PENGARUH PENGHEMATAN ENERGI
DENGAN CARA PEMBERIAN MAKANAN TERBATAS
TERHADAP PERFORMANS AYAM PETELUR TIPE MEDIUM
PADA KANDANG SISTEM LITTER DAN CAGE

Oleh:
RUMYAT KARTASUDJANA

FAKULTAS PASCA SARJANA
INSTITUT PERTANIAN BOGOR
1983
RINGKASAN

RUHYAT KARTASUDJANA. Pengaruh Penghematan Energi dengan cara Pemberian Makanan Terbatas terhadap Performans Ayam Petelur Tipe Medium pada Kandang Sistem Litter dan "Cage" (Komisi penasehat : JUJU WAHJU sebagai ketua, DAWAN SUGANDI, HARIMURTI MARTOJO, ANDI HAKIM NASOETION sebagai anggota).

Telah dilakukan penelitian tentang penghematan energi dengan sistem pemberian makanan terbatas pada ayam tipe medium sejak masa "developer" sampai dengan akhir produksi, di Perusahaan Ternak Unggas Ciawi Bogor (dikenal dengan nama Anso Poultry Farm) yang dimulai sejak bulan Maret 1980 sampai dengan bulan Juni 1981.

dengan ad libitum, 90% dari ad libitum dan 80% dari jumlah ad libitum. Untuk mengetahui konsumsi ransum ad libitum, dilakukan penelitian pendahuluan. Penghitungan kebutuhan energi untuk hidup pokok digunakan rumus Scott (1976) yaitu \[1.22 \times 83 \times W_{0.75}^{0.75} \text{ kcal.} \]

Hasil analisa data dan pembahasan menunjukkan bahwa ransum yang dianjurkan NRC (1971) dengan energi 2900 kcal/kg dan protein 15%, untuk ayam tipe medium masa "developer" cara memberikan ransumnya perlu dikurangi untuk menghemat energi. Pemberian ransum sebanyak 90% dari ad libitum, merupakan cara terbaik untuk memperoleh berat badan dan umur mencapai dewasa kelamin yang optimal. Kebutuhan energi di- daerah tropik, lebih rendah bila dibandingkan dengan daerah
beriklim sedang. Penentuan kebutuhan energi berdasarkan perhitungan Scott (1976), tidak bisa digunakan untuk daerah tropik. Antara ayam petelur yang diberi ransum ad libitum dan 90% dari ad libitum, produksi telur yang dihasilkan tidak berbeda nyata. Ransum dengan energi metabolis 2850 dan 2650 kkal/kg yang digunakan selama periode produksi, tidak mempengaruhi produksi telur maupun konversi ransum. Konversi ransum yang paling tinggi dengan pengertian buruk yaitu pada pemberian ransum 80% dari ad libitum untuk Super Harco yang dipelihara dalam kandang sistem litter ($P < 0.05$). Antara pemberian ransum lainnya tidak berbeda nyata. Makin tinggi derajat pengurangan ransum, konsumsi air minum makin meningkat ($P < 0.05$). Ransum dengan energi 2650 kkal/kg, dengan disertai pemberian ransum 90% dari ad libitum, untuk strain Shaver lebih menguntungkan bila dipelihara dalam kandang sistem "cage". Besarnya keuntungan tersebut Rp 927/ekor/tahun (16%) lebih tinggi dari ayam petelur yang diberi ransum dengan ad libitum. Ransum dengan energi 2850 kkal/kg yang disertai dengan pemberian ransum 90% dari ad libitum, untuk strain Super Harco lebih menguntungkan bila dipelihara dalam kandang sistem litter. Besarnya keuntungan tersebut Rp 935/ekor/tahun (19%) lebih tinggi dari ayam petelur yang diberi ransum dengan ad libitum.
PENGARUH PENGHEMATAN ENERGI
DENGAN CARA PEMBERIAN MAKANAN TERBATAS
TERHADAP PERFORMANS AYAM PETELUR TIPE MEDIUM
PADA KANDANG SISTEM LITTER DAN CAGE

Oleh :
RUHYAT KARTASUDJANA

Disertasi sebagai salah satu syarat untuk memperoleh gelar
Doktor
pada
Fakultas Pasca Sarjana Institut Pertanian Bogor

JURUSAN ILMU TERNAK

Bogor
1982
Judul Disertasi: PENGARUH PENGHEMATAN ENERGI DENGAN CARA
PEMBERIAN MAKANAN TERBATAS TERHADAP
PERFORMANS AYAM PETELUR TIPE MEDIUM
PADA KANDANG SISTEM LITTER DAN CAGE

Nama: RUHYAT KARTASUDJANA
Nomor pokok: 78518

Menyetujui
l. Komisi Penasehat

[Signature]
(Prof. Dr. Juju Wahju)

[Signature]
(Prof. Dr. Dawan Sugandi) (Prof. Dr. Harimurti Martujo)

[Signature]
(Prof. Dr. Andi Hakim Nasoetion)

[Seal]
Fakultas Pasca Sarjana

[Signature]
(Edi Guhardja)

Tanggal pelantikan:
RIWAYAT HIDUP SINGKAT

UCAPAN TERIMAKASIH

Dengan selesainya tesis ini, penulis memanjatkan puji syukur kepada Tuhan yang Maha Pengasih dan Penyayang berkat rakhmat dan lindunganNya. Pada kesempatan ini pula penulis menyampaikan ucapan terimakasih yang sedalam-dalamnya kepada mereka yang telah turut mendidik penulis sejak sekolah dasar sampai tamat di Perguruan Tinggi. Sesungguhnya atas jerih payah merekalah yang telah memberikan arah serta landasan yang kokoh hingga terbukanya kesempatan untuk dapat mengikuti program pendidikan lebih lanjut.

Penulis sadari sepenuhnya betapa miskin perbendaharaan kata yang dimiliki, untuk menyampaikan penghargaan dan tanda terimakasih kepada mereka yang telah melimpahkan tenaga maupun fikiran untuk kemajuan penulis. Sekalipun demikian izinkanlah untuk menyampaikan ungkapan hati yang penuh ketulusan.

Kepada Bapak Prof. Dr. Andi Hakim Nasoetion, Rektor/Ketua Senat Guru Besar serta para Anggota Senat Guru Besar Institut Pertanian Bogor, penulis menyampaikan ucapan terimakasih yang telah mengizinkan dan dapat menerima karya ilmiah ini.

Ucapan terimakasih disampaikan pula buat Bapak Dr.Edi Guhardja sebagai Dekan Fakultas Pasca Sarjana, yang telah memberikan kesempatan kepada penulis untuk dapat mengikuti
pendidikan Program Doktor di Lingkungan Fakultas Pasca
Sarjana IPB.

Kepada Bapak Ketua Komisi Prof. Dr. Juju Wahju yang
penulis muliakan, yang telah begitu besar memperhatikan
untuk kemajuan penulis dan juga telah mendidik penulis se-
jak mulai mahasiswa sampai dengan penyelesaian karya ilmi-
ah ini. Oleh karena itu izinkanlah untuk menyampaikan be-
berapa patah kata. Sungguh besar pengorbanan yang telah
Bapak berikan baik tenaga, waktu maupun fikiran dan materi
yang telah dilimpahkan. Pada saat-saat sulitnya mencari
tempat penelitian dan saat yang paling kritis dalam penyu-
sunan tesis ini, hanya berkat pertolongan dan perjuangan
Bapak kesemuanya itu dapat diselesaikan. Segala keikhlas-
an Bapak selama mengasuh dan membina penulis sejak mulai
penelitian sampai dengan mendiskusikan serta penelaahan
hasilnya hingga tersusun menjadi bentuk tesis, merupakan
jasa yang tak akan pernah terlupakan selama hayat. Sung-
guh besar jasa yang tertanam pada diri penulis sekeluarga,
sebaliknya imbalan penulis hanya satu-satunya ucapan teri-
makasih dengan penuh harapan semoga Tuhan dapat membela
semua kebaikan Bapak. Pengorbanan Bapak ternyata merupakan
pengorbanan yang tidak lepas dari pengorbanan keluarga
Bapak. Begitu banyak waktu dan tenaga yang seharusnya di-
prioritaskan untuk keluarga Bapak, telah dialihkan untuk
kepentingan penulis. Melalui kesempatan ini penulis meng-
haturkan banyak terimakasih atas segala pengertian dan ke-
tulusan hati keluarga Bapak, yang sekaligus menyampaikan permohonan maaf yang sebesar-besarnya.

Kepada Bapak Prof. Dr. Dawan Sugandi sebagai Anggota Komisi, yang telah memberikan petunjuk-petunjuknya yang sangat berharga dan telah menambah penyempurnaan dari tesis ini, penulis menghaturkan banyak terimakasih. Tanpa bantuan beliau sulit bagi penulis untuk dapat menyusun tesis ini. Kesabaran, ketabahan dan keterbukaan Beliau dalam membina penulis, merupakan sesuatu yang tak mudah terlupakan.

Kepada Bapak Prof. Dr. Harimurti Martojo sebagai Anggota Komisi, yang selalu menyediakan waktu untuk turut serta menyempurnakan dan menambah bobot karya ilmiah ini, penulis menyampaikan ucapan terimakasih. Berkat petunjuk-petunjuknya yang amat berharga maka karya ilmiah ini dapat diselesaikan sebagaimana yang diharapkan.

Kepada Bapak Prof. Dr. Andi Hakim Nasonion sebagai Anggota Komisi, yang telah memberikan petunjuk-petunjuknya sejak mulai penelitian sampai dengan pengolahan dan penelaahan hasilnya, penulis mengucapkan terimakasih. Hanya berkat bantuanannya yang telah dilimpahkan kepada penulis maka tesis ini dapat disusun.

Kepada Bapak Dr. Ir. A.A. Mattjik, yang telah menel- ah dan memberikan pengarahan dalam pengolahan hasil dari penelitian ini, penulis mengucapkan terimakasih yang tak terhingga.
Kepada Ir. Bob Sulystio yang telah banyak membantu mencari tempat penelitian, penulis menyampaikan ucapan terimakasih dan penghargaan yang setinggi-tingginya.

Untuk Nyonya Lydia Mukri Senduk sekeluarga, yang telah menyediakan tempat penelitian dan fasilitas lainnya, penulis menyampaikan ucapan terimakasih. Berkat perhatian dan dukungan materi yang telah diberikan kepada penulis, penelitian ini dapat diselesaikan sesuai dengan rencaan semula.

Kepada fihak Konsorsium Ilmu-ilmu Pertanian yang telah membantu mengusahakan untuk mendapat biaya dari MUCIA -AID, untuk hal ini maka pada tempatnya penulis mengucapkan banyak terimakasih kepada Bapak Prof. Dr. Kusmat yang telah menyelesaikan dan menangani masalah tersebut.

Kepada fihak TMPD yang telah memberikan bantuan biaya terakhir dalam penyelesaian tesis ini, untuk itu penulis mengucapkan terimakasih kepada Bapak Prof. Dr. Juhara Sukra yang telah membantu dalam penyelesaiannya.

Ucapan terimakasih ini disampaikan pula untuk Bapak Drh. Sugyo Hastowo M.Sc. yang telah susah payah mengatur, membantu memperlancar biaya penelitian dan biaya hidup penulis.

Khusus kepada Bapak Prof. Dr. Didi Atmadilaga, Dekan Fakultas Peternakan Universitas Padjadjaran, yang telah memberikan kesempatan kepada penulis untuk mengikuti pendidikan di IPB, atas segala kebijaksanaan yang telah di-
tempuh pada masa jabatannya penulis menghaturkan banyak terimakasih.

Kepada Bapak Dr. Sutarman Mihardja DEA, sebagai Dekan Fakultas Peternakan yang baru, yang telah memberikan kesempatan dan dorongan semangat dalam penyelesaian terakhir dari tesis ini penulis mengucapkan terimakasih.

Kepada Ir. Ade Faturrochmat, Ir. Siti Nuramalati Priyono dan Ir. Ella Hendalia Soetadiwiarna yang selagi menjadi mahasiswa/mahasiswi telah ikut serta menyumbangkan tenaganya dalam penelitian ini, atas segala pengorbanannya penulis mengucapkan terimakasih.

Ucapan terimakasih disampaikan pula untuk Ir. Karnaen yang telah banyak membantu dalam pengolahan data hasil penelitian ini. Berkat bantuannya maka pengolahan data tersebut dapat berjalan lancar.

Kepada Ir. Syafril Darana sebagai Kepala Laboratorium Ternak Unggas Fakultas Peternakan Unpad, Ir. Dulatip Natawiardja, Ir. Komot Heruwatno sebagai teman sejawat, penulis mengucapkan terimakasih atas segala pengorbanannya untuk menggantikan tugas sehari-hari selama penulis menjadi peserta program pendidikan di IPB.

