PENGARUH INTENSITAS DAN SAAT PEMBERIAN NAUNGAN
TERHADAP HASIL UBI JALAR
(Ipomoea batatas (L.) Lam.) 1)
THE EFFECT OF INTENSITY AND TIME OF SHADING
ON YIELD OF SWEET POTATO
(Ipomoea batatas (L.) Lam.)

Oleh
Nurhayati, A. Pieter Lontoh, Jajah Koswara 2)

Abstract: This experiment was carried out at Darmaga Experimental Station IPB, Bogor from October 1983 to March 1984. Factorial with randomized block design in three replicates was used on sweet potato of Daya variety. Shading intensity of 0, 25 and 50 percent were given at 7, 11, 15 weeks after planting.

Shading intensity of 25 percent decreased marketable tuber yield 42 percent, and total tuber yield 24 percent while. Shading intensity of 50 percent decreased marketable tuber yield 63 percent and total tuber yield 50 percent.

Time of shading indicated the trend that the earlier the crop was shaded and the higher the shading intensity, the lower the tuber yield.

Intensitas naungan 25 persen berpengaruh nyata terhadap hasil umbi yang dapat dipasarkan berupa penurunan 42 persen, sedangkan hasil umbi total menurun 24 persen. Intensitas naungan 50 persen menurunkan secara nyata hasil umbi yang dapat dipasarkan 63 persen dan hasil umbi total 50 persen.

1) Sebagian penelitian masalah khusus mahasiswa Jurusan Budidaya Pertanian, Fakultas Pertanian IPB, 1984

2) Yang pertama mahasiswa Jurusan Budidaya Pertanian, yang kedua dan ketiga staf pengajar Jurusan Budidaya Pertanian IPB.

Bul. Agr. Vol XVI No. 1
Faktor saat pemberian naungan umumnya hanya menunjukkan ke-
cenderungan bahwa semakin awal tanaman ternaungi (sejak 7 minggu
setelah tanam), terutama dengan intensitas naungan tinggi (50
persen), hasil umbi semakin menurun.

PENDAHULUAN

Ubi jalar termasuk tanaman suka cahaya dan akan tumbuh baik
jika tersedia cukup cahaya. Dalam pertanaman di lapang keterse-
diaan cahaya sering tidak mencukupi. Hal ini dapat terjadi da-
lam suatu pertanaman tumpangsari antara tanaman ubi jalar dengan
tanaman lain yang berhabitus tinggi (Moreno, 1982). Susunan daun
yang terlalu lebat dan radiasi matahari yang sering terhalang
awan di daerah beriklim tropika lembab seperti Indonesia memberi-
kan pengaruh naungan karena penetrasi cahaya tidak optimum pada
semua daun.

Intensitas cahaya sangat berkorelasi dengan laju fotosinte-
sa tanaman (Hesketh dan Musgrave, 1962). Tanaman suka cahaya
akan menunjukkan perbedaan karakteristik fotosintesa tertentu
bila diberi intensitas cahaya tinggi atau rendah (Powles dan
Critchley, 1980).

Hasil penelitian Nair (1978) di India menunjukkan bahwa in-
tensitas naungan 80 persen dari tajuk pertanaman kelapa tidak me-
mungkinkan tumpangsari dengan tanaman suka cahaya seperti ubi ja-
lar. Pertumbuhan dan perkembangan ubi jalar terdiri atas fase
pertumbuhan tajuk dan akar, fase pertumbuhan tajuk dan akar serta
awal perkembangan umbi, fase perkembangan umbi (Edmond dan Ammer-
man, 1971).

Dalam pertanaman tumpangsari dengan tanaman semusim, ubi ja-
lar biasanya tidak ternaungi terus menerus selama pertumbuhannya.
Untuk ini belum banyak diketahui pengaruh naungan pada fase-fase
pertumbuhan ubi jalar. Pengaruh naungan pada pertanaman tumpang-
sari dapat dikurangi apabila diketahui besarnya intensitas naungan

29
yang masih dapat ditenggang oleh ubi jalar dan fase-fase pertumbuhan yang peka ataupun toleran terhadap kekurangan cahaya. Percobaan ini bertujuan untuk mengetahui pengaruh intensitas dan saat pemberian naungan terhadap hasil ubi jalar.

Hipotesis percobaan ini yaitu semakin tinggi intensitas naungan dan semakin awal saat naungan, proses pertumbuhan dan perkembangan umbi semakin terhambat yang ditunjukkan oleh rendah-nya hasil umbi.

BAHAN DAN METODE

Percobaan dilakukan di Kebun Percobaan IPB Darmaga IV Bogor. Ketinggian tempat 250 m di atas permukaan laut, jenis tanah latosol. Percobaan dilaksanakan pada bulan Oktober 1983 sampai Maret 1984. Setiap petak unit percobaan berukuran 3.20 m x 6.00 m. Ubi jalar ditanam di atas guludan dengan jarak tanam 80 cm x 25 cm. Sebelum ditanam bibit dicelup dalam larutan Azodrin 15 WP 0,4 persen. Dosis pupuk yang digunakan adalah 90 kg N/ha, 50 kg P₂O₅/ha dan 100 kg K₂O/ha. Alat-alat yang digunakan selain alat budidaya juga alat pengamatan lingkungan seperti tube solarimeter, termometer dan psychrometer Assman.

Bahan naungan berupa atap yang terdiri dari susunan belahan bambu. Setiap belahan berukuran panjang 650 cm, lebar 3 cm dan tebal ± 0,5 cm. Setiap atap naungan berukuran 360 cm x 650 cm. Untuk memperoleh intensitas naungan 25 persen, belahan-belahan bambu selebar 90 cm mula-mula disusun rapat, kemudian dijarangkan menjadi 360 cm, sehingga masing-masing belahan bambu berjarak 9 cm. Untuk intensitas naungan 50 persen, belahan-belahan bambu selebar 180 cm disusun rapat, kemudian dijarangkan menjadi 360 cm sehingga antara bilah bambu berjarak 3 cm. Naungan diletakkan setinggi satu meter di atas tanah ditopang tiang bambu.

Rancangan percobaan yang digunakan adalah Rancangan Acak Kelompok dengan tiga ulangan. Percobaan disusun secara faktorial
yang terdiri atas faktor intensitas naungan 0, 25 dan 50 persen, serta faktor saat penaungan yaitu 7, 11 dan 15 minggu setelah tanam.

Pengamatan dilakukan terhadap bobot berangkasan (daun dan batang), bobot segar umbi total, bobot umbi yang dapat dipasarkan, bobot umbi yang tidak dapat dipasarkan, jumlah umbi total, jumlah umbi yang dapat dipasarkan, jumlah umbi yang tidak dapat dipasarkan, bobot kering umbi per 100 gram bobot segar. Kriteria umbi yang dapat dipasarkan yaitu umbi segar dengan bobot lebih besar dari 150 gram. Keadaan iklim makro selama pertumbuhan diperoleh dari Stasiun Klimatologi Darmaga, sedangkan pengamatan iklim mikro dilakukan dua kali dengan selang dua minggu setelah semua perlakuan diberikan. Unsur yang diamati adalah intensitas radiasi matahari, suhu udara dan suhu tanah.

HASIL DAN PEMBAHASAN

Keadaan Iklim dan Pertumbuhan

Selama pertumbuhan, rata-rata harian suhu udara 25°C, intensitas radiasi matahari 135.8 kal/cm²/hari dan jumlah curah hujan 1 517 mm. Keadaan iklim ini kurang menguntungkan untuk pertumbuhan dan produksi ubi jalar. Pada percobaan ini dicapai hasil tertinggi 13.44 ton/ha. Kay (1973) mengemukakan ubi jalar tumbuh baik pada curah hujan 750 - 1 000 mm dan kelembaban rendah pada akhir pertumbuhan. Percobaan Agata (1982) dengan hasil tinggi (60.00 ton/ha) dicapai dengan curah hujan 1 037 mm dan radiasi matahari 399 ± 85 kal/cm²/hari.
Keadaan iklim mikro (kecuali intensitas cahaya) akibat naungan tidak menunjukkan perbedaan besar dengan keadaan di luar naungan dan dianggap belum berpengaruh terhadap pertumbuhan dan hasil ubi jalar. Intensitas naungan pada perlakuan 25 persen adalah 28 persen dan pada perlakuan 50 persen adalah 48 persen.

Bobot berangkasan (daun dan batang) tidak berbeda antara perlakuan yang dicobakan. Untuk menerangkan hubungan tajuk dan hasil umbi, mungkin data bobot kering berangkasan dapat lebih mewakili, di samping dapat digunakan untuk mengetahui indeks panen.

Hasil Umbi

Bobot umbi. Penaungan 50 persen menurunkan bobot umbi total 50 persen, bobot umbi dapat dipasarkan 63 persen, bobot umbi tidak dapat dipasarkan 40 persen dan bobot kering umbi 11 persen (Tabel 1).

Penaungan 25 persen berturut-turut menurunkan bobot umbi total 24 persen, bobot umbi dapat dipasarkan 42 persen dan bobot umbi tidak dapat dipasarkan 10 persen, sedangkan bobot kering umbi belum menunjukkan penurunan. Pada Gambar 1 terlihat bahwa koefisien korelasi persamaan regresi pengaruh intensitas naungan terhadap bobot umbi lebih dari 95 persen. Hal ini menunjukkan bahwa bobot umbi dengan intensitas naungan mempunyai hubungan yang sangat erat.
<table>
<thead>
<tr>
<th>Int. naungan pencahayaan (%)</th>
<th>Perlakuan (Treatment)</th>
<th>Bobot umbi 1) (Tuber weight)</th>
<th>Bobot kering 2) (Dry tuber weight)</th>
<th>Jumlah umbi 1) (Number of tuber)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Shade (Time of shading) (%)</td>
<td>Dapat dipasarkan (Marketable)</td>
<td>Tidak dapat dipasarkan (Unmarketable)</td>
<td>Total</td>
<td>Dapat dipasarkan (Marketable)</td>
<td>Tidak dapat dipasarkan (Unmarketable)</td>
</tr>
<tr>
<td></td>
<td>(......... ton/ha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>5.75 a 7.69 a 13.44 a 27.03 ab</td>
<td>29762 a 125397 a 155159 a*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>7</td>
<td>3.31 5.50 10.80 26.51</td>
<td>17460 112302 129762</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3.69 5.91 9.61 27.93</td>
<td>19048 87301 106349</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>2.99 7.39 10.38 30.07</td>
<td>15079 124207 139286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rata-rata (average)</td>
<td>3.33 b 6.93 a 10.26 a 28.17 b</td>
<td></td>
<td>17196 b 107936 a 125132 a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>7</td>
<td>1.50 3.93 5.45 21.76</td>
<td>7937 59523 67460</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1.69 4.35 6.04 24.99</td>
<td>7937 67857 75794</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>3.15 5.51 8.66 25.25</td>
<td>17063 96825 113888</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rata-rata (average)</td>
<td>2.11 b 4.59 b 6.72 b 24.00 a</td>
<td></td>
<td>10979 b 74735 b 85714 b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Uji BNJ untuk perlakuan intensitas naungan (HSD test on shade intensity treatments)
Angka-angka yang diikuti huruf yang sama dalam kolom yang sama menunjukkan tidak berbeda nyata berdasarkan uji BNJ (taraf 0.05) (Numbers followed by the same letter on columns, non significant with HSD.05)

1) per hektar (per hectare)
2) per 100 gram bobot segar (per 100 gram fresh weight)
Penaungan pada 7 MST menurunkan bobot kering 13 persen dibandingkan penaungan pada 15 MST (Tabel 2). Hubungan bobot kering umbi dengan saat pemberian naungan menunjukkan persamaan linear:

\[Y = 21.2296 + 0.44125 \times; \ r = 0.9833 \]

Tabel 2. Pengaruh Saat Penaungan terhadap Bobot Kering Umbi dan Jumlah Umbi yang Tidak Dapat Dipasarkan

(Table 2 The Effect of Time of Shading on Tuber Dry Matter and Amount of Unmarketable Tuber)

<table>
<thead>
<tr>
<th>Saat Penaungan (MST) (Time of Shading)</th>
<th>Bobot kering umbi (Tuber dry Matter)</th>
<th>Jumlah umbi yang tidak dapat dipasarkan (Number of unmarketable Tuber)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>24.13 a</td>
<td>85 913 ab</td>
</tr>
<tr>
<td>11</td>
<td>26.46 ab</td>
<td>77 580 a</td>
</tr>
<tr>
<td>12</td>
<td>27.66 b</td>
<td>110.516 b</td>
</tr>
</tbody>
</table>

Keterangan: Angka-angka yang diikuti huruf yang sama pada kolom yang sama tidak berbeda nyata berdasarkan uji BNJ taraf 0.05

(Numbers followed by the same letter on columns, non significant with HSD .05)

Perlakuan intensitas naungan yang semakin meningkat (sampai 50 persen), menurunkan hasil umbi total baik karena bobot per umbi menurun (umbi kecil-kecil) maupun karena jumlah umbi yang semakin berkurang. Penurunan bobot per umbi diduga karena kurangnya asimilat yang ditranslokasikan ke umbi dan lambannya aktivitas kambium primer. Energi matahari yang kurang yang diterima tajuk menyebabkan laju asimilasi neto menurun (Hahn dan Hozyo, 1983), sehingga asimilat yang dihasilkan berkurang.

Jumlah umbi yang sedikit berkaitan dengan aktivitas kambium. Laju lignifikasi sel-sel stele tetap lambat dengan berkurangnya intensitas cahaya, tetapi aktivitas kambium juga lambat sehingga inisiasi dan perkembangan umbi terhambat, umbi tetap muda dalam waktu lama (Hahn dan Hozyo, 1983). Dengan demikian meskipun sudah terbentuk umbi tetapi karena ukurannya masih kecil dan muda, maka tidak termasuk dalam hasil panen.

Pengaruh intensitas naungan terhadap penurunan hasil umbi yang dapat dan tidak dapat dipasarkan berhubungan dengan jumlah umbi yang semakin sedikit. Bobot per umbi yang dapat dipasarkan relatif sama (+ 193 gram/umbi). Bobot per umbi yang tidak dapat dipasarkan juga relatif sama berturut-turut pada perlakuan tanpa naungan (61.33 gram), naungan 25 persen (64.3 gram) dan naungan 50 persen (61.4 gram).

Intensitas naungan menurunkan bobot kering umbi. Hal ini berarti perlakuan naungan dapat menurunkan produksi bobot kering
total baik karena rendahnya jumlah dan bobot segar umbi, maupun karena rendahnya bobot kering per satuan bobot segar.

Dari pengujian faktor saat penanaman terhadap hasil dan bobot kering umbi dapat diperoleh keterangan bahwa saat pemberian naungan umumnya kurang mempengaruhi hasil umbi. Walaupun demikian terdapat kecenderungan bahwa semakin awal saat pemberian naungan (sejak 7 MST), terutama pada intensitas naungan tinggi (50 persen), hasil umbi semakin rendah.

KESIMPULAN DAN SARAN

Hasil umbi dipengaruhi intensitas naungan, semakin tinggi intensitas naungan (sampai 50 persen), maka hasil umbi semakin menurun. Intensitas naungan 25 persen menurunkan hasil umbi yang dapat dipasarkan sebesar 42 persen, sedangkan hasil umbi total hanya menurun 24 persen. Intensitas naungan 50 persen menurunkan hasil umbi yang dapat dipasarkan sebesar 63 persen dan hasil umbi total 50 persen. Hasil umbi dapat dipasarkan dan total dalam perlakuan tanpa naungan berturut-turut 5,75 dan 13,44 ton/ha.

Saat pemberian naungan umumnya kurang mempengaruhi hasil umbi tetapi terdapat kecenderungan bahwa semakin awal saat penanaman (7 MST), terutama pada intensitas naungan tinggi (50 persen), hasil umbi semakin rendah.
Berdasarkan hasil percobaan, apabila ubi jalar akan ditumpangsarikan dengan tanaman yang menaungi sampai 25 persen, penanaman tanaman tersebut dapat lebih awal atau bersamaan waktu-nya dengan ubi jalar. Bila ditumpangsarikan dengan tanaman yang menaungi sampai 50 persen, perlu diusahakan agar penaaungan terjadi sesudah ubi jalar berumur 11 minggu.

DAFTAR PUSTAKA

Gambar 1. Hubungan antara Intensitas Naungan dengan Berat dan Jumlah Umbi Total (\bar{Y}_0), Berat Umbi Dapat Dipasarkan (\bar{Y}_1), dan Berat Umbi Tidak dapat Dipasarkan (\bar{Y}_2).

(Figure 1 The Shade Intensity Relation to Weight and Number of Total Tuber (\bar{Y}_0), Marketable Tuber (\bar{Y}_1), and Unmarketable Tuber (\bar{Y}_2).)

\[\bar{Y}_0 = 13.5083 - 0.1346 \times X \]
\[r = -0.9995 \]
\[\bar{Y}_1 = 5.5528 - 0.0728 \times X \]
\[r = -0.9822 \]
\[\bar{Y}_2 = 7.9550 - 0.0619 \times X \]
\[r = -0.9591 \]

\[\bar{Y}_0 = 156.724 - 1.389 \times X \]
\[r = -0.9970 \]
\[\bar{Y}_1 = 28.704 - 3.76 \times X \]
\[r = -0.9815 \]
\[\bar{Y}_2 = 128.020 - 1.013 \times X \]
\[r = -0.9843 \]