ISOLASI DAN IDENTIFIKASI MORFOLOGI BAKTERI PENDEGRADASI MINYAK BUMI SERTA EFEKTVITASNYA DALAM PROSES BIOREMEDIASI

Oleh:
SITTI HAMDIYAH
C03495033

SKRIPSI

Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana pada Fakultas Perikanan dan Ilmu Kelautan Institut Pertanian Bogor

PROGRAM STUDI TEKNOLOGI HASIL PERIKANAN
JURUSAN PENGOLAHAN HASIL PERIKANAN
FAKULTAS PERIKANAN DAN ILMU KELAUTAN
INSTITUT PERTANIAN BOGOR
2000
SKRIPSI

Judul : Isolasi dan Identifikasi Morfologi Bakteri Pendegradasi Minyak Bumi serta Efektivitasnya dalam Proses Bioremediasi

Nama mahasiswa : Sitti Hamdiyah
Nomor Pokok : C03495033
Program Studi : Teknologi Hasil Perikanan
Jurusan : Teknologi Hasil Perikanan

Menyetujui :
I. Komisi Pembimbing

Dra. Pipih Suptiah, MBA
Ketua

Ir. Ruddy Suwandi, MS., M.Phil
Anggota

Ir. Yetti Darmavati, M.Sc
Anggota

II. Fakultas Perikanan dan Hmu Kelautan IPB

Ir. Ruddy Suwandi MS, MPhil
Ketua Program Studi

Dr. Ir. Indra Jaya MSc.
Pembantu Dekan I

Tanggal Lulus : 10 November 2000
RINGKASAN

Untuk mengatasi pencemaran minyak di lingkungan, cara biologis atau biodegradasi oleh mikroorganisme, merupakan salah satu cara yang tepat, efektif dan hampir tidak ada pengaruh sampingan pada lingkungan karena tidak menghasilkan racun ataupun blooming (peledakan jumlah bakteri). Mikroorganisme ini akan mati seiring dengan habisnya minyak mentah di sekitar perairan tersebut (Leahy dan Colwell, 1990).

Penelitian ini bertujuan untuk mengembangkan teknik proses remediasi suatu daerah yang tercermin minyak bumi dengan metoda biologis yang akan difokuskan pada dua aspek, yaitu (1) karakterisasi mikroorganisme pengurai hidrokarbon, (2) kajian tentang pengaruh faktor fisik, kimia dan biologis terhadap laju degradasi minyak bumi.

Penelitian ini dilakukan dalam dua tahap. Penelitian pendahuluan ini dilakukan untuk mengisoli bakteri yang akan digunakan untuk mendegradasi minyak. Penumbuhan dan kultivasi bakteri yang akan diisolasi ini dilakukan dengan metoda pour plate dengan menggunakan media garam mineral (MSM) yang dilengkapi dengan inkubator goyang pada suhu kamar.

Penelitian lanjutan merupakan uji coba proses bioremediasi di lapangan dengan teknik mesokosme. Pada prinsipnya, kondisi mesokosme dibuat semirip mungkin dengan kondisi luar lingkungan (ekosistem semesta) sehingga hasil pengamatan yang akan dilakukan nanti tidak akan jauh berbeda dengan kondisi lapang.

Pengambilan contoh dilakukan setiap hari selama empat hari berturut-turut, kemudian sekali dalam tiga hari selama 15 hari. Parameter yang langsung dikerjakan adalah pengukuran suhu, salinitas, derajat keasaman dan konsentrasi oksigen terlarut. Terhadap sampel yang diambil dilakukan analisa kadar minyak dalam air dengan metoda gravimetri (untuk menentukan laju degradasi hidrokarbon). Untuk menentukan pertumbuhan sel bakteri heterotrofik dilakukan pengukuran dengan metoda Total Plate Count (TPC), sedangkan untuk pengukuran pertumbuhan sel bakteri hidrokarbonoklastik dilakukan dengan metoda Most Probable Number (MPN).

Pada penelitian pendahuluan terdapat tujuh isolat yang mempunyai kecenderungan aktif di lingkungan minyak dan memanfaatkan hidrokarbon untuk aktivitasnya yaitu KH/A Orange, KH/A Putih, M/H1 Orange, H/M/H1 Putih, BH/A Kuning, 32/H0 Kuning, dan 32/M/H0 Putih.

Dari hasil identifikasi morfologi yang dilakukan yaitu bentuk koloni yang bulat, warna koloni putih atau kuning, diameter koloni antara 0,5 – 5,0 mm dan jenis bakteri adalah gram negatif, diduga bahwa bakteri yang mendominasi adalah dari genera Pseudomonas sp.
Pada penelitian lanjutan dengan teknik mesosokse diperoleh bahwa hasil pengukuran suhu pada setiap pengambilan sampel tidak menunjukkan adanya kenaikan temperatur perairan yang cukup berarti. Akan tetapi dari hasil rata-rata, temperatur tertinggi terdapat pada mesosokse B (32°C). Sedangkan rata-rata suhu luar lingkungan mesosokse adalah 31,4°C.

Kisaran salinitas yang dihasilkan adalah 24,5-32 o/oo. Kisaran ini masih optimal bagi kehidupan bakteri laut dan masih menunjang kehidupannya serta tidak menjadi faktor pembatas.

Kisaran pH pada semua mesosokse adalah 7,3-7,8 (asam cenderung netral), sedangkan di luar mesosokse berkisar antara 7,8-7,9 (netral).

Hasil penelitian ini menunjukkan konsentrasi oksigen terlarut yang bervariasi antara 0,65 – 7,62 ppm. Fluktuasi terbesar terjadi pada mesosokse C yaitu dari 7,5 ppm menjadi 0,65 ppm.

Dari hasil pengamatan terlihat bahwa nilai rata-rata konstanta kecepatan tumbuh (μ) tertinggi untuk bakteri heterotrofik terjadi pada luar mesosokse yaitu 0,1517, kemudian pada mesosokse B dengan penambahan kultur M/M/H_orange 0,1221, mesosokse C dengan penambahan kultur campuran 0,0637, mesosokse D dengan penambahan kultur KH/A Orange 0,0282, dan mesosokse A (kontrol) 0,0039.

Penambahan kultur M/M/H_orange menunjukkan peningkatan jumlah bakteri hidrokarbonoklastik yang terjadi hingga hari ke-2 dengan jumlah perkiraan terdekat (JPT) 210 sel/100 ml, kemudian mengalami penurunan pada hari ke-3 (9 sel/100 ml) dan meningkat kembali pada hari ke-5 (39 sel/100 ml) hingga hari ke-11 (139 sel/100 ml). Untuk penambahan kultur campuran pada mesosokse C, peningkatan jumlah bakteri juga dimulai pada hari ke-2 dengan 9 sel/100 ml hingga hari ke-3 (110 sel/100 ml), kemudian mengalami penurunan pada hari ke-5 (33 sel/100 ml). Peningkatan kembali terjadi pada hari ke-8 (460 sel/100 ml). Untuk penambahan kultur KH/A Orange pada mesosokse D, peningkatan jumlah bakteri terus terjadi dari hari ke-2 (14 sel/100 ml) hingga hari ke-8 (75 sel/100 ml) kemudian mengalami penurunan dari hari ke-11 (43 sel/100 ml) hingga akhir pengamatan (24 sel/100 ml).

Dari perbandingan antara bakteri heterotrofik dan bakteri hidrokarbonoklastik diperoleh rata-rata perbandingan terkecil pada mesosokse D dengan penambahan kultur KH/A Orange yaitu 0,402. Sedangkan rata-rata perbandingan terbesar untuk mesosokse dengan penambahan kultur terdapat pada mesosokse C (kultur campuran) sebesar 17,877, dimana bakteri yang mendominasi berarti bakteri hidrokarbonoklastik yang ditambahkan. Mesosokse A (kontrol) yang tidak mendapat penambahan kultur juga memiliki rasio yang kecil (0,690), sehingga dapat dikatakan bahwa bakteri heterotrofik yang terdapat di dalam mesosokse A tersebut mampu beradaptasi dengan baik menjadi bakteri hidrokarbonoklastik.

ditemukan pada mesokosme D yaitu dari 7,93 ppm pada H₁ menjadi 2,94 ppm pada H₁₅.

Rata-rata laju biodegradasi tertinggi terjadi pada mesokosme C (kultur campuran) yaitu sebesar 5,006 ppm/hari, kemudian mesokosme B (M/M/H₁ Orange) sebesar 4,872 ppm/hari, mesokosme A (kontrol) yaitu sebesar 4,113 ppm/hari dan mesokosme D (KH₁/A Orange) sebesar 3,670 ppm/hari. Jika dibandingkan antara keempat mesokosme (A, B, C dan D), ternyata penambahan kultur campuran memiliki kemampuan laju biodegradasi minyak mentah yang tertinggi (5,006 ppm/hari).

Parameter lingkungan mempunyai kontribusi tersendiri terhadap nilai biodegradasi minyak. Pengaruh parameter lingkungan berurut dari yang besar ke kecil yaitu kandungan minyak, oksigen terlarut, suhu, salinitas dan pH. Sebagian parameter lingkungan kecuali salinitas memberikan kontribusi yang positif terhadap aktifitas bakteri pengurai minyak, berarti semakin besar konsentrasi parameter tersebut semakin tinggi pula nilai biodegradasi.

Penelitian ini masih perlu dilanjutkan dan dikembangkan untuk mempelajari aktivitas mikroba yang telah diperoleh berikut karakteristiknya, sehingga dapat berguna untuk mengatasi minyak buangan secara aktif, praktis, ekonomis dan ramah lingkungan.
RIWAYAT HIDUP

Dalam rangka memenuhi syarat untuk memperoleh gelar sarjana perikanan, penulis melakukan praktek lapangan dengan judul "Tinjauan Umum Perikanan dan Pengolahan Hasil Perikanan Tradisional di Kecamatan Bengkalis dan Kecamatan Bantan, Kabupaten Bengkalis, Riau," dan melakukan penelitian dengan judul "Isolasi dan Identifikasi Morfologi Bakteri Pendegradasi Minyak Bumi serta Efektifitasnya dalam Proses Bioremediasi."
KATA PENGANTAR

Puji dan syukur penulis panjatkan kepada Tuhan Yang Maha Kuasa yang telah melimpahkan rahmat dan karunia-Nya, sehingga penulis dapat menyelesaikan penyusunan Skripsi ini dengan baik.

Skripsi ini merupakan laporan hasil pelaksanaan penelitian mengenai Isolasi dan Identifikasi Morfologi Bakteri Pendegradasi Miuyak Bumi serta Efektivitasnya dalam Proses Bioremediasi.

Dalam penelitian dan penulisan skripsi ini, penulis banyak menerima bantuan dan bimbingan dari berbagai pihak. Pada kesempatan ini penulis menghaturkan rasa terimakasih kepada:

1. Ibu Dra. Pipih Suptijah MBA, Bapak Ir. Ruddy Suwandi MS., M.Phil, dan Ibu Ir. Yetti Darmayati M.Sc selaku ketua dan anggota komisi pembimbing yang telah banyak memberikan masukan dan bimbingan selama penulis melakukan penelitian hingga penulisan skripsi ini.

4. Mama, kakak dan adik-adikku tercinta yang selalu setia untuk memberi semangat pada penulis dalam menyelesaikan penelitian.

5. Om Tuah, Bujing Nauli, Uda Musnar, Bujing Nining, Bujing Nuri dan Om Idrus, Tulang Ipul dan Nantulang Sinta, Tulang Ucok dan Nantulang Dami, Tulang Darwin dan Nantulang Imun atas bantuan dan bimbingannya.

6. Seluruh rekan-rekan THP’32, atas kebersamaan selama di THP.
7. Seluruh Warga Wisma Edelweiss (Ewi, nen, M’Isra, Echi, M’Wied, M’Rini, M’Ichan, Ino, Tintin, Uwi, Enung, Dora, Opi, Maya, Uli, Yuni) dan lain-lain yang tak dapat penulis sebutkan, atas dorongan dan kebersamaan selama di Edelweiss.

8. Seluruh Warga Wisma Gunung Batu (M’Mimin, M’Nur, M’Rully, M’Dhanis, M’Noi, M’Dewi, M’Nunik, Wati dan Ika) atas bantuan dan kesabarannya menghadapi penulis dalam menempuh ujian skripsi.

12. Rental Warna (Echi, Mas Amin, Diki, Mas Asep) atas bantuaninya selama penyusunan laporan ini.

13. Ibu Ema, Pak Ade, Pak Tatang, serta semua pihak yang tidak disebut, atas segala bantuan dan kemudahan yang diberikan kepada penulis.

14. Semua pihak yang tidak dapat disebut satu persatu. Penulis menyadari bahwa dalam penyusunan skripsi ini masih jauh dari sempurna, untuk itu dengan kerendahan hati penulis sangat mengharapkan saran dan kritik yang membangun.

Akhir kata penulis berharap laporan penelitian ini dapat berguna bagi pembaca dan penulis.

Bogor, November 2000

Penulis
DAFTAR ISI

<table>
<thead>
<tr>
<th>DAFTAR TABEL</th>
<th>..</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAFTAR GAMBAR</td>
<td>..</td>
<td>iv</td>
</tr>
<tr>
<td>DAFTAR LAMPIRAN</td>
<td>...</td>
<td>v</td>
</tr>
<tr>
<td>1. PENDAHULUAN</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Latar Belakang</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Tujuan Penelitian</td>
<td>..</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Waktu dan Tempat</td>
<td>..</td>
<td>3</td>
</tr>
<tr>
<td>2. TINJAUAN PUSTAKA</td>
<td>..</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Sumber dan Karakteristik Minyak Bumi</td>
<td>...</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Bioremediasi dan Biodegradasi</td>
<td>...</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1 Degradasi hidrokarbon alifatik</td>
<td>...</td>
<td>10</td>
</tr>
<tr>
<td>2.2.2 Degradasi senyawa sikloalifatik</td>
<td>...</td>
<td>11</td>
</tr>
<tr>
<td>2.2.3 Degradasi nitrogen, sulfur dan oksigen</td>
<td>...</td>
<td>12</td>
</tr>
<tr>
<td>2.3 Faktor-Faktor yang Mempengaruhi Degradasi Hidrokarbon</td>
<td>.......................................</td>
<td>12</td>
</tr>
<tr>
<td>2.3.1 Karakteristik kontaminan</td>
<td>..</td>
<td>12</td>
</tr>
<tr>
<td>2.3.2 Bakteri hidrokarbonoklastik</td>
<td>...</td>
<td>13</td>
</tr>
<tr>
<td>2.3.3 Nutrisi</td>
<td>..</td>
<td>14</td>
</tr>
<tr>
<td>2.3.4 Faktor fisik</td>
<td>..</td>
<td>15</td>
</tr>
<tr>
<td>2.4 Kultivasi dan Pertumbuhan Mikrobial</td>
<td>...</td>
<td>16</td>
</tr>
<tr>
<td>2.5 Aplikasi Bioremediasi Minyak Bumi</td>
<td>..</td>
<td>17</td>
</tr>
<tr>
<td>2.6 Metoda Mesokosme</td>
<td>..</td>
<td>18</td>
</tr>
<tr>
<td>3. METODOLOGI</td>
<td>...</td>
<td>20</td>
</tr>
<tr>
<td>3.1 Bahan dan Alat</td>
<td>...</td>
<td>20</td>
</tr>
<tr>
<td>3.1.1 Bahan</td>
<td>...</td>
<td>20</td>
</tr>
<tr>
<td>3.1.2 Alat</td>
<td>...</td>
<td>20</td>
</tr>
<tr>
<td>3.2 Metode Penelitian</td>
<td>...</td>
<td>21</td>
</tr>
<tr>
<td>3.2.1 Penelitian pendahuluan</td>
<td>...</td>
<td>21</td>
</tr>
<tr>
<td>3.2.1.1 Pembuatan media garam mineral (MSM)</td>
<td>..</td>
<td>21</td>
</tr>
<tr>
<td>3.2.1.2 Isolasi dan inkubasi bakteri dari kultur campuran ke dalam media garam mineral (MSM)</td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>
3.2.1.3 Pembuatan isolat murni dari kultur campuran.. 23
3.2.1.4 Identifikasi morfologi.......................... 24
3.2.1.5 Aklimatisasi ke media garam mineral........ 25
3.2.1.6 Pemilihan strain unggul......................... 25
3.2.1.7 Uji bioremediasi isolat murni................... 25
3.2.2 Penelitian lanjutan... 26
3.2.2.1 Aplikasi dengan mesokosme.................... 26
3.2.2.2 Sampling dan pengukuran parameter perairan.. 27
3.2.3 Analisa sampel.. 27
 3.2.3.1 Analisis kadar minyak dalam air dengan metoda
 Gravimetri .. 27
 3.2.3.2 Analisis bakteri heterotrofik.................. 29
 3.2.3.3 Analisis bakteri hidrokarbonoklastik........ 31
 3.2.3.4 Analisis data 32

