan pemakaian warna kabel agar ada kesamaan dalam pemasangan, misalnya warna merah untuk polaritas (+) dan hitam untuk polaritas (-). Selain itu setiap pemasangan dan penyambungan kabel harus menggunakan sepatu kabel;

(5) mempersiapkan kursus atau pelatihan dan petunjuk mengenai SBS untuk para pemakai SBS maupun para pengurus atau pengelola sistem.
5.1.2.1 Tahapan Pelaksanaan Instalasi Solar Cell System

Secara garis besar pekerjaan instalasi Solar cell System dapat dilakukan secara sederhana. Untuk mempercepat dan mempermudah dalam pelaksanaannya, ada beberapa tahapan yang perlu dilakukan, yaitu :

1. pemasangan struktur penyangga dan modul fotovoltaik ;
2. pemasangan jaringan kabel ;
3. pemasangan baterai dan kotak baterai ;
4. pemasangan alat pengatur energi baterai (BCR) ;
5. koneksi kabel-kabel antara modul fotovoltaik-BCR, BCR-baterai dan baterai-beban ;
6. pemeriksaan akhir.

Pemasangan modul fotovoltaik dan struktur penyangga dapat dilakukan dengan cara :

1. mengikat tiang penyangga dengan kuat pada kuda-kuda yang berada di bagian tepi panggung bagan ;
2. merakit modul fotovoltaik pada bingkai penyangganya dan memasangkannya ke tiang penyangga. Dalam penelitian ini dipasang masing-masing dua buah modul yang sejenis untuk tiap sisi bagan (Gambar 10);
3. mengarahkan modul sehingga menghadap ke arah yang paling optimum mendapatkan radiasi matahari;
4. menghubungkan dua modul pada setiap tepi bagan secara seri, kemudian menyambungkan kabel dari terminal kabel (junction box) di modul ke BCR.

Pemasangan jaringan kabel dilakukan dengan cara :

1. memasang kabel di modul fotovoltaik, yaitu kabel warna merah untuk polaritas (+) dan kabel warna hitam untuk polaritas (-);
2. memasang kabel-kabel dari BCR yang menghubungkan ke seluruh lampu.
Gambar 10. Posisi Pemasangan Modul Fotovoltaik pada Bagan Apung

Pemasangan baterai dan kotak baterai dilakukan dengan cara:

1. memasang baterai pada kotaknya;
2. mengisi semua sel dengan larutan elektrolit yang sesuai, jika ternyata baterai yang diterima dalam keadaan belum terisi (SG 1,25 atau 1,26);
3. segera melakukan pengisian awal baterai (charging) sampai penuh, yaitu ketika arus pengisian dari catudaya *Automatic DC Power Supply 20 A* ke baterai mencapai kurang dari 0,5 A. Jika catudaya tersebut tidak tersedia, maka pengisian awal dilakukan menggunakan modul fotovoltaik setelah sistem terpasang lengkap selama tiga hari tanpa beban lampu atau beban lain yang dihidupkan;
4. memasang terminal baterai di kedua ujung kutub baterai;
5. menyimpan baterai dan BCR yang sudah terpasang di dalam rumah bagan, usahakan benda tersebut terjaga dari kondisi buruk seperti hujan.

Setelah baterai dan BCR terpasang pada kotaknya dan setelah semua instalasi selesai terpasang, baru dilakukan koneksi atau penyambungan semua kabel yang menuju ke BCR secara urut.
Pemasangan alat pengatur energi baterai dilakukan dengan cara :

(1) menghubungkan kabel baterai ke terminal baterai di BCR, perlu diperhatikan polaritas kabel (+) untuk terminal (+) dan kabel (-) untuk terminal (-);
(2) menghubungkan kabel dari modul fotovoltaik ke terminal modul di BCR dengan polaritas yang sama;
(3) menghubungkan kabel dari setiap beban ke terminal beban di BCR dengan polaritas yang sama;
(4) setiap ujung kabel diuasahakan terpasang menggunakan sepatu kabel.

Selanjutnya pemeriksaan akhir dilakukan untuk mengetahui apakah komponen-komponen sistem berfungsi dengan baik sesuai dengan spesifikasi teknis yang terdapat pada rujukan teknis dari modul fotovoltaik, baterai maupun BCR.

5.1.2.2 Pemeliharaan

Pemeliharaan Solar Cell System terbagi atas dua kategori, yaitu pemeliharaan umum yang dilakukan secara berkala dan pemeliharaan teknis yang dilakukan apabila terjadi kesalahan pada Solar Cell System atau untuk mengetahui dan memantau kinerja sistem pada kondisi tertentu.

Pemeliharaan umum dapat dilakukan secara berkala, meliputi:

(1) membersihkan permukaan modul fotovoltaik dari kotoran;
(2) memeriksa larutan elektrolit baterai;
(3) pemeriksaan lingkungan yang dapat menggeser posisi optimum modul dalam mendapatkan radiasi matahari;
(4) pemeriksaan kondisi beban, baik pada tabung lampu maupun inverter.

Dalam rangka pemeliharaan teknis, perlu dilakukan beberapa pengukuran untuk mengetahui kinerja dan fungsi dari Solar Cell System, mencakup:

(1) pengukuran kinerja modul fotovoltaik;
(2) pengukuran kinerja baterai;
(3) pengukuran BCR;
(4) pengukuran Blocking diode.
5.2 Kualitas Cahaya Solar Cell System

Secara umum dapat dijelaskan bahwa nilai iluminasi cahaya tertinggi dari kedua perlakuan terdapat pada lokasi pusat. Pada perlakuan warna, iluminasi cahaya tertinggi terdapat pada kedalaman pengukuran 2 meter di bawah permukaan air, sedangkan pada perlakuan kedalaman penurunan lampu penyebaran iluminasi mengikuti pola penurunan lampu, artinya nilai iluminasi tertinggi terdapat di sekitar posisi lampu diturunkan. Disamping itu pada perlakuan kedalaman penurunan lampu, kedalaman pengukuran di lokasi pusat lebih dari 9 meter, akan tetapi pengukuran iluminasi ini dibatasi oleh kedalaman jaring, sehingga penyebaran cahaya di bawah 9 meter tidak dapat diukur karena terhalang oleh posisi jaring.

Tabel 9. Iluminasi Cahaya (lux) dari Lampu Warna Putih Menurut Kedalaman Pengukuran

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>0 m</th>
<th>1 m</th>
<th>2 m</th>
<th>3 m</th>
<th>4 m</th>
<th>5 m</th>
<th>6 m</th>
<th>7 m</th>
<th>8 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pusat</td>
<td>1.00</td>
<td>4.13</td>
<td>29.63</td>
<td>3.25</td>
<td>1.19</td>
<td>0.63</td>
<td>0.44</td>
<td>0.25</td>
<td>0.06</td>
</tr>
<tr>
<td>Tengah diagonal</td>
<td>0.19</td>
<td>0.38</td>
<td>0.94</td>
<td>0.44</td>
<td>0.38</td>
<td>0.13</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tengah tepi</td>
<td>0.25</td>
<td>0.50</td>
<td>0.69</td>
<td>0.75</td>
<td>0.44</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ujung diagonal</td>
<td>0.13</td>
<td>0.31</td>
<td>0.56</td>
<td>0.25</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ujung tepi</td>
<td>0.06</td>
<td>0.25</td>
<td>0.44</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gambar 11. Kurva Penyebaran Iluminasi Cahaya (lux) Lampu Warna Putih

Tabel 9 dan Gambar 11 menunjukkan bahwa iluminasi tertinggi lampu putih terdapat pada kedalaman pengukuran 2 meter di lokasi pusat yaitu sebesar 29,63 lux dan kedalaman iluminasi yang terukur mencapai 8 meter dengan nilai sebesar 0,06 lux. Sementara untuk lokasi pengukuran yang lain, kedalaman iluminasi yang terukur sangat bervariasi.