Kepada Ayah dan Ibu, penulis menghaturkan sembah su-
judul sebagai tanda cinta dan terimakasih atas segala dorongan serta pengorbanannya selama penulis mengikuti pendidikan di IPB.

Akhirnya untuk istri dan anak-anak tercinta, dengan selesainya teks ini semoga merupakan awal terbukanya kehidupan baru bagi kita bersama.
DAFTAR ISI

Halaman

DAFTAR TABEL ...
DAFTAR ILUSTRASI ...
PENDAHULUAN ... 1
TINJAUAN PUSTAKA ... 8
 Tinjauan terhadap Ayam Petelur Akibat Kelebihan Konsumsi Energi 8
 Makna Pemberian Makanan Terbatas (Restricted Feeding) 13
 Konsumsi Zat-zat Makanan dalam Sistem Pemberian Makanan Terbatas 15
 Berbagai Metoda Pemberian Makanan Terbatas dan Pengaruhnya terhadap Performans ... 17
 Hubungan antara Temperatur Lingkungan dan Pemberian Makanan Terbatas 25
 Hubungan antara Metabolisme Energi, Temperatur Lingkungan, Makanan dan Hereditas ... 26
 Faktor-faktor yang Penting Diperhatikan dalam Melaksanakan Pemberian Makanan Terbatas ... 31

BAHAN DAN METODA PENELITIAN ... 34
 Ayam Percobaan ... 34
 Sistem Kandang ... 34
 Ransum ... 34
 Penempatan Ayam ke dalam Kandang ... 36
 Cara Pemberian Ransum dan Air Minum ... 36
 Pencegahan Penyakit .. 37
Halaman

Peubah yang Diamati ... 38
Rancangan Lingkungan ... 41
Waktu dan Tempat Penelitian 42
HASIL DAN PEMBAHASAN 43
Kebutuhan dan Konsumsi Protein pada Masa Developer 43
Kebutuhan dan Konsumsi Energi pada Masa Developer 46
Pengaruh Konsumsi Protein dan Energi terhadap Berat Badan dan Umur Mencapai Dewasa Kelamin 49
Konsumsi Protein pada Periode Produksi untuk Tiap Jumlah Pemberian Ransum 55
Kebutuhan dan Konsumsi Energi pada Periode Produksi untuk Tiap Jumlah Pemberian Ransum 57
Pengaruh Konsumsi Protein dan Energi terhadap Produksi Telur 62
Berat Telur ... 76
Konversi Ransum pada Periode Produksi 82
Konsumsi Air Minum pada Periode Produksi 87
Kematian pada Masa Developer dan pada Periode Produksi 94
Tinjauan Ekonomi .. 100
KESIMPULAN ... 100
DAFTAR PUSTAKA .. 109
LAMPIRAN ... 116
<table>
<thead>
<tr>
<th>Nomor</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Susunan Ransum yang Digunakan dalam Penelitian</td>
<td>35</td>
</tr>
<tr>
<td>2.</td>
<td>Hasil Analisa Ransum yang Digunakan dalam Penelitian</td>
<td>36</td>
</tr>
<tr>
<td>3.</td>
<td>Kebutuhan Protein dan Konsumsi Protein Rata-rata per Ekor per Hari pada Masa Developer untuk Berbagai Jumlah Pemberian Ransum</td>
<td>44</td>
</tr>
<tr>
<td>5.</td>
<td>Berat Badan dan Umur Mencapai Dewasa Kelamin pada Berbagai Jumlah Pemberian Ransum dalam Kandang Sistem Litter dan Cage</td>
<td>50</td>
</tr>
<tr>
<td>8.</td>
<td>Kebutuhan dan Konsumsi Energi per Ekor per Hari selama Periode Produksi pada Berbagai Jumlah Pemberian Ransum untuk Strain Shaver dan Super Harco dalam Kandang Sistem Litter maupun Cage dengan Energi Ransum 2650 kkal/kg</td>
<td>60</td>
</tr>
<tr>
<td>9.</td>
<td>Produksi Rata-rata (hen-day%) pada Berbagai Jumlah Pemberian Ransum untuk Strain Shaver dalam Kandang Sistem Litter dengan Interval Pengamatan 28 Hari</td>
<td>63</td>
</tr>
</tbody>
</table>
10. Produksi Rata-rata (hen-day%) pada Berbagai Jumlah Pemberian Ransum untuk Strain Shaver dalam Kandang Sistem Cage dengan Interval Pengamatan 28 Hari ... 64

11. Produksi Rata-rata (hen-day%) pada Berbagai Jumlah Pemberian Ransum untuk Strain Super Harco dalam Kandang Sistem Litter dengan Interval Pengamatan 28 Hari 65

12. Produksi Rata-rata (hen-day%) pada Berbagai Jumlah Pemberian Ransum untuk Strain Super Harco dalam Kandang Sistem Cage dengan Interval Pengamatan 28 Hari 66

15. Berat Telur Rata-rata yang Dihasilkan Strain Super Harco yang Dipelihara dalam Kandang Sistem Litter pada Berbagai Jumlah Pemberian Ransum dengan Interval Pengamatan 28 Hari ... 79

16. Berat Telur Rata-rata yang Dihasilkan Strain Super Harco yang Dipelihara dalam Kandang Sistem Cage pada Berbagai Jumlah Pemberian Ransum dengan Interval Pengamatan 28 Hari ... 80

Nomor	Halaman
18. Konversi Ransum Rata-rata pada Berbagai Jumlah Pemberian Ransum untuk Strain Shaver yang Dipelihara dalam Kandang Sistem Cage dengan Interval Pengamatan 28 Hari | 84
22. Rata-rata Konsumsi Air Minum per Ekor per Hari selama Periode Produksi pada Berbagai Jumlah Pemberian Ransum untuk Strain Shaver dalam Kandang Sistem Cage dengan Interval Pengamatan 28 Hari (ml/ekor/hari) | 89
23. Rata-rata Konsumsi Air Minum per Ekor per Hari selama Periode Produksi pada Berbagai Jumlah Pemberian Ransum untuk Strain Super Harco dalam Kandang Sistem Litter dengan Interval Pengamatan 28 Hari (ml/ekor/hari) | 90
24. Rata-rata Konsumsi Air Minum per Ekor per Hari selama Periode Produksi pada Berbagai Jumlah Pemberian Ransum untuk Strain Super Harco dalam Kandang Sistem Cage dengan Interval Pengamatan 28 Hari (ml/ekor/hari) | 91
25. Angka Kematian Rata-rata pada Berbagai Jumlah Pemberian Ransum untuk Strain Shaver dalam Kandang Sistem Litter dengan Interval Pengamatan 28 Hari(%) | 95
Nomor | Halaman
---|---
27. Angka Kematian Rata-rata pada Berbagai Jumlah Pemberian Ransum untuk Strain Super Harco dalam Kandang Sistem Litter dengan Interval Pengamatan 28 Hari (%) | 97
29. Harga Bahan-bahan Makanan selama Penelitian Berlangsung | 101
30. Pengaruh Pemberian Makanan Terbatas terhadap Keuntungan Rata-rata per Ekor per Tahun (Income Over Feed cost) sejak Masa Developer sampai dengan Akhir Produksi untuk Strain Shaver dalam Kandang Sistem Litter dan Cage | 102
31. Pengaruh Pemberian Makanan Terbatas terhadap Keuntungan Rata-rata per Ekor per Tahun (Income Over feed cost) sejak Masa Developer sampai dengan Akhir Produksi untuk Strain Super Harco dalam Kandang Sistem Litter dan Cage | 103

Lampiran

1. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Shaver Masa Developer dengan Pemberian Ransum Ad libitum dalam Kandang Sistem Litter | 116
2. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Shaver Masa Developer dengan Pemberian Ransum 90% dari Ad libitum dalam Kandang Sistem Litter | 117
3. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Shaver pada Masa Developer dengan Pemberian Ransum 80% dari Ad libitum dalam Kandang Sistem Litter 118

4. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Shaver Masa Developer dengan Pemberian Ransum Ad libitum dalam Kandang Sistem Cage 119

5. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Shaver Masa Developer dengan Pemberian Ransum 90% dari Ad libitum dalam Kandang Sistem Cage 120

6. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Shaver Masa Developer dengan Pemberian Ransum 80% dari Ad libitum dalam Kandang Sistem Cage 121

8. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Super Harco Masa Developer dengan Pemberian Ransum 90% dari Ad libitum dalam Kandang Sistem Litter 123

9. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Super Harco Masa Developer dengan Pemberian Ransum 80% dari Ad libitum dalam Kandang Sistem Litter 124

10. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Super Harco Masa Developer dengan Pemberian Ransum Ad libitum dalam Kandang Sistem Cage 125

11. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Super Harco Masa Developer dengan Pemberian Ransum 90% dari Ad libitum dalam Kandang Sistem Cage 126
12. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Super Harco Masa Developer dengan Pemberian Ransum 80% dari Ad libitum dalam Kandang Sistem Cage

15. Berat Badan Rata-rata Strain Super Harco pada Berbagai Jumlah Pemberian Ransum dalam Kandang Sistem Litter dengan Interval Pengamatan 28 Hari (gram)

17. Konsumsi Ransum Rata-rata per Ekor per Hari pada Berbagai Jumlah Pemberian Ransum untuk Strain Shaver selama Periode Produksi dalam Kandang Sistem Litter dengan Interval Pengamatan 28 Hari (gram)

18. Konsumsi Ransum Rata-rata per Ekor per Hari pada Berbagai Jumlah Pemberian Ransum untuk Strain Super Harco selama Periode Produksi dalam Kandang Sistem Cage dengan Interval Pengamatan 28 Hari (gram)

24. Konsumsi Protein Rata-rata pada Berbagai Jumlah Pemberian Ransum untuk Strain Super Harco selama Periode Produksi dalam Kandang Sistem Cage dengan Interval Pengamatan 28 Hari (gram/ekor/hari) .. 139

29. Daftar Sidik Ragam untuk Produksi Rata-rata (hen-day%) ... 144

30. Daftar Sidik Ragam untuk Berat Telur 145

31. Daftar Sidik Ragam untuk Konversi Ransum 146

32. Daftar Sidik Ragam untuk Konsumsi Air Minum ... 147

33. Pengujian Penyebaran Angka Kematian dengan "Independence test" 148

34. Kelembaban dan Temperatur Harian Rata-rata dalam Kandang Sistem Cage 150

35. Kelembaban dan Temperatur Harian Rata-rata dalam Kandang Sistem Litter 151
<table>
<thead>
<tr>
<th>Nomor</th>
<th>DAFTAR ILUSTRASI</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pertambahan Berat Badan Rata-rata per Ekor per Minggu untuk Strain Shavor pada Masa Developer dalam Kandang Sistem Litter dan Cage</td>
<td>53</td>
</tr>
<tr>
<td>2.</td>
<td>Pertambahan Berat Badan Rata-rata per Ekor per Minggu untuk Strain Super Harco pada Masa Developer dalam Kandang Sistem Litter dan Cage</td>
<td>54</td>
</tr>
<tr>
<td>3.</td>
<td>Produksi Rata-rata (hen-day%) pada Berbagai Jumlah Pemberian Ransum II dan Ransum III untuk Strain Shaver dalam Kandang Sistem Litter dengan Interval Pengamatan 28 Hari</td>
<td>72</td>
</tr>
<tr>
<td>4.</td>
<td>Produksi Rata-rata (hen-day%) pada Berbagai Jumlah Pemberian Ransum II dan Ransum III untuk Strain Super Harco dalam Kandang Sistem Cage dengan Interval Pengamatan 28 Hari</td>
<td>73</td>
</tr>
<tr>
<td>5.</td>
<td>Produksi Rata-rata (hen-day%) pada Berbagai Jumlah Pemberian Ransum II dan Ransum III untuk Strain Super Harco dalam Kandang Sistem Litter dengan Interval Pengamatan 28 Hari</td>
<td>74</td>
</tr>
<tr>
<td>6.</td>
<td>Produksi Rata-rata (hen-day%) pada Berbagai Jumlah Pemberian Ransum II dan Ransum III untuk Strain Super Harco dalam Kandang Sistem Cage dengan Interval Pengamatan 28 Hari</td>
<td>75</td>
</tr>
</tbody>
</table>
PENDAHULUAN

Dengan bertambahnya pendapatan per kapita per tahun sebagai akibat berhasilnya pembangunan nasional, maka susunan konsumsi keluarga mengalami pergeseran dari bahan pangan nabati ke bahan pangan hevani. Kesemuanya itu merupakan tantangan bagi subsektor peternakan untuk lebih meningkatkan produksinya. Apalagi bila dikaitkan dengan program pemerintah untuk mengejar kebutuhan standar lima gram protein per kapita per hari yang masih jauh dari jangkauan.