4. HASIL DAN PEMBAHASAN... 33
4.1 Penelitian Pendahuluan...................................... 33
 4.1.1 Isolasi dan inkubasi bakteri dari kultur campuran 33
 4.1.2 Karakteristik morfologi mikroorganisme pemecah minyak 34
 4.1.3 Uji bioremediasi isolat murni pada skala laboratorium.. 34
4.2 Interaksi Faktor Lingkungan dengan Kemampuan Mikroorganisme 37
 4.2.1 Temperatur .. 38
 4.2.2 Salinitas .. 40
 4.2.3 Konsentrasi ion hidrogen (pH) 42
 4.2.4 Oksigen terlarut ... 43
 4.2.5 Pertumbuhan mikroorganisme.......................... 45
 4.2.5.1 Bakteri heterotrofik......................... 45
 4.2.5.2 Bakteri hidrokarbonoklastik.................. 49
 4.2.5.3 Perbandingan jumlah bakteri hidrokarbonoklastik
 Dengan bakteri heterotrofik 52
4.3 Minyak Mentah (Crude Oil).................................. 53
 4.3.1 Minyak total.. 53
4.4 Laju Biodegradasi Minyak Mentah............................ 56

5. KESIMPULAN DAN SARAN.. 58
5.1 Kesimpulan ... 58
5.2 Saran .. 59

DAFTAR PUSTAKA ... 60

LAMPIRAN .. 64
<table>
<thead>
<tr>
<th>Nomor</th>
<th>Daftar Tabel</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Komposisi Limbah Minyak Bumi</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Klasifikasi Senyawa Hidrokarbon Minyak Bumi</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Aplikasi Bioremediasi Minyak Bumi Di Lingkungan</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>Perlakuan Dalam Penelitian Mesokosme, Oktober 1999</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>Hasil Perbandingan Antara Jumlah Bakteri Hidrokarbonoklastik</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Dengan Bakteri Heterotrofik pada berbagai Perlakuan</td>
<td></td>
</tr>
<tr>
<td>Nomor</td>
<td>Daftar Gambar</td>
<td>Halaman</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>1.</td>
<td>Jalur Degradasi Senyawa Hidrokarbon Alifatik</td>
<td>11</td>
</tr>
<tr>
<td>2.</td>
<td>Jalur Degradasi Senyawa Hidrokarbon Sikloalifatik</td>
<td>11</td>
</tr>
<tr>
<td>3.</td>
<td>Kurva Pertumbuhan Bakteri</td>
<td>16</td>
</tr>
<tr>
<td>4.</td>
<td>Kurva Pertumbuhan Bakteri Dan Tingkat Degradasi Minyak</td>
<td>29</td>
</tr>
<tr>
<td>5.</td>
<td>Kultur Yang Diinkubasi Pada Inkubator Goyang</td>
<td>35</td>
</tr>
<tr>
<td>6.</td>
<td>Kultur Yang Siap Diuji Pada Mesokosme</td>
<td>37</td>
</tr>
<tr>
<td>7.</td>
<td>Mesokosme</td>
<td>38</td>
</tr>
<tr>
<td>8.</td>
<td>Grafik Hasil Pengukuran Suhu Pada Penelitian Mesokosme</td>
<td>39</td>
</tr>
<tr>
<td>9.</td>
<td>Grafik Hasil Pengukuran Salinitas (o/oo) Pada Penelitian Mesokosme</td>
<td>41</td>
</tr>
<tr>
<td>10.</td>
<td>Grafik Pengukuran Derajat Keasaman (pH) Pada Penelitian Mesokosme</td>
<td>43</td>
</tr>
<tr>
<td>11.</td>
<td>Grafik Pengukuran Oksigen Terlarut Pada Penelitian Mesokosme</td>
<td>44</td>
</tr>
<tr>
<td>12.</td>
<td>Grafik Rata-Rata Jumlah Bakteri Heterotrofik Pada Mesokosme</td>
<td>45</td>
</tr>
<tr>
<td>13.</td>
<td>Pengambilan Contoh Air Untuk Pengukuran Bakteri Heterotrofik dan Bakteri</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Mesokosmik</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Grafik In Pertumbuhan Bakteri Heterotrofik Beserta Persamaan Linear</td>
<td>48</td>
</tr>
<tr>
<td>15.</td>
<td>Grafik In Pertumbuhan Bakteri Hidrokarbonoklastik Pada Mesokosme</td>
<td>49</td>
</tr>
<tr>
<td>16.</td>
<td>Grafik Jumlah Bakteri Hidrokarbonoklastik Pada Mesokosme</td>
<td>51</td>
</tr>
<tr>
<td>17.</td>
<td>Grafik Pengukuran Kadar Minyak Total Pada Mesokosme</td>
<td>54</td>
</tr>
<tr>
<td>18.</td>
<td>Proses Pengambilan Minyak Pada Mesokosme</td>
<td>56</td>
</tr>
<tr>
<td>19.</td>
<td>Grafik Rata-Rata Laju Biodegradasi Pada Mesokosme</td>
<td>57</td>
</tr>
<tr>
<td>Nomor</td>
<td>Judul</td>
<td>Halaman</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>1.</td>
<td>Komposisi Mineral Salt Medium dengan Konsentrasi Dasar</td>
<td>64</td>
</tr>
<tr>
<td>2.</td>
<td>Komposisi Medium Bakteri Heterotrofik</td>
<td>64</td>
</tr>
<tr>
<td>3.</td>
<td>Perlakuan Dalam Penelitian Mesokosme, Oktober 1999</td>
<td>65</td>
</tr>
<tr>
<td>4.</td>
<td>Suhu (°C) Pada Penelitian Mesoskisme, Oktober 1999</td>
<td>65</td>
</tr>
<tr>
<td>5.</td>
<td>Salinitas (o/oo) Pada Penelitian Mesoskisme, Oktober 1999</td>
<td>65</td>
</tr>
<tr>
<td>6.</td>
<td>Derajat Keasaman (pH) Pada Penelitian Mesoskisme, Oktober 1999</td>
<td>66</td>
</tr>
<tr>
<td>7.</td>
<td>Kadar Oksigen (ml/L) Pada Penelitian Mesoskisme, Oktober 1999</td>
<td>66</td>
</tr>
<tr>
<td>8.</td>
<td>Morfologi Isolat Dari Pelabuhan Ratu</td>
<td>67</td>
</tr>
<tr>
<td>9.</td>
<td>Pengamatan Terhadap Ukuran Clear Zone Sampel Setelah Penanaman Selama 9 Hari</td>
<td>68</td>
</tr>
<tr>
<td>10.</td>
<td>Kepadatan Bakteri Hidrokarbonoklastik (MPN) (Sel/100 ml) di Perairan Pelabuhan Ratu, Oktober 1999</td>
<td>69</td>
</tr>
<tr>
<td>11.</td>
<td>Kadar Minyak Pada Mesoskisme Pelabuhan Ratu, Oktober 1999</td>
<td>70</td>
</tr>
<tr>
<td>12.</td>
<td>Tabel Penghitungan Jumlah Bakteri Dengan Metoda MPN per 100 ml Sampel Menggunakan 3 Seri Tabung Untuk Tiap Pengenceran Tiap Pengenceran</td>
<td>71</td>
</tr>
<tr>
<td>13.</td>
<td>Peta Lokasi Penelitian Dengan Metode Mesoskose di Teluk Pelabuhan Ratu</td>
<td>72</td>
</tr>
<tr>
<td>14.</td>
<td>Bagan Perangkat Mesokosme</td>
<td>73</td>
</tr>
<tr>
<td>15.</td>
<td>Skema Kerja Analisis Bakteri</td>
<td>74</td>
</tr>
<tr>
<td>16.</td>
<td>Proses Tumpahan Minyak di Perairan</td>
<td>75</td>
</tr>
<tr>
<td>17.</td>
<td>Skema Kerja Analisis Minyak Total</td>
<td>76</td>
</tr>
</tbody>
</table>
1. PENDAHULUAN

1.1 Latar Belakang

Minyak bumi merupakan energi utama pada akhir abad ini maupun abad yang akan datang. Sebagian besar negara-negara di dunia (termasuk Indonesia) mengandalkan minyak bumi sebagai sumber energi utama, untuk industriya dan memberikan pendapatan terbesar dari kegiatan ekspor.

Sebagai sumber energi, minyak dan gas bumi memiliki banyak manfaat, cukup efisien dan ekonomis serta keberadaannya cukup melimpah. Tetapi bila tumpah atau terbuang ke lingkungan, minyak tersebut akan menjadi cemaran yang dapat menjadi polutan yang berbahaya. Diperkirakan sekitar 6,1 juta ton minyak mentah dan produk minyak bumi terbuang ke laut setiap tahunnya akibat dari penambangan, pemurnian minyak bumi atau kegiatan lainnya (Godfrey, 1986). Walaupun data tumpahan minyak untuk wilayah Indonesia tidak diketahui secara pasti, namun diduga tingkat pencemaran minyak bumi di Indonesia cukup besar, mengingat tingginya aktivitas eksplorasi minyak bumi di Indonesia.

Untuk mengatasi tumpahan minyak, ada tiga metode yang diterapkan, yaitu: metoda fisik (skimming, scrubing dan containment), metoda kimia (emulsifying) dan metoda biologis. Metoda fisik dilakukan dengan cara containment dan removal untuk mengurangi dampak yang lebih luas dari terjadinya cemaran minyak bumi. Penggunaan metoda kimia biasanya dilakukan dengan menambahkan bahan kimia (surfaktan). Umumnya, metoda kimia ini dilakukan jika metoda fisik sudah tidak dapat lagi membersihkan cemaran minyak. Penambahan bahan kimia ini dimaksudkan untuk meningkatkan kelarutan minyak bumi sehingga meningkatkan
proses degradasi. Namun demikian penggunaan metoda kimia dapat menimbulkan polutan baru akibat bahan kimia (surfaktan) yang digunakan.

Mikroorganisme mempunyai fungsi yang sangat penting dalam suatu ekosistem, terutama dengan adanya komponen-komponen yang tidak bisa dicerna (undigested), ataupun yang sulit diuraikan seperti minyak mentah (crude oil), sedangkan produk ini sangat berbahaya bagi organisme perairan. Mikroorganisme merupakan satu-satunya biota perairan yang dapat memanfaatkan minyak mentah dalam kondisi seperti ini. Dalam hal ini akan digunakan aktivitas bakteri. Untuk itu perlu didapatkan bakteri pendegradasi minyak yang potensial dan dapat dimanfaatkan dalam penanggulangan minyak buangan secara efektif dan ekonomis. Dari mikroba tersebut di samping untuk mereduksi minyak buangan, diharapkan juga dapat digunakan untuk membantu usaha penormalan kembali suatu lingkungan yang tercemar minyak.

1.2 Tujuan Penelitian

Penelitian ini bertujuan untuk mengembangkan teknik proses remediasi suatu daerah yang tercemar minyak bumi dengan metoda biologis yang akan difokuskan pada dua aspek, yaitu (1) karakterisasi mikroorganisme pengurai hidrokarbon,
(2) kajian tentang pengaruh faktor fisik, kimia dan biologis terhadap laju degradasi minyak bumi.

1.3 Waktu dan Tempat

Penelitian ini dibagi dalam dua tahap yaitu: a) penelitian pendahuluan berupa isolasi bakteri dari Pelabuhan Ratu pada bulan Mei sampai September 1999 yang dilaksanakan di Laboratorium Mikrobiologi, Puslitbang Oseanologi – LIPI Jakarta; b) penelitian lanjutan berupa aplikasi isolat di lapangan dengan teknik mesokosme (marine ecosystem enclosed experiment) yang dilakukan pada bulan Oktober 1999 di Pelabuhan Ratu.
2. TINJAUAN PUSTAKA

2.1 Sumber dan Karakteristik Minyak Bumi

Minyak buangan terdiri atas bermacam-macam jenis diantaranya berupa hidrokarbon ringan, hidrokarbon berat, pelumas, cairan bubut, dan berbagai bahan berminyak yang lain (Shaheen, 1992). Minyak tersebut dapat berasal dari berbagai kegiatan atau kejadian, yaitu dari:

- Rembesan minyak di sumbernya, kejadian ini sering terjadi di pantai Teluk Arab dan daerah tertentu pantai California.
- Tumpahan minyak selama kegiatan pengeboran, produksi dan transportasi minyak lepas pantai maupun yang di darat.
- Tumpahan minyak akibat kebocoran/pecahnya tanker maupun berasal dari limbah bekas pencucian dan pembilasan tanker minyak di laut.
- Tercecer/terbuangnya minyak di pelabuhan selama bongkar muat minyak.
- Limbah kapal, industri dan domestik yang terbuang ke lingkungan.
- Minyak bekas pakai dan minyak apkir.

Minyak buangan tersebut banyak terjadi di laut, keberadaannya dapat menimbulkan permasalahan lingkungan, yaitu dapat mengganggu dan merusak ekosistem.

Diperkirakan dari pelabuhan tersebut pada tahun 2000 akan dihasilkan minyak buangan dari limbah kapal sekitar 0,1 – 363 ton, yaitu berasal dari sekitar 10.374 kapal dengan waktu sandar tiga hari (Irawati et al., 1994).

Proses penguraian hidrokarbon oleh mikroorganisme dimulai dengan terjadinya perlekatan mikroorganisme pada globula minyak bumi, yang dilanjutkan dengan proses pelarutan hidrokarbon oleh surfaktan yang diproduksi oleh mikroorganisma tersebut. Hidrokarbon yang telah teremulsi ini selanjutnya diserap
ke dalam sel dan diurai melalui proses katabolisme. Untuk n-alkana, proses katabolisme ini diawali dengan proses hidroksilasi n-alkana yang menghasilkan alk-1-ol, yang selanjutnya di oksidasi oleh enzym dehydrogenase dan menghasilkan asam lemak. Jika sistem oksidasi mikroorganisme pengurai hidrokarbon dapat berjalan secara optimal, maka asam lemak yang terbentuk ini akan diurai sempurna menjadi energi, H₂O dan CO₂ melalui proses β-oksidasi (Godfrey, 1986) atau masuk menjadi bagian dari membran sel.