Tabel 10. Iluminasi Cahaya (lux) dari Lampu Warna Hijau Menurut Kedalaman Pengukuran

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>Kedalaman (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 m</td>
</tr>
<tr>
<td>Pusat</td>
<td>0,33</td>
</tr>
<tr>
<td>Tengah diagonal</td>
<td>0,25</td>
</tr>
<tr>
<td>Tengah tepi</td>
<td>0,35</td>
</tr>
<tr>
<td>Ujung diagonal</td>
<td>0,13</td>
</tr>
<tr>
<td>Ujung tepi</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Gambar 12. Kurva Penyebaran Iluminasi Cahaya Lampu Warna Hijau
Tabel 10 dan Gambar 12 menunjukkan bahwa pada lokasi pusat, tengah diagonal dan tengah tepi, hasil pengukuran iluminasi lampu hijau mencapai kedalaman paling tinggi daripada lampu yang lain. Iluminasi tertinggi terdapat pada kedalaman 2 meter di lokasi pusat yaitu 15,33 lux dan pengukuran paling dalam mencapai 9 meter dengan nilai iluminasi 0,08 lux, sedangkan kedalaman pengukuran di tengah diagonal dan tengah tepi mencapai 6 meter dengan nilai iluminasi masing-masing 0,25 lux dan 0,13 lux.

Tabel 11. Iluminasi Cahaya (lux) dari Lampu Warna Merah Menurut Kedalaman Pengukuran

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>Kedalaman</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 m</td>
</tr>
<tr>
<td>Pusat</td>
<td>0,5</td>
</tr>
<tr>
<td>Tengah diagonal</td>
<td>0,25</td>
</tr>
<tr>
<td>Tengah tepi</td>
<td>0,42</td>
</tr>
<tr>
<td>Ujung diagonal</td>
<td>0</td>
</tr>
<tr>
<td>Ujung tepi</td>
<td>0,08</td>
</tr>
</tbody>
</table>

Gambar 13. Kurva Penyebaran Iluminasi Cahaya Lampu Warna Merah

Tabel 11 dan Gambar 13 menunjukkan bahwa iluminasi tertinggi lampu warna merah terjadi di lokasi pengukuran pusat yaitu sebesar 19,33 lux dan kedalaman paling dalam mencapai 7 meter. Sementara pada stasiun tengah diagonal
dan tengah tepi kedalaman paling dalam mencapai hanya mencapai 5 meter dengan nilai iluminasi masing-masing 0,08 lux dan 0,17 lux.

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>Kedalaman</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 m</td>
</tr>
<tr>
<td>Pusat</td>
<td>0.33</td>
</tr>
<tr>
<td>Tengah diagonal</td>
<td>0.17</td>
</tr>
<tr>
<td>Tengah tepi</td>
<td>0.33</td>
</tr>
<tr>
<td>Ujung diagonal</td>
<td>0</td>
</tr>
<tr>
<td>Ujung tepi</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Gambar 14. Kurva Penyebaran Iluminasi Cahaya Lampu Warna Kuning

Tabel 12 dan Gambar 14 menunjukkan bahwa iluminasi tertinggi lampu warna kuning terjadi di stasiun atau lokasi pengukuran pusat yaitu sebesar 25,33 lux dan kedalaman paling dalam mencapai 7 meter dengan nilai iluminasi 0,08 lux. Sementara pada stasiun tengah diagonal dan tengah tepi kedalaman paling dalam mencapai hanya mencapai 5 meter dengan nilai iluminasi masing-masing 0,08 lux.
Tabel 13. Iluminasi Cahaya (lux) dari 2 Lampu Putih pada Kedalaman 0 meter

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>Kedalaman</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 m</td>
</tr>
<tr>
<td>1 meter</td>
<td>105.00</td>
</tr>
<tr>
<td>Ujung diagonal</td>
<td>1.75</td>
</tr>
<tr>
<td>Tengah diagonal</td>
<td>6.75</td>
</tr>
<tr>
<td>Ujung tepi</td>
<td>4.50</td>
</tr>
<tr>
<td>Tengah tepi</td>
<td>21.50</td>
</tr>
</tbody>
</table>

Gambar 15. Kurva Penyebaran Iluminasi Cahaya 2 Lampu Putih di Kedalaman 0 meter

Tabel 13 dan Gambar 15 menunjukkan bahwa pada lokasi 1 meter dari pusat dan kedalaman pengukuran 0 meter, iluminasi yang terukur adalah paling tinggi dari pada penurunan lampu yang lain, yaitu 106,25 lux. Sementara pada stasiun pengukuran yang lain, kedalaman paling tinggi terlihat bervariasi antara 6 - 8 meter, tergantung dari lokasi pengukuran, semakin jauh dari pusat, iluminasi yang terukur semakin pendek atau dangkal. Secara keseluruhan mengenai penyebaran cahaya dari perlakuan ini, nilai iluminasi masih terukur hingga kedalaman 5 meter di bawah permukaan air untuk setiap lokasi.
Tabel 14. Iluminasi Cahaya (lux) dari 2 Lampu Putih pada Kedalaman 1 meter

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>Kedalaman</th>
<th>0 m</th>
<th>1 m</th>
<th>2 m</th>
<th>3 m</th>
<th>4 m</th>
<th>5 m</th>
<th>6 m</th>
<th>7 m</th>
<th>8 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 meter</td>
<td></td>
<td>10.67</td>
<td>48.50</td>
<td>27.67</td>
<td>5.00</td>
<td>2.17</td>
<td>4.58</td>
<td>1.17</td>
<td>0.83</td>
<td>0.33</td>
</tr>
<tr>
<td>Tengah tepi</td>
<td></td>
<td>10.33</td>
<td>16.00</td>
<td>11.67</td>
<td>3.83</td>
<td>2.42</td>
<td>1.56</td>
<td>1.08</td>
<td>0.58</td>
<td>0</td>
</tr>
<tr>
<td>Tengah diagonal</td>
<td></td>
<td>10.83</td>
<td>14.17</td>
<td>7.67</td>
<td>3.83</td>
<td>2.00</td>
<td>1.00</td>
<td>0.42</td>
<td>0.08</td>
<td>0</td>
</tr>
<tr>
<td>Ujung tepi</td>
<td></td>
<td>2.23</td>
<td>3.67</td>
<td>2.25</td>
<td>1.75</td>
<td>1.17</td>
<td>0.67</td>
<td>0.42</td>
<td>0.17</td>
<td>0</td>
</tr>
<tr>
<td>Ujung diagonal</td>
<td></td>
<td>0.33</td>
<td>0.67</td>
<td>1.33</td>
<td>1.17</td>
<td>0.08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Gambar 16. Kurva Penyebaran Iluminasi Cahaya dari 2 Lampu Putih pada Kedalaman 1 meter

Tabel 14 dan Gambar 16 menunjukkan bahwa penyebaran iluminasi cahaya pada perlakuan kedalaman lampu 1 meter terlihat lebih seragam. Secara keseluruhan iluminasi tertinggi terdapat pada kedalaman pengukuran 1 meter dan pengukuran paling dalam mencapai 7 meter, kecuali untuk lokasi ujung diagonal.

Tabel 15. Iluminasi Cahaya (lux) dari 2 Lampu Putih pada Kedalaman 2 meter

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>Kedalaman</th>
<th>0 m</th>
<th>1 m</th>
<th>2 m</th>
<th>3 m</th>
<th>4 m</th>
<th>5 m</th>
<th>6 m</th>
<th>7 m</th>
<th>8 m</th>
<th>9 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 meter</td>
<td></td>
<td>0.50</td>
<td>2.75</td>
<td>39.50</td>
<td>60.50</td>
<td>36.33</td>
<td>11.58</td>
<td>5.50</td>
<td>3.08</td>
<td>1.67</td>
<td>0.75</td>
</tr>
<tr>
<td>Tengah tepi</td>
<td></td>
<td>0.33</td>
<td>2.00</td>
<td>4.42</td>
<td>13.75</td>
<td>5.42</td>
<td>2.17</td>
<td>0.92</td>
<td>0.42</td>
<td>0.17</td>
<td>0</td>
</tr>
<tr>
<td>Tengah diagonal</td>
<td></td>
<td>0.33</td>
<td>1.25</td>
<td>3.92</td>
<td>5.83</td>
<td>2.83</td>
<td>2.00</td>
<td>1.25</td>
<td>0.33</td>
<td>0.08</td>
<td>0</td>
</tr>
<tr>
<td>Ujung tepi</td>
<td></td>
<td>0</td>
<td>0.58</td>
<td>2.12</td>
<td>3.12</td>
<td>1.67</td>
<td>0.67</td>
<td>0.33</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ujung diagonal</td>
<td></td>
<td>0</td>
<td>0.08</td>
<td>0.58</td>
<td>1.83</td>
<td>1.08</td>
<td>0.33</td>
<td>0.08</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Gambar 17. Kurva Penyebaran Iluminasi Cahaya dari 2 Lampu Putih pada Kedalaman 2 meter

Tabel 15 dan Gambar 17 menunjukkan bahwa secara keseluruhan iluminasi tertinggi terdapat pada kedalaman pengukuran 3 meter di bawah permukaan air dan pengukuran paling dalam mencapai 8 meter, kecuali untuk lokasi ujung tepi dan ujung diagonal. Pada lokasi pengukuran 1 meter dari pusat, iluminasi pada kedalaman perairan 9 meter masih dikatakn cukup besar yaitu 0,75 lux, artinya saat lampu diturunkan 2 meter di bawah permukaan air, penyebaran iluminasinya cukup dalam.