Keadaan tersebut di atas cocongguhnya merupakan peluang yang cukup besar bagi para pengusaha ternak unggas khususnya ayam petelur, untuk membangun dan mengembangkan dalam rangka usaha membantu mempersempit kesenjangan protein yang berpacu dengan meningkatnya jumlah penduduk. Namun demikian usaha untuk meningkatkan produksi ini sering menghadapi masalah yang sangat kompleks, tidak saja masalah zooteknik yang belum berkembang sebagaimana mestinya juga menghadapi masalah ekonomi yang menjadi hambatan. Hal ini selalu menuntut penyempurnaan teknologi dan pemecahan masalahnya lebih lanjut.

Peningkatan produksi ternak umumnya dapat ditempuh melalui perbaikan mutu genetik dan lingkungan. Didatangkannya ayam petelur bibit unggul dari luar negri merupakan salah satu upaya untuk mengatasi perbaikan mutu genetik tadi. Bibit unggul ini sangat responsif terhadap
setiap perubahan teknologi baru dan dalam waktu yang pendek cepat berproduksi secara efektif dan efisien. Dengan demikian yang selalu menjadi masalah yaitu faktor lingkungan. Di antara faktor lingkungan yang langsung ditangani pengusaha yaitu mengenai makanan dan pengelolaannya. Faktor iklim yang juga merupakan faktor pembeda terpenting antara daerah tropik dan daerah yang beriklim sedang pengaturannya masih di luar kemampuan peternak.

Untuk ayam petelur tipe medium yang mempunyai bobot badan dewasa 2.5 kg, diperlukan konsumsi energi yang lebih tinggi bila dibandingkan dengan ayam petelur tipe ringan. Menurut Scott (1976), untuk mencapai produksi yang optimal ayam tersebut memerlukan konsumsi energi 360 kkal /ekor/hari untuk daerah yang beriklim sedang. Kebutuhan konsumsi energi untuk daerah penelitian dengan lingkungan temperatur antara 21 - 30°C, untuk mencapai produksi yang optimal ternyata belum diperoleh data yang jelas. Lebih lanjut dijelaskan Scott (1976), bahwa untuk menentukan kebutuhan energi bagi ayam petelur secara tepat umumnya masih sangat sulit.

Dengan meningkatnya jumlah peminat ternak unggas di Indonesia terhadap ayam petelur tipe medium maka timbul masalah dalam penggunaan ransum standar tersebut. Hal ini disebabkan karena ayam petelur tipe medium dan ayam tipe ringan mempunyai sifat yang berbeda. Ayam petelur tipe

Untuk mengatasi permasalahan tersebut di atas, maka perlu adanya salah satu bentuk pengurangan energi yang
dikonsumsi pada saat menjelang berproduksi maupun pada periode bertelur (Costa, 1978). Dalam hal ini salah satu sistem pemberian makanan terbatas, merupakan cara terbaik untuk memperoleh pertumbuhan yang tidak terlalu cepat pada saat menjelang bertelur dan umur mencapai dewasa kelamin dapat diperlambat. Di samping itu produksi telur yang dihasilkan tidak berbeda dengan produksi telur yang dihasilkan oleh ayam petelur yang diberi ransum dengan ad libitum bahkan biaya energi makanan lebih hemat.

Adapun masalah lain bagi daerah tropik yang mempunyai temperatur lingkungan yang relatif tinggi, umumnya ayam petelur cenderung mengkonsumsi ransum lebih rendah bila dibandingkan dengan di daerah beriklim sedang. Sehubungan dengan hal ini, sampai berapa jauh pengurangan energi ransum ini dapat dilakukan untuk daerah beriklim tropik masih diperlukan penelitian lebih lanjut. Untuk daerah yang ada di daerah beriklim sedang, sebagian besar peneliti menggunakan kebutuhan energi untuk hidup pokok sebagai dasar
perhitungan. Dengan demikian jumlah pengurangan energi dalam ransum dapat disesuaikan dengan kebutuhan.

Untuk menghitung kebutuhan energi hidup pokok menurut Brody (1945), Kleiber (1961) dan Scott (1976), berturut-turut digunakan rumus $1.33 \times 70.5 \times \frac{W^{0.75}}{kg}$; $1.33 \times 70 \times \frac{W^{0.75}}{kg}$ dan $1.22 \times 83 \times \frac{W^{0.75}}{kg}$ kkal.

Peneliti-peneliti tersebut di atas mempunyai dasar pemikiran yang sama untuk menghitung kebutuhan energi hidup pokok yaitu berat badan sebagai ukuran utama, sedangkan konstante dan pangkat yang berbeda ditentukan oleh species hewan.

Rumus Scott (1976), sering dipergunakan sebagai pegangan dalam menentukan kebutuhan energi bagi ayam yang sedang bertelur seperti telah dikemukakan Card (1972). Sampai berapa jauh keberlakuan rumus tersebut untuk daerah tropik, masih diperlukan penelitian lebih lanjut.

Terdorong oleh keterangan sebelumnya maka melalui pe-
nelitian ini penulis bertujuan untuk menghimpun informasi yang dapat dijadikan landasan bagi penyempurnaan sistem penghematan energi sehingga mampu meningkatkan performans ayam petelur tipe medium. Di samping itu penelitian ini mencoba menduga kebutuhan energi ayam petelur tipe medium pada kondisi daerah tropik yang dikaitkan dengan produksi telur yang dihasilkan. Tujuan terakhir yaitu untuk mengetahui sampai berapa jauh sistem penghematan energi ini dapat lebih menguntungkan dilihat dari segi "income over feed cost" dengan mempergunakan ransum standar untuk ayam petelur tipe ringan di daerah tropik.

Hal-hal tersebut di atas didasarkan kepada dugaan bahwa bila ayam petelur tipe medium diberi ransum ayam petelur tipe ringan, dikhawatirkan akan menimbulkan banyak lemak tubuh yang berakibat menurunnya performans.

Hasil penelitian ini diharapkan akan dapat memberikan informasi yang bermanfaat dalam rangka menciptakan teknologi tepat guna bagi pengembangan usaha ayam petelur tipe medium yang sesuai dengan kondisi daerah tropik.
TINJAUAN PUSTAKA

Tinjauan terhadap Ayam Petelur akibat Kelebihan Konsumsi Energi

Kelebihan Konsumsi Energi pada masa "Developer". Pada umur muda umumnya ayam tumbuh lebih cepat dan setelah mencapai berat badan maksimum, pertumbuhan tersebut mulai menurun. Seperti dijelaskan Jull (1951) bahwa pertumbuhan meningkat dengan cepat sejak mulai menetas sampai umur 4 - 6 minggu dan setelah lewat umur 6 minggu pertumbuhan tersebut mulai menurun sampai dewasa. Dalam penelitian lain dikemukakan Bundy dan Diggins (1960) bahwa pertumbuhan yang paling cepat pada ayam terjadi pada umur 5 - 7 minggu. Pendapat lain telah dilaporkan Lubis (1963), bahwa kecepatan pertumbuhan mencapai derajat tertinggi yaitu
sejak mulai menetas sampai mencapai umur 6 - 8 minggu, tetapi setelah umur 3 bulan persentase pertumbuhan relatif menurun hingga 50% dan kemudian terus menurun lagi dengan bertambahnya umur. Sehubungan dengan hal ini maka dengan adanya perbedaan kecepatan pertumbuhan berdasarkan umur, North (1972) membagi masa pertumbuhan tersebut menjadi 3 fase. Fase starter yaitu pada umur 0 - 6 minggu; fase pertumbuhan (grower) pada umur 6 - 14 minggu; fase lainnya yaitu fase "developer" yang berkisar antara umur 14 minggu sampai mencapai dewasa kelamin. Fase "developer" merupakan fase pertumbuhan yang sudah mulai menurun sedangkan konsumsi ransum terus bertambah. Adanya hal ini yang sering menyebabkan kelebihan konsumsi energi. Setiap terjadi kelebihan konsumsi energi ini akan diubah menjadi lemak tubuh dan pertama-tama akan ditimbun pada alat-alat reproduksi (Funk, 1955; Cole, 1962). Penimbunan lemak ini akan terus meningkat sampai mencapai dewasa kelamin. Kondisi ini akan sangat mengganggu kemampuan produksi selanjutnya. Kerugian lain timbul dengan terjadinya angka kematian yang lebih tinggi dan penggunaan energi yang tidak efisien pada saat memasuki tahap produksi. Selanjutnya dijelaskan oleh Costa (1978), bahwa pada ayam petelur yang kelebihan konsumsi energi pada masa "developer" akan cepat mencapai dewasa kelamin (masak dini). Pada ayam petelur yang masak dini, sering diikuti dengan terjadinya "prolapses". Hal ini disebabkan karena pertumbuhan jaringan tubuhnya belum
mencapai maksimal sehingga belum mampu mendukung produksinya yang tinggi. Di samping itu produksi telur yang dihasilkan kecil-kecil dan dalam periode waktu yang lama baru dicapai hasil produksi telur yang lebih besar (Bennet, 1978).

petelur tipe ringan untuk mencapai kebutuhan energinya.

Ternyata lebih dapat mengatur konsumsinya secara teliti,
sehingga timbunan lemak tubuh yang berlebihan tidak terjadi (Sugandi, 1974).

Selain dari yang telah disebutkan di atas, pada umumnya ayam petelur yang kelebihan konsumsi energi mempunyai kadar lemak hati yang tinggi (Hafez dan Dyer, 1969; Murphy dan Wolford, 1972; Lee, 1975; Meijering, 1979). Hal ini disebabkan karena hati tempat membuat lemak paling besar pada ayam. Lemak hati ini secara normal bertambah, terutama pada permulaan bertelur sebagai akibat bertambahnya estrogen yang disekresikan oleh ovary (Sturkie dan Muller, 1976). Pada ayam yang sedang bertelur, lemak hati ini terus bertambah yang berkisar antara 22 - 72 % dari berat keringnya, sedangkan pada ayam yang belum bertelur lemak

Makna Pemberian Makanan Terbatas ("Restricted Feeding")

Yang dimaksud dengan pemberian makanan terbatas dalam
penelitian ini yaitu suatu sistem pemberian makanan dengan cara mengurangi jumlah ransum yang diberikan dengan persentase tertentu dari jumlah konsumsi ransum yang diberikan dengan ad libitum. Tujuannya untuk memperlambat umur mencapai dewasa kelamin dan mempertahankan berat tubuh yang erat hubungannya dengan "prolificacy" (Haresign, 1980).

Dengan memperlambat umur mencapai dewasa kelamin maka produksi telur meningkat, produksi telur yang kecil dapat dihindari dan produksi telur yang besar lebih banyak dihasilkan (Fuller dan Chaney, 1974). Pengontrolan terhadap jumlah makanan yang diberikan yaitu sebagai kontrol terhadap konsumsi energi untuk mengurangi adanya penimbunan lemak tubuh yang berlebihan. Dalam sistem pemberian makanan terbatas, hanya konsumsi energi yang dapat dikurangi tetapi asam amino, vitamin dan mineral harus tersedia dalam jumlah yang cukup. Sehubungan dengan hal ini maka tanpa makanan yang seimbang sistem pemberian makanan terbatas akan kurang berhasil dengan baik (Snetsinger & Zimmerman, 1974). Pemberian makanan terbatas sering tidak berhasil juga karena persentase pengurangan makanan yang terlalu berat. Konsumsi energi yang cukup akan ditandai dengan konsumsi energi minimal yang dapat menghasilkan performans yang maksimal yang diukur dari total produksinya per tahun (Balnave, 1978).

Segi positif dalam sistem pemberian makanan terbatas yaitu untuk menambah efisiensi makanan, biaya makanan yang
dipakai untuk memproduksi telur per kilogram menjadi lebih rendah artinya energi dan protein yang dipergunakan lebih efisien (Latshaw, 1972).

Konsumsi Zat-zat Makanan dalam Sistem Pemberian Makanan Terbatas

Penentuan konsumsi ransum yang diberikan dengan cara ad libitum, merupakan pegangan dalam mempertimbangkan sistem pemberian makanan terbatas. Dengan informasi ini kita dapat menghitung jumlah zat-zat makanan yang mungkin dikonsumsi, sehingga dapat diperkirakan apakah mengkonsumsi lebih tinggi atau lebih rendah dari yang diperlukan (Costa, 1978). Dengan demikian maka dalam melaksanakan pemberian makanan terbatas harus diatur sesuai dengan konsumsi ransum dan kebutuhan.