Beberapa komponen yang menyusun minyak juga diketahui bersifat racun terhadap berbagai hewan maupun manusia, tergantung dari struktur dan berat molekulnya. Komponen-komponen hidrokarbon jenuh yang mempunyai titik didih rendah diketahui dapat menyebabkan anestesi dan narkosis pada berbagai hewan tingkat rendah, dan jika terdapat pada konsentrasi tinggi dapat mengakibatkan kematian. Komponen-komponen hidrokarbon aromatik yang mempunyai titik didih rendah terdapat dalam jumlah besar di dalam minyak dan merupakan komponen yang paling berbahaya, misalnya benzen, toluen dan xilen. Komponen-komponen tersebut

Tabel 1. Komposisi Limbah Minyak Bumi

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Lokasi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bak Kontrol</td>
</tr>
<tr>
<td>Turbiditas</td>
<td>NIU</td>
<td>66</td>
</tr>
<tr>
<td>TSS</td>
<td>mg/l</td>
<td>89</td>
</tr>
<tr>
<td>Suhu</td>
<td>ºC</td>
<td>32</td>
</tr>
<tr>
<td>TDS</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>6,9</td>
</tr>
<tr>
<td>Nitrat</td>
<td>mg/l</td>
<td>9,21</td>
</tr>
<tr>
<td>Nitrit/</td>
<td>mg/l</td>
<td>0,17</td>
</tr>
<tr>
<td>BOD</td>
<td>mg/l</td>
<td>4,4</td>
</tr>
<tr>
<td>COD</td>
<td>mg/l</td>
<td>40,4</td>
</tr>
<tr>
<td>Phenol</td>
<td>mg/l</td>
<td>0,96</td>
</tr>
<tr>
<td>H2S</td>
<td>mg/l</td>
<td>0,133</td>
</tr>
<tr>
<td>Sianida</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>mg/l</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>mg/l</td>
<td>Tidak terdeteksi</td>
</tr>
<tr>
<td>Pb</td>
<td>mg/l</td>
<td>0,38</td>
</tr>
<tr>
<td>Zn</td>
<td>mg/l</td>
<td>0,01</td>
</tr>
<tr>
<td>Mn</td>
<td>mg/l</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Sumber: Sudrajat (1996)

Senyawa hidrokarbon minyak bumi berdasarkan kerentanannya untuk didegradasi secara biologis dapat diklasifikasikan secara tersendiri, seperti yang tercantum dalam Tabel 2.
Tabel 2. Klasifikasi Senyawa Hidrokarbon Minyak Bumi

<table>
<thead>
<tr>
<th>Kerentanan</th>
<th>Hidrokarbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sangat rentan</td>
<td>n- dan iso-alkana</td>
</tr>
<tr>
<td>Kerentanan tinggi</td>
<td>1,-2,-5- dan 6- cincin sikloalkana, 1- cincin aromatik, dan senyawa aromatik bersulfur</td>
</tr>
<tr>
<td>Agak rentan</td>
<td>3- dan 4- cincin sikloalkana, 2- dan 3- cincin aromatik</td>
</tr>
<tr>
<td>Sangat resisten</td>
<td>Tetra aromatik, stearin, triterpen dan senyawa aromatik yang mengandung napten</td>
</tr>
<tr>
<td>Resisten tinggi</td>
<td>Penta aromatik, aspal dan resin</td>
</tr>
</tbody>
</table>

Sumber: Blackburn dan Häfker (1993)

2.2 Bioremediasi dan Biodegradasi

Istilah bioremediasi digunakan untuk menggambarkan pemanfaatan mikroorganisme perombak polutan untuk membersihkan lingkungan yang tercemar. Kemampuan perombakan tersebut berkaitan dengan kehadiran plasmid mikrobial yang mengandung gen-gen penyandi berbagai enzim perombak polutan (Sudrajat, 1996).

Bioremediasi dapat berlangsung secara alamiah dalam beberapa kasus pencemaran lingkungan. Hal ini disebabkan karena mikroflora pada lingkungan yang tercemar tersebut telah beradaptasi untuk mendegradasi polutan. Adaptasi ini ditandai dengan peningkatan laju biodegradasi polutan oleh mikroorganisme. Tetapi laju bioremediasi alamiah ini tidak cukup untuk melindungi lingkungan dari tingkat pencemaran yang lebih serius, oleh karena itu diperlukan proses bioremediasi yang melibatkan peran serta manusia dan kemajuan teknologi terutama bidang bioteknologi (Bollag dan Bollag, 1992).

Biodegradasi dapat diartikan sebagai penguraian lengkap dari suatu senyawa oleh mikroorganisme menjadi karbodioksida, sulfat, nitrat dan air. Senyawa kimia dapat mengalami perubahan secara enzimatis atau biokatalitis dalam proses degradasi. Katalis yang dapat berpengaruh dalam peristiwa ini adalah enzim oksidase, reduktase, hidroksilase, dekarboksilase, deaminase, dehalogenase dan lain sebagainya (Sudrajat, 1996).

Biodegradasi minyak buangan merupakan suatu proses yang kompleks, dan tergantung kepada komunitas mikrobanya, kondisi lingkungan dan minyak buangan yang akan degradasi. Dalam proses tersebut akan terjadi penguraian hidrokarbon oleh mikroba yang telah teradaptasi dengan baik di lingkungan tersebut. Selama proses berlangsung akan terjadi degradasi fraksi parafinik, naftenik dan aromatik yang terkandung dalam minyak buangan tersebut. Parafinik merupakan fraksi yang paling mudah didegradasi oleh mikroba, sedangkan fraksi naftenik dan aromatik dengan berat molekul tinggi lebih sulit didegradasi (Leahy dan Colwell, 1990).
Kemampuan mikroorganisme dalam mendegradasi hidrokarbon sangat bervariasi. Zobell (1988) mengemukakan bahwa:

- Hidrokarbon alifatik didegradasi dan diasimilasi oleh sebagian besar mikroorganisme. Aromat kemungkinan dioksidasi sebagian dan diasimilasi hanya oleh sedikit jenis bakteri.
- Senyawa jenuh lebih mudah terdegradasi dari pada senyawa tidak jenuh
- Senyawa berantai lurus mudah terdegradasi dari pada senyawa berantai cabang.

Sebelum biodegradasi berlangsung, hidrokarbon akan masuk ke dalam sitoplasma mikroba. Ada dua teori mekanisme masuknya hidrokarbon, yaitu yang pertama hidrokarbon menjadi lebih mudah larut dan yang kedua terjadi adhesi antara butiran hidrokarbon dengan cairan dalam sel mikroba (Higgins dan Gilbert, 1977).

Mikroba yang telah teradaptasi di dalam lingkungan hidrokarbon akan tumbuh dan berkembang biak yang ditandai dengan bertambahnya sel mikroba. Hal ini menunjukkan adanya produksi biomass. Hasil penelitian terdahulu menunjukkan bahwa biomassa mikroba adalah protein. Sel bakteri yang tumbuh di lingkungan methanol mempunyai kandungan protein sekitar 83 % dan khamir dalam gasoline mengandung protein 68 - 70 % sedangkan dalam karbohidrat sekitar 65 % (Noegroho et al., 1979).

Berdasarkan strukturnya komponen minyak mentah dapat dikelompokkan menjadi hidrokarbon alifatik, hidrokarbon sikloalifatik, hidrokarbon aromatik dan senyawa nitrogen, sulfur dan oksigen. Masing-masing komponen tersebut memiliki proses degradasi yang spesifik (Banks dan King, 1984).

2.2.1 Degradasi hidrokarbon alifatik

metabolisme pada n-alkana oleh enzim hidroksilase akan menghasilkan alkana-1-ol dengan reaksi:

\[R-\text{CH}_3 + O_2 + \text{NAD(P)H} + H^+ \rightarrow R-\text{CH}_2\text{OH} + \text{NAD(P)}^+ + H_2O \]

Secara umum jalur degradasi hidrokarbon alifatik minyak bumi dapat dilihat pada Gambar 1.

2.2.2 Degradasi senyawa sikloalifatik

Sesuai dengan keadaan hidrokarbon alifatik, dilaporkan beberapa kultur murni mampu menggunakan sikloalifatik sebagai sumber karbon dan sumber energi. Selain itu biodegradasi sikloalifatik biasanya melibatkan kemotabolisme dan kultur campuran (Beam dan Perry, 1974). Jalur metabolik sikloheksana menggunakan kultur murni bakteri dapat dilihat pada Gambar 2.

Gambar 2. Jalur Degradasi Senyawa Hidrokarbon Sikloalifatik (Beam dan Perry, 1974).
2.2.3 Degradasi nitrogen, sulfur dan oksigen

Laju degradasi senyawa dari senyawa bersulfur tersebut sebanding dengan degradasi hidrokarbon aromatik dalam sistem yang sama (Arvin et al., 1989). Diketahui juga bahwa mikroorganisme mampu menggunakan dibenzo thiopene sebagai sumber karbon tunggal, sulfur dan sumber energi.

2.3 Faktor-faktor yang Mempengaruhi Degradasi Hidrokarbon

Proses bioremediasi in situ dipengaruhi oleh kondisi lokal dan perairan yang tercemar. Faktor penting yang harus dirancang agar proses bioremediasi berhasil adalah karakteristik kontaminan, mikronutrien, makronutrien, ketersediaan akseptor elektron dan keberadaan mikroorganisme indogenous yang memiliki kemampuan mendegradasi kontaminan (Wong et al., 1997).

2.3.1 Karakteristik kontaminan

Biodegradasi produk minyak mineral tergantung dari struktur kimiai senyawa. Secara umum, semakin tinggi berat molekul maka semakin resisten terhadap proses degradasi. Pada hidrokarbon yang viskos, kontak antara kontaminan dan mikroorganisme tidak stabil sehingga proses biodegradasi terhambat (Wong et al., 1997).

Hidrokarbon dengan bentuk atau struktur kimiai yang sederhana lebih mudah untuk didegradasi. Hidrokarbon dengan struktur bercabang didegradasi dengan kecepatan lebih rendah untuk jumlah atom karbon yang sama.

Beberapa jenis bahan kimia dapat bersifat racun terhadap mikroorganisme. Senyawa yang dapat didegradasi oleh mikroorganisme dalam konsentrasi rendah,
pada beberapa kasus justru dapat bersifat racun terhadap mikroorganisme dengan konsentrasi yang lebih tinggi.

2.3.2 Bakteri hidrokarbonoklastik

Mikroorganisme yang umum digunakan dalam bioremediasi adalah bakteri, tapi jamur indogenous juga mempunyai peran yang penting. Bakteri dan jamur pengurai hidrokarbon banyak terdapat di perairan laut, air tawar maupun dalam habitat tanah. Bakteri *hidrokarbonoklastik* adalah bakteri laut yang dapat menggunakan hidrokarbon untuk metabolisme hidupnya. Populasi bakteri pengguna hidrokarbon ini secara alami berjumlah sekitar satu persen dari total jumlah bakteri di perairan laut, tetapi apabila laut terkontaminasi oleh minyak maka populasi bakteri pengguna hidrokarbon ini akan meningkat menjadi sepuluh persen dari total jumlah bakteri di perairan laut (Atlas, 1995).

Isolat yang umum digunakan untuk mendegradasi hidrokarbon adalah *Pseudomonas, Arthrobacter, Corynobacterium, Mycobacterium* dan *Flavobacterium* (Wong et al., 1997).

Austin et al., (1977), mendapatkan beberapa bakteri pendegradasi hidrokarbon dari perairan dan sedimen di Teluk Chesapeake, yaitu genera *Pseudomonas, Micrococcus* dan *Nocardia*.

Pseudomonas dapat hidup di air laut maupun di pantai yang tercemar minyak, mereka dapat menggunakan minyak untuk aktivitasnya bila dalam suasana aerob. Kegiatan ini tergantung dengan tersedianya air, oksigen, nitrat, dan temperatur lingkungan yang sesuai (Shaheen, 1992).
Biodegradasi dari hidrokarbon berasosiasi dengan pembentukan surfaktan (Finn et al., 1992). *Pseudomonas aeruginosa* dapat memproduksi ramnolipida yang merupakan biosurfaktan. Senyawa mikrobiologis ini memiliki permukaan aktif dan dapat menurunkan tegangan permukaan, sehingga banyak diaplikasikan dalam industri agrikultur, penambangan, sebagai agen pemberat pada usaha kilang minyak bumi, pembentuk busa, pengaktif permukaan serta pengemulsi (Robert et al., 1989).

2.3.3 Nutrisi

Sel bakteri pada dasarnya tersusun oleh atom-atom karbon, hidrogen, oksigen, nitrogen, fosfor dan sulfur. Substansi-substansi tersebut harus tersedia dalam lingkungan tempat bakteri akan diibakkakan atau setidaknya ditambahkan ke dalam lingkungan tersebut agar bakteri dapat berkembang biak dengan cepat dan mendegradasi bahan organik, terutama karbon sebagai sumber energi. Selain itu
penambahan unsur lain perlu diperhatikan juga agar tidak mengganggu kesetimbangan unsur-unsur lainnya seperti nitrogen, fosfor dan oksigen agar proses degradasi tidak terhambat (Sudrajat, 1996)

Media yang mengandung kompleks nutrien termasuk karbohidrat, protein dan enzim merupakan nutrisi yang cocok untuk mikroorganisme yang terdapat dalam minyak bumi untuk mendegradasi polutan (Godfrey, 1986).

Hasil penelitian Udiharto (1992), telah didapatkan kultur campuran yang didominasi oleh *Pseudomonas* sp. yang berpotensi memakan minyak. Dalam air laut yang tercemar minyak bumi tanpa penambahan unsur lain, kultur tersebut dapat berperan dalam degradasi minyak bumi. Di sini terlihat bahwa nitrogen merupakan unsur pembatas untuk pertumbuhannya. Dalam media tersebut di atas dengan diperkaya unsur nitrogen, menunjukkan terjadinya degradasi hidrokarbon dimana penguraian senyawa parafinik lebih besar dari aromatik.

2.3.4 Faktor fisik

Faktor fisik merupakan parameter yang sangat penting dalam proses bioremediasi. Hal ini disebabkan karena bioremediasi dilakukan di alam sehingga isolat mikroorganisme harus mampu menunjukkan kinerja pada kondisi fisik lingkungan tertentu. Faktor fisik yang mempengaruhi degradasi polutan dalam proses bioremediasi adalah suhu, salinitas dan pH (Morgan dan Watkinson, 1994).

2.4 Kultivasi dan Pertumbuhan Mikrobial

Pertumbuhan mikroorganisme dapat diamati dengan cara mengukur jumlah sel atau konsentrasi biomassa. Pertumbuhan sel merupakan puncak aktivitas fisiologis yang saling mempengaruhi secara berurutan. Pertumbuhan mikroorganisme dapat ditandai dengan peningkatan jumlah dan massa sel, sedangkan kecepatan pertumbuhan tergantung pada lingkungan fisik dan kimianya.

\[
\begin{array}{c|c|c}
\text{Fase} & \text{fase eksponen} & \text{fase stasioner} \\
\text{Lag} & & \\
\end{array}
\]

Pada fase lag, sel melakukan aktivitas metabolik dan fisiologik untuk mempersiapkan pembelahan. Lamanya fase adaptasi dan pertumbuhan lambat ini sulit ditentukan karena tidak tergantung pada jumlah sel yang diinokulasikan tetapi juga pada karakteristik metaboliknya, seperti umur dan keadaan fisiologiknya.
Fase pertumbuhan lambat yang lama, menunjukkan adanya substrat yang bersifat menghambat atau prekultur yang tidak sesuai (Judoamidjojo et al., 1989).

Setelah fase lag selesai, mikroorganisme memasuki fase pertumbuhan eksponensial (fase eksponen), dimana pertumbuhan berlangsung konstan dengan laju pertumbuhan maksimum. Selama fase eksponensial, bila kultur berada dalam kondisi yang sesuai, mikroorganisme tumbuh dengan laju pertumbuhan maksimum (Judoamidjojo et al., 1989).

Laju pertumbuhan akan menurun akibat persediaan substrat yang berkurang dan terjadi akumulasi zat-zat metabolik yang menghambat pertumbuhan pada fase stasioner. Laju pertumbuhan akan menurun terus sampai nilai jumlah sel yang tumbuh sama dengan jumlah sel yang mati. Selanjutnya total massa sel akan konstan, tetapi jumlah sel hidup akan berkurang dan adanya lisis akan menyebabkan penurunan massa sel (Wang et al., 1979 dalam Judoamidjojo et al., 1989).