5.3 Komposisi Hasil Tangkapan

Beberapa jenis ikan yang tertangkap pada penelitian Solar Cell System ini antara lain : teri (Stolephorus sp), pepetek (Leiognathus sp), cumi-cumi (Loligo sp), bilis (Thryssa sp), selar (Caranx sp), julung-julung (Hemirhamphus sp), layur (Trichiurus savala), bawal (Pampus sp) cendro (Tylosurus melanotus), bentong (Selar crumenopthalmus) dan kerong-kerong (Therapon theraps).
Tabel 16. Komposisi Hasil Tangkapan dari Perlakuan Warna Lampu Bawah Air Tenaga Surya

<table>
<thead>
<tr>
<th>Warna Lampu</th>
<th>Komposisi Hasil Tangkapan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bobot rata-rata (gram)</td>
</tr>
<tr>
<td>Putih</td>
<td>740,00</td>
</tr>
<tr>
<td>Hijau</td>
<td>253,33</td>
</tr>
<tr>
<td>Merah</td>
<td>230,00</td>
</tr>
<tr>
<td>Kuning</td>
<td>233,33</td>
</tr>
<tr>
<td>Jumlah</td>
<td>1456,66</td>
</tr>
</tbody>
</table>

Tabel 17. Komposisi Hasil Tangkapan dari Perlakuan Kedalaman Penurunan Lampu Bawah Air Tenaga Surya

<table>
<thead>
<tr>
<th>Kedalaman Lampu</th>
<th>Komposisi Hasil Tangkapan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bobot rata-rata (gram)</td>
</tr>
<tr>
<td>0 meter</td>
<td>1867,50</td>
</tr>
<tr>
<td>1 meter</td>
<td>1483,33</td>
</tr>
<tr>
<td>2 meter</td>
<td>423,00</td>
</tr>
<tr>
<td>Jumlah</td>
<td>3773,83</td>
</tr>
</tbody>
</table>

Hasil analisis statistik nonparametrik Kruskal-Wallis menunjukkan keputusan yang berbeda terhadap hipotesis uji untuk kedua pengamatan, yakni pengamatan terhadap bobot dan pengamatan terhadap jumlah hasil tangkapan. Pada taraf nyata 0,05 dan 0,01 hasil uji menunjukkan keputusan yang berlawanan dari dua perlakuan yang dilaksanakan, seperti terlihat pada Tabel 18.

Tabel 18. Hasil Uji Statistika nonparametrik Kruskal-Wallis

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Pengamatan</th>
<th>H hitung</th>
<th>H (0,05, v=k-1)</th>
<th>H (0,01, v=k-1)</th>
<th>Keputusan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warna</td>
<td>Bobot (gram)</td>
<td>16,48</td>
<td>7,82</td>
<td>11,36**</td>
<td>Tolak H<sub>0</sub></td>
</tr>
<tr>
<td></td>
<td>Jumlah (ekor)</td>
<td>6,10</td>
<td>7,82</td>
<td>-</td>
<td>Terima H<sub>0</sub></td>
</tr>
<tr>
<td>Kedalaman</td>
<td>Bobot (gram)</td>
<td>4,69</td>
<td>5,99</td>
<td>-</td>
<td>Terima H<sub>0</sub></td>
</tr>
<tr>
<td></td>
<td>Jumlah (ekor)</td>
<td>13,92</td>
<td>5,99</td>
<td>9,21**</td>
<td>Tolak H<sub>0</sub></td>
</tr>
</tbody>
</table>
Tingkat kesukaan ikan terhadap warna dan intensitas cahaya berbeda-beda untuk berbagai jenis ikan. Tabel 19 memperlihatkan komposisi jenis ikan yang berhasil didaratkan menurut perlakuan cahaya yang digunakan.

Tabel 19. Jenis Ikan yang Tertangkap Berdasarkan Jenis Perlakuan

<table>
<thead>
<tr>
<th>Jenis ikan</th>
<th>Perlakuan</th>
<th>Warna lampu</th>
<th>Kedalaman penurunan lampu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hijau</td>
<td>Putih</td>
</tr>
<tr>
<td>Stolephorus sp</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Leiognathus sp</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Loligo sp</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Thryssa sp</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caranx sp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemirhamphus sp</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Trichiurus savala</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Pampus sp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therapon theraps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tylosurus melanatus</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selar crumenophthalmus</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Jumlah</td>
<td>6</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

5.4 Pembahasan

5.4.1 Hubungan antara Komposisi Hasil Tangkapan dengan warna, Kedalaman Lampu dan Penyebaran Iluminasi Cahaya

Berdasarkan hasil uji Kruskal-Wallis (Tabel 18), pengamatan terhadap bobot dan jumlah hasil tangkapan dengan perlakuan warna dan kedalaman penurunan lampu menunjukkan hasil yang berbeda. Secara umum dapat dijelaskan bahwa perbedaan dari keputusan uji tersebut disebabkan oleh adanya keragaman ukuran individu dari spesies ikan yang tertangkap.

Pengamatan bobot hasil tangkapan pada perlakuan warna lampu menghasilkan keputusan uji untuk menolak H_0. Keputusan ini dapat disimpulkan bahwa satu atau lebih perlakuan memberikan pengaruh yang berbeda. Perlakuan
dengan menggunakan beberapa warna terlihat mengumpulkan jenis ikan lebih banyak daripada perlakuan menggunakan hanya satu warna. Hal ini menunjukkan bahwa setiap spesies ikan menyukai cahaya yang berbeda (Hela dan Laevastu, 1970). Adanya keragaman jenis dan ukuran individu ikan yang tertangkap karena pengaruh warna, maka diduga bobot yang dihasilkan akan beragam pula. Perbedaan pengaruh ini terutama ditunjukkan oleh bobot hasil tangkapan bawal (Pampus sp) yang jauh lebih besar daripada bobot jenis ikan yang lain, walaupun menunjukkan jumlah ekor yang sedikit (Lampiran 3).

Keputusan uji yang dihasilkan dari pengamatan jumlah hasil tangkapan untuk perlakuan warna adalah menerima hipotesis nol (terima H₀), dengan kata lain data jumlah hasil tangkapan tidak memberikan indikasi adanya beda pengaruh diantara warna lampu. Keputusan ini diduga dari kenyataan bahwa perbedaan bobot bukan berarti perbedaan jumlah. Seperti pada hasil tangkapan bawal (Pampus sp), bobot sebesar 1500 gram hanya berjumlah 3 ekor. Disamping itu, berdasarkan hasil pengamatan diketahui bahwa cumi-cumi (Loligo sp) merupakan jenis yang paling banyak tertangkap pada setiap warna lampu, yaitu terdiri atas beberapa kelompok ukuran namun dengan rata-rata jumlah yang sama.