Seperti telah dikemukakan sebelumnya bahwa metoda pemberian makanan terbatas yang dipergunakan sejak mulai penelitian, yaitu dengan mengurangi jumlah ransum yang diberikan. Dengan berkurangnya jumlah ransum yang diberikan, pada gilirannya konsumsi gizi juga turut menurun. Untuk ayam petelur yang sedang tumbuh hal ini berakibat menurunnya kecepatan pertumbuhan dan pada ayam yang sedang berproduksi terjadi penurunan produksi tergantung kepada derajat pembatasan tadi (Titus, 1971). Bila terjadi kekurangan zat-zat makanan sebagai akibat sistem pemberian makanan terbatas, maka hal ini sangat berbahaya karena ayam tidak akan berkembang pada proporsinya dan yang jelas akan

Kebutuhan zat-zat makanan untuk ayam yang sedang bertelur menurut NRC (1977), diperlukan konsumsi protein sekitar 16.5 gram/ekor/hari, methionin + cystin sebanyak 0.55 gram/ekor/hari, tryptophan 0.12 gram/ekor/hari dan lysin 0.66 gram/ekor/hari. Lebih lanjut North (1972) menjelaskan bahwa konsumsi protein per hari pada ayam yang sedang bertelur tergantung kepada persentase produksi, besar telur yang dihasilkan serta strain dari ayam yang bersangkutan. Pada saat mencapai produksi 90%, ayam petelur tipe medium memerlukan konsumsi protein 20 gram/ekor/hari dan

Berbagai Metoda Pemberian Makanan Terbatas dan Pengaruhnya terhadap Performans

Mengurangi Kadar Protein/Asam Amino. Dengan merendahkkan kadar protein ransum pada ayam yang berumur 9 - 20 minggu, menyebabkan konsumsi ransum berkurang dan dewasa

Mengurangi Jumlah Ransum yang Diberikan. Dengan mengurangi jumlah ransum yang diberikan selama dalam fase "rearing" akan mengurangi berat tubuh pada akhir bertelur, memperlambat dewasa kelamin dan mengurangi angka kematian waktu bertelur (Walter dan Aitken, 1961; Hollands dan Gowe, 1965). Bila hal ini dilakukan terhadap ayam petelur tipe
per lusin telur menurun, timbunan lemak tubuh menjadi ber-
kurang tanpa mengurangi besar telur atau persentase pro-
duksi. Lain halnya dengan hasil penelitian Muir dan Gerry
(1973), yang melakukan penelitian pada dua macam strain
ayam petelur tipe ringan yang berwarna coklat dan ransum-
nya dikurangi sekitar 10% dari jumlah konsumsi ransum yang
diberikan dengan ad libitum. Dalam penelitian ini terlihat
adanya penurunan produksi. Juga dari hasil penelitian yang
dikemukakan Auckland dan Wilson (1975), pada ayam petelur
yang dikurangi jumlah ransumnya dengan 6% ternyata ada ke-
cenderungan kurang menguntungkan. Menurut Costa (1978),
hal yang sangat membantu agar sistem pemberian makanan ini
berhasil maka perlu diperhatikan mengenai ventilasi kan-
dang, umur ayam pada saat program tersebut dimulai dan je-
nis ayam yang dipergunakan. Namun demikian menurut hasil
penelitian Hall (1977), dengan mengurangi jumlah ransum
yang diberikan merupakan salah satu cara yang sangat prak-
tis untuk digunakan di lapangan di samping biaya ransum le-
(1971), pemberian makanan terbatas menurut jumlah ransum
yang diberikan, merupakan cara yang lebih banyak dipilih
karena tidak mempengaruhi berat telur, produksi telur le-
bih baik, fertilitas cukup tinggi dan kematian yang banyak
dapat dihindarkan. Juga menurut Meijering (1979), metoda
ini merupakan metoda yang sangat baik untuk mengurangi kan-
dungan lemak tubuh.
akan mengurangi total produksi per tahun dan juga berat telur berkurang. Sebagai gambaran telah dikemukakan oleh Auckland dan Fulton (1973) bahwa pada ayam petelur tipe ringan yang konsumsi energinya sekitar 263 kkal/ekor/hari pada umur 24 - 52 minggu ternyata produksi telurnya 10-14% lebih rendah dari ayam petelur yang diberi ransum dengan ad libitum. Sehubungan dengan hal ini maka Auckland (1979) menganjurkan agar pengurangan konsumsi energi tidak melebihi 5 - 10% dari konsumsi energi ayam yang diberi ransum dengan ad libitum.

Membatas Waktu Pemberian Ransum. Sebagai contoh telah dikemukakan Marahrene (1978), yaitu dengan melakukan penelitian "skip a day". Dalam hal ini ayam diberi makan dengan puas selama 6 hari dan hari ke-7 dipuasakan. Untuk ayam tipe komersial, setiap ayam dara (pullet) konsumsinya berkurang 5% tetapi hal ini juga tergantung kepada energi ransum yang dipergunakan. Penelitian lain telah dilakukan Proudfoot (1979) bahwa "skip a day" pada ayam broiler menyebabkan berat badan berkurang, dewasa kelamin dapat diperlambat, meningkatkan berat telur dan lebih banyak telur yang menetas dibandingkan dengan yang diberi ransum dengan ad libitum. Hasil penelitian Roblee (1979), dengan melakukan "skip a day" pada ayam strain Shaver dan Hubbard ternyata angka komatiananya lebih rendah, kejadian "fatty liver haemorrhagic syndrome" dapat dicegah dan dewasa kelamin dapat diperlambat. Balnave (1977), melakukan penelitian de-

Membatasi Jumlah Air yang Diberikan. Telah dijelaskan Kirkland dan Fuller (1971), bahwa ransum dengan energi yang rendah yang disertai dengan pengurangan jumlah air yang diberikan, merupakan cara yang sederhana dan efektif untuk mengurangi jumlah konsumsi energi. Bila air dikurangi (dibatasi) maka ayam tersebut tidak bisa makan lebih banyak, umumnya hanya 70% dari kelompok kontrol. Hal ini menyebabkan dewasa kelamin terlambat dan lemak karkas berkurang. Lain halnya dengan pendapat Leeson, et al. (1976) yang menyatakan bahwa dengan mengurangi jumlah air yang diberikan pada ayam yang sedang bertelur akan langsung mempengaruhi produksi secara cepat. Penelitian lain dikemukakan Savory (1978) bahwa pengurangan air minum pada Leghorn berbulu coklat yang sedang bertelur tidak bisa diperiksa untuk mengontrol berat badan tanpa mengurangi pro-

Erat hubungannya dengan penggunaan metode tadi, ternyata bahwa setiap metoda mempunyai pengaruh yang berbeda terhadap performans. Dalam penelitian ini penulis lebih condong dengan menggunakan metoda pengurangan ransum menurut jumlahnya yang diberikan, sekaligus mempunyai arti
yang sama dengan mengurangi jumlah energi yang dikonsumsi.
Pertimbangan ini berdasarkan penggunaannya di lapangan
yang relatif lebih mudah diterima peternak dan menurut be-
berapa informasi ternyata lebih menguntungkan bila kita
bandingkan dengan metoda lainnya.

Hubungan antara Temperatur Lingkungan dan Pemberian Makan-
man Terbatas

Telah banyak diketahui bahwa konsumsi ransum erat hu-
bungannya dengan kandungan energi dalam ransum dan tempe-
ratur lingkungan. Sebagai contoh ayam yang mempunyai berat
badan 1,8 kg dalam temperatur lingkungan 18 – 21ºC yang
disediakan ransum dengan ad libitum serta kandungan energi
ransum 2750 – 2850 kkal/kg, ternyata konsumsi energinya an-
tara 310 – 330 kkal/ekor/hari (Bushman, 1979). Menurut
Scott (1976), untuk daerah yang beriklim sedang produksi
maksimum dapat dicapai dengan konsumsi energi sekitar 300
kkal/ekor/hari. Oleh karena itu konsumsi energi yang di-
kemukakan Bushman (1979), bila dibandingkan dengan hasil
penelitian Scott (1976) masih memperlihatkan kelebihan da-
ri konsumsi energi. Selanjutnya dijelaskan Bushman (1979)
bahwa bila temperatur lingkungan naik di atas 29.5ºC, kon-
sumsi ransum berkurang 1.5% untuk setiap kenaikan 1ºC sam-
pai mencapai temperatur lingkungan 38ºC.

Sehubungan dengan hal tersebut di atas Payne (1978),
menyatakan bahwa berkurangnya konsumsi ransum sesuai de-
ngan fluktuasi temperatur lingkungan karena adanya peruba-
kebutuhan energi. Makin tinggi temperatur lingkungan untuk mencapai produksi yang sama dibutuhkan energi yang lebih rendah. Ternyata untuk daerah tropik dengan konsumsi energi sekitar 265 - 280 kkal/ekor/hari untuk ayam petelur tipe ringan sudah cukup memadai. Dengan demikian maka pengurangan konsumsi energi sekitar 10 - 15% pada lingkungan yang lebih tinggi dari daerah beriklim sedang diharapkan akan dapat memenuhi kebutuhannya.

Hubungan antara Metabolisme Energi, Temperatur Lingkungan, Makanan dan Hereditas

Kebutuhan energi untuk hidup pokok ini di dalamnya termasuk untuk produksi panas basal, aktifitas dan energi untuk pengaturan suhu tubuh yang tetap (Schaible, 1970; Card, 1972). Dengan demikian maka kebutuhan energi bagi
seekor ayam betina dewasa yang sedang bertelur dapat dike
tahui dengan dasar menentukan laju metabolisme basal dari
ayam tersebut (Scott, 1976). Produksi panas basal ini
erat hubungannya dengan besar hewan. Makin besar hewan,
ternyata produksi panas basal per unit bobot badannya ber-
kurang (Brody, 1945; Kleiber, 1961; Blaxter, 1969). Se-
lanjutnya dijelaskan Kleiber (1961) dan Card (1972) bahwa
kebutuhan energi untuk hidup pokok ini merupakan 75% dari
energi metabolisme. Besarnya kebutuhan energi untuk hidup
pokok selama 24 jam, dirumuskan sebagai $70 \times W^{0.75} \text{ kcal}
dan W dalam hal ini merupakan bobot badan dari ayam yang
bersangkutan. Menurut Scott (1976), untuk jenis unggas
karena suhu tubuhnya relatif lebih tinggi dibandingkan de-
ngan jenis ternak lainnya (41°C pada unggas yang telah di-
domestikasi) maka rumus tersebut di atas harus lebih ting-
gi yaitu menjadi $83 \times W^{0.75} \text{ kcal}$. Selanjutnya dapat di-
djelaskan bahwa energi netto untuk hidup pokok pada unggas
merupakan 82% dari energi metabolisme, sedangkan energi un-
tuk aktifitasnya sekitar 50% dari energi untuk hidup pokok
bagi ayam yang dipelihara dalam kandang sistem litter.
Energi untuk aktifitas pada ayam yang dipelihara dalam
kandang sistem "cage" sekitar 37% dari jumlah energi untuk
hidup pokoknya. Dengan memperhitungkan kandungan energi
telur 1.6 kcal/gram (Brody, 1945), maka kebutuhan energi
per ekor per hari bagi ayam yang sedang bertelur dapat di-
perhitungkan.

Sehubungan dengan hal tersebut tadi menurut penjelasan Lee (1977), temperatur antara 10°- 20°C disebut daerah "thermoneutral" untuk ayam dewasa yang sedang bertelur. Umumnya untuk jenis unggas pada temperatur ini keadaannya tenang, artinya tidak usah lebih banyak meningkatkan atau menurunkan metabolismenya. Penelitian lain yang dikemukakan Charles (1978), menjelaskan bahwa umumnya temperatur sekitar 15°C cukup menguntungkan pada ayam yang sedang berproduksi serta keuntungan berkurang pada perubahan temperatur antara 25°- 30°C. Menurut Hall (1977), kemampuan petelur untuk dapat berproduksi secara ekonomis adalah pa-
da temperatur 21\degree C dan dalam temperatur ini konsumsi ransum cukup rendah serta memerlukan banyak protein untuk memperoleh produksi telur yang lebih baik. Sejalan dengan hasil penelitian Cantor (1976), bahwa produksi telur yang cukup ekonomis dapat dicapai pada temperatur lingkungan antara 13\degree - 24\degree C. Efisiensi penggunaan ransum mulai menurun secara tajam, bila temperatur lingkungan di bawah 13\degree C atau bertambah di atas 24\degree C. Efisiensi penggunaan ransum yang maksimum adalah pada temperatur 15.5\degree - 21\degree C.

Menurut Costa (1980), pada keadaan temperatur yang tinggi dalam batas-batas tertentu ayam dapat menggunakan makanan efisien sekali karena kalori yang disediakan untuk per butir telur menjadi lebih rendah.