2.5 Aplikasi Bioremediasi Minyak Bumi

Kemampuan mikroorganisme untuk mendegradasi minyak bumi telah diuji terhadap lingkungan yang tercemar oleh limbah minyak bumi. Beberapa kasus pencemaran lingkungan yang berhasil ditangani dengan memanfaatkan kemampuan mikroorganisme pendegradasi hidrokarbon tersebut disajikan dalam Tabel 3.
Tabel 3. Aplikasi Bioremediasi Minyak Bumi di Lingkungan

| Mikroorganisme Yang Berperan | Persentase Degradas Mi
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas sp.</td>
<td>65</td>
</tr>
<tr>
<td>Mikroorganisme endogenous di Nova Scotia, Kanada dengan penambahan pupuk anorganik</td>
<td>77</td>
</tr>
<tr>
<td>Mikroorganisme endogenous di NovÁ Scotia, Kanada dengan penambahan pupuk</td>
<td>85 – 90</td>
</tr>
<tr>
<td>Mikroorganisme endogenous di Perairan Britania</td>
<td>45 – 85</td>
</tr>
<tr>
<td>Campuran bakteri P. aeruginosa, P. stutzeri dan Bacillus subtilis</td>
<td>71 – 82</td>
</tr>
</tbody>
</table>

Sumber: Swannel et al. (1996)

2.6 Metoda Mesokosme

Mesokosme merupakan ekosistem percobaan tertutup dan dalam kondisi terkontrol yang berisi air laut dengan volume umumnya 10 m³. Mesokosme terutama dipakai untuk mempelajari struktur, fungsi dan perubahan dalam ekosistem laut alami (State Oceanic Administration, 1989). Untuk menerapkan teknik ini ada beberapa persyaratan yang harus dipenuhi yaitu:

1. Harus ada organisme yang mempunyai dua jenjang tropik di dalamnya
2. Volume air tertutup harus cukup besar agar organisme hidup normal dalam suatu siklus hidup
3. Replika dan kemampuan reproduksi dalam perubahan struktur dan tingkah laku ekosistem tertutup tidak terganggu oleh pengambilan sampel
4. Perkembangan normal ekosistem tidak terganggu oleh pengambilan contoh
5. Percobaan harus dilakukan dalam wilayah laut yang tidak tercemar

7. Laboratorium untuk menganalisa dan daerah pengamatan harus dibuat sedekat mungkin.
3. METODOLOGI

3.1 Bahan dan Alat

3.1.1 Bahan

Bahan kimia yang digunakan dalam penelitian ini antara lain: heksana, yeast ekstrak, K$_2$HPO$_4$, KNO$_3$, Na$_2$SO$_4$, Bacto Agar, aquadest, formalin, kristal violet, safranin, alkohol, dua kultur tunggal dan satu kultur campuran mikroorganisme pendegradasi minyak dan minyak mentah yang berasal dari sumur minyak ATTAKA di Kalimantan Timur. Mikroorganisme pendegradasi hidrokarbon yang digunakan merupakan hasil isolasi dari perairan yang dicemari minyak mentah ATTAKA disekitar pantai Pelabuhan Ratu.

3.1.2 Alat

Alat-alat yang dibutuhkan dalam penelitian ini terdiri dari alat-alat gelas, alat-alat analisis dan alat-alat pelengkap. Alat-alat gelas yang dibutuhkan adalah erlenmeyer, pipet, cawan petri, gelas ukur, tabung reaksi dan kuvet. Sedangkan alat pelengkap lainnya adalah spektronom, autoclave, neraca analitik, inkubator, inkubator goyang, vortex, bunsen, kamar ultra violet, pompa vakum, mikroskop, freezer, oven, lup inokulasi, botol sampel, water sampler, DO-meter, quebec colony counter, SCT-meter, pH meter, kantong plastik, karet gelang, kertas label, daftar pengisian data hasil sampling, gunting, ember, tissue dan jaring plankton.

Sedangkan alat-alat untuk keperluan mesokosme terdiri dari kerangka bambu yang digunakan untuk menempelkan plastik mesokosme, plastik polyetilen dengan tebal 15 mm, drum plastik untuk pengapung, jangkar sebagai pemberat (pemberat dipasang pada tiap sudut agar kedudukan mesokosme tegak lurus), terpal sebagai pelindung polyetilen, rakit bambu untuk pijakan dan lingkaran stainless untuk menjepit plastik mesokosme.
3.2 Metode Penelitian

3.2.1 Penelitian pendahuluan

Pemilihan jenis bakteri pendegradasi minyak sangat menentukan untuk keefektifan proses bioremediasi. Bila strain tersebut sudah didapat maka mungkin saja dapat dilakukan penambahan nutrien khusus pada lingkungan tempat bakteri itu tumbuh untuk lebih mengefektifkan kerjanya dalam proses bioremediasi.

Penelitian pendahuluan ini dilakukan untuk mengisolasi bakteri yang akan digunakan untuk mendegradasi minyak. Penumbuhan bakteri yang akan diisolasi ini dilakukan dengan metoda pour plate dalam media garam mineral yang ditambahkan marine agar (MSM). Untuk penghitungan bakteri digunakan metoda Most Probable Number (MPN) dan metoda Total Plate Count (TPC) dalam media garam mineral.

3.2.1.1 Pembuatan media garam mineral (MSM)

a) Media garam mineral atau Mineral Salt Medium (MSM) (Lewin, 1973)

Media garam mineral ini digunakan untuk menumbuhkan bakteri pemecah minyak. Komposisi media garam mineral ini dapat dilihat pada Tabel 1 pada Lampiran 1. Semua bahan ini dicampur dan dipanaskan hingga mendidih. Setelah mendidih kemudian dituang ke dalam tabung-tabung reaksi yang ditutup kapas untuk disterilisasi selama 15 menit pada temperatur 121°C dan tekanan satu atmosfir. Ada beberapa tahapan penggunaan media garam mineral ini seperti:

- Media garam mineral cair untuk pengenceran (Lewin, 1973)

Media garam mineral disiapkan dalam erlenmeyer dengan volume kerja 150 ml yang kemudian dituang ke dalam tabung-tabung reaksi. Dalam penelitian ini dilakukan pengenceran sampel dengan menggunakan enam buah tabung reaksi yang masing-masing berisi 9 ml media MSM (sampai pengenceran 10^{-6}). Komposisi media garam mineral dapat dilihat pada Tabel 1 Lampiran 1.
- Media garam mineral padat untuk isolat murni
 Media garam mineral disiapkan dalam erlenmeyer dengan volume kerja 150 ml dan kemudian ditambahkan bacto agar sebanyak 15 g/l. Media tersebut kemudian dituang ke dalam cawan petri yang telah dipersiapkan sebanyak jumlah jenis koloni yang tumbuh dari hasil pemurnian dengan berbagai konsentrasi pengenceran.

- Media garam mineral untuk aklimatisasi
 Media garam mineral untuk aklimatisasi dibuat dengan tujuan sebagai media adaptis kultur ke media kultivasi. Media dibuat dengan volume kerja 150 ml dalam tabung erlenmeyer dan kemudian ditambahkan minyak mentah sebanyak 0,3g/150 ml.

- Media garam mineral untuk kultivasi
 Media dibuat dalam tabung erlenmeyer dengan volume kerja 190 ml, 1 liter dan 18 liter dan masing-masing ditambahkan minyak mentah yang akan di degradasi sebanyak 10 g/l.

b) Medium Bakteri Heterotrofik (Lewin, 1973)
 Medium ini digunakan untuk menumbuhkan bakteri heterotrofik. Penghitungan bakteri heterotrofik menggunakan metoda "Total Plate Count" atau cawan tuang dan alat yang digunakan adalah "quebec colony counter". Komposisi medium bakteri heterotrofik dapat dilihat pada Tabel 2 Lampiran 1.
 Semua bahan dicampurkan dan dipanaskan hingga mendidih sambil sesekali diaduk supaya larutan homogen, pH larutan diatur sampai 7,6. Setelah larutan mendidih kemudian dituang ke dalam erlenmeyer ukuran 100 ml, ditutup dengan kapas dan aluminium foil. Media telah siap untuk disterilisasi pada temperatur 121°C, tekanan satu atmosfir selama 15 menit. Selain media di atas, untuk analisis bakteri heterotrofik harus diisipakan juga larutan buffer fosfat masing-masing 9 ml dalam tabung reaksi untuk pengenceran.
c) Larutan buffer fosfat

Adapun komposisi larutan buffer fospat ini adalah sebagai berikut:

- KH₂PO₄ 1 gram
- K₂HPO₄ 3 gram
- Aquadestilata............

Prosedur pembuatan:

Larutan buffer fospat pH 7,2 dibuat dengan cara mencampurkan KH₂PO₄ dan K₂HPO₄ kemudian dilarutkan dalam aquadestilata. Larutan dimasukkan ke dalam tabung-tabung reaksi dengan volume 9 ml, kemudian disterilisasi dengan autoklaf pada suhu 121°C dengan tekanan 15 lbs selama 15 menit.

3.2.1.2 Isolasi dan inkubasi bakteri dari kultur campuran ke dalam media garam mineral (MSM) (Lewin, 1973)

a. Pengenceran

Pengenceran dilakukan dengan mengambil 1 ml sampel untuk kemudian dimasukkan ke dalam tabung reaksi 1 berisi 9 ml media MSM dan dikocok (pengenceran 10⁻¹). Kemudian diambil 1 ml sampel dari tabung 1 dan dimasukkan ke dalam tabung reaksi 2 yang juga berisi media MSM sebanyak 9 ml (pengenceran 10⁻²) dan dikocok. Perlakuan ini diulang sampai dengan pengenceran sebanyak 10⁻⁶ (seluruh kegiatan pengenceran dilakukan secara duplo).

b. Inkubasi

Pengenceran dengan konsentrasi 10⁻², 10⁻⁴, 10⁻⁵ dan 10⁻⁶ kemudian diuapkan ke dalam empat cawan petri yang berisi media agar MSM yang telah dipersiapkan sebelumnya dan diinkubasi selama 2 x 24 jam (dilakukan duplo). Dilakukan pengamatan terhadap jumlah jenis koloni yang tumbuh.

3.2.1.3 Pembuatan isolat murni dari kultur campuran (Lewin, 1973)

Dilakukan pemurnian terhadap koloni yang tumbuh dari berbagai konsentrasi hasil pengenceran. Dipersiapkan cawan petri yang berisi media agar MSM sebanyak jumlah jenis koloni yang tumbuh.
Sebanyak kurang lebih 1-2 ose masing-masing jenis koloni yang ditemukan di inokulasikan ke dalam cawan petri tersebut dan diinkubasi selama 2 x 24 jam. Hasil yang didapat adalah bentuk koloni yang tunggal (biakan murni).

3.2.1.4 Identifikasi morfologi

Dilakukan identifikasi morfologi terhadap semua biakan murni hasil isolasi dengan metoda pewarnaan Gram untuk diamati bentuk sel, warna dan ukuran bakteri yang di identifikasi tersebut. Dari biakan yang telah murni dilakukan pemindahan kultur ke dalam tabung kecil yang berisi agar miring. Identifikasi dilakukan pada kultur yang tumbuh dalam agar miring. Agar identifikasi berlangsung optimal, kultur yang diambil adalah kira-kira berumur 15-18 jam sejak terlihat tumbuh atau yang sedang dalam fase pertumbuhan.

Prosedur pewarnaan Gram sebagai berikut:

a. Disediakan kaca obyek sebanyak jumlah jenis koloni yang tumbuh
b. Dilakukan pengolesan masing-masing bakteri pada setiap kaca obyek
c. Setelah selesai dilakukan fiksasi panas dan kemudian kaca-kaca obyek tersebut diletakkan di atas rak kawat pada bak-bak pewarna.

Kemudian dilakukan pewarnaan Gram sebagai berikut:

- Olesan bakteri digenangi dengan pewarna primer yaitu ungu kristal selama 1 menit dan kelebihan pewarna di buang dengan cara dibilas dengan air.
- Kaca obyek ditiriskan (dengan cara menegakkan sisi-sisi yang sempit kaca obyek tersebut di atas kertas serap) dan dikembalikan ke atas rak kawat pada bak pewarna.
- Kemudian olesan digenangi dengan iodium Gram atau larutan lugol selama dua menit, dan kelebihan iodium dibilas dengan air.
- Olesan dicuci dengan pemucat warna yaitu etanol 95 %, tetes demi tetes selama 30 detik atau sampai zat warna ungu kristal tidak terlihat lagi mengalir dari kaca obyek.
- Olesan dicuci dengan air, lalu ditiriskan dan dikembalikan ke atas rak kawat pada bak pewarna.
- Olesan digenangi dengan pewarna tandingan yaitu safranin selama 30 detik, lalu kelebihannya dibilas dengan air.
- Kaca obyek ditiriskan dan kelebihan air pada olesan diserap dengan menekankan kertas serap ke atasnya.
- Dilakukan pengamatan di bawah mikroskop dengan lensa obyektif celup minyak tanpa tutup (mulai lensa obyektif berkekuatan rendah dan berangsur-angsur diganti dengan lensa obyektif yang berkekuatan tinggi).

3.2.1.5 Aklimatisasi ke media garam mineral

Dari biakan murni padat, masing-masing diinokulasikan sebanyak kurang lebih dua ose ke dalam media MSM 10 ml yang ditambahkan minyak mentah sebanyak 0,2 ml. Media MSM tersebut kemudian diinkubasi selama jangka waktu satu minggu.

3.2.1.6 Pemilihan strain unggul

Pengukuran clear zone (zona bebas minyak) dilakukan untuk menentukan strain unggul dari kultur bakteri yang diperoleh. Pengukuran ini dilakukan dengan cara penyaringan masing-masing kultur sebanyak 10 ml dengan filter Glassfibre yang memiliki diameter 0,2 mikrometer dengan menggunakan alat pompa vakum. Filter hasil saringan diinkubasi selama satu minggu di dalam media agar (MSM) yang ditambahkan minyak mentah sebanyak 0,1 ml. Strain dengan ukuran clear zone terbesar adalah strain unggulan. Strain unggulan inilah yang kemudian akan dicobakan di lapangan dengan menggunakan teknik mesokosme.

3.2.1.7 Uji Bioremediasi isolat murni

Isolat murni dari media MSM 10 ml di inokulasi ke dalam erlenmeyer bertisi media MSM dengan volume kerja 140 ml yang ditambahkan minyak mentah sebanyak 0,3g/150 ml. Kultur dikultivasi dalam shaker (inkubator goyang)
dengan agitasi 140 rpm pada suhu ruang selama 14 hari. Pengamatan dilakukan terhadap proses terdegradasinya minyak dan warna media. Kultur sebanyak 150 ml tersebut kemudian akan diperbanyak dengan menuangnya secara bertahap ke dalam media MSM sehingga volumenya terus bertambah menjadi 250 ml, 1 liter dan 18 liter dengan penambahan minyak mentah masing-masing 10g/l dan masa inkubasi masing-masing selama 7 hari. Pada akhirnya akan didapat kultur bakteri unggulan masing-masing sebanyak 19 liter (18 liter + 1 liter) yang kemudian akan dicobakan di lapangan dengan teknik mesokosme.

3.2.2 Penelitian lanjutan

3.2.2.1 Aplikasi dengan mesokosme (State Oceanic Administration, 1989)

Empat set perangkat mesokosme yang dibuat dari rangka bambu dengan drum plastik sebagai pelampung dipasang di perairan Teluk Pelabuhan Ratu. Kantong plastik polietilen dengan panjang 6 meter dan diameter 1,25 meter digunakan sebagai penampung air laut. Untuk menahan beban air dari guncangan ombak dan arus serta gangguan biota tertentu, pada bagian luar dari kantong plastik polietilen tersebut diberi perlindungan terpal plastik. Bagian bawah kantong diklem dan diberi pemberat agar kantong bisa tegak lurus dan stabil. Pada setiap sudutnya dipasang jangkar yang berfungsi untuk menahan supaya mesokosme tersebut tetap ditempatnya.

Ke dalam empat set mesokosme tersebut diisiikan air laut perairan setempat dengan bantuan generator. Kemudian ditambahkan minyak mentah masing-masing 100 ppm (± 530 gram) dengan perlakuan sebagaimana tercantum dalam Tabel 4.