Pada perlakuan kedalaman penurunan lampu, hasil uji terhadap pengamatan bobot dan jumlah hasil tangkapan menunjukkan kebalikan dari perlakuan warna. Pengamatan pada bobot hasil tangkapan menghasilkan keputusan terima H₀, berarti adanya kesamaan pengaruh perlakuan. Sementara pada pengamatan terhadap jumlah hasil tangkapan menghasilkan keputusan uji untuk menolak H₀, berarti ada satu atau lebih perlakuan yang memberikan pengaruh terhadap jumlah hasil tangkapan.

Intensitas dan warna cahaya yang digunakan pada perlakuan kedalaman penurunan lampu adalah sama, yaitu dua lampu berwarna putih. Cahaya yang sama diduga akan mengumpulkan ikan dari jenis yang sama pada setiap setting dan tingkat kepekaan yang sama diduga akan menghasilkan bobot yang relatif sama.

Perbedaan jumlah hasil tangkapan dipengaruhi oleh posisi penurunan lampu. Pada kedalaman lampu 0 meter, cahaya akan menyebar di lapisan permukaan dan ikan yang tertarik tentu ikan yang ada di permukaan. Sebaliknya apabila posisi
lampu diletakkan di kedalaman 1 atau 2 meter di bawah permukaan air, maka cahaya akan menyebar hingga lapisan perairan yang lebih dalam. Hasil tangkapan untuk posisi lampu 1 dan 2 meter didominasi oleh ikan dasar seperti layur (*Trichiurus savala*) dan kerong-kerong (*Therapon theraps*), diduga karena cahaya menyebar lebih dalam. Ikan yang berada di permukaan sedikit tertangkap, karena cahaya yang datang dari bawah akan mengenai ventral ikan. Seperti yang dikatakan Parish *vide* Gunarso (1985), ikan tidak menyukai cahaya yang datang dari arah ventral atau bawah tubuhnya. Walaupun pada umumnya jenis ikan yang tertangkap adalah sama, namun jumlah kedatangan ikan pada sumber cahaya berbeda.

Daya tarik atau respon ikan terhadap warna cahaya berbeda untuk berbagai jenis. Perlakuan warna hijau mampu mengumpulkan lebih banyak jenis ikan dibandingkan warna yang lain. Hal ini membuktikan bahwa cahaya hijau mempunyai daya tembus yang lebih dalam di kolom perairan, sementara cahaya merah dan kuning menghasilkan sedikit jenis ikan karena kedua cahaya tersebut terabsorpsi oleh air (Ben Yami, 1976).

5.4.2 Faktor yang Mempengaruhi Komposisi Hasil Tangkapan

Hasil tangkapan yang diperoleh dari penelitian dengan menggunakan *Solar Cell System* sebagai sumber cahaya bagan adalah minimum. Total hasil tangkapan dari berbagai jenis ikan yang berhasil didapatkan hanya mencapai rata-rata 2,75 kilogram per trip. Sementara hasil tangkapan pada waktu yang sama yang diperoleh nelayan bagan dengan sumber cahaya lampu petromaks atau bagan konvensional mencapai rata-rata 5,68 kilogram per trip. Ini menunjukkan bahwa pengoperasian *Solar Cell System* sebagai sumber cahaya bagan tidak mampu meningkatkan hasil tangkapan bagan apung.

Salah satu faktor yang paling berpengaruh terhadap hasil tangkapan dalam pengoperasian *Solar Cell System* adalah kualitas cahaya yang dihasilkan. Intensitas cahaya yang dipancarkan lampu TL bawah air tenaga surya secara fisika lebih kecil dibandingkan dengan intensitas lampu petromaks. Apabila memperhatikan kuat penyinaran lampu petromaks mirip seperti kuat penyinaran lampu pijar.

Selain faktor intensitas, berbagai faktor lain dapat mempengaruhi komposisi hasil tangkapan bagan, antara lain musim ikan, penyebaran iluminasi cahaya dalam air, arus dan gelombang permukaan, keraguan teknis lampu bawah air, serta pengoperasian underwater cammera.

Intensitas dan daya penetrasi yang tinggi akan mampu mengumpulkan ikan dari jarak yang lebih jauh, terutama untuk jenis ikan fototaksis positif. Hal ini ditunjukkan oleh radius penyebaran cahaya di dalam air ditentukan oleh kekuatan
sumbarnya. Dengan demikian secara umum lampu bawah air tenaga surya memiliki radius penyebaran iluminasi yang pendek sehingga diduga kurang menarik perhatian ikan, karena ikan yang tertarik cahaya umumnya menyukai cahaya yang terang dan tenang (Subani, 1983).

Keragaaan teknis lampu bawah air dalam prinsip penangkapan yang menggunakan bantuan cahaya, mempunyai peranan yang penting dalam hal memperdaya ikan di sekitar sumber cahaya. Kontsraksi lampu bawah air tenaga surya yang memanjang diduga memiliki hambatan yang tinggi terhadap gerakan arus. Ini dibuktikan ketika terjadi arus kuat, lampu mengalami gencangan yang keras. Gerakan lampu yang tidak terarah ini terkadang membentur kumpulan atau pergerakan ikan yang sedang memutari sumber cahaya. Akibat benturan inilah terlihat ikan banyak yang meninggalkan lampu sebelum jaring diangkat.

Pengoperasian underwater cammera bertujuan untuk mengetahui keberadaan ikan di dalam air sebelum dilakukan pengangkatan jaring. Pengaktifan kamera dilakukan pada awal proses hauling ketika jaring masih berada di dalam air. Oleh karena kamera tersebut tidak bisa diaktifkan terus menerus, maka kamera diaktifkan seperti nyala lampu senter yang dapat menyebabkan terjadinya peristiwa flicktering light. Flicktering light adalah peristiwa yang dapat menakutkan ikan atau setidaknya mengganggu syaraf ikan (Subani, 1983). Ini terbukti ketika kamera diaktifkan, ikan yang terkumpul seketika hilang. Walaupun suatu saat ikan akan datang kembali mendekati sumber cahaya, tetapi ketika jaring diangkat dan sampai di atas bagan jumlah ikan yang tertangkap lebih sedikit dibandingkan jumlah ikan yang terkumpul sebelum kamera diaktifkan.

Arus dan gelombang merupakan kejadian alam yang dapat mengubah sinar lampu yang semula lurus menjadi bengkok, sinar yang terang menjadi berubah-ubah dan akhirnya menjadi sinar yang menakutkan ikan (flicktering light). Makin besar gelombang makin besar pula flicktering light dan semakin besar hilangnya efisiensi cahaya sebagai daya tarik perhatian ikan atau biota lainnya sehingga ikan menjadi lebih liar karena ketakutan (Subani dan Barus, 1989).
5.6 Faktor yang Mempengaruhi Penyebaran Iluminasi Cahaya

Sebagaimana telah dijelaskan sebelumnya bahwa intensitas yang dipancarkan oleh lampu TL (neon) lebih rendah dibandingkan intensitas lampu pijar. Selain karena faktor tersebut, pada penelitian Solar Cell System ini terdapat beberapa faktor lain yang dapat mempengaruhi penyebaran iluminasi cahaya, antara lain kecerahan perairan, arus, konstruksi lampu, dan ketelitian alat pengukur.

Arus merupakan gerakan air yang dapat membawa arah rambat cahaya yang menembus lapisan perairan. Dari hasil pengukuran iluminasi cahaya dapat dijelaskan bahwa apabila stasiun pengukuran ditentukan pada titik dari arah datangnya arus, maka nilai iluminasi yang terdeteksi kecil dan kedalaman pengukuran semakin dangkal. Akan tetapi apabila stasiun pengukuran iluminasi cahaya ditentukan pada titik kemana arus tersebut mengalir, maka nilai iluminasi cahaya yang terdeteksi lebih besar dan lebih dalam penyebarannya. Pengaruh arus terhadap cahaya lampu bawah air dalam hal ini menyebabkan tingkat penyebaran hanya pada arah kemana arus itu mengalir, sehingga diduga ikan yang terkumpul hanya berasal dari area dimana cahaya itu menyebar.