Faktor-faktor yang Penting Diperhatikan dalam Melaksanakan Pemberian Makanan Terbatas

Untuk mengontrol ketepatan pemberian makanan terbatas,
dalam praktek umumnya perhatian lebih banyak ditujukan un-
tuk mencapai target berat badan yang dianjurkan oleh pem-
bibit ("breeder") terutama pada saat menjelang berproduksi
(dewasa kelamin). Pembibit biasanya telah menetapkan be-
rat badan standar dan umur pada saat mencapai dewasa kela-
min (Haresign, 1980). Untuk ayam petelur tipe medium, be-
rat badan standar pada saat mencapai dewasa kelamin adalah
antara 1.63 - 2 kg atau rata-rata sekitar 1.81 kg. Umur
mencapai dewasa kelamin yang dianjurkan adalah sekitar 21
minggu (North, 1972). Dari hasil penelitian Byrnes (1978),
umur dewasa kelamin yang paling baik telah diketahui pada
umur 18 - 20 minggu atau paling lambat umur 22 - 24 ming-
gu. Pertambahan berat badan selama bertelur disarankan
tidak lebih dari 565 - 685 gram, terhitung dari berat ba-
dan pada saat mencapai dewasa kelamin (North, 1972).

Selanjutnya dijelaskan Costa (1978) bahwa selain dari
yang telah disebutkan tadi perlu pula diperhatikan menge-
nai umur ayam pada saat program tersebut mulai dilaksana-
kan. Memulai pemberian makanan terbatas pada umur yang
terlalu muda tidak dianjurkan. Menurut hasil penelitian
Balnave (1978), menunjukkan bahwa derajat pemberian maka-
nan terbatas yang terlalu berat pada masa pertumbuhan atau
kesalahan memulai pada umur yang tepat menyebabkan turunnya
produksi telur. Sehubungan dengan hal ini disarankan oleh
Wahju (1976) bahwa sebaiknya pemberian makanan terbatas
dilakukan sejak mulai masa "developer" (umur 14-21 minggu)

BAHAN DAN METODA PENELITIAN

Ayam Percobaan

Sistem Kandang

Kandang yang digunakan terdiri dari dua macam sistem yaitu kandang sistem litter dan kandang sistem "cage". Kandang sistem litter terdiri dari 24 kelompok dengan ukuran masing-masing kelompok 2 x 1,5 meter. Kandang sistem "cage" juga disediakan 24 kelompok dan masing-masing kelompok terdiri dari 7 buah "cage". Ukuran masing-masing "cage" 32 x 32,5 x 35 cm. Kelompok kandang sistem litter dan "cage" ditempatkan dalam sebuah bangunan yang terpisah tetapi kondisi lingkungannya relatif sama.

Ransum

Ransum yang digunakan sejak umur 12 minggu hingga mencapai umur dewasa kelamin (masa "developer") yaitu ransum yang telah dianjurkan NRC (1971). Ransum tersebut mengandung energi metabolis 2900 kcal/kg serta proteinnya 15% (ransum I). Ransum yang digunakan selama periode pro-
duksi yaitu ransum standar ayam petelur tipe ringan untuk daerah tropik yang telah diteliti oleh Sugandi (1974). Ransum tersebut terdiri dari 2 macam ransum, masing-masing mengandung energi metabolis 2850 kkal/kg (ransum II) dan 2650 kkal/kg (ransum III) dengan tingkat protein yang sama yaitu 18%. Susunan ransumnya baik yang digunakan selama masa "developer" maupun selama periode produksi dapat dilihat pada Tabel 1.

Tabel 1. Susunan Ransum yang Digunakan dalam Penelitian

<table>
<thead>
<tr>
<th>Bahan makanan</th>
<th>Ransum I</th>
<th>Ransum II</th>
<th>Ransum III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jagung kuning</td>
<td>69</td>
<td>64</td>
<td>54</td>
</tr>
<tr>
<td>Dedak halus</td>
<td>11</td>
<td>3.5</td>
<td>9</td>
</tr>
<tr>
<td>Bungkil kedele</td>
<td>1</td>
<td>3.5</td>
<td>11</td>
</tr>
<tr>
<td>Bungkil kelapa</td>
<td>9</td>
<td>6.6</td>
<td>9</td>
</tr>
<tr>
<td>Tepung ikan</td>
<td>10</td>
<td>13.5</td>
<td>10</td>
</tr>
<tr>
<td>Tepung kulit kerang</td>
<td>1.85</td>
<td>6.75</td>
<td>6.75</td>
</tr>
<tr>
<td>Premix - A (Pfizer)</td>
<td>0.15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Premix - B (Pfizer)</td>
<td>-</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Jumlah</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Analisa proksimat dari ransum yang digunakan dalam penelitian ini, dilakukan di Departemen Ilmu Makanan Ternak Fakultas Peternakan IPB. Sebagai hasil analisa dari kategori jenis ransum tersebut, penulis utarakan dalam Tabel 2.

Penggantian ransum "developer" oleh ransum yang digunakan selama periode produksi, dimulai setelah ayam ter-
Tabel 2. Hasil Analisa Ransum yang Digunakan dalam Penelitian

<table>
<thead>
<tr>
<th>Ransum I</th>
<th>Ransum II</th>
<th>Ransum III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kadar air</td>
<td>12.22</td>
<td>11.64</td>
</tr>
<tr>
<td>Kadar abu</td>
<td>7.57</td>
<td>13.79</td>
</tr>
<tr>
<td>Lemak</td>
<td>6.18</td>
<td>4.27</td>
</tr>
<tr>
<td>Protein</td>
<td>14.81</td>
<td>17.37</td>
</tr>
<tr>
<td>Serat kasar</td>
<td>6.17</td>
<td>5.36</td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>1.40</td>
<td>3.71</td>
</tr>
<tr>
<td>Posphor (P)</td>
<td>0.77</td>
<td>0.72</td>
</tr>
</tbody>
</table>

sebut mencapai 5% produksi (hen-day %), sesuai dengan hasil penelitian North (1972).

Penempatan Ayam ke Dalam Kandang

Penempatan ayam ke dalam kandang penelitian dilakukan secara acak, berdasarkan nomor kakinya yang telah dipasang. Dalam kandang sistem litter, masing-masing kelompok kandang diisi dengan 14 ekor ayam percobaan. Dalam kandang sistem "cage", tiap "cage" diisi dengan 2 ekor ayam percobaan sehingga tiap kelompok kandang sistem "cage" juga diisi dengan 14 ekor ayam (satu kelompok terdiri dari 7 buah "cage").

Cara Pemberian Ransum dan Air Minum

Ransum diberikan dengan 80% dari ad libitum, 90% dari ad libitum dan yang diberi ransum ad libitum sebagai kelompok kontrol. Untuk mengetahui jumlah konsumsi ransum yang diberikan ad libitum, diperoleh dari hasil penelitian
pendahuluan. Ayam yang digunakan dalam penelitian penda-
huluan ini terpisah tetapi jumlah tiap kelompok, ulangan
dan kondisi lingkungannya sama. Ayam tersebut diberikan
ransum dalam jumlah yang tidak terbatas dan pengukuran un-
tuk konsumsi ransumnya dilakukan setiap minggu. Banyaknya
ransum yang dikonsumsi oleh ayam dalam penelitian pendahu-
luan ini, disebut konsumsi ransum *ad libitum* dan merupakan
dasar sistem pemberian ransum dalam penelitian ini. Untuk
penelitian pendahuluan ini berjalan satu minggu lebih cepat
dan dilakukan sampai dengan penelitian berakhir.

Pencegahan Penyakit

Untuk menjaga penyakit unggas menular (ND), sebelum
dan selama penelitian berlangsung telah dilakukan vaksina-
si sebagai berikut:

<table>
<thead>
<tr>
<th>Umur ayam</th>
<th>Name vaksin</th>
<th>Cara vaksinasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 hari</td>
<td>la Sota</td>
<td>tetes mata</td>
</tr>
<tr>
<td>30 hari</td>
<td>la Sota</td>
<td>suntikan</td>
</tr>
<tr>
<td>2.5 bulan</td>
<td>la Sota</td>
<td>suntikan</td>
</tr>
<tr>
<td>4.5 bulan</td>
<td>la Sota</td>
<td>suntikan</td>
</tr>
<tr>
<td>9 bulan</td>
<td>la Sota</td>
<td>air minum</td>
</tr>
<tr>
<td>13 bulan</td>
<td>la Sota</td>
<td>air minum</td>
</tr>
</tbody>
</table>

Vaksin yang digunakan diperoleh dari Fakultas Kedokte-
ran Hewan IPB.

Untuk mencegah penyakit cacing, diberikan obat cacing
Worm-X buatan Pfizer dengan interval pemberian dua bulan
sejak penelitian dimulai.
Untuk mencegah adanya sifat kanibalisme pada saat mulai bertelur, dilaksanakan pemotongan paruh pada umur 4.5 bulan.

Obat-obatan juga diberikan pada waktu kondisi ayam kurang menguntungkan terutama melalui air minum.

Peubah yang Diamati

Umur Dewasa Kelamin. Umur dewasa kelamin diukur dengan mencatat waktu ayam tersebut mulai bertelur pada tiap kelompok penelitian.

Pertumbuhan. Pengukuran pertumbuhan didasarkan kepada angka mutlak pertambahan berat badan Pumerooy (1955) dengan rumus:

\[GR = \frac{W_2 - W_1}{t_2 - t_1} \]

- \(GR \) = pertumbuhan untuk tiap fraksi pengukuran
- \(W_1 \) = berat badan awal
- \(W_2 \) = berat badan akhir
- \(t_1 \) = waktu awal penelitian
- \(t_2 \) = waktu akhir penelitian
- \(t \) = dalam minggu

Berat Badan Dewasa Kelamin. Berat badan dewasa kelamin diketahui dengan menimbang setiap individu ayam pada setiap kelompok, waktu ayam tersebut mulai ada yang bertelur dalam kelompok yang bersangkutan.

Kebutuhan protein per hari (gram)

\[
\text{tbd (g)} \times 0.18 + \frac{\text{bbd (g)} \times 0.0016}{0.60} + \frac{\text{tbd (g)} \times 0.07 \times 0.82}{0.60}
\]

\[
tbd = \text{tambah berat badan/minggu dalam gram.}
\]

\[
\text{bbd = berat badan dalam gram.}
\]

Rata-rata Kebutuhan Energi per Hari. Untuk mengetahui kebutuhan energi per hari pada masa "developer" dan selama periode produksi, dihitung berdasarkan rumus yang dikemukakan Scott (1976) seperti terlihat di bawah:

Kebutuhan energi per hari = energi untuk hidup pokok + energi untuk aktifitas + energi untuk produksi.

Energi untuk hidup pokok = 1.22 \times 83 \times W^{0.75} \text{(kg)} \text{kkal} \ldots (EM_m)

Energi untuk aktifitas = 37\% \text{ dari } EM_m \text{ untuk ayam dalam sistem "cage" dan } 50\% \text{ dari } EM_m \text{ untuk ayam yang dipelihara dalam sistem litter.}

Energi untuk produksi dari pertambahan berat badan per hari (gram) \times 3 \text{ kkal.}

Energi untuk produksi = berat telur (gram) \times 1.6 \text{ kkal}

(Prody, 1945).

Produksi Telur (Hen-day). Produksi telur di dalam masing-masing kelompok dihitung menurut sistem "hen-day production" yaitu persentase produksi dalam jangka waktu
tertentu (28 hari) yang didasarkan kepada jumlah ayam yang hidup setiap hari. Untuk jelasnya dapat dirumuskan sebagai berikut:

\[
\frac{\text{Jumlah telur yang dihasilkan}}{\text{Jumlah ayam yang ada x waktu (hari)}} \times 100\%
\]

Konversi Ransum. Untuk menghitung konversi ransum dipakai cara sebagai berikut:

\[
\frac{\text{Jumlah ransum yang dikonsumsi (kg)}}{\text{Produksi total (kg)}}
\]

Konsumsi Air Minum. Konsumsi air minum dihitung dengan mengukur jumlah air yang diberikan dikurangi dengan sisanya. Pengukuran ini dilakukan setiap hari pada setiap kelompok.

Berat Telur. Berat telur diketahui dengan cara menimbang produksi setiap hari pada setiap kelompok perlakuan.

Kematian. Angka kematian dihitung berdasarkan persentase ayam yang mati dari jumlah ayam mula-mula.

Berat Badan selama Periode Produksi. Pengontrolan berat badan ayam petelur selama periode produksi, dilakukan setiap minggu dengan mengambil contoh 30% dari setiap kelompok.

Keuntungan Ekonomi. Untuk memperoleh gambaran mengenai keuntungan dari tiap perlakuan, digunakan perhitungan "income over feed cost" berdasarkan "hen-housed".
Rancangan Lingkungan

Balk pada penelitian masa "developer" maupun pada periode produksi, rancangan lingkungan yang digunakan adalah dengan menggabungkan dua Rancangan Acak Lengkap yaitu untuk kandang sistem litter dan untuk kandang sistem "cage". Perlakuan pada masa "developer" ada 2 faktor yaitu strain dan pemberian ransum dengan masing-masing 4 ulangan. Pada periode produksi perlakuannya ada 3 faktor yaitu strain, cara pemberian ransum dan jenis ransum dengan disertai 2 ulangan untuk masing-masing perlakuan.