Tabel 4. Perlakuan dalam Penelitian Mesokosme, Oktober 1999

<table>
<thead>
<tr>
<th>No.</th>
<th>Mesokosme</th>
<th>Perlakuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A</td>
<td>Air laut + minyak mentah 100 ppm (kontrol)</td>
</tr>
<tr>
<td>2.</td>
<td>B</td>
<td>Air laut + minyak mentah 100 ppm + kultur (M/M/H1 Orange)</td>
</tr>
<tr>
<td>3.</td>
<td>C</td>
<td>Air laut + minyak mentah 100 ppm + kultur (campuran)*</td>
</tr>
<tr>
<td>4.</td>
<td>D</td>
<td>Air laut + minyak mentah 100 ppm + kultur (KH1/A Orange)</td>
</tr>
</tbody>
</table>
*Kultur campuran terdiri dari: 1. KH₁/A Orange
2. KH₁/A Putih
3. M/M/H₁ Orange
4. H/M/H₁ Putih
5. BH₁/A Kuning
6. 32/M/H₂ Kuning
7. 32/M/H₂ Putih

Pada prinsipnya, kondisi mesokosme dibuat semirip mungkin dengan kondisi luar lingkungan (ekosistem semesta) sehingga hasil pengamatan yang akan dilakukan nanti tidak akan jauh berbeda dengan kondisi lapang. Pada masing-masing mesokosme dilakukan pengamatan dan pengukuran terhadap parameter lingkungan yaitu temperatur, salinitas, konsentrasi ion hidrogen (pH) dan oksigen terlarut. Juga dilakukan pengukuran terhadap pertumbuhan bakteri heterotrofik dan hidrokarbonoklastik, laju biodegradasi dan kadar minyak total.

3.2.2.2 Sampling dan pengukuran parameter perairan

Pengambilan contoh dilakukan setiap hari selama empat hari berturut-turut, kemudian sekali dalam tiga hari selama 15 hari. Parameter yang langsung dikerjakan adalah pengukuran suhu, salinitas, derajat keasaman dan konsentrasi oksigen terlarut. Terhadap sampel yang diambil dilakukan analisa kadar minyak dalam air dengan metoda gravimetri (untuk menentukan laju degradasi hidrokarbon). Sedangkan untuk menentukan pertumbuhan sel bakteri heterotrofik dilakukan pengukuran dengan metoda Total Plate Count (TPC), dan untuk pengukuran pertumbuhan sel bakteri hidrokarbonoklastik dilakukan dengan metoda Most Probable Number (MPN) masing-masing dalam media garam mineral.

3.2.3 Analisis sampel

3.2.3.1 Analisis kadar minyak dalam air dengan Metoda Gravimetri

Sampel diambil dari masing-masing mesokosme dengan pemompuan secara vertikal mulai kedalaman 6 meter hingga permukaan sebanyak lebih kurang 2 liter. Sub sampel diambil sebanyak 1 liter, disaring dengan “Whatman Glassfibre”
(GF/F, 47 mm diameter 0,7 mikrometer, dan telah dipanaskan hingga 320°C) dengan menggunakan pompa vakum. Hasil filtrasi sebanyak 800 ml (terlarut) dituang ke dalam corong pisah, sedangkan filter (partikulat) dimasukkan ke dalam tabung reaksi.

a) Untuk minyak terlarut
Sampel sebanyak 800 ml di saring dengan pompa vakum dengan menggunakan kertas saring (Glassfibre) yang diameternya 47 mm dan kemudian hasil saringan dimasukkan ke dalam labu kocok dan ditambahkan Dichloromethane (DCM) sebanyak berturut-turut 40 ml, 40 ml dan 20 ml dan diselengi dengan pengocokan. Selang pengocokan minyak dan DCM disaring dan ditampung dalam labu ukur melalui corong yang telah diberi “glass wool” dan natrium sulfat. Hasil saringan diuapkan dengan menggunakan alat “Cuderna dernis” yang terhubung dengan tabung reaksi dan ditambahkan batu didih yang telah diketahui beratnya dengan suhu 50°C - 60°C sehingga DCM menguap dan yang tinggal hanya larutan sebanyak 1 ml. Kemudian sampel yang tinggal 1 ml tersebut diuapkan dengan menuangnya ke aluminium foil yang telah diketahui beratnya dan disimpan di ruang terbuka yang steril. Sebelum dituang ke aluminium foil terlebih dahulu sampel diuapkan dengan oven pada suhu 40°C. Berat akhir aluminium foil ditimbang. Selisih berat aluminium foil tersebut adalah berat minyak yang dihitung secara gravimetri.

b) Untuk minyak dalam partikulat
Partikulat yang dimaksud adalah filter dari pompa vakum di atas. Filter tersebut dimasukkan ke dalam tabung reaksi dan ditambahkan 6 ml etanol-KOH (proses penyabunan), dan dipanaskan dalam “water bath” pada suhu 60°C selama 1 jam. Setelah itu ditambahkan 6 ml aquades (bebas hidrokarbon) dan dipanaskan pada suhu yang sama selama setengah jam. Setelah pemanasan dengan water bath, sampel kemudian dimasukkan ke dalam corong pisah. Untuk mengambil sisa minyak dalam partikulat, kedalam tabung reaksi ditambahkan berturut-turut 1 ml etanol dan 9 ml DCM/etanol –KOH, kemudian dituang kembali ke dalam corong pisah. Terakhir, kedalam corong pisah ditambahkan lagi 8 ml larutan DCM yang berfungsi untuk mengikat minyak. Dilakukan pengocokan sampel di

c) Penentuan kurva degradasi minyak

Pembuatan kurva standar untuk degradasi minyak dibuat dari pengukuran penurunan berat minyak, dengan hari sebagai absis dan berat minyak sebagai ordinat sebagaimana dicantumkan dalam Gambar 4.

![Gambar 4. Kurva Pertumbuhan Bakteri dan Tingkat Degradasi Minyak](attachment:image)

3.2.3.2 Analisis bakteri heterotrofik (Lewin, 1973)

Metoda yang digunakan untuk menentukan kandungan bakteri adalah dengan cara pembuatan cawan koloni. Pembuatan cawan koloni dilakukan berdasarkan metoda tuang atau "pour plate" dalam media garam mineral dan dengan faktor
pengenceran \(10^3\). Pengenceran dilakukan menggunakan buffer fosfat (Lewin, 1973).

Hasil penghitungan merupakan Total Plate Count (TPC) bakteri per ml cuplikan air. Hasil penghitungan TPC untuk tiap ‘triplicate’ lalu di rata-rata dan dikali dengan faktor pengencerannya, dengan asumsi bahwa tiap koloni yang tumbuh berasal dari satu sel bakteri. Hasilnya merupakan jumlah unit koloni bakteri per ml.

Metoda pour plate ini pada dasarnya menumbuhkan bakteri dalam suatu media tertentu dari cuplikan air yang akan dianalisis dengan melalui pengenceran cuplikan air. Dari koloni bakteri yang tumbuh kemudian dilakukan penghitungan dengan penentuan koloni yang dihitung adalah yang berjumlah 30-300 koloni tiap cawan. Bakteri yang dianalisis dengan metoda ini salah satunya adalah bakteri heterotrofik dengan prosedur sebagai berikut:

a. Pengambilan contoh air dilakukan dengan menggunakan “water sampler” dengan volume 350 ml.

b. Contoh air sebanyak 1 ml diencerkan dengan larutan buffer fosfat 9 ml pada tabung reaksi dan dikocok. Pengenceran dilakukan sampai tingkat pengenceran \(10^3\).

c. Contoh air dari pengenceran \(10^3\) sebanyak 1 ml dimasukkan ke dalam cawan petri steril, kemudian ditambahkan kira-kira 15 ml media untuk bakteri heterotrofik (marine agar E-2114) yang sebelumnya sudah dicairkan dengan temperatur sekitar \(40^\circ\) – \(50^\circ\)C. Cawan petri digoyang sehingga kontoh air dan media tercampur rata.

d. Cawan petri berisi contoh air diinkubasi pada suhu ruangan selama 7 hari. Pertumbuhan yang mewakili yaitu bila dalam setiap cawan petri tumbuh koloni antara 30-300 koloni.

Konstanta perbandingan, \(\mu\), adalah suatu indeks kecepatan tumbuh dan disebut konstanta kecepatan tumbuh. Karena kita menganggap bahwa pertumbuhan itu seimbang, \(\mu\) juga menghubungkan kecepatan penambahan setiap komponen selular yang diketahui dengan jumlah komponen selular atau secara matematis diungkapkan sebagai berikut (Roger et al., 1984):

\[
\frac{dN}{dt} = \mu N, \quad \frac{dX}{dt} = \mu X, \quad \frac{dZ}{dt} = \mu Z
\]

N ialah jumlah sel/ml, X adalah massa sel/ml, Z adalah jumlah setiap komponen selular/ml, t adalah waktu, dan \(\mu \) adalah konstanta kecepatan tumbuh (Roger et al., 1984).

Dalam bentuk persamaan nondiferensial dihasilkan:

\[
\ln Z - \ln Z_0 = \mu (t - t_0) \\
\ln Z = \ln Z_0 + \mu (t - t_0)
\]

\(Z \) = jumlah setiap komponen selular/ml pada waktu \(t \)
\(Z_0 \) = jumlah setiap komponen selular/ml pada waktu \(t_0 \)
\(\mu \) = konstanta kecepatan tumbuh
\(t-t_0 \) = interval waktu

3.2.3.3 Analisis bakteri hidrokarbonoklastik

a) Dengan metoda “Most Probable Number”

- Media MSM disiapkan dalam 9 buah tabung reaksi untuk pengenceran masing-masing contoh air.

- Contoh air dipipet sebanyak 10 ml, 1 ml dan 0,1 ml kemudian dimasukkan ke dalam media MSM yang telah disiapkan sebelumnya. Hal ini dilakukan masing-masing dengan 3 kali ulangan. Kemudian masing-masing ditambahkan 2 ml minyak mentah (steril) untuk contoh air laut 10 ml dan 1 ml, dan 1 ml minyak mentah untuk contoh air 0,1 ml.

- Tabung reaksi berisi contoh air dan minyak diinkubasi pada suhu ruangan. Hasil dinyatakan positif bila pada permukaan antara air dan minyak terdapat lapisan lendir putih. Untuk menentukan jumlah bakteri yang tumbuh, jumlah tabung yang positif dicatat dan dibandingkan dengan Tabel MPN.

b) Dengan metoda “Total Plate Count”

- Contoh air dari pengenceran \(10^{-1}\) dipipet sebanyak 1 ml dan dimasukkan ke dalam cawan petri, ditambahkan media agar yang sudah tercampur minyak
mentah dan dicairkan serta didinginkan hingga 40° - 50°C. Cawan petri digoyang supaya sampel dan media tercampur rata.
- Cawan petri diinkubasi pada suhu ruangan selama 7 hari. Untuk menentukan jumlah bakteri heterotrofik, dilakukan dengan mengalikan jumlah koloni bakteri yang terhitung dengan pengencerannya.

3.2.3.4 Analisis data

Untuk melihat laju biodegradasi ditentukan dengan menghitung perubahan konsentrasi minyak total setiap pengambilan contoh air terhadap lama waktu pengukuran. Sedangkan untuk melihat pertumbuhan dan faktor-faktor pertumbuhan pada bakteri heterotrofik dilakukan dengan menggunakan analisa statistik.
4. HASIL DAN PEMBAHASAN

4.1 Penelitian Pendahuluan

Dalam setiap lingkungan yang berisi minyak buangan terdapat berbagai spesies mikroba. Mikroba ini sudah cukup teradaptasi di lingkungan tersebut, dengan demikian dapat hidup dari substansi yang berada disekitarnya. Di tempat tersebut masing-masing spesies dapat hidup secara individual tanpa tergantung yang lain atau bersimbiosis dengan spesies lain. Spesies-spesies yang diperkirakan dapat hidup aktif di lingkungan minyak buangan adalah yang dominan dalam populasi mikroba di lingkungan tersebut.

4.1.1 Isolasi dan inkubasi bakteri dari kultur campuran

Mikroba yang dominan dalam lingkungan berisi minyak buangan perlu diketahui aktivitasnya. Untuk itu perlu dilakukan isolasi terhadap mikroba-mikroba tersebut dan diuji aktivitasnya. Isolasi dan inkubasi kultur dilakukan dengan menggunakan media padat dalam cawan petri (metoda pour plate). Pada metoda tersebut dilakukan penambahan minyak mentah sebanyak 0,2 ml karena diharapkan yang tumbuh adalah strain-strain yang hanya mampu bertahan hidup dengan memanfaatkan hidrokarbon sebagai satu-satunya sumber karbon yang digunakan untuk aktivitas metabolismenya.

Isolat yang mempunyai kecenderungan dapat hidup aktif di lingkungan minyak mentah adalah mikroba yang tumbuh dalam media dengan penambahan minyak mentah lebih baik daripada dalam media tanpa minyak mentah. Mikroba yang tumbuh lebih baik dalam media dengan penambahan minyak, mempunyai kecenderungan dapat hidup dengan memanfaatkan hidrokarbon dari minyak mentah tersebut. Isolat yang dihasilkan pada inkubasi tahap awal ini beragam dan terdiri dari beberapa strain bakteri yang belum diketahui jenisnya.
4.1.2 Karakteristik morfologi mikroorganisme pemecah minyak

Hasil isolasi mikroba di perairan Pelabuhan Ratu diperoleh isolat yang akan dilihat kemampuan hidupnya di lingkungan minyak mentah. Dari isolat-isolat yang diuji aktivitasnya selama 2 x 24 jam, terdapat 16 isolat yang mempunyai keragaman baik dalam warna koloni, sifat gram dan bentuk selnya. Jumlah dan kode isolat murni yang dihasilkan beserta identifikasi morfologinya dapat dilihat di Tabel 8 Lampiran 4.

Dari 16 isolat tersebut terdapat tujuh isolat yang mempunyai kecenderungan aktif di lingkungan minyak dan memanfaatkan hidrokarbon untuk aktivitasnya yaitu KI/A Orange, KH/A Putih, M/M/H; Orange, H/M/H; Putih, BE1/A Kuning, 32/M/H/A Kuning dan 32/M/H/A Putih.

4.1.3 Uji bioremediasi isolat murni pada skala laboratorium

Setelah satu minggu, kultur pada tabung reaksi terlihat lebih keruh dan gumpalan minyak mentah yang ada terlihat lapisan lendir yang menunjukkan positifnya pertumbuhan bakteri hidrokarbonoklastik. Kultur murni sebanyak 50 ml kemudian dikultivasi dalam shaker (inkubator goyang) dengan agitasi 140 rpm dan suhu 31° – 33°C selama satu minggu.

Setelah 3 hari pengamatan secara visual, mulai terlihat berubahnya warna media yaitu menjadi lebih keruh. Kondisi minyak mentah dalam media juga
bervariasi sejak hari ke-3. Untuk kultur dengan kode KH1/A Orange dan M/M/H1 Orange, minyak mentah terlihat mulai terurai sehingga warna media menjadi coklat keruh. Sedangkan untuk kultur lain, kondisi minyak mentah terlihat menggumpal dengan lapisan lendir dan warna media masih cenderung bening. Setelah tujuh hari pengamatan, minyak mentah pada kultur dengan kode KH1/A Orange dan M/M/H1 Orange terlihat hampir terurai sempurna dan warna media menjadi semakin keruh. Sedangkan untuk kultur lain, minyak mentah masih terlihat menggumpal namun dengan lendir yang semakin terlihat jelas.

Pada selang pengamatan tiga hari pertama inkubasi kultur dengan penambahan volume sebanyak 190 ml, terlihat bahwa minyak mentah pada kultur dengan kode KH1/A Orange dan M/M/H1 Orange terlihat mulai terurai. Juga minyak mentah yang menggumpal seperti pada kultur dengan kode 32/M/Ho/A Putih memiliki lapisan lendir yang semakin terlihat jelas. Perubahan ini semakin terlihat jelas hingga pengamatan hari ke-7. Di sini terlihat bahwa ketujuh isolat yang mempunyai kecenderungan hidup dalam lingkungan minyak mentah dapat mendegradasi hidrokarbon.