5.7 Teknik Pengeluaran Energi atau Pemakaian Daya Solar Cell System

Energi yang dibangkitkan oleh sebuah modul fotovoltaik terbatas sesuai kapasitas nominalnya. Oleh karena itu jumlah energi yang tersimpan di dalam baterai sesuai dengan kapasitas modul. Untuk mendapatkan hasil yang memuaskan, maka
pemakaian listrik pada setiap trip harus diatur sedemikian rupa sehingga keseimbangan energi di dalam Solar Cell System dapat terjaga.

Jumlah energi yang dihasilkan dari sebuah modul fotovoltaik 50 Wp sangat tergantung pada radiasi matahari, yaitu berkisar antara 140 sampai 180 watt jam per hari atau rata-rata sekitar 160 wh per hari. Dari hasil penelitian diketahui bahwa jumlah waktu yang digunakan untuk mengoperasikan bagan rata-rata selama 10 jam per trip. Perhitungan sederhana dalam pola pemakaian energi Solar Cell System dapat diilustrasikan dengan formula:

\[
\text{Lama pemakaian (jam)} = \frac{\text{Energi yang tersimpan (Watt jam)}}{\text{Daya lampu yang digunakan (Watt)}}
\]

Berdasarkan formula di atas, jika dioperasikan beban satu buah lampu TL 220 V dengan konsumsi daya 20 watt, maka dibutuhkan simpanan energi sebanyak 200 watt jam per trip. Dalam hal ini untuk mendapatkan energi sebesar 200 watt jam, maka perlu dioperasikan dua buah modul fotovoltaik yang dapat menghasilkan energi sebanyak 320 watt jam. Pengoperasian dua buah modul fotovoltaik atau dua unit Solar Cell System masih jauh untuk memenuhi kebutuhan energi bagan sebagaimana yang memerlukan energi minimal 4200 watt jam per trip.

5.8 Kendala Pengoperasian Solar Cell System

VI KESIMPULAN DAN SARAN

6.1 Kesimpulan

Beberapa keuntungan dari pengoperasian *Solar Cell System* antara lain sumber energi yang digunakan tersedia melimpah dan cuma-cuma, sistem mudah diinstalasi sehingga kapasitasnya dapat diperbesar, perawatannya mudah, bekerja secara otomatis, dan kehandalan sistemnya tinggi. Ada empat komponen utama dalam satu unit *Solar Cell*, yaitu modul fotovoltaik, baterai sebagai penyimpan dan pengkondisian energi, alat pengatur energi baterai atau *Battery Charge Regulator* (BCR), dan beban listrik.

Teknik instalasi *Solar Cell System* pada pengoperasian bagan apung antara lain: pemasangan struktur penyangga dan modul fotovoltaik pada konstruksi bagan yang mempunyai kuda-kuda, pemasangan jaringan kabel, pemasangan baterai dan kotak baterai di dalam rumah bagan, pemasangan alat pengatur energi baterai (BCR), koneksi kabel-kabel sesuai polaritasnya dan pemeriksaan akhir.

Jumlah energi yang dapat dibangkitkan oleh sebuah modul fotovoltaik 50 Wp, yaitu berkisar antara 140 sampai 180 atau rata-rata 160 watt jam per hari. Jumlah waktu yang digunakan untuk pengoperasian bagan rata-rata 10 jam per trip. Perhitungan sederhana dalam pola pemakaian energi SBS, yaitu energi yang tersimpan (watt jam), adalah jumlah waktu yang dibutuhkan untuk pengoperasian bagan dikali daya lampu yang digunakan. Jumlah energi yang dibutuhkan untuk pengoperasian bagan apung di Pelabuhanratu minimal setara dengan intensitas yang dihasilkan dari tiga buah lampu petromaks. Energi dari tiga buah lampu petromaks diduga sebesar 4200 watt jam lampu lampu TL. Dalam hal ini pengoperasian dua unit *Solar Cell System* untuk pembangkit energi bagan yang dianggap maksimal.

Hasil uji Kruskal-Wallis terhadap komposisi hasil tangkapan menunjukkan keputusan uji yang berlawanan antara perlakuan warna cahaya dan perlakuan kedalaman penurunan lampu. Pada perlakuan warna cahaya dihasilkan keputusan bahwa warna lampu berpengaruh terhadap bobot hasil tangkapan (tolak H₀), tetapi tidak berpengaruh terhadap jumlah hasil tangkapan (terima H₀), sedangkan pada perlakuan kedalaman penurunan lampu dihasilkan keputusan bahwa penurunan kedalaman lampu tidak berpengaruh terhadap bobot hasil tangkapan (terima H₀), tetapi berpengaruh terhadap jumlah hasil tangkapan (terima H₀). Faktor utama yang mempengaruhi perbedaan keputusan analisis tersebut yaitu adanya keragaman ukuran individu dari spesies ikan yang tertangkap. Disamping itu, beberapa faktor yang secara langsung maupun tidak langsung mempengaruhi komposisi hasil tangkapan adalah musim ikan, penyebaran iluminasi cahaya, keraguan teknis lampu bawah iar, dan pengoperasian underwater cammera.

Penyebaran iluminasi cahaya di kolom perairan berbeda menurut warna dan kedalaman penurunan lampu. Iluminasi lampu hijau terukur lebih dalam dari warna yang lain dalam perlakuan warna, sedangkan dalam perlakuan kedalaman penurunan lampu diketahui bahwa iluminasi cahaya paling dalam adalah pada posisi lampu 2 meter di bawah permukaan air. Selain faktor di atas, beberapa penyebab dari perbedaan penyebaran iluminasi adalah karakteristik cahaya yang digunakan, kecerahan perairan, arus, konstruksi lampu, dan ketelitian alat pengukur.

Kendala utama pengoperasian Solar Cell System menurut penjelasan beberapa nelayan adalah aspek keamanan, yaitu pencurian terhadap komponen-komponen Solar Cell jika diinstalasi langsung pada konstruksi bagan di tengah laut.
6.2 Saran

Penelitian ini dilakukan pada musim paceklik, sehingga hasil tangkapan yang diperoleh adalah minimum. Oleh karena itu, disarankan untuk melakukan uji coba lanjutan pada kondisi musim ikan agar hasil tangkapan lebih banyak dan dapat dianalisis secara obyektif.

Pengukuran iluminasi cahaya dari lampu tenaga surya mutlak diperlukan untuk mengetahui karakteristik cahaya tersebut di dalam air. Dengan demikian perlu dilakukan pengukuran iluminasi secara cermat dan teliti disertai pengukuran karakteristik perairan tempat uji coba dilakukan.

Berdasarkan hasil pengamatan terhadap konstruksi lampu bawah air, terlihat adanya hambatan yang tinggi dari arus dan gelombang. Oleh karena itu penelitian lebih lanjut hendaknya menggunakan konstruksi lampu yang sesuai dengan kondisi perairan serta dapat menyebarkan cahaya secara sempurna.
DAFTAR PUSTAKA

RIWAYAT HIDUP

Lampiran 1. Peta Lokasi Penelitian

Keterangan:

: Fishing Ground Bagan Apung
<table>
<thead>
<tr>
<th>Tahun</th>
<th>Bulan</th>
<th>Produksi Alat Tangkap Bagan</th>
<th>Produksi Semua Alat Tangkap</th>
<th>Persentase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>1</td>
<td>5.136</td>
<td>52.328</td>
<td>9,82</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3.174</td>
<td>30.804</td>
<td>10,30</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.626</td>
<td>51.442</td>
<td>5,10</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.721</td>
<td>50.031</td>
<td>5,44</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8.194</td>
<td>53.411</td>
<td>15,34</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8.807</td>
<td>66.541</td>
<td>13,24</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>11.452</td>
<td>84.061</td>
<td>13,62</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.140</td>
<td>27.985</td>
<td>11,22</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>8.287</td>
<td>85.181</td>
<td>9,73</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>17.301</td>
<td>90.399</td>
<td>19,14</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.197</td>
<td>46.437</td>
<td>2,58</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>682</td>
<td>28.273</td>
<td>2,41</td>
</tr>
<tr>
<td>1999</td>
<td>1</td>
<td>474</td>
<td>26.959</td>
<td>1,76</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>984</td>
<td>30.396</td>
<td>3,24</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4.461</td>
<td>46.143</td>
<td>9,67</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>14.940</td>
<td>65.448</td>
<td>22,83</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.298</td>
<td>25.852</td>
<td>16,63</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8.697</td>
<td>35.265</td>
<td>24,66</td>
</tr>
</tbody>
</table>
Lampiran 3. Bobot (gram) dan Jumlah (ekor) Hasil Tangkapan untuk Perlakuan Warna dan Kedalaman Penurunan Lampu