Data yang diperoleh dari hasil penelitian ini diolah dengan Sidik Ragam (Sujana, 1980). Data yang berbentuk persen (data produksi telur) sebelum dianalisa, terlebih dahulu ditransformasi ke dalam arcsinus \sqrt{x}. Untuk membedakan antara kelompok perlakuan digunakan uji-t dan uji Jarak Berganda Duncan.

Khusus untuk membedakan penyebaran angka kematian pada masing-masing kelompok perlakuan, diuji dengan cara uji "independence test" (Snedecor, 1964) dengan rumus sebagai berikut:

$$ x^2 = \frac{\sum p_i x_i - \bar{p} \sum x_i}{\bar{p} \bar{q}} $$

$p_i =$ peluang untuk mati
$x_i =$ jumlah ayam yang mati
$\bar{p} =$ rata-rata peluang untuk mati
$\bar{q} = 1 - \bar{p} $
Waktu dan Tempat Penelitian

HASIL DAN PEMBAHASAN

Kebutuhan dan Konsumsi Protein pada Masa "Developer"

Selanjutnya bila dihitung mengenai jumlah kebutuhan protein seluruhnya termasuk untuk pertumbuhan jaringan,
<table>
<thead>
<tr>
<th>Strain</th>
<th>Sistem kandang</th>
<th>Jumlah Pemberian ransum</th>
<th>Kebutuhan protein untuk (g)</th>
<th>Konsumsi Protein (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hidup pokok</td>
<td>Pertumbuhan</td>
<td>Pertumbuhan Total</td>
</tr>
<tr>
<td>Shaver</td>
<td>Litter ad libitum</td>
<td>4.13</td>
<td>3.02</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>90 % dari ad libitum</td>
<td>4.12</td>
<td>2.91</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>80 % dari ad libitum</td>
<td>4.09</td>
<td>2.61</td>
<td>0.84</td>
</tr>
<tr>
<td>Cage</td>
<td>ad libitum</td>
<td>4.32</td>
<td>3.12</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>90 % dari ad libitum</td>
<td>4.14</td>
<td>2.86</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>80 % dari ad libitum</td>
<td>4.10</td>
<td>2.57</td>
<td>0.82</td>
</tr>
<tr>
<td>Harco</td>
<td>Litter ad libitum</td>
<td>4.58</td>
<td>3.62</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>90 % dari ad libitum</td>
<td>4.43</td>
<td>3.13</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>80 % dari ad libitum</td>
<td>4.20</td>
<td>2.18</td>
<td>0.70</td>
</tr>
<tr>
<td>Cage</td>
<td>ad libitum</td>
<td>4.53</td>
<td>3.62</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>90 % dari ad libitum</td>
<td>4.39</td>
<td>2.84</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>80 % dari ad libitum</td>
<td>4.31</td>
<td>2.60</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Keterangan: g = gram
untuk hidup pokok dan pertumbuhan bulu, rata-rata berkisar antara 9.35 - 7.08 gram/ekor/hari (dihitung menurut Scott, 1976). Untuk mengetahui pemberian ransum yang tepat yang dapat memenuhi kebutuhan konsumsi protein minimal sehingga tercapai pertumbuhan yang optimal, dalam hal ini digunakan patokan yang telah dikemukakan North (1972). Menurut North (1972), dari umur 4 minggu sampai dengan umur 20 minggu (mencapai dewasa kelamin) untuk mencapai pertumbuhan yang optimal pada ayam tipe medium membutuhkan konsumsi protein rata-rata sekitar 8 - 9 gram/ekor/hari. Bila patokan ini dibandingkan dengan hasil perhitungan menurut Scott (1976) seperti yang terlihat pada Tabel 3, untuk strain Shaver pada jumlah pemberian ransum ad libitum dan 90% dari ad libitum merupakan jumlah pemberian ransum yang memenuhi kebutuhan protein sesuai dengan yang dianjurkan. Hal ini berlaku untuk ayam yang dipelihara dalam kandang sistem litter dan yang dipelihara dalam kandang sistem "cage". Untuk strain Super Harco, hanya pada pemberian ransum 90% dari ad libitum yang memenuhi kebutuhan protein sesuai dengan yang dianjurkan, baik dalam kandang sistem litter maupun "cage". Pada jumlah pemberian ransum 80% dari ad libitum, ternyata terlalu berat bila didasarkan kepada hasil perhitungan menurut Scott (1976), karena kebutuhan konsumsi protein tersebut lebih rendah dari 8 - 9 gram/ekor/hari baik untuk strain Shaver maupun Super Harco dalam kedua sistem kandang tersebut.

Kebutuhan dan Konsumsi Energi pada Masa "Developer"

<table>
<thead>
<tr>
<th>Strain</th>
<th>Sistem Kandang</th>
<th>Jumlah Pemberian ransum</th>
<th>Kebutuhan Energi untuk (kcal)</th>
<th>Konsumsi energi (kcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hidup pokok</td>
<td>Pertambahan berat badan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>140.33</td>
<td>30.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>140.20</td>
<td>29.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>139.30</td>
<td>26.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ad libitum</td>
<td>145.06</td>
<td>31.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>140.49</td>
<td>28.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>139.57</td>
<td>25.71</td>
</tr>
<tr>
<td></td>
<td>ad libitum</td>
<td>Cage</td>
<td>151.69</td>
<td>36.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>147.75</td>
<td>31.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>142.03</td>
<td>21.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harco</td>
<td>150.55</td>
<td>36.17</td>
</tr>
<tr>
<td></td>
<td>Litter</td>
<td>Cage</td>
<td>146.85</td>
<td>28.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144.98</td>
<td>25.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ad libitum</td>
<td>140.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>140.20</td>
<td>29.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>139.30</td>
<td>26.47</td>
</tr>
</tbody>
</table>

Pada strain Super Harco dengan jumlah pemberian ransum ad libitum, kelebihan konsumsi energi ini lebih terlihat pada ayam yang dipelihara dalam kandang sistem "cage", Pada ayam yang dipelihara dalam kandang sistem litter, konsumsi energi ini lebih rendah dari kebutuhan energi yang dihitung menurut Scott (1976). Namun demikian hal ini tidak berarti tidak ada kemungkinan terjadinya kelebihan konsumsi energi, mengingat kebutuhan energi di daerah lingkungan penelitian ternyata lebih rendah bila dibandingkan dengan di daerah beriklim sedang.

Untuk lebih jelasnya seperti terlihat dalam Tabel 4, pada umumnya kebutuhan energi yang dihitung menurut Scott (1976), lebih tinggi dari konsumsi energinya walaupun pada strain Shaver dengan jumlah pemberian ransum 90% dari pada ad libitum dalam kandang sistem "cage" ternyata konsumsi energinya yang lebih tinggi, tetapi perbedaan itu tidak mempunyai arti yang besar.

Adanya konsumsi energi yang lebih rendah bila diban-

Faktor lain yang juga turut menyebabkan tidak adanya persesuaian antara konsumsi energi dan kebutuhan energi yang dihitung menurut Scott (1976), hal ini disebabkan karena kebutuhan energi untuk aktifitas yang dikemukakan oleh Scott (1976) belum tentu berlaku umum. Di antaranya perlu diperhatikan tentang strain dari ayam yang bersangkutan dan kepadatan dari kandang yang tampaknya sangat besar pengaruhnya terhadap aktifitas ini.

Pencacah Konsumsi Protein dan Energi terhadap Berat Badan dan umur Mencapai Dewasa Kelamin

Untuk mendukung keterangan sebelumnya maka agar lebih jelasnya dapat dibuktikan dari berat badan dan umur pada saat mencapai dewasa kelamin. Hal ini dapat dilihat dalam Tabel 5.

Menurut hasil penelitian North (1972), berat badan yang optimal pada saat mencapai umur dewasa kelamin untuk ayam tipe medium berkisar antara 1.63 - 1.80 kg atau berat

<table>
<thead>
<tr>
<th>Sistem Kandang</th>
<th>Strain Shaver</th>
<th>Strain Super Harco</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad</td>
<td>90% ad</td>
</tr>
<tr>
<td>Litter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berat badan (kg)</td>
<td>1.79</td>
<td>1.77</td>
</tr>
<tr>
<td>Umur dewasa kelamin (hari)</td>
<td>145</td>
<td>150</td>
</tr>
<tr>
<td>Cage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berat badan (kg)</td>
<td>1.86</td>
<td>1.77</td>
</tr>
<tr>
<td>Umur dewasa kelamin (hari)</td>
<td>145</td>
<td>148</td>
</tr>
</tbody>
</table>

ad = ad libitum

rata-rata sekitar 1.81 kg. Umur mencapai dewasa kelaminnya yaitu sekitar 21 minggu. Khusus untuk strain Shaver, berat badan yang dianjurkan pembibit ("breeder") pada saat mencapai dewasa kelamin yaitu sekitar 1.76 kg. Bila dibandingkan dengan keterangan pada Tabel 5, berat badan dan umur dewasa kelamin yang mendekati seperti yang telah dianjurkan yaitu pada jumlah pemberian ransum 90% dari *ad libitum*. Hal ini berlaku untuk strain Shaver maupun Super Harco dalam kedua sistem kandang tersebut. Dengan perkataan lain bahwa

Selanjutnya dapat dijelaskan bahwa makin banyak konsumsi protein dan energi (untuk strain yang sama), ternyata pertambahan berat badannya cenderung lebih cepat yang
diiringi dengan dewasa kelamin yang lebih cepat pula. Sebaliknya dengan berkurangnya konsumsi protein dan energi, pertambahan berat badan makin rendah yang diiringi dengan dewasa kelamin yang lebih lambat.

Strain Super Harco umumnya mempunyai berat badan yang sedikit lebih berat dan umur dewasa kelamin yang cenderung lebih lambat bila dibandingkan dengan strain Shaver. Menurut North (1972), perbedaan ini terutama dipengaruhi karena adanya sifat hereditas.

Perbedaan sistem kandang juga mempengaruhi umur mencapai dewasa kelamin. Ayam yang dipelihara dalam kandang sistem "cage" cenderung lebih cepat mencapai dewasa kelamin dari ayam yang dipelihara dalam kandang sistem litter. Hal ini disebabkan karena ayam yang dipelihara dalam kandang sistem "cage", pergerakannya sangat terbatas sehingga energi untuk aktifitasnya lebih kecil bila dibandingkan dengan ayam yang dipelihara dalam kandang sistem litter sedangkan konsumsi energinya tidak jauh berbeda. Dengan demikian energi yang tersedia untuk mendukung pertumbuhannya menjadi lebih besar dan menyebabkan cepatnya mencapai dewasa kelamin.

Untuk mengetahui perkembangan pertumbuhan pada tiap jumlah pemberian ransum selama penelitian berlangsung, dapat dijelaskan pada Ilustrasi 1 dan 2.

Terlihat dari ilustrasi tersebut bahwa pada tiap jumlah pemberian ransum, pertambahan berat badan rata-rata
Ilustrasi 1. Pertambahan Berat Badan Rata-rata per Ekor per Minggu untuk Strain Shaver pada Masa Developer dalam Kandang Sistem Litter dan Sage
Ilustrasi 2. Pertambahan Berat Badan Rata-rata per Ekor per Minggu untuk Strain Super Harco pada Masa Developer dalam Kandang Sistem Litter dan Cage
per ekor per minggu pada umumnya setelah mencapai umur 13 minggu sudah mulai menurun. Kecuali pada strain Shaver dengan pemberian ransum ad libitum, dari umur 13 minggu ke 14 minggu masih ada kenaikan berat badan per ekor per minggu sekitar 1 gram, tetapi setelah mencapai umur 14 minggu sudah mulai menurun.

Konsamsi Protein pada Periode Produksi untuk Tiap Jumlah Pemberian Ransum

Dari Tabel 6 terlihat bahwa konsumsi protein yang paling rendah yaitu 16.66 gram/ekor/hari (dalam pemberian ransum 80% dari ad libitum) dan konsumsi protein yang paling tinggi 21.80 gram/ekor/hari (dalam pemberian ransum ad libitum) pada strain Shaver. Untuk strain Super Harco, konsumsi protein yang paling rendah 16.83 gram/ekor/hari dan yang paling tinggi yaitu 21.83 gram/ekor/hari. Banyak-

<table>
<thead>
<tr>
<th>Sistem kandang</th>
<th>Energi ransum (kкал/kg)</th>
<th>Untuk strain Shaver</th>
<th>Untuk strain Super Harco</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>90% ad, 90% dari ad, 80% dari ad, 80% dari ad, 80% dari ad</td>
<td></td>
</tr>
<tr>
<td>Litter</td>
<td>2850</td>
<td>21.19, 19.08, 16.96</td>
<td>21.59, 19.43, 17.27</td>
</tr>
<tr>
<td></td>
<td>2650</td>
<td>21.37, 19.24, 17.10</td>
<td>21.83, 19.65, 17.46</td>
</tr>
<tr>
<td>Cage</td>
<td>2850</td>
<td>20.83, 18.75, 16.66</td>
<td>21.04, 18.93, 16.83</td>
</tr>
<tr>
<td></td>
<td>2650</td>
<td>20.92, 18.83, 16.74</td>
<td>21.28, 19.15, 17.02</td>
</tr>
</tbody>
</table>
nya konsumsi protein akan memberikan gambaran tentang kemampuan ayam tersebut untuk dapat berproduksi, sekaligus dapat dijadikan penilaian bagi metoda pemberian makanan terbatas yang digunakan.