Gambar 5. Kultur yang diinkubasi pada inkubator goyang

Pada pengamatan clear zone, setelah tujuh hari akan terlihat clear zone dari masing-masing kultur. Kultur dengan kode KH1/A Orange dan 32/MHo/A Putih memiliki ukuran clear zone terbesar yaitu 5 mm, disusul M/M/H1 Orange dan KH1/A Putih dengan ukuran 2,5 mm. Semakin besar diameter clear zone yang dihasilkan oleh suatu kultur, semakin besar dugaan bahwa kultur tersebut adalah mikroorganisme pemakan hidrokarbon. Untuk jelasnya kode kultur beserta ukuran clear zone yang dihasilkan dapat dilihat pada Tabel 9 Lampiran 5.

Selama inkubasi kultur dengan peningkatan volume 1 liter dan 18 liter terlihat penguraian minyak mentah dari masing-masing kultur. Penguraian yang terbesar terlihat pada kultur dengan kode M/M/H1 Orange, dimana minyak mentah yang ditambahkan dengan cepat terdegradasi sehingga media terlihat keruh karena larutnya minyak dan tidak lagi terlihat adanya minyak yang masih menggumpal. Penguraian minyak dan keruhnya media menunjukkan bahwa isolat murni yang digunakan dalam percobaan ini memiliki kemampuan untuk mendegradasi minyak.
Gambar 6. Kultur yang siap di uji coba pada mesokosme

4.2 Interaksi Faktor Lingkungan dengan Kemampuan Mikroorganisme

Tujuh kultur murni yang dihasilkan pada penelitian pendahuluan yaitu KH₁/A Orange, KH₁/A Putih, M/M₁ Orange, H/M₁ Putih, BH₁/A Kuning, 32/M₁H₀/A Kuning dan 32/M₁H₀/A Putih yang memiliki kemampuan terbesar dalam mendegradasi minyak kemudian diaplikasikan di lapangan dengan menggunakan teknik mesokosme.

Pada masing-masing mesokosme dilakukan pengamatan dan pengukuran terhadap parameter lingkungan yaitu temperatur, salinitas, konsentrasi ion hidrogen (pH) dan oksigen terlarut. Juga dilakukan pengukuran terhadap pertumbuhan bakteri heterotrofik dan hidrokarbonoklastik, laju biodegradasi dan kadar minyak total. Masing-masing faktor lingkungan tersebut akan dilihat pengaruhnya terhadap pertumbuhan bakteri heterotrofik, bakteri hidrokarbonoklastik dan juga terhadap proses biodegradasi minyak bumi sebagai polutan.
Gambar 7. Mesokosme

4.2.1 Temperatur

Pencemaran minyak dapat mengganggu keseimbangan ekosistem karena dapat merusak habitat, misalnya kenaikan temperatur air dan berkurangnya oksigen terlarut (Ruyitno et al., 1992).

Gambar 8. Grafik Hasil Pengukuran Suhu pada Penelitian Mesokosme

Dari hasil pengamatan, rata-rata temperatur tertinggi terdapat pada mesokosme B (32\(^{0}\)C), dan kemudian mesokosme C (31,9\(^{0}\)C). Pada mesokosme D mempunyai rata-rata temperatur 31,7\(^{0}\)C dan pada mesokosme A (kontrol) 31,5\(^{0}\)C. Sedangkan rata-rata temperatur luar lingkungan mesokosme adalah 31,4\(^{0}\)C. Peningkatan temperatur pada masing-masing mesokosme dapat membantu merangsang kerja enzim pada bakteri dalam proses degradasi minyak.
Hal ini sesuai dengan pendapat Zobell (1989) yang menyatakan bahwa kecepatan degradasi pada umumnya berkurang dengan semakin rendahnya temperatur, karena aktivitas enzim menurun. Meningkatnya aktivitas metabolisme mikroorganisme akan meningkatkan temperatur air. Zobell juga menyatakan bahwa mikroorganisme pengoksidsi hidrokarbon akan lebih aktif pada suhu 30\(^{0}\)C dibanding 20\(^{0}\)C. Hal ini terlihat jelas pada perbandingan temperatur antara mesokosme A (kontrol) dengan mesokosme B, C dan D. Sedangkan temperatur di luar mesokosme terlihat cenderung lebih rendah daripada temperatur dalam mesokosme A, B, C dan D.

4.2.2 Salinitas

Gambar 9. Grafik Hasil Pengukuran Salinitas (o/oo) pada Penelitian Mesokosme

Hasil pengukuran salinitas pada pengamatan masing-masing mesokosme menunjukkan nilai yang cenderung stabil, baik pada kontrol maupun pada mesokosme dengan pemberian kultur, dengan kisaran salinitas antara 24,5-32 o/oo. Secara umum dari Gambar 9 terlihat nilai salinitas pada mesokosme A, B, C dan D cenderung stabil bahkan menurun menjelang akhir pengamatan.

Namun pada hari pertama pengamatan terlihat penurunan salinitas yang cukup tajam pada mesokosme A (kontrol) hingga 24,5 o/oo. Penurunan ini bisa disebabkan karena hujan yang terus menerus sehari sebelum pengambilan sampel kedua dilakukan. Pada hari kedua pengamatan, mesokosme A ini kembali mengalami peningkatan salinitas yang cukup tinggi (29,5 o/oo). Faktor lain yang bisa menjadi penyebab turunnya salinitas pada mesokosme A adalah faktor manusia (human error), yang tidak rata dalam pengambilan contoh air yang bercampur minyak pada masing-masing mesokosme.

Salinitas di luar mesokosme justru menunjukkan peningkatan. Hal ini bisa disebabkan oleh kondisi mesokosme yang semi tertutup, sehingga faktor eksternal seperti hujan yang beberapa kali turun selama waktu pengamatan dapat menurunkan salinitas lingkungan mesokosme. Peningkatan salinitas pada luar mesokosme seperti
yang terlihat pada Gambar 9 bukan merupakan faktor pembatas dalam degradasi minyak, demikian juga dengan kondisi salinitas dalam mesokosme.

4.2.3 Konsentrasi ion hidrogen (pH)

Diantara semua ion, ion H⁺ dan OH⁻ adalah ion-ion yang paling mobil; oleh sebab itu perubahan kadar yang kecil saja sudah menimbulkan pengaruh yang besar. Kebanyakan organisme hidup paling baik, kalau kadar ion H⁺ dan OH⁻ sama (pH:7). Mempertahankan nilai pH tertentu sepanjang pertumbuhan, mempunyai arti yang sangat penting bagi mikroorganisme, yang meskipun memproduksi asam, tetapi tidak tahan terhadap asam (Lactobacili, Enterobacteriace, dan banyak Pseudomonas) (Roger et al., 1984).

Hasil pengukuran pH pada setiap pengambilan sampel pada umumnya tidak terlalu bervariasi pada semua mesokosme. Namun pada pengukuran hari ke-1 dan ke-2 terlihat ada penurunan pH yaitu dari 7,9 menjadi sekitar 7,3 pada keempat mesokosme. Hal ini diduga karena penambahan kultur ke dalam mesokosme pada hari ke-1 yang mengakibatkan tingginya aktivitas metabolisme sehingga metabolit yang dihasilkan berpengaruh pada keasaman lingkungan. Kisaran pH pada semua mesoskosme adalah 7,3-7,8 (asam cenderung netral) sedangkan di luar mesoskosme berkisar antara 7,8-7,9 (netral). Diduga bahwa tumpahan minyak menyebabkan turunnya pH perairan. Pada Gambar 10, nilai pH di bawah 7,5 sudah merupakan lingkungan asam bagi kehidupan bakteri yang dapat menghambat aktivitas

Gambar 10. Grafik Pengukuran Derajat Keasaman (pH) pada Penelitian Mesokosme

4.2.4 Oksigen terlarut

Oksigen terlarut merupakan parameter yang penting pada biodegradasi minyak. Semakin tinggi konsentrasi oksigen, tingkat biodegradasi juga meningkat. Fungsi utama oksigen adalah sebagai akseptor elektron terminal pada respirasi aerob; pada peristiwa ini O₂ direduksi menjadi air. Secara umum kebutuhan terhadap oksigen adalah sebesar 3,5 gram untuk mengoksidasi satu gram minyak, jadi dibutuhkan 320,000 liter air untuk mengoksidasi satu liter minyak (Floodgate, 1979).

Gambar 11. Grafik Pengukuran Oksigen Terlarut pada Penelitian Mesokosme

Kandungan oksigen terlarut yang turun disebabkan karena meningkatnya jumlah bakteri hidrokarbonoklastik, sehingga aktivitas bakteri ini dalam menguraikan hidrokarbon yang terdapat dalam minyak juga makin meningkat. Selaín karena aktivitas mikroorganisme dalam mendegradasi minyak, tumpahan minyak mentah di perairan juga menyebabkan penurunan kadar oksigen terlarut. Hal ini diketahui dengan membandingkan antara kadar oksigen terlarut di perairan pada semua perlakuan dalam mesokosme dengan luar mesokosme.

Langkah pertama dalam memecah hidrokarbon sangat tergantung pada molekul oksigen sebagai akibat aktivitas enzim hidrogenase pada mikroorganisme. Enzim ini mampu berperan dalam tekanan oksigen rendah (Zobell, 1988).

4.2.4 Pertumbuhan Mikroorganisme

4.2.4.1 Bakteri heterotrofik

Hasil penghitungan rata-rata pertumbuhan bakteri heterotrofik pada berbagai perlakuan yang diberikan, menunjukkan bahwa kecepatan pertumbuhan bakteri heterotrofik pada perlakuan penambahan kultur, lebih besar dari pada kontrol dan luar mesokosme (Gambar 12).

Gambar 12. Grafik Rata-rata Jumlah Bakteri Heterotrofik pada Mesokosme
Dari Gambar 12 terlihat bahwa jumlah bakteri heterotrofik pada mesokosme A, B, C dan D cenderung lebih tinggi dibandingkan dengan luar mesokosme yang disebabkan karena adanya penambahan minyak dan kultur. Bagi beberapa mikroorganisme yang mampu beradaptasi, tumpahan minyak tersebut merupakan sumber nutrisi yang dapat menunjang aktivitas metabolisme sehingga pertambahan selnya juga meningkat.

Pada hari pertama pengamatan terlihat bahwa mesokosme A mencapai angka pertumbuhan yang tertinggi (2,3 x 1000 sel/ml). Hal ini disebabkan karena bakteri indogenous yang terdapat di dalam mesokosme A tersebut masih mampu bertahan dalam lingkungan yang ditambahkan minyak, karena terlihat dari pengamatan selanjutnya ternyata pertumbuhan bakteri dalam mesokosme ini justru mengalami penurunan hingga pengamatan pada hari ke-5 dibanding dengan mesokosme yang mendapat penambahan kultur. Namun pada pengamatan hari ke-8, mesokosme A kembali mendominasi pertumbuhan tertinggi hingga akhir pengamatan. Peningkatan pertumbuhan ini bisa disebabkan karena bakteri indogenous yang terdapat di dalam mesokosme A tersebut telah mampu beradaptasi dengan baik dalam lingkungan minyak. Hal ini diduga bahwa bakteri heterotrofik yang ada telah beralih fungsi menjadi bakteri hidrokarbonoklastik.

Gambar 13. Pengambilan contoh air untuk pengukuran bakteri heterotrofik dan bakteri hidrokarbonoklastik pada mesokosme
Dalam lingkungan yang mengandung hidrokarbon, bakteri yang telah beradaptasi akan tumbuh dan berkembang biak dengan baik yang ditandai dengan bertambahnya sel. Ditambahkan pula bahwa dalam media air laut, kecepatan pertumbuhan lebih lambat daripada media air laut yang diperkaya (Udiharto, 1992).

Konstanta kecepatan tumbuh (μ) menunjukkan kemampuan bakteri pada tiap-tiap mesokosme perlakuan untuk tumbuh aktif atau tidak dalam media minyak. Dari hasil pengamatan terlihat bahwa nilai rata-rata konstanta kecepatan tumbuh tertinggi untuk bakteri heterotrofik terjadi pada luar mesokosme yaitu 0,1517, kemudian pada mesokosme B dengan penambahan kultur M/M/H; Orange 0,1221, mesokosme C dengan penambahan kultur campuran 0,0637, mesokosme D dengan penambahan kultur KH/A Orange 0,0282, dan mesokosme A (kontrol) 0,0039 (Gambar 14).
Gambar 14. Grafik In Pertumbuhan Bakteri Heterotrofik Beserta Persamaan Linear

Dari Gambar 14 terlihat bahwa nilai konstanta kecepatan tumbuh pada mesokosme B dengan penambahan kultur M/M/H2 Orange adalah yang terbesar (0,1221) dibanding dengan mesokosme A, C dan D. Nilai konstanta yang negatif menunjukkan bahwa pertumbuhan yang terjadi adalah yang penurunan jumlah mikroorganisme dalam hal ini kematian mikroorganisme. Dari persamaan nondiferensial, nilai tersebut menunjukkan bahwa terjadi kematian lebih kurang satu mikroorganisme setiap harinya selama pengamatan (Roger et al., 1984). Hal ini bisa disebabkan karena prekultur yang tidak sesuai dengan kondisi lingkungan tersebut atau tingkat konsentrasi minyak yang cukup tinggi. Pertumbuhan negatif juga terjadi pada mesokosme D. Sedangkan mesokosme A dan C memiliki konstanta kecepatan tumbuh yang bernilai positif, artinya bahwa mikroorganisme pada kedua mesokosme ini lebih mampu beradaptasi pada lingkungan minyak tersebut sehingga mengalami penambahan jumlah sel meskipun tidak begitu besar.

Adapun koefisien korelasi (R) pada masing-masing mesokosme dan luar mesokosme berturut-turut (A, B, C, D dan luar mesokosme) adalah 0,0282; 0,6066; 0,3052; 0,3280; dan 0,8196. Koefisien korelasi ini menunjukkan besarnya hubungan antara kecepatan tumbuh mikroorganisme (µ) dengan interval waktu pengamatan (t-to). Nilai koefisien korelasi ini berkisar antara 0 - 1. Semakin mendekati nilai 1

Secara umum terlihat bahwa kecepatan tumbuh mikroorganisme pada mesokosme (terutama A, C, dan D) cenderung stabil. Stabilnya nilai pertumbuhan bakteri yang kemudian mengalami penurunan diduga karena jumlah bakteri yang ada sudah tidak seimbang dengan ketersediaan nutrisi dalam hal ini minyak mentah. Jumlah bakteri heterotrofik pemakan minyak tersebut akan terus menurun dengan semakin sedikitnya jumlah nutrisi yang tersedia.

4.2.4.2 Bakteri hidrokarbonoklastik

Jumlah bakteri pemecah hidrokarbon mempunyai korelasi yang kuat dengan kandungan hidrokarbon di lingkungan hidupnya (Walker dan Colwell, 1976). Bakteri hidrokarbonoklastik adalah bakteri laut yang dapat menggunakan hidrokarbon untuk metabolisme hidupnya.

Pada pengamatan mesokosme ini, penambahan kultur M/M/H1 Orange pada mesokosme B menunjukkan peningkatan jumlah bakteri hidrokarbonoklastik yang terjadi hingga hari ke-2 dengan jumlah perkiraan terdekat (JPT) 210 sel/100 ml, kemudian mengalami penurunan pada hari ke-3 (9 sel/100 ml) dan meningkat kembali pada hari ke-5 (39 sel/100 ml) hingga hari ke-11 (139 sel/100 ml). Untuk penambahan kultur campuran pada mesokosme C, peningkatan jumlah bakteri juga dimulai pada hari ke-2 dengan 9 sel/100 ml hingga hari ke-3 (1100 sel/100 ml), kemudian mengalami penurunan pada hari ke-5 (33 sel/100 ml). Peningkatan kembali terjadi pada hari ke-8 (460 sel/100 ml). Untuk penambahan kultur KH1/A Orange pada mesokosme D, peningkatan jumlah bakteri terus terjadi
dari hari ke-2 (14 sel/100 ml) hingga hari ke-8 (75 sel/100 ml) kemudian mengalami penurunan dari hari ke-11 (43 sel/100 ml) hingga akhir pengamatan (24 sel/100 ml).

Peningkatan pertumbuhan bakteri hidroarbonoklastik ini terlihat jelas pada perlakuan dengan penambahan kultur M/M/H₁ Orange, kultur campuran dan kultur KH₁/A Orange, namun peningkatan jumlah bakteri hidroarbonoklastik pada kultur campuran lebih tinggi dibandingkan kultur KH₁/A Orange dan M/M/H₁ Orange yakni mencapai JPT 1100 sel/100 ml.

Grafik pertumbuhan bakteri hidroarbonoklastik disajikan pada Gambar 15.

Gambar 15. Grafik In pertumbuhan bakteri hidroarbonoklastik pada mesokosme

Pada Gambar 15 terlihat bahwa pertumbuhan bakteri hidroarbonoklastik pada mesokosme C menunjukkan nilai yang terbesar dibandingkan dengan mesokosme lainnya. Hal ini disebabkan karena jenis kultur yang ditambahkan adalah kultur campuran yang terdiri dari beberapa kultur pemakan hidrocarbon dengan spesifikasi enzim masing-masing dalam memutus rantai-rantai hidrocarbon.
Minyak sebagai sumber karbon utama bagi bakteri pemakan hidrokarbon, memberikan peranan yang besar sebagai sumber nutrien yang menunjang pertumbuhan mikroorganisme tersebut. Selain itu, dengan semakin banyaknya jenis kultur pemakan hidrokarbon yang ditambahkan akan semakin mempercepat laju biodegradasi minyak, karena dengan spesifikasi enzim yang dimiliki oleh masing-masing bakteri dalam memutus rantai hidrokarbon akan mempercepat proses degradasi minyak.

Berdasarkan identifikasi morfologi yang dilakukan, diduga bahwa bakteri yang mendominasi adalah *Pseudomonas* sp. Hasil identifikasi tersebut adalah dari bentuk tepian koloni yang berbentuk bulat dengan warna koloni biru, putih atau kuning, dan diameter koloni antara 0,5 – 5,0 mm. Pada uji gram, sebagian besar isolat menunjukkan reaksi gram negatif (Williams dan Wilkins, 1984). Bossert dan Bartha (1984) telah menemukan 22 genera bakteri yang dapat hidup di lingkungan minyak bumi. Bakteri yang mendominasi yaitu dari genera *Alcaligenes*, *Arthrobacter*, *Acinetobacter*, *Nocardia*, *Achromobacter*, *Bacillus*, *Flavobacterium*, dan *Pseudomonas*.

Pertumbuhan bakteri hidrokarbonoklastik pada perlakuan penambahan kultur, kontrol dan luar mesokosme di atas cenderung menunjukkan pola yang sama. Peningkatan jumlah bakteri secara umum masih terus terjadi hingga hari ke-11 dan kemudian mengalami penurunan jumlah sel hingga hari ke-16.

Gambar 16. Grafik Jumlah Bakteri Hidrokarbonoklastik pada Mesokosme
4.2.4.1 Perbandingan Jumlah Bakteri Hidrokarbonoklastik dengan Bakteri Heterotrofik

Menurut penelitian terdahulu dinyatakan bahwa tidak terdapat korelasi yang kuat antara jumlah mikroba hidrokarbonoklastik dengan derajat pencemaran oleh minyak bumi (Ruyitno, 1995). Dinyatakan juga bahwa rasio antara jumlah bakteri hidrokarbon dengan jumlah mikroba heterotrofik lebih baik dipakai sebagai indikator pencemaran.

Perbandingan tersebut menunjukkan potensi dari bakteri yang ada, karena bakteri hidrokarbonoklastik merupakan salah satu kelompok bakteri heterotrofik yang untuk pertumbuhannya memerlukan nutrisi minyak. Semakin kecil rasio antara bakteri hidrokarbonoklastik dengan bakteri heterotrofik maka semakin besar potensi bakteri heterotrofik sebagai bakteri hidrokarbonoklastik. Hasil perbandingan antara jumlah bakteri hidrokarbonoklastik dengan bakteri heterotrofik disajikan pada Tabel 5.

Tabel 5. Hasil Perbandingan antara Jumlah Bakteri Hidrokarbonoklastik dengan Bakteri Heterotrofik pada Berbagai Perlakuan (sel/ml)

<table>
<thead>
<tr>
<th>Hari ke-</th>
<th>Mesokosme A</th>
<th>Mesokosme B</th>
<th>Mesokosme C</th>
<th>Mesokosme D</th>
<th>Luar Mesokosme</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2,5833333</td>
<td>9,75</td>
<td>6,107</td>
<td>0,4117647</td>
<td>2,625</td>
</tr>
<tr>
<td>1</td>
<td>0,0628391</td>
<td>0,4916364</td>
<td>0,06</td>
<td>0,1029412</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>0,1856515</td>
<td>1,2068966</td>
<td>0,7755833</td>
<td>0,0845205</td>
<td>1,52675</td>
</tr>
<tr>
<td>3</td>
<td>0,7901235</td>
<td>0,0782609</td>
<td>0,21875</td>
<td>4,7155</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1,5</td>
<td>5,4258333</td>
<td>0,2846715</td>
<td>0,6666667</td>
</tr>
<tr>
<td>8</td>
<td>0,6880734</td>
<td>10</td>
<td>18,166667</td>
<td>1,2931034</td>
<td>0,6362353</td>
</tr>
<tr>
<td>11</td>
<td>0,1505376</td>
<td>5,1345556</td>
<td>0,2708333</td>
<td>0,4134615</td>
<td>0,103483</td>
</tr>
<tr>
<td>15</td>
<td>0,0648148</td>
<td>3</td>
<td>1,2105263</td>
<td>0,4143276</td>
<td>0,5</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>0,6906717</td>
<td>3,8951887</td>
<td>17,877055</td>
<td>0,4029426</td>
<td>1,9717</td>
</tr>
</tbody>
</table>

Dari Tabel 5 diatas diperoleh bahwa hasil rata-rata perbandingan terkecil terdapat pada mesokosme D dengan penambahan kultur KH1/A Orange yaitu 0,402. Hal ini berarti rasio antara bakteri hidrokarbonoklastik dengan bakteri heterotrofik pada perlakuan dengan penambahan kultur KH1/A Orange tidak jauh berbeda, atau bakteri heterotrofik yang terdapat di dalam mesokosme D sebelum
penambahan kultur, di dominasi oleh bakteri hidrokarbonoklastik. Sedangkan rata-rata perbandingan terbesar untuk mesokosme dengan penambahan kultur terdapat pada mesokosme C (kultur campuran) sebesar 17,877, dimana bakteri yang mendominasi berarti bakteri hidrokarbonoklastik yang ditambahkan. Mesokosme A (kontrol) yang tidak mendapat penambahan kultur juga memiliki rasio yang kecil (0,690), sehingga dapat dikatakan bahwa bakteri heterotrofik yang terdapat di dalam mesokosme A tersebut mampu beradaptasi dengan baik menjadi bakteri hidrokarbonoklastik.

Dapat disimpulkan bahwa perlakuan dengan penambahan kultur campuran lebih berpotensi dalam meningkatkan jumlah bakteri hidrokarbonoklastik dibandingkan dengan penambahan kultur KH1/A Orange dan M/M/H, Orange untuk mendegradasi tumpahan minyak ATTAKA.

4.3 Minyak Mentah (Crude Oil)

Minyak mentah yang diamati dalam penelitian ini adalah minyak mentah 39,6 API ATTAKA yang diperoleh dari sumur minyak ATTAKA di Kalimantan Timur, termasuk dalam klasifikasi napthenic-napthenic key fraction II sebesar 60°F.

Minyak bumi dari Kalimantan umumnya berdasar parafin aspal. Berat jenis minyak bumi Indonesia berdasar parafin aspal ini berkisar antara 20° API dan 35° API. Tanpa pengecualian, kadar beberang minyak Indonesia sangat rendah, rata-rata hanya 0,1 dan 0,4 %. Nilai API (American Petroleum Institute) menunjukkan derajat kekentalan (viskositas) minyak berdasarkan persentase kandungan fraksi dan impuritis yang terdapat dalam minyak mentah (Sanusi, 1999).

4.3.1 Minyak total

Kadar minyak yang diperoleh dari setiap pengambilan sampel tidak mengalami penurunan secara linier berdasarkan waktu. Hal ini diduga karena banyaknya faktor yang mempengaruhi seperti gelombang, turbulensi dan pengadukan, jumlah bakteri, kandungan nutrisi, proses dispersi, emulsifikasi, pelarutan dan penenggelaman (Wong et al., 1997).
Pelarutan adalah proses penyerapan dan penghamburan gumpalan-gumpalan minyak dalam air yang dapat menimbulkan beberapa fenomena, seperti pembentukan makro partikel (dispersi butiran), mikropartikel (dispersi koloida) dan pembentukan fase tunggal yang merupakan fase homogen dalam air. Hasil pengukuran kadar minyak total pada masing-masing mesokosme dapat dilihat pada Gambar 17.

![Gambar 17. Grafik pengukuran kadar minyak total pada mesokosme](image)

Hasil pengukuran menunjukkan bahwa kadar minyak terlarut yang diambil secara komposit adalah sebesar 4,28 ppm, kadar minyak partikulat sebesar 3,21 ppm dan totalnya sebesar 7,49 ppm.

Pada H₁ ditemukan kadar minyak terlarut untuk mesokosme A sebesar 3,04 ppm dan menurun pada H₅, tapi kemudian naik serta berfluktuasi. Adapun kadar minyak terlarut untuk mesokosme A pada H₅, H₈, H₁₁ dan H₁₅ masing-masing adalah 1,33; 2,44; 2,75, dan 1,41 ppm. Sedang kadar minyak dalam partikulat juga tampak berfluktuasi dan kadar terkecil ditemukan pada H₁₁ yaitu 0,05 ppm, tetapi agak meningkat pada H₁₅ diduga karena adanya penambahan minyak yang terlarut berasal dari dinding plastik. Sedangkan kadar minyak total pada mesokosme A dari H₁>H₁₅ masing-masing 5,05; 3,62; 2,59; 2,80 dan 2,72 ppm.
Pada mesokosme B ditemukan peningkatan kadar minyak pada H₅, diduga karena adanya minyak yang berasal dari dinding plastik yang baru larut pada H₅. Pada mesokosme B kadar minyak total yang ditemukan menurun dari H₅ sampai H₁₅. Kadar minyak terlarut pada mesokosme B dari H₁ – H₁₅ adalah 3,28; 2,65; 2,75; 0,68 dan 0,50 ppm. Sedang kadar minyak dalam partikulat meningkat pada H₅ sebesar 5,25 ppm dan akhirnya menurun menjadi 2,55 ppm.

Pada mesokosme C kadar minyak hanya meningkat sedikit pada H₅, dan mulai H₅ kadarnya terus turun hingga H₁₅. Kadar minyak terlarut untuk mesokosme C dari H₁-H₁₅ masing-masing 4,16; 3,18; 2,30; 2,19 dan 1,44 ppm. Kadar minyak dalam partikulat pada mesokosme C tampaknya menurun dengan baik, dimana kadar terendah yang dicapai pada H₁₅ adalah 1,50 ppm. Kadar minyak totalnya pada H₁ – H₁₅ masing-masing adalah 6,31; 6,53; 5,11; 4,44 dan 2,99 ppm.

Pada mesokosme D hasil pengukuran kadar minyak yang terlarut juga terus mengalami penurunan hingga pada H₁₅ kadar minyak yang tinggal hanya sekitar 1,13 ppm. Sedangkan kadar minyak partikulat untuk mesokosme D menurun dari H₅-H₁₅ masing-masing 3,01; 2,13 ; 1,88 dan 1,13 ppm. Kadar minyak total juga terus mengalami penurunan dari 7,93 ppm pada H₁ menjadi 2,94 ppm pada H₁₅.

Hasil yang diperoleh dari kadar minyak total yang merupakan jumlah dari kadar minyak terlarut dan partikulat, menunjukkan bahwa penurunan kadar minyak total terjadi mulai H₅ untuk semua mesokosme yang terus menurun hingga H₁₅ untuk semua mesokosme. Penurunan terbesar ditemukan pada mesokosme D yaitu dari 7,93 ppm pada H₁ menjadi 2,94 ppm pada H₁₅.

Hal ini dapat dimengerti oleh karena memang secara alami bakteri pemecah minyak sudah ada dan mereka akan berkembang kalau sumber nutriennya yaitu minyak, tersedia dalam jumlah yang cukup untuk memacu pertumbuhannya (PARSON et al., 1984).

Gambar 18. Proses pengambilan minyak pada mesokosme

4.4 Laju Biodegradasi Minyak Mentah

Laju biodegradasi ditentukan dengan menghitung perubahan konsentrasi minyak total terhadap lamanya waktu pengukuran. Hasil analisis minyak total yang diukur menunjukkan besarnya laju biodegradasi yang terjadi akibat kultur yang ditambahkan terhadap pertumbuhan bakteri hidrokarbonoklastik dan penurunan kadar minyak total (Gambar 17). Gambar 17 tersebut menunjukkan bahwa rata-rata laju biodegradasi tertinggi terjadi pada mesokosme C (kultur campuran) yaitu sebesar 5,006 ppm/hari, kemudian mesokosme B (M/M/H₁ Orange) sebesar 4,872 ppm/hari, mesokosme A (kontrol) yaitu sebesar 4,113 ppm/hari dan mesokosme D (KH₁/A Orange) sebesar 3,670 ppm/hari. Jika dibandingkan antara keempat mesokosme (A, B, C dan D), ternyata penambahan kultur campuran memiliki kemampuan laju biodegradasi minyak mentah yang tertinggi (5,006 ppm/hari).
Hal ini bisa disebabkan karena beragamnya jenis mikroorganisme pemecah minyak yang ditambahkan ke dalam mesokosme tersebut. Sehingga dapat dikatakan bahwa penambahan masing-masing kultur mampu meningkatkan proses biodegradasi oleh bakteri hidrokarbonoklastik.

Laju rata-rata degradasi pada masing-masing mesokosme dapat dilihat pada Gambar 19.

Gambar 19. Grafik Rata-rata Laju Biodegradasi pada Mesokosme
5 KESIMPULAN DAN SARAN

5.1 Kesimpulan

Kesimpulan yang dapat diambil dari penelitian tahap ini adalah sebagai berikut:

- Telah dapat diisolasi beberapa bakteri dari perairan Pelabuhan Ratu dalam minyak mentah ATTAKA dari sumur minyak di Kalimantan Timur.
- Terdapat tujuh isolat yang aktif dalam mendegradasi hidrokarbon dalam minyak mentah yaitu KH1/A Orange, KH2/A Putih, MM1/4 Putih, BH1/A Kuning, 32/M/Ho Kuning dan 32/M/Ho Putih yang diduga terutama dari genera *Pseudomonas*.
- Dari hasil identifikasi morfologi yang dilakukan yaitu bentuk koloni yang bulat, warna koloni putih atau kuning, diameter koloni antara 0,5 – 5,0 mm dan jenis bakteri adalah gram negatif, diduga bahwa bakteri yang mendominasi adalah dari genera *Pseudomonas* sp.
- Jumlah bakteri dan tingkat biodegradasi minyak bumi terbesar diperoleh pada mesokosme C yang mendapat penambahan kultur campuran.
- Penambahan jenis bakteri pemakan hidrokarbon akan lebih mempercepat proses degradasi minyak, karena enzim spesifik yang dimiliki oleh masing-masing mikroorganisme dalam memutus rantai hidrokarbon.
- Parameter lingkungan mempunyai kontribusi tersendiri terhadap nilai biodegradasi minyak. Pengaruh parameter lingkungan berurut dari yang besar ke kecil yaitu kandungan minyak, oksigen terlarut, suhu, pH dan salinitas. Sebagian parameter lingkungan kecuali salinitas memberikan kontribusi yang positif terhadap aktivitas bakteri pengurai minyak. Berarti semakin besar konsentrasi kandungan minyak, oksigen terlarut, temperatur dan pH, semakin tinggi pula nilai biodegradasi.
5.2 Saran

Perlu dilakukan penghitungan biomassa awal pada masing-masing kultur bakteri sebelum dilakukan pengujian proses bioremediasi.