Perlakuan Warna Lampu

<table>
<thead>
<tr>
<th>Jenis hasil tangkapan</th>
<th>Bobot (gram)</th>
<th>Jumlah (ekor)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hijau</td>
<td>Putih</td>
</tr>
<tr>
<td>Setting</td>
<td>Setting</td>
<td>Setting</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Loligo sp</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>Trichiurus savala</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>80</td>
</tr>
<tr>
<td>Hemirhamphus sp</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tylosurus melanolus</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leiognathus sp</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thryssa sp</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selver crumenophthalus</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pampus sp</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Perlakuan Kedalaman Penurunan Lampu

<table>
<thead>
<tr>
<th>Jenis hasil tangkapan</th>
<th>Bobot (gram)</th>
<th>Jumlah (ekor)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 meter</td>
<td>1 meter</td>
</tr>
<tr>
<td>Setting</td>
<td>Setting</td>
<td>Setting</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Loligo sp</td>
<td>400</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allelephorus sp</td>
<td>4500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>2000</td>
<td></td>
</tr>
<tr>
<td>Caranx sp</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichiurus savala</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therapon therapt</td>
<td>450</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jumlah</td>
<td>5400</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

61
Lampiran 4. Contoh Perhitungan Uji Kruskal-Wallis untuk Perlakuan Warna Lampu pada Pengamatan Bobot Hasil Tangkapan

<table>
<thead>
<tr>
<th>No</th>
<th>Data asal bobot (gram)</th>
<th>Peringkat</th>
<th>No</th>
<th>Data asal bobot (gram)</th>
<th>Peringkat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30,0</td>
<td>1,5</td>
<td>20</td>
<td>80,0</td>
<td>18,5</td>
</tr>
<tr>
<td>2</td>
<td>30,0</td>
<td>1,5</td>
<td>21</td>
<td>90,0</td>
<td>21,5</td>
</tr>
<tr>
<td>3</td>
<td>40,0</td>
<td>3,0</td>
<td>22</td>
<td>90,0</td>
<td>21,5</td>
</tr>
<tr>
<td>4</td>
<td>50,0</td>
<td>6,0</td>
<td>23</td>
<td>100,0</td>
<td>27,5</td>
</tr>
<tr>
<td>5</td>
<td>50,0</td>
<td>6,0</td>
<td>24</td>
<td>100,0</td>
<td>27,5</td>
</tr>
<tr>
<td>6</td>
<td>50,0</td>
<td>6,0</td>
<td>25</td>
<td>100,0</td>
<td>27,5</td>
</tr>
<tr>
<td>7</td>
<td>50,0</td>
<td>6,0</td>
<td>26</td>
<td>100,0</td>
<td>27,5</td>
</tr>
<tr>
<td>8</td>
<td>50,0</td>
<td>6,0</td>
<td>27</td>
<td>100,0</td>
<td>27,5</td>
</tr>
<tr>
<td>9</td>
<td>60,0</td>
<td>11,0</td>
<td>28</td>
<td>100,0</td>
<td>27,5</td>
</tr>
<tr>
<td>10</td>
<td>60,0</td>
<td>11,0</td>
<td>29</td>
<td>100,0</td>
<td>27,5</td>
</tr>
<tr>
<td>11</td>
<td>60,0</td>
<td>11,0</td>
<td>30</td>
<td>100,0</td>
<td>27,5</td>
</tr>
<tr>
<td>12</td>
<td>60,0</td>
<td>11,0</td>
<td>31</td>
<td>100,0</td>
<td>27,5</td>
</tr>
<tr>
<td>13</td>
<td>60,0</td>
<td>11,0</td>
<td>32</td>
<td>100,0</td>
<td>27,5</td>
</tr>
<tr>
<td>14</td>
<td>70,0</td>
<td>11,0</td>
<td>33</td>
<td>150,0</td>
<td>33,5</td>
</tr>
<tr>
<td>15</td>
<td>70,0</td>
<td>11,0</td>
<td>34</td>
<td>150,0</td>
<td>33,5</td>
</tr>
<tr>
<td>16</td>
<td>70,0</td>
<td>11,0</td>
<td>35</td>
<td>200,0</td>
<td>35,0</td>
</tr>
<tr>
<td>17</td>
<td>80,0</td>
<td>18,0</td>
<td>36</td>
<td>250,0</td>
<td>36,0</td>
</tr>
<tr>
<td>18</td>
<td>80,0</td>
<td>18,0</td>
<td>37</td>
<td>400,0</td>
<td>37,0</td>
</tr>
<tr>
<td>19</td>
<td>80,0</td>
<td>18,0</td>
<td>38</td>
<td>>1500</td>
<td>38,0</td>
</tr>
</tbody>
</table>

Jumlah data | Peringkat data untuk setiap warna lampu |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hijau</td>
<td>Pudih</td>
</tr>
<tr>
<td>1</td>
<td>6,0</td>
</tr>
<tr>
<td>2</td>
<td>6,0</td>
</tr>
<tr>
<td>3</td>
<td>11,0</td>
</tr>
<tr>
<td>4</td>
<td>11,0</td>
</tr>
<tr>
<td>5</td>
<td>15,0</td>
</tr>
<tr>
<td>6</td>
<td>15,0</td>
</tr>
<tr>
<td>7</td>
<td>18,5</td>
</tr>
<tr>
<td>8</td>
<td>27,5</td>
</tr>
<tr>
<td>9</td>
<td>27,5</td>
</tr>
<tr>
<td>10</td>
<td>33,5</td>
</tr>
<tr>
<td>11</td>
<td>37,0</td>
</tr>
<tr>
<td>12</td>
<td>38,0</td>
</tr>
<tr>
<td>[\sum R_i]</td>
<td>171,0</td>
</tr>
</tbody>
</table>

Rumus yang digunakan: \[H = \frac{12}{n(n+1)} \sum_{i=1}^{n} \frac{R_i^2}{n_i} - 3(n+1) \]

\[H_{hitung} = 16,48 \]

\[H_{tabel \ (\alpha, df)} = H_{(0,05,3)} = 7,82 \]

\[H_{hitung} > H_{tabel}, maka tolak H_0 ; \]

Kesimpulan: → Perlakuan warna lampu berpengaruh terhadap bobot hasil tangkapan
Lampiran 5. Contoh Perhitungan Uji Kruskal-Wallis untuk Perlakuan Warna Lampu pada Pengamatan Jumlah Hasil Tangkapan

<table>
<thead>
<tr>
<th>No</th>
<th>Data asal jumlah (ekor)</th>
<th>Peringkat</th>
<th>No</th>
<th>Data asal jumlah (ekor)</th>
<th>Peringkat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1,50</td>
<td>20</td>
<td>4</td>
<td>22,00</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4,50</td>
<td>21</td>
<td>4</td>
<td>22,00</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4,50</td>
<td>22</td>
<td>4</td>
<td>22,00</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4,50</td>
<td>23</td>
<td>4</td>
<td>22,00</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2,50</td>
<td>24</td>
<td>4</td>
<td>22,00</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>4,50</td>
<td>25</td>
<td>4</td>
<td>22,00</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>12,50</td>
<td>26</td>
<td>5</td>
<td>28,00</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>12,50</td>
<td>27</td>
<td>5</td>
<td>28,00</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>12,50</td>
<td>28</td>
<td>5</td>
<td>28,00</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>12,50</td>
<td>29</td>
<td>5</td>
<td>28,00</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>12,50</td>
<td>30</td>
<td>5</td>
<td>28,00</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>12,50</td>
<td>31</td>
<td>6</td>
<td>31,50</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>12,50</td>
<td>32</td>
<td>6</td>
<td>31,50</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>12,50</td>
<td>33</td>
<td>7</td>
<td>34,00</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>12,50</td>
<td>34</td>
<td>7</td>
<td>34,00</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>12,50</td>
<td>35</td>
<td>7</td>
<td>34,00</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>12,50</td>
<td>36</td>
<td>10</td>
<td>36,00</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>12,50</td>
<td>37</td>
<td>11</td>
<td>37,00</td>
</tr>
<tr>
<td>19</td>
<td>4</td>
<td>22,00</td>
<td>38</td>
<td>13</td>
<td>38,00</td>
</tr>
</tbody>
</table>