Menurut North (1972), untuk mencapai produksi optimal ayam petelur tipe medium memerlukan konsumsi protein 21 gram/ekor/hari. Selanjutnya dijelaskan bahwa bila konsumsi protein ini turun sekitar 16 - 17 gram/ekor/hari, maka produksi telur juga turun menjadi 50 - 60%. NRC (1977), menyarankan bahwa dengan memberikan protein sebanyak 16.5 gram/ekor/hari dan kandungan energi ransum 2850 kcal/kg serta protein ransumnya 15% sudah cukup memadai.

Sehubungan dengan hal tersebut di atas, maka bila dibandingkan antara konsumsi protein dengan kebutuhan protein yang telah dianjurkan, maka konsumsi protein dalam penelitian selain kebutuhan untuk hidup pokok sudah terpenuhi bahkan ada kelebihan konsumsi protein yang akan digunakan untuk produksi. Sampai berapa jauh konsumsi protein tersebut dapat menunjang produksinya, dapat diketahui pada pembahasan selanjutnya.

Kebutuhan dan Konsumsi Energi pada Periode Produksi untuk Tiap Jumlah Pemberian Ransum

Seperti telah diketahui bahwa konsumsi energi merupakan faktor pembeda terpenting antara ayam petelur yang dipelihara di daerah beriklim sedang dan daerah yang berik-
lim tropik. Sehubungan dengan hal ini maka perlu diketahui mengenai konsumsi energi dan kebutuhan energi minimal yang dapat mendukung produkannya yang optimal. Dari hasil penelitian ini, banyaknya kebutuhan dan konsumsi energi untuk kondisi lingkungan penelitian dapat dijelaskan dalam Tabel 7 dan Tabel 8.

Terlihat dari tabel tersebut bahwa konsumsi energi pada tiap jumlah pemberian ransum diperlukan untuk hidup pokok, aktivitas dan untuk produksi. Kebutuhan energi untuk hidup pokok merupakan kebutuhan energi yang harus terpenuhi terlebih dahulu. Bila dibandingkan dengan konsumsi energinya, ternyata kebutuhan energi untuk hidup pokok ini masih jauh lebih rendah. Dengan demikian dapat dikatakan bahwa konsumsi energi dalam sistem pemberian makanan terbatas ini, dapat mencukupi kebutuhan energi untuk hidup pokok dan selanjutnya digunakan untuk aktivitas serta produksi.

Tabel 7. Kebutuhan dan Konsumsi Energi per Ekor per hari selama Periode Produksi pada Berbagai Jumlah Pemberian Ransum untuk Strain Shaver dan Super Harco dalam Kandang Sistem Litter maupun Cage dengan Energi Ransum 2850 kkal/kg

<table>
<thead>
<tr>
<th>Strain</th>
<th>Sistem Kandang</th>
<th>Jumlah pemberian Ransum</th>
<th>Kebutuhan energi untuk (kkal)</th>
<th>Konsumsi energi (kkal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hidup pokok</td>
<td>Aktifitas</td>
</tr>
<tr>
<td>Shaver</td>
<td>Litter</td>
<td>ad libitum</td>
<td>179.22</td>
<td>89.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90% dari ad libitum</td>
<td>175.00</td>
<td>87.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80% dari ad libitum</td>
<td>168.04</td>
<td>84.02</td>
</tr>
<tr>
<td>Cage</td>
<td></td>
<td>ad libitum</td>
<td>186.79</td>
<td>69.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90% dari ad libitum</td>
<td>177.45</td>
<td>65.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80% dari ad libitum</td>
<td>173.38</td>
<td>64.15</td>
</tr>
<tr>
<td>Harco</td>
<td>Litter</td>
<td>ad libitum</td>
<td>188.82</td>
<td>94.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90% dari ad libitum</td>
<td>180.06</td>
<td>90.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80% dari ad libitum</td>
<td>171.88</td>
<td>85.94</td>
</tr>
<tr>
<td>Cage</td>
<td></td>
<td>ad libitum</td>
<td>187.33</td>
<td>69.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90% dari ad libitum</td>
<td>181.77</td>
<td>67.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80% dari ad libitum</td>
<td>177.10</td>
<td>65.53</td>
</tr>
</tbody>
</table>
Tabel 8. Kebutuhan dan Konsumsi Energi per 3kor per Hari selama Periode Produksi pada Berbagai Jumlah Pemberian Ransum untuk Strain Shaver dan Super Harco dalam Kandang Sistem Litter maupun Cage dengan Energi Ransum 2650 kkal/kg

<table>
<thead>
<tr>
<th>Strain</th>
<th>Sistem kandang</th>
<th>Jumlah pemberian ransum</th>
<th>Kebutuhan energi untuk (kkal)</th>
<th>Konsumsi energi (kkal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hidup pokok</td>
<td>Aktifitas</td>
</tr>
<tr>
<td>Shaver</td>
<td>Litter</td>
<td>ad libitum</td>
<td>178,89</td>
<td>89,45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 % dari ad libitum</td>
<td>173,59</td>
<td>86,60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80 % dari ad libitum</td>
<td>166,49</td>
<td>83,25</td>
</tr>
<tr>
<td></td>
<td>Cage</td>
<td>ad libitum</td>
<td>183,02</td>
<td>67,72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 % dari ad libitum</td>
<td>176,13</td>
<td>65,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80 % dari ad libitum</td>
<td>163,16</td>
<td>60,37</td>
</tr>
<tr>
<td>Harco</td>
<td>Litter</td>
<td>ad libitum</td>
<td>189,10</td>
<td>94,55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 % dari ad libitum</td>
<td>182,37</td>
<td>91,19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80 % dari ad libitum</td>
<td>174,76</td>
<td>87,38</td>
</tr>
<tr>
<td></td>
<td>Cage</td>
<td>ad libitum</td>
<td>188,91</td>
<td>69,90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 % dari ad libitum</td>
<td>182,49</td>
<td>67,52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80 % dari ad libitum</td>
<td>176,91</td>
<td>65,46</td>
</tr>
</tbody>
</table>
ad libitum dengan energi metabolis ransum 2650 kkal/kg, ternyata jumlah konsumsi energi lebih rendah dari kebutuhan energi yang dihitung menurut Scott (1976), untuk strain Shaver dan Super Harco dalam kandang sistem litter. Dalam hal ini diduga bahwa dengan diturunkannya kandungan energi ransum akan merupakan salah satu pendekatan untuk mencegah adanya kelebihan konsumsi energi sehubungan dengan rendahnya kebutuhan energi bagi daerah tropik bila kita bandingkan dengan daerah beriklim sedang. Namun demi kian sampai berapa jauh ketepatan dalam penurunan konsumsi energi ini dapat diketahui dalam pembahasan selanjutnya. Dengan pemberian ransum ad libitum serta energi metabolis ransum 2650 kkal/kg dalam kandang sistem "cage", masih ada kelebihan konsumsi energi. Hal ini mungkin disebabkan karena rendahnya kebutuhan energi untuk aktifitas, sehingga terjadi kelebihan konsumsi energi baik pada strain Shaver maupun Super Harco, tetapi kelebihan tersebut ternyata tidak begitu besar artinya.

Dalam pemberian ransum 90% dari ad libitum dan 80% dari ad libitum, konsumsi energi pada umumnya lebih rendah dari kebutuhan energi yang telah dihitung menurut Scott (1976), baik pada strain Shaver maupun Super Harco dalam kedua sistem kandang tersebut. Hal ini berarti bahwa kebutuhan energi pada daerah lingkungan penelitian untuk menghasilkan produksi telur yang sama, diperlukan energi yang lebih rendah. Perbedaan ini terjadi karena adanya

Sehubungan dengan hal tersebut di atas maka perhitungan yang dikemukakan Scott (1976), sukar digunakan untuk menentukan kebutuhan energi per ekor per hari untuk daerah beriklim tropik atau di luar daerah "thermoneutral".

Pengaruh Konsumsi Protein dan Energi terhadap Produksi Telur

Kebutuhan protein dan energi minimal ayam petelur tipe medium (strain Shaver dan Super Harco) yang sesuai dengan kondisi penelitian, dapat diketahui dari produksi yang dihasilkan. Produksi telur pada tiap jumlah pemberian ransum dalam sistem litter dan "cage" dapat dilihat dalam Tabel 9, 10, 11, 12.

Dari hasil analisa data dan pembahasan ternyata bah-
Tabel 9. Produksi Rata-rata (hen-day%) pada Berbagai Jumlah Pemberian Ransum untuk Strain Shaver dalam Kandang Sistem Litter dengan Siklus Pengukuran 28 Hari

<table>
<thead>
<tr>
<th>Periode Pengukuran</th>
<th>Ransum II (EM = 2850 kcal/kg)</th>
<th>Ransum III (EM = 2650 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum 90% dari 85% dari</td>
<td>ad libitum 90% dari 80% dari</td>
</tr>
<tr>
<td></td>
<td>ad libitum</td>
<td>ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>50.47</td>
<td>42.73</td>
</tr>
<tr>
<td>II</td>
<td>57.78</td>
<td>45.03</td>
</tr>
<tr>
<td>III</td>
<td>64.18</td>
<td>42.36</td>
</tr>
<tr>
<td>IV</td>
<td>58.62</td>
<td>55.57</td>
</tr>
<tr>
<td>V</td>
<td>57.83</td>
<td>57.35</td>
</tr>
<tr>
<td>VI</td>
<td>56.47</td>
<td>54.96</td>
</tr>
<tr>
<td>VII</td>
<td>68.54</td>
<td>49.62</td>
</tr>
<tr>
<td>VIII</td>
<td>78.49</td>
<td>55.49</td>
</tr>
<tr>
<td>IX</td>
<td>73.80</td>
<td>59.18</td>
</tr>
<tr>
<td>X</td>
<td>66.35</td>
<td>62.76</td>
</tr>
<tr>
<td>XI</td>
<td>71.82</td>
<td>60.84</td>
</tr>
<tr>
<td>XII</td>
<td>62.78</td>
<td>55.64</td>
</tr>
<tr>
<td>XIII</td>
<td>57.88</td>
<td>54.70</td>
</tr>
</tbody>
</table>

<p>| Rata-rata produksi/tahun | 70.81 | 67.47 | 60.04 | 69.52 | 68.10 | 58.07 |</p>
<table>
<thead>
<tr>
<th>Periode Pengukuran</th>
<th>Fensum II (EM = 2850 kkal/kg)</th>
<th>Fensum III (EM = 2650 kkal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum</td>
<td>90 % dari</td>
</tr>
<tr>
<td>I</td>
<td>51.02</td>
<td>46.94</td>
</tr>
<tr>
<td>II</td>
<td>82.25</td>
<td>79.62</td>
</tr>
<tr>
<td>III</td>
<td>84.71</td>
<td>74.42</td>
</tr>
<tr>
<td>IV</td>
<td>77.04</td>
<td>69.04</td>
</tr>
<tr>
<td>V</td>
<td>78.69</td>
<td>64.70</td>
</tr>
<tr>
<td>VI</td>
<td>74.13</td>
<td>57.42</td>
</tr>
<tr>
<td>VII</td>
<td>71.15</td>
<td>64.29</td>
</tr>
<tr>
<td>VIII</td>
<td>79.24</td>
<td>73.08</td>
</tr>
<tr>
<td>IX</td>
<td>78.70</td>
<td>72.67</td>
</tr>
<tr>
<td>X</td>
<td>73.46</td>
<td>75.27</td>
</tr>
<tr>
<td>XI</td>
<td>70.86</td>
<td>70.06</td>
</tr>
<tr>
<td>XII</td>
<td>61.25</td>
<td>65.11</td>
</tr>
<tr>
<td>XIII</td>
<td>65.26</td>
<td>64.98</td>
</tr>
</tbody>
</table>

Rata-rata produksi tahun | 72.90 | 67.51 | 56.11 | 68.05 | 70.38 | 54.55 |
Tabel 11. Produksi Rata-rata (hen-day%) pada Berbagai Jumlah Pemberian Ransum untuk Strain Super Harco dalam Kandang Sistem Litter dengan Siklus Pengukuran 28 Hari