Penelitian ini masih perlu dilanjutkan dan dikembangkan untuk mempelajari aktivitas mikroba yang telah diperoleh berikut karakteristiknya, sehingga dapat berguna untuk mengatasi minyak buangan secara aktif, praktis, ekonomis dan ramah lingkungan.
DAFTAR PUSTAKA

Lampiran 1.

<table>
<thead>
<tr>
<th>Bahan (g/l)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeast ekstrak</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>K$_2$HPO$_4$</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>KNO$_3$</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bahan</th>
<th>Dosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacto pepton</td>
<td>5 gram</td>
</tr>
<tr>
<td>Yeast extract</td>
<td>1 gram</td>
</tr>
<tr>
<td>Bacto agar</td>
<td>15 gram</td>
</tr>
<tr>
<td>Air suling</td>
<td>1 liter</td>
</tr>
</tbody>
</table>
Lampiran 2

Tabel 3. Perlakuan Dalam Penelitian Mesokosme, Oktober 1999

<table>
<thead>
<tr>
<th>No.</th>
<th>Mesokosme</th>
<th>Perlakuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A</td>
<td>Air laut + minyak mentah 100 ppm (kontrol)</td>
</tr>
<tr>
<td>2.</td>
<td>B</td>
<td>Air laut + minyak mentah 100 ppm + kultur (M/M/H₁ Orange)</td>
</tr>
<tr>
<td>3.</td>
<td>C</td>
<td>Air laut + minyak mentah 100 ppm + kultur (campuran*)</td>
</tr>
<tr>
<td>4.</td>
<td>D</td>
<td>Air laut + minyak mentah 100 ppm + kultur (KH₁/A Orange)</td>
</tr>
</tbody>
</table>

*Campuran terdiri dari:
 1. KH₁/A Orange
 2. KH₁/A Putih
 3. M/M/H₁ Orange
 4. H/M/H₁ Putih
 5. BH₁/A Kuning
 6. 32/M/H₀/A Kuning
 7. 32/M/H₀/A Putih

Tabel 4. Suhu (°C) Pada Penelitian Mesokosme, Oktober 1999

<table>
<thead>
<tr>
<th>Mesokosme</th>
<th>Sampling Hari Ke-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>27,5</td>
</tr>
<tr>
<td>B</td>
<td>31</td>
</tr>
<tr>
<td>C</td>
<td>32</td>
</tr>
<tr>
<td>D</td>
<td>30</td>
</tr>
<tr>
<td>L</td>
<td>27,5</td>
</tr>
</tbody>
</table>

Tabel 5. Salinitas (o/oo) Pada Penelitian Mesokosme, Oktober 1999

<table>
<thead>
<tr>
<th>Mesokosme</th>
<th>Sampling Hari Ke-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>30</td>
</tr>
<tr>
<td>B</td>
<td>30</td>
</tr>
<tr>
<td>C</td>
<td>30</td>
</tr>
<tr>
<td>D</td>
<td>32</td>
</tr>
<tr>
<td>L</td>
<td>27,5</td>
</tr>
</tbody>
</table>

* Pengambilan sampel dipengaruhi oleh hujan yang beberapa kali turun selama pengamatan.
Lampiran 3

Tabel 6. Derajat Keasaman (pH) Pada Penelitian Mesokosme, Oktober 1999

<table>
<thead>
<tr>
<th>Mesokosme</th>
<th>Sampling Hari Ke-</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7,8</td>
</tr>
<tr>
<td>B</td>
<td>7,8</td>
</tr>
<tr>
<td>C</td>
<td>7,8</td>
</tr>
<tr>
<td>D</td>
<td>7,8</td>
</tr>
<tr>
<td>L</td>
<td>7,8</td>
</tr>
</tbody>
</table>

Tabel 7. Kadar Oksigen (ml/L) Pada Penelitian Mesokosme, Oktober 1999

<table>
<thead>
<tr>
<th>Mesokosme</th>
<th>Sampling Hari Ke-</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6,63</td>
</tr>
<tr>
<td>B</td>
<td>7,53</td>
</tr>
<tr>
<td>C</td>
<td>7,5</td>
</tr>
<tr>
<td>D</td>
<td>6,5</td>
</tr>
<tr>
<td>L</td>
<td>7,5</td>
</tr>
</tbody>
</table>
Lampiran 4

Tabel 8. Morfologis Isolat dari Pelabuhan Ratu

<table>
<thead>
<tr>
<th>No</th>
<th>Kode Sampel</th>
<th>Bentuk Koloni</th>
<th>Warna Koloni</th>
<th>Gram</th>
<th>Bentuk Sel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E 10^{-1} / A</td>
<td>bulat</td>
<td>orange</td>
<td>+</td>
<td>coccus</td>
</tr>
<tr>
<td>2</td>
<td>B/M/H2</td>
<td>bulat</td>
<td>orange</td>
<td>-</td>
<td>coccus</td>
</tr>
<tr>
<td>3</td>
<td>32/M/H0/A</td>
<td>bulat</td>
<td>putih</td>
<td>-</td>
<td>coccus</td>
</tr>
<tr>
<td>4</td>
<td>M2/10/8</td>
<td>bulat</td>
<td>putih</td>
<td>-</td>
<td>coccus</td>
</tr>
<tr>
<td>5</td>
<td>KH1/A</td>
<td>bulat</td>
<td>orange</td>
<td>-</td>
<td>coccus</td>
</tr>
<tr>
<td>6</td>
<td>M/M/H1</td>
<td>bulat</td>
<td>putih</td>
<td>-</td>
<td>bacil</td>
</tr>
<tr>
<td>7</td>
<td>B/10^{-1}/A</td>
<td>bulat</td>
<td>orange</td>
<td>+</td>
<td>bacil</td>
</tr>
<tr>
<td>8</td>
<td>3,2/M/Ho/A</td>
<td>bulat</td>
<td>putih</td>
<td>+</td>
<td>coccus</td>
</tr>
<tr>
<td>9</td>
<td>KH1/A</td>
<td>bulat</td>
<td>putih</td>
<td>-</td>
<td>coccus</td>
</tr>
<tr>
<td>10</td>
<td>BH1/A</td>
<td>bulat</td>
<td>putih</td>
<td>-</td>
<td>coccus</td>
</tr>
<tr>
<td>11</td>
<td>H/M/H1</td>
<td>bulat</td>
<td>putih</td>
<td>-</td>
<td>coccus</td>
</tr>
<tr>
<td>12</td>
<td>M/M/H1</td>
<td>bulat</td>
<td>orange</td>
<td>-</td>
<td>coccus</td>
</tr>
<tr>
<td>13</td>
<td>H2/A/Laut</td>
<td>bulat</td>
<td>putih</td>
<td>-</td>
<td>coccus</td>
</tr>
<tr>
<td>14</td>
<td>G2/10/A</td>
<td>bulat</td>
<td>putih</td>
<td>-</td>
<td>bacil</td>
</tr>
<tr>
<td>15</td>
<td>32/M/Ho/A</td>
<td>bulat</td>
<td>kuning</td>
<td>-</td>
<td>coccus</td>
</tr>
<tr>
<td>16</td>
<td>3,2/M/Ho/A</td>
<td>bulat</td>
<td>putih</td>
<td>-</td>
<td>coccus</td>
</tr>
</tbody>
</table>

Strain kontrol:
+ biru gelap/ungu ———> Staphylococcus
- merah muda ———> Vibrio
Lampiran 5

Tabel 9. Pengamatan Terhadap Ukuran Clear Zone Sampel Setelah Penanaman Selama 9 Hari

<table>
<thead>
<tr>
<th>No</th>
<th>Kode Sampel</th>
<th>Jari-jari Clear Zone (mm)</th>
<th>Keterangan*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KH₁/A Orange</td>
<td>5</td>
<td>minyak larut</td>
</tr>
<tr>
<td>2</td>
<td>32/M/Ho/A Putih</td>
<td>5</td>
<td>minyak menggumpal</td>
</tr>
<tr>
<td>3</td>
<td>M/M/H₁ Orange</td>
<td>2,5</td>
<td>minyak larut</td>
</tr>
<tr>
<td>4</td>
<td>KH₁/A Putih</td>
<td>2,5</td>
<td>minyak larut</td>
</tr>
<tr>
<td>5</td>
<td>BH₁/A Kuning</td>
<td>1,5</td>
<td>minyak 80% larut</td>
</tr>
<tr>
<td>6</td>
<td>32/M/Ho/A Kuning</td>
<td>1,5</td>
<td>minyak menggumpal</td>
</tr>
<tr>
<td>7</td>
<td>H/M/H₁ Putih</td>
<td>1</td>
<td>minyak setengah larut</td>
</tr>
<tr>
<td>8</td>
<td>H₂/A/Laut Putih</td>
<td>1</td>
<td>minyak menggumpal</td>
</tr>
<tr>
<td>9</td>
<td>3,2/M/Ho/A Putih (-)</td>
<td>1</td>
<td>minyak larut</td>
</tr>
<tr>
<td>10</td>
<td>B/M/H₂ Orange</td>
<td>1</td>
<td>minyak setengah larut</td>
</tr>
<tr>
<td>11</td>
<td>3,2/M/Ho/A Putih (+)</td>
<td>1</td>
<td>minyak menggumpal</td>
</tr>
<tr>
<td>12</td>
<td>E/10⁻²/A Orange</td>
<td>1</td>
<td>minyak 80% larut</td>
</tr>
<tr>
<td>13</td>
<td>G₂/10/A Putih</td>
<td>0,5</td>
<td>minyak menggumpal</td>
</tr>
<tr>
<td>14</td>
<td>E 10⁻²/A Orange</td>
<td>0,5</td>
<td>minyak setengah larut</td>
</tr>
<tr>
<td>15</td>
<td>M/M/H₁ Putih</td>
<td>0,5</td>
<td>minyak 80% larut</td>
</tr>
<tr>
<td>16</td>
<td>M₂/10/8 Putih</td>
<td>0,2</td>
<td>minyak menggumpal</td>
</tr>
</tbody>
</table>

* Pengamatan yang dilakukan terhadap kelarutan minyak adalah secara visual.
Lampiran 6

<table>
<thead>
<tr>
<th>No</th>
<th>Mesokosme</th>
<th>Hari ke-</th>
<th>[10 ml]</th>
<th>[1 ml]</th>
<th>[0,1 ml]</th>
<th>Index MPN/100 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>11</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>15</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>11</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>15</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>B</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>11</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>15</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>11</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>15</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>D</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>11</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>15</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
Lampiran 7.

<table>
<thead>
<tr>
<th>Hari Pengambilan</th>
<th>Kadar minyak terlarut (ppm)</th>
<th>4,28</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_1</td>
<td>3,04</td>
<td>3,28</td>
</tr>
<tr>
<td>H_5</td>
<td>1,33</td>
<td>2,65</td>
</tr>
<tr>
<td>H_8</td>
<td>2,44</td>
<td>2,75</td>
</tr>
<tr>
<td>H_{11}</td>
<td>2,75</td>
<td>0,68</td>
</tr>
<tr>
<td>H_{15}</td>
<td>1,41</td>
<td>0,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hari Pengambilan</th>
<th>Kadar minyak partikulat (ppm)</th>
<th>3,21</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_1</td>
<td>2,01</td>
<td>2,35</td>
</tr>
<tr>
<td>H_5</td>
<td>2,29</td>
<td>5,25</td>
</tr>
<tr>
<td>H_8</td>
<td>0,15</td>
<td>4,13</td>
</tr>
<tr>
<td>H_{11}</td>
<td>0,05</td>
<td>2,96</td>
</tr>
<tr>
<td>H_{15}</td>
<td>1,31</td>
<td>2,55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hari Pengambilan</th>
<th>Kadar minyak total (ppm)</th>
<th>7,49</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_1</td>
<td>5,05</td>
<td>5,03</td>
</tr>
<tr>
<td>H_5</td>
<td>3,62</td>
<td>7,90</td>
</tr>
<tr>
<td>H_8</td>
<td>2,59</td>
<td>6,88</td>
</tr>
<tr>
<td>H_{11}</td>
<td>2,80</td>
<td>3,64</td>
</tr>
<tr>
<td>H_{15}</td>
<td>2,72</td>
<td>3,05</td>
</tr>
</tbody>
</table>
Lampiran 8

Tabel 12. Tabel penghitungan jumlah bakteri dengan metoda MPN per 100 ml sampel menggunakan 3 seri tabung untuk tiap pengenceran (Lewin, 1973)

<table>
<thead>
<tr>
<th>10 ml</th>
<th>1 ml</th>
<th>0,1 ml</th>
<th>MPN per 100 ml</th>
<th>10 ml</th>
<th>1 ml</th>
<th>0,1 ml</th>
<th>MPN per 100 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>9,1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>9</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>6,1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>9,2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>3</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>34</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>6,2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
<td>9,3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
<td>12</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>3</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>42</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>9,4</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>1</td>
<td>13</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>2</td>
<td>16</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>44</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>19</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>53</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3,6</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>7,2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>39</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>11</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td>15</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>95</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>7,3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>43</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>75</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>15</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>120</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>19</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>160</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>11</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>93</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>15</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>150</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>20</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>210</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>24</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>290</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>16</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>240</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>20</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>460</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>24</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1100</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. Tampak Samping

B. Tampak Atas

C. Kantong Mesokosme

Keterangan:
A. Tampak Samping
1. Kerangka baju
2. Drum gelasung

B. Tampak Atas
1. Drum gelasung
2. Kerangka baju
3. Diameter mesokosme

C. Kantong Mesokosme
1. Plastik kerpel
2. Plastik polietilen
3. Kleen
Lampiran 15. Skema kerja analisis bakteri. (Lewin, 1973)

1. TPC BAKTERI HETEROTROPIK

 1 ml 1 ml 1 ml
 → → →
 → → →
 → → →
 → → →
 → → →

 Ref. Phospat Pour plate (metode tuang)

2. TPC BAKTERI HIDROKARBONOKLASTIK

 1 ml
 →
 →
 →

 Metode sebar

3. MPN HIDROKARBONOKLASTIK

 0.1 ml
 → 1 ml Duri Crude Oil
 →
 →
 →
 →

 3 tabung reaksi

 1 ml
 →
 →
 →

 1 ml Duri Crude Oil

 3 tabung reaksi

 10 ml
 →
 →
 →

 2 ml Duri Crude Oil

 3 tabung reaksi
Lampiran 16. Proses tumpahan minyak di perairan

MINYAK DI PERMUKAAN LAUT

Evaporasi
Angin dan Pengurangan
Buah yang Pecah
Hujan
Penyebaran

Oksidasi Atmosfer

ALIRAN ARUS

Distribusi oleh Plankton

Reaksi Kimia

MINYAK DALAM AIR LAUT

Terlarut
Pengurangan oleh Bakteri

AIR DALAM MINYAK

Teraduk

Gumpalan Ter

Tenggelam Dalam Bentuk Partikel

DIKONSUMSI OLEH PLANKTON

DIKONSUMSI DAN DIURAIKAN PADA DASAR PERAIRAN
Lampiran 17. Skema kerja analisis minyak total.

A. Digesti
1. 6 ml KOH
 pangaskan dalam water bath (60°C) pada 1 jam
2. 6 ml air bebas hidrokarbon (60°C) pada 1/2 jam

ditiriskan dan tuang dalam corong pisah

8. Ekstraksi
 1. 9 gl Etanol-KOH
 2. 6 gl DCM

dikocok dan tuang dalam corong pisah

Ekstraksi:
1. DCM 50 ml
2. DCM 50 ml
3. DCM 50 ml
tiap penambahan 50 ml DCM, corong pisah dikocok (4-15 menit)
hasil ekstraksi dituang dalam labu ukur

Rangkaian "Kuderna Denish"

panaskan dalam water bath (60°C)
sampai yang tersisa tinggal minyak

corong pisah

tes tube dipanaskan (tembakkan batu didih) dalam water bath (60°C) hingga minyak saja yang tersisa