Jumlah data

<table>
<thead>
<tr>
<th>Peringkat data untuk setiap warna lampu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hijau</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

\[
Ri = \sum Ri = 134,00 \quad 220,50 \quad 226,50 \quad 160,00
\]

Rumus yang digunakan:

\[
H = \frac{12}{n(n+1)} \sum \frac{R_i^2}{n_i} - 3(n+1)
\]

\[
H_{hitung} = 6,10
\]

\[
H_{table} (\alpha, df) = H(0,05,3) = 7,82
\]

\[H_{hitung} < H_{table}, maka \text{terima } H_0; \quad \text{Kesimpulan:} \quad \text{Perlakuan warna lampu tidak berpengaruh terhadap jumlah hasil tangkapan}\]
Lampiran 6. Contoh Perhitungan Uji Kruskal-Wallis untuk Perlakuan Kedalaman Penurunan Lampu pada Pengamatan Bobot Hasil Tangkapan

<table>
<thead>
<tr>
<th>No</th>
<th>Data asal bobot (gram)</th>
<th>Peringkat</th>
<th>No</th>
<th>Data asal bobot (gram)</th>
<th>Peringkat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50,0</td>
<td>2,0</td>
<td>14</td>
<td>300,0</td>
<td>15,5</td>
</tr>
<tr>
<td>2</td>
<td>50,0</td>
<td>2,0</td>
<td>15</td>
<td>300,0</td>
<td>15,5</td>
</tr>
<tr>
<td>3</td>
<td>50,0</td>
<td>2,0</td>
<td>16</td>
<td>300,0</td>
<td>15,5</td>
</tr>
<tr>
<td>4</td>
<td>70,0</td>
<td>4,5</td>
<td>17</td>
<td>300,0</td>
<td>15,5</td>
</tr>
<tr>
<td>5</td>
<td>70,0</td>
<td>4,5</td>
<td>18</td>
<td>400,0</td>
<td>19,0</td>
</tr>
<tr>
<td>6</td>
<td>100,0</td>
<td>7,0</td>
<td>19</td>
<td>400,0</td>
<td>19,0</td>
</tr>
<tr>
<td>7</td>
<td>100,0</td>
<td>7,0</td>
<td>20</td>
<td>400,0</td>
<td>19,0</td>
</tr>
<tr>
<td>8</td>
<td>100,0</td>
<td>7,0</td>
<td>21</td>
<td>450,0</td>
<td>21,0</td>
</tr>
<tr>
<td>9</td>
<td>200,0</td>
<td>10,5</td>
<td>22</td>
<td>500,0</td>
<td>22,0</td>
</tr>
<tr>
<td>10</td>
<td>200,0</td>
<td>10,5</td>
<td>23</td>
<td>1000,0</td>
<td>23,0</td>
</tr>
<tr>
<td>11</td>
<td>200,0</td>
<td>10,5</td>
<td>24</td>
<td>2700,0</td>
<td>24,0</td>
</tr>
<tr>
<td>12</td>
<td>200,0</td>
<td>10,5</td>
<td>25</td>
<td>>3000,0</td>
<td>25,0</td>
</tr>
</tbody>
</table>

Rumus yang digunakan: \(H = \frac{12}{n(n+1)} \sum \frac{Ri^2}{ni} - 3(n+1) \) \(H_{\text{bing}} = 5,93 \)

\(H_{\text{bel}} (\alpha, \nu_b) = H_{(0,05,2)} = 4,69 \)

\(H_{\text{bing}} < H_{\text{bel}} \), maka terima \(H_0 \); Kesimpulan: Perlakuan kedalaman penurunan lampu lampu tidak berpengaruh terhadap bobot hasil tangkapan
Lampiran 7. Contoh Perhitungan Uji Kruskal-Wallis untuk Perlakuan Kedalaman Penurunan Lampu pada Pengamatan Jumlah Hasil Tangkapan

<table>
<thead>
<tr>
<th>No</th>
<th>Data asal jumlah (ekor)</th>
<th>Peringkat</th>
<th>No</th>
<th>Data asal jumlah (ekor)</th>
<th>Peringkat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1,0</td>
<td>13</td>
<td>10</td>
<td>12,5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3,0</td>
<td>14</td>
<td>12</td>
<td>15,0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3,0</td>
<td>15</td>
<td>12</td>
<td>15,0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3,0</td>
<td>16</td>
<td>12</td>
<td>15,0</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5,5</td>
<td>17</td>
<td>13</td>
<td>17,5</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>5,5</td>
<td>18</td>
<td>13</td>
<td>17,5</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>7,5</td>
<td>19</td>
<td>16</td>
<td>19,0</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>7,5</td>
<td>20</td>
<td>17</td>
<td>20,0</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>9,5</td>
<td>21</td>
<td>18</td>
<td>21,0</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>9,5</td>
<td>22</td>
<td>18</td>
<td>22,0</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>11,0</td>
<td>23</td>
<td>>200</td>
<td>23,0</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>12,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jumlah data</th>
<th>Peringkat data untuk setiap kedalaman lampu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 meter</td>
</tr>
<tr>
<td>1</td>
<td>3,0</td>
</tr>
<tr>
<td>2</td>
<td>5,5</td>
</tr>
<tr>
<td>3</td>
<td>9,5</td>
</tr>
<tr>
<td>4</td>
<td>15,0</td>
</tr>
<tr>
<td>5</td>
<td>15,0</td>
</tr>
<tr>
<td>6</td>
<td>20,0</td>
</tr>
<tr>
<td>7</td>
<td>21,0</td>
</tr>
<tr>
<td>8</td>
<td>23,0</td>
</tr>
<tr>
<td>$\sum R_i$</td>
<td>112,0</td>
</tr>
</tbody>
</table>

Rumus yang digunakan: $H = \frac{12}{n(n+1)} \sum_{i} \frac{R_i^2}{ni} - 3(n+1)$

$H_{hitung} = 13,92$

$H_{abel (a,db)} = \frac{H_{0,05,2}}{2} = 5,99$

$H_{hitung} > H_{abel}$, maka terima H_o; Kesimpulan: Perlakuan kedalaman penurunan lampu lampu berpengaruh terhadap jumlah hasil tangkapan
Lampiran 8. Hasil Pengukuran Iluminasi Cahaya (lux) dari Lampu Warna Putih dan Hijau

<table>
<thead>
<tr>
<th>Lampu putih</th>
<th>Ulangan</th>
<th>Kedalaman</th>
<th>Pusat bagan</th>
<th>Ujung diagonal/sudut</th>
<th>Tengah diagonal</th>
<th>Ujung tepi/sisi bagan</th>
<th>Tengah tepi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1 2 3 4 RT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3 0 2 2 5</td>
<td>3 0 2 2 5 7</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3 0 2 2 5</td>
<td>3 0 2 2 5 7</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3 0 2 2 5</td>
<td>3 0 2 2 5 7</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>3 0 2 2 5</td>
<td>3 0 2 2 5 7</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>3 0 2 2 5</td>
<td>3 0 2 2 5 7</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>3 0 2 2 5</td>
<td>3 0 2 2 5 7</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>3 0 2 2 5</td>
<td>3 0 2 2 5 7</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>3 0 2 2 5</td>
<td>3 0 2 2 5 7</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>3 0 2 2 5</td>
<td>3 0 2 2 5 7</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lampu hijau</th>
<th>Ulangan</th>
<th>Kedalaman</th>
<th>Pusat bagan</th>
<th>Ujung diagonal/sudut</th>
<th>Tengah diagonal</th>
<th>Ujung tepi/sisi bagan</th>
<th>Tengah tepi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1 2 3 RT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3 0 2 2 5</td>
<td>3 0 2 2 5 7</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>3 0 2 2 5</td>
<td>3 0 2 2 5 7</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>3 0 2 2 5</td>
<td>3 0 2 2 5 7</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>3 0 2 2 5</td>
<td>3 0 2 2 5 7</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>3 0 2 2 5</td>
<td>3 0 2 2 5 7</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>3 0 2 2 5</td>
<td>3 0 2 2 5 7</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>3 0 2 2 5</td>
<td>3 0 2 2 5 7</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>3 0 2 2 5</td>
<td>3 0 2 2 5 7</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>3 0 2 2 5</td>
<td>3 0 2 2 5 7</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
<td>3 0 2 2 5 8</td>
</tr>
</tbody>
</table>

Keterangan:

RT = rata-rata ulangan pada setiap pengukuran
Lampiran 9. Hasil Pengukuran Iluminasi Cahaya (lux) dari Lampu Warna Merah dan Kuning

Lampu merah

<table>
<thead>
<tr>
<th>Ulangan</th>
<th>Kedalaman</th>
<th>Stasiun/lokal Pengukuran</th>
<th>Pusat bagan</th>
<th>Ujung diagonal/sudut</th>
<th>Tengah diagonal</th>
<th>Ujung tepi/sisi bagan</th>
<th>Tengah tepi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>RT</td>
</tr>
<tr>
<td>0</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
<td>1.50</td>
<td>1.00</td>
<td>0.00</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>1.75</td>
<td>2.50</td>
<td>19.33</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>1.00</td>
<td>2.50</td>
<td>2.00</td>
<td>1.83</td>
<td>0.00</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>0.50</td>
<td>0.75</td>
<td>0.75</td>
<td>0.92</td>
<td>0.00</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>0.25</td>
<td>0.50</td>
<td>0.50</td>
<td>0.42</td>
<td>0.00</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>6</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.00</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>7</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Lampiran kuning

<table>
<thead>
<tr>
<th>Ulangan</th>
<th>Kedalaman</th>
<th>Stasiun/lokal Pengukuran</th>
<th>Pusat bagan</th>
<th>Ujung diagonal/sudut</th>
<th>Tengah diagonal</th>
<th>Ujung tepi/sisi bagan</th>
<th>Tengah Tepi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>RT</td>
</tr>
<tr>
<td>0</td>
<td>0.50</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>1</td>
<td>3.00</td>
<td>2.50</td>
<td>2.50</td>
<td>2.50</td>
<td>2.50</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>2</td>
<td>13.50</td>
<td>40.50</td>
<td>22.00</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>1.75</td>
<td>1.75</td>
<td>0.75</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>0.25</td>
<td>1.00</td>
<td>0.50</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>0.25</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>0.00</td>
<td>0.25</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>0.00</td>
<td>0.25</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Keterangan:
RT = rata-rata ulangan pada setiap pengukuran
Lampiran 10. Hasil Pengukuran Iluminasi Cahaya (lux) dari 2 Lampu Putih pada Kedalaman 0 meter dan 1 meter

Kedalaman 0 meter

<table>
<thead>
<tr>
<th>Kedalaman</th>
<th>1 Meter dari Pusat Bagian</th>
<th>Ujung diagonal/sudut</th>
<th>Stasiun/loaksi Pengukuran</th>
<th>Ujung tepi/sisi bagan</th>
<th>Tengah tepi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>105,00</td>
<td>80,00</td>
<td>110,00</td>
<td>130,00</td>
<td>105,25</td>
</tr>
<tr>
<td>1</td>
<td>60,50</td>
<td>44,00</td>
<td>96,00</td>
<td>90,00</td>
<td>72,63</td>
</tr>
<tr>
<td>2</td>
<td>15,00</td>
<td>7,00</td>
<td>18,00</td>
<td>10,00</td>
<td>12,50</td>
</tr>
<tr>
<td>3</td>
<td>6,75</td>
<td>2,00</td>
<td>3,00</td>
<td>3,50</td>
<td>3,81</td>
</tr>
<tr>
<td>4</td>
<td>3,25</td>
<td>1,50</td>
<td>2,50</td>
<td>2,25</td>
<td>2,31</td>
</tr>
<tr>
<td>5</td>
<td>2,25</td>
<td>1,00</td>
<td>1,75</td>
<td>1,50</td>
<td>1,63</td>
</tr>
<tr>
<td>6</td>
<td>1,50</td>
<td>0,50</td>
<td>0,50</td>
<td>1,00</td>
<td>0,88</td>
</tr>
<tr>
<td>7</td>
<td>0,00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>0,00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>0,00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Kedalaman 1 meter

<table>
<thead>
<tr>
<th>Kedalaman</th>
<th>1 Meter dari Pusat Bagian</th>
<th>Ujung diagonal/sudut</th>
<th>Stasiun/loaksi Pengukuran</th>
<th>Ujung tepi/sisi bagan</th>
<th>Tengah tepi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>12,00</td>
<td>15,00</td>
<td>5,00</td>
<td>10,67</td>
<td>1,00</td>
</tr>
<tr>
<td>1</td>
<td>70,00</td>
<td>60,00</td>
<td>15,00</td>
<td>48,30</td>
<td>1,25</td>
</tr>
<tr>
<td>2</td>
<td>40,00</td>
<td>31,00</td>
<td>12,00</td>
<td>27,67</td>
<td>2,50</td>
</tr>
<tr>
<td>3</td>
<td>5,00</td>
<td>5,00</td>
<td>5,00</td>
<td>5,00</td>
<td>2,75</td>
</tr>
<tr>
<td>4</td>
<td>2,00</td>
<td>2,50</td>
<td>2,00</td>
<td>2,17</td>
<td>1,25</td>
</tr>
<tr>
<td>5</td>
<td>1,75</td>
<td>2,00</td>
<td>1,00</td>
<td>1,58</td>
<td>1,00</td>
</tr>
<tr>
<td>6</td>
<td>1,50</td>
<td>1,50</td>
<td>0,50</td>
<td>1,17</td>
<td>0,50</td>
</tr>
<tr>
<td>7</td>
<td>1,25</td>
<td>1,00</td>
<td>0,25</td>
<td>0,83</td>
<td>0,00</td>
</tr>
<tr>
<td>8</td>
<td>0,50</td>
<td>0,50</td>
<td>0,00</td>
<td>0,33</td>
<td>0,00</td>
</tr>
<tr>
<td>9</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Keterangan:

RT = rata-rata ulangan pada setiap pengukuran
Lampiran 11. Hasil Pengukuran Iluminasi Cahaya (lux) dari 2 Lampu Putih pada Kedalaman 2 meter

Kedalaman 2 meter

<table>
<thead>
<tr>
<th>Ulangan Kedalaman</th>
<th>1 Meter dari Pusat</th>
<th>Ujung diagonal/sudut</th>
<th>Tengah diagonal</th>
<th>Ujung tepi/sisi bagian</th>
<th>Tengah tepi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>RT</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>2.75</td>
<td>2.50</td>
<td>3.00</td>
<td>2.75</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>70.00</td>
<td>23.00</td>
<td>25.50</td>
<td>39.50</td>
<td>0.50</td>
</tr>
<tr>
<td>3</td>
<td>96.50</td>
<td>10.00</td>
<td>85.00</td>
<td>80.50</td>
<td>2.50</td>
</tr>
<tr>
<td>4</td>
<td>42.50</td>
<td>26.50</td>
<td>40.00</td>
<td>36.33</td>
<td>1.50</td>
</tr>
<tr>
<td>5</td>
<td>10.00</td>
<td>9.25</td>
<td>15.50</td>
<td>11.58</td>
<td>0.25</td>
</tr>
<tr>
<td>6</td>
<td>5.50</td>
<td>4.75</td>
<td>6.25</td>
<td>5.50</td>
<td>0.25</td>
</tr>
<tr>
<td>7</td>
<td>3.75</td>
<td>2.50</td>
<td>3.00</td>
<td>3.08</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>1.75</td>
<td>0.75</td>
<td>2.50</td>
<td>1.67</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>1.00</td>
<td>0.50</td>
<td>1.75</td>
<td>0.75</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Keterangan:
RT = rata-rata ulangan pada setiap pengukuran