<table>
<thead>
<tr>
<th>Periode Pengukuran</th>
<th>Ransum II (EM = 2850 kkal/kg)</th>
<th>Ransum III (EM = 2650 kkal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum</td>
<td>90 % dari</td>
</tr>
<tr>
<td>I</td>
<td>44.14</td>
<td>38.78</td>
</tr>
<tr>
<td>II</td>
<td>71.21</td>
<td>71.94</td>
</tr>
<tr>
<td>III</td>
<td>81.19</td>
<td>84.06</td>
</tr>
<tr>
<td>IV</td>
<td>72.19</td>
<td>74.11</td>
</tr>
<tr>
<td>V</td>
<td>77.32</td>
<td>71.18</td>
</tr>
<tr>
<td>VI</td>
<td>66.50</td>
<td>65.82</td>
</tr>
<tr>
<td>VII</td>
<td>60.66</td>
<td>62.37</td>
</tr>
<tr>
<td>VIII</td>
<td>76.41</td>
<td>78.83</td>
</tr>
<tr>
<td>IX</td>
<td>76.08</td>
<td>74.75</td>
</tr>
<tr>
<td>X</td>
<td>71.78</td>
<td>67.35</td>
</tr>
<tr>
<td>XI</td>
<td>73.46</td>
<td>66.20</td>
</tr>
<tr>
<td>XII</td>
<td>66.40</td>
<td>67.18</td>
</tr>
<tr>
<td>XIII</td>
<td>63.11</td>
<td>68.53</td>
</tr>
</tbody>
</table>

| Rata-rata produksi/ tahun | 69.28 | 68.53 | 48.64 | 71.44 | 67.04 | 48.16 |
Tabel 12. Produktivitas Rata-rata (hen-ýay%) pada Berbagai Jumlah Pemberian Ransum untuk Strain Super Harco dalam Kanéyam Sistem Cage dengan Siklus Pengukuran 28 Hari

<table>
<thead>
<tr>
<th>Periode Pengukuran</th>
<th>Ransum II (EM = 2850 kkal/kg)</th>
<th>Ransum III (EM = 2650 kkal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum</td>
<td>90% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>59.18</td>
<td>39.93</td>
</tr>
<tr>
<td>II</td>
<td>81.60</td>
<td>69.52</td>
</tr>
<tr>
<td>III</td>
<td>82.25</td>
<td>79.50</td>
</tr>
<tr>
<td>IV</td>
<td>75.30</td>
<td>73.47</td>
</tr>
<tr>
<td>V</td>
<td>79.92</td>
<td>65.46</td>
</tr>
<tr>
<td>VI</td>
<td>69.96</td>
<td>59.10</td>
</tr>
<tr>
<td>VII</td>
<td>59.16</td>
<td>56.51</td>
</tr>
<tr>
<td>VIII</td>
<td>74.49</td>
<td>74.49</td>
</tr>
<tr>
<td>IX</td>
<td>76.33</td>
<td>73.09</td>
</tr>
<tr>
<td>X</td>
<td>67.67</td>
<td>70.49</td>
</tr>
<tr>
<td>XI</td>
<td>61.97</td>
<td>67.64</td>
</tr>
<tr>
<td>XII</td>
<td>56.69</td>
<td>64.21</td>
</tr>
<tr>
<td>XIII</td>
<td>56.03</td>
<td>58.39</td>
</tr>
</tbody>
</table>

Rata-rata produksi/ tahun

| | 69.27 | 65.52 | 56.10 | 67.34 | 63.51 | 57.56 |
wa ransum dengan energi metabolis 2650 kkal/kg dan 2850
kkal/kg tidak memberikan perbedaan yang nyata terhadap
produksi telur yang dihasilkan, baik pada strain Shaver
maupun Super Harco dalam kedua sistem kandang tersebut.
Hasil-hasil penelitian yang dilakukan pada ayam petelur
tipe ringan, juga memperlihatkan pengaruh yang sama ter-
hadap produksi telur yang dihasilkan (Sugandi, 1974). Se-
jalan dengan laporan Creswell (1979) bahwa kisaran energi
metabolis ransum antara 2500 - 3000 kkal/kg hanya sedikit
sekali atau tidak ada pengaruhnya terhadap produksi telur.

Pada jumlah pemberian ransum ad libitum dan 90% dari
ad libitum tidak terlihat perbedaan yang nyata terhadap
produksi telur, baik pada strain Shaver maupun Super Harco
dalam kandang sistem litter dan "cage". Sesuai dengan ha-
sil penelitian North (1972), bahwa pemberian makanan ter-
batas sampai dengan 90% dari ad libitum tidak akan mengu-
rangi produksi telur yang dihasilkan. Hasil penelitian
yang sama telah dikemukakan Snetsinger dan Zimmerman (1974)
dan Balnave (1975; 1976) yang menunjukkan bahwa mengurangi
konsumsi energi metabolis sekitar 10% dari jumlah konsumsi
yang diberikan dengan ad libitum tidak mengubah produksi
telur. Lain halnya dengan hasil penelitian Auckland dan
Wilson (1975) yang mengemukakan bahwa pemberian ransum 90%
dari ad libitum ternyata dapat menurunkan produksi telur.

Sehubungan dengan hal tersebut di atas, maka dengan
tidak adanya perbedaan produksi telur yang nyata antara

Konsumsi energi dan protein tersebut di atas ternyata dapat menghasilkan produksi telur yang cukup memadai. Hasil penelitian ini menunjukkan bahwa produksi telur (dalam hen-day%) rata-rata untuk strain Shaver dengan pemberian ransum ad libitum sebesar 70.32% dan dengan pemberian ransum 90% dari ad libitum rata-rata sebesar 68.36%. Pada strain Super Harco dengan pemberian ransum ad libitum produksi rata-ratanya (hen-day%) sebesar 69.33% dan dengan pemberian ransum 90% dari ad libitum rata-ratanya sebesar 66.15%. Menurut North (1972), produksi standar untuk ayam petelur tipe medium yaitu 69% (hen-day). Dengan demikian bila dibandingkan dengan hasil penelitian ini dapat dikatakan produksi standar yang diperoleh di daerah beriklim se-
dang dapat tercapai walaupun diskui pada strain Super Harco dengan pemberian ransum 90% dari ad libitum tampak produksinya lebih rendah, tetapi perbedaannya tersebut secara statistik tidak berbeda nyata.

Kembali kepada pembahasan mengenai jumlah pemberian ransum, ternyata bahwa dengan jumlah pemberian ransum 80% dari ad libitum produksi telurnya lebih rendah ($P < 0.01$), bila dibandingkan dengan jumlah pemberian ransum 90% dari ad libitum dan ad libitum. Produksi rata-rata pada strain Shaver dalam jumlah pemberian ransum 80% dari ad libitum adalah sekitar 57.9% (hen-day%). Produksi rata-rata pada strain Super Harco adalah sekitar 52.62% (hen-day%). Bila dibandingkan dengan produksi standarnya, produksi pada jumlah pemberian ransum 80% dari ad libitum ini terlalu rendah. Hal ini sesuai dengan hasil penelitian Muir dan Gerry (1973) yang menyatakan bahwa pengurangan ransum sampai dengan 20% dari ad libitum pada ayam yang sedang berproduksi, dianggap terlalu berat dan akan menurunkan produksi yang disebabkan oleh rendahnya konsumsi energi. Menurut Williamson dan Payne (1978), ayam petelur tipe ringan (berat badan dewasa 1.8 kg) yang dipelihara di daerah tropik, akan berproduksi maksimum apabila konsumsi energinya tidak kurang dari 265 - 280 kkal/ekor/hari. Konsumsi energi pada ayam petelur yang diberi ransum dengan 80% dari ad libitum yang diperoleh dari hasil penelitian ini, berkisar antara 256.41 - 284.47 kkal/ekor/hari. Dengan
demikian konsumsi energi ini dapat dikatakan terlalu rendah karena ayam petelur yang dipergunakan adalah ayam petelur tipe medium yang memerlukan konsumsi energi yang lebih tinggi. Oleh karena itu konsumsi energi yang rendah sembang dengan produksi telur yang dihasilkan.

Strain Super Harco yang dipelihara dalam kandang sistem litter dengan jumlah pemberian ransum 80% dari konsumsi ransum ad libitum, produksi telurnya ternyata paling rendah ($P<0.05$) bila dibandingkan dengan yang diberi ransum ad libitum dan 90% dari ad libitum. Hal ini disebabkan karena dengan pemberian ransum 80% dari ad libitum, ayam tersebut lebih banyak minum yang menyebabkan keadaan litter menjadi basah dan lembab. Keadaan litter yang basah dan lembab ini, umumnya sangat mengganggu kesehatan ayam tersebut dan mungkin merupakan salah satu faktor yang menyebabkan produksi lebih menurun. Di samping itu umumnya ayam yang dipelihara dalam kandang sistem litter dan pemberian ransum 80% dari ad libitum, sering terjadi pematan buku sehingga sebagian besar dari ayam tersebut menjadi gundul. Akibat lain dengan adanya pematan buku ini, juga menyebabkan adanya infeksi yang sekaligus mempengaruhi produksi yang dihasilkan. Pada ayam yang dipelihara dalam kandang sistem "cage" pematan buku semacam ini jarang terjadi karena pergerakannya sangat terbatas. Dengan demikian nampaknya dilihat dari segi produksi telur yang dihasilkan, sistem pemberian makanan terbatas sebanyak 80%
dari *ad libitum* untuk daerah tropik ternyata kurang menguntungkan.

Untuk memperoleh gambaran mengenai perkembangan produksi dari setiap perlakuan, diperlihatkan pada Ilustrasi 3, 4, 5 dan 6.

Terlihat dari ilustrasi-illustrasi tersebut, strain Shaver yang dipelihara dalam kandang sistem litter pada pemberian ransum *ad libitum*, 90% dari *ad libitum* dan 80% dari *ad libitum*, masing-masing puncak produksi tercapai pada umur sekitar 32 minggu dan setelah itu pada umumnya produksi menurun. Strain Shaver yang dipelihara dalam kandang sistem "cage" pada pemberian ransum *ad libitum* dan 90% dari *ad libitum* dengan energi ransumnya 2850 kkal/kg, puncak produksi tercapai berturut-turut sekitar 32 dan 28 minggu. Pada jumlah pemberian ransum yang sama tetapi dengan energi ransum 2650 kkal/kg, puncak produksi tercapai pada umur 32 minggu. Strain Shaver yang dipelihara dalam kandang sistem "cage" dengan pemberian ransum 80% dari *ad libitum* dan energi ransum 2850 kkal/kg, puncak produksi tercapai sekitar umur 36 minggu serta dengan energi ransum 2650 kkal/kg puncak produksi tercapai pada umur sekitar 40 minggu.

Untuk strain Super Harco, yang dipelihara dalam kandang sistem litter dan "cage" yang diberi ransum dengan *ad libitum* dan 90% dari *ad libitum* puncak produksi tercapai pada umur 32 minggu. Pada pemberian ransum 80% dari
Ilustrasi 3. Produksi Rata-rata (Hen-day%) pada Berbagai Jumlah Pemberian Ransum II dan Ransum III untuk Strain Shaver dalam Kandang Sistem Litter dengan Interval Pengukuran 28 Hari
Ilustrasi 4. Produksi Rata-rata (Hen-day%) pada Berbagai Jumlah Pemberian Ransum II dan Ransum III untuk Strain Shaver dalam Kandang Sistem Cage dengan Interval Pengukuran 28 Hari.
Ilustrasi 5. Produksi Rata-rata (Hen-day%) pada Berbagai Jumlah Pemberian Ransum II dan Ransum III untuk Strain Super Harco dalam Kandang Sistem Litter dengan Interval Pengukuran 28 Hari.
Ilustrasi 6. Produksi Rata-rata (Hen-day%) pada Berbagai Jumlah Pemberian Pansum II dan Pansum III untuk Strain Super Harco dalam Kandang Sistem Cage dengan Interval Pengukuran 28 Hari
ad libitum, puncak produksinya tercapai sekitar umur 36 minggu.

Sehubungan dengan hal tersebut tadi terlihat bahwa pada umumnya ayam petelur yang mendapat ransum 80% dari ad libitum, mengalami kelambatan dalam mencapai puncak produksi di samping puncak produksi tersebut paling rendah. Hal ini erat kaitannya dengan jumlah ransum yang dikonsumsi.

Berat Telur

Berat telur rata-rata pada tiap jumlah pemberian ransum dapat diketahui dari Tabel 13, 14, 15 dan 16.

Terlihat dari tabel tersebut bahwa berat telur yang dihasilkan dari kandang sistem "cage" rata-rata 59.87 gram sedangkan berat telur yang dihasilkan dari kandang sistem litter rata-rata 59.49 gram. Dengan demikian berat telur yang dihasilkan oleh ayam petelur yang dipelihara dalam kandang sistem "cage", memperlihatkan berat telur yang lebih tinggi akan tetapi perbedaan tersebut tidak nyata. Terjadinya berat telur walaupun tidak nyata, adalah karena ayam petelur yang dipelihara dalