DAFTAR PUSTAKA

Chantalakhana, C. 1979. Breeding improvement of swamp buffalo for small farm in South East Asia. FFTC/ASPAC Seminar Paper on Increasing Buffalo Production for Small Farm, Kasetsart University, Bangkok, Thailand.

Lawrence, P.R., and I. Campbell. 1987. The resting metabolism, rate of methane production and long term RQ of draught oxen. Draught Animal News, Centre for Tropical Veterinary Medicine, University of Eidenburg, Scotland, 8:1-3.
Lawrence, P.R., and R.J. Stibbards. 1985. The energy cost of walking and carrying loads on flat surfaces by oxen and buffalo. J. Agric. Sci.

1. Selama penelitian ini, penelitian dilakukan di laboratorium peternakan dan laboratorium kimia, dengan menggunakan teknik statistik.

2. Hasil penelitian ini dapat digunakan untuk penelitian lanjutan di bidang peternakan dan kimia.

Lampiran 1. Perhitungan Ekstra Energi Kerja dan Kebutuhan Pemberian Dedak Padi

Kebutuhan ekstra energi untuk aktivitas kerja

= Energi untuk jalan + Energi untuk menarik beban

= \(AFM + \frac{W}{C} \) (Lawrence, 1985)

Keterangan:

\(E \) = energi ekstra untuk aktivitas kerja (kJ)
\(A \) = energi yang dipakai untuk memindahkan 1 kg bobot badan sejauh 1 meter mendatar (J)
\(F \) = jarak yang ditempuh (m)
\(M \) = bobot badan (kg)
\(W \) = kerja yang dilakukan sambil menarik beban (kJ)
\(C \) = efisiensi kerja mekanik yang dilakukan

\(C \) telah diukur oleh Lawrence (1985) memakai harness tunggal = 0.389 ± 0.010

Selanjutnya, beban kerja pada kerbau di laboratorium diberikan dengan dasar hasil pengamatan tatalaksana membajak tanah sawah di sekitar daerah Bogor, sebagai berikut

Energi untuk jalan = \(AFM \)

\[= (2.0)(6,000)(300) \]
\[= 3.6 \text{ MJ} \]
Energi untuk menarik beban = \(\frac{W}{C} \)

\[\text{Energi untuk menarik beban} = \frac{\text{(beban tarikan x jarak x 9.8)}}{0.39} \]

\[= \frac{(40 \, \text{kg} \times 6000 \, \text{m} \times 9.8 \, \text{m/det})}{0.39} \]

\[= 6430 \, 769.23 \, \text{kJ} \]

\[= 6.0 \, \text{MJ} \]

Ekstra energi kerja = Energi untuk jalan + Energi untuk menarik beban

\[= 3.6 \, \text{MJ} + 6.0 \, \text{MJ} \]

\[= 9.6 \, \text{MJ} \]

Jumlah penambahan dedak padi dihitung sebagai berikut:

Kandungan energi 1 kg dedak padi = 13.7 MJ ME

Ekstra energi kerja = 9.6 MJ

Jadi jumlah kebutuhan penambahan dedak padi untuk energi kerja = \(\frac{9.6}{13.7} \times 1000 \, \text{g} = 700 \, \text{g} \) (dedak padi kualitas baik).
Tabel Lampiran 2. Rataan Hasil Analisis Proksimat Bahan Pakan (Percobaan I)

<table>
<thead>
<tr>
<th></th>
<th>Rumput Lapang</th>
<th>Jerami Padi</th>
<th>Dedak Padi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kandungan Rumpu (0.000)</td>
<td>25.4</td>
<td>30.9</td>
<td>88.8</td>
</tr>
<tr>
<td>Kandungan Jerami (0.000)</td>
<td>89.7</td>
<td>75.3</td>
<td>86.6</td>
</tr>
<tr>
<td>Kandungan Dedak (0.000)</td>
<td>1.3</td>
<td>0.9</td>
<td>1.8</td>
</tr>
<tr>
<td>Nitrogen (0.000)</td>
<td>16.1</td>
<td>12.5</td>
<td>16.25</td>
</tr>
<tr>
<td>Energi (MJ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bahan Pakan (Percobaan 11)</td>
<td>Kandungan Lapangan Pad</td>
<td>Kandungan Padkapuk</td>
<td>Kandungan Bahan Kering (X)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Rumput Lanpiran 3</td>
<td>14.80</td>
<td>22.50</td>
<td>23.40</td>
</tr>
<tr>
<td>Jerami</td>
<td>21.50</td>
<td>24.86</td>
<td>24.70</td>
</tr>
<tr>
<td>Dedak</td>
<td>18.50</td>
<td>24.86</td>
<td>24.70</td>
</tr>
<tr>
<td>Biji Kapuk</td>
<td>20.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kerja</td>
<td>Tidak Kerja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>R2</td>
<td>R3</td>
<td>R1</td>
</tr>
<tr>
<td>255.5</td>
<td>247.5</td>
<td>267</td>
<td>258</td>
</tr>
<tr>
<td>284</td>
<td>281</td>
<td>282</td>
<td>266.5</td>
</tr>
<tr>
<td>320</td>
<td>312</td>
<td>282.5</td>
<td>296</td>
</tr>
<tr>
<td>325</td>
<td>333.5</td>
<td>322</td>
<td>379</td>
</tr>
</tbody>
</table>

Rataan: 296.13 293.50 288.38 399.88 295.25 292.25

Keterangan:
- **R1** = perlakuan tanpa pakan tambahan
- **R2** = perlakuan pemberian 750 g dedak padi/ekor/hari
- **R3** = perlakuan pemberian 1500 g dedak padi/ekor/hari
Lampiran 5. Ukuran Bobot Badan Awal pada Percobaan II

<table>
<thead>
<tr>
<th>Kerja</th>
<th>Tidak Kerja</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP</td>
<td>Bk.BKp</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>245</td>
<td>216</td>
</tr>
<tr>
<td>262</td>
<td>251</td>
</tr>
<tr>
<td>266</td>
<td>266</td>
</tr>
<tr>
<td>300</td>
<td>313</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Rataan</td>
<td>--------------</td>
</tr>
<tr>
<td>268.25</td>
<td>267</td>
</tr>
</tbody>
</table>

Keterangan:
- TP = tanpa pakan tambahan
- DP = pemberian 750 g dedak padi/ekor/hari
- Bk. BKp = pemberian 500 g bungkil biji kapuk/ekor/hari
- DP+Bk.BKp = pemberian kombinasi 750 g dedak padi dan 500 g bungkil biji kapuk/ekor/hari
<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>Ulangan</th>
<th>Jumlah</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>KO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>Y 8.28</td>
<td>9.44</td>
</tr>
<tr>
<td></td>
<td>X 258</td>
<td>266.5</td>
</tr>
<tr>
<td>R2</td>
<td>Y 7.97</td>
<td>7.83</td>
</tr>
<tr>
<td></td>
<td>X 256</td>
<td>272</td>
</tr>
<tr>
<td>R3</td>
<td>Y 7.11</td>
<td>7.55</td>
</tr>
<tr>
<td></td>
<td>X 229</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jumlah Y</td>
<td>107.6</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>3549.5</td>
<td></td>
</tr>
</tbody>
</table>

\[Y = \text{jumlah konsumsi BK ransum basal (kg/ekor/hari)}\]
\[X = \text{bobot badan awal (kg)}\]
\[K0 = \text{perlakuan tidak kerja}\]
\[K1 = \text{perlakuan pemberian beban kerja}\]
\[R1 = \text{perlakuan tanpa pakan tambahan}\]
\[R2 = \text{perlakuan pemberian 750 g dedak padi/ekor/hari}\]
\[R3 = \text{perlakuan pemberian 1500 g dedak padi/ekor/hari}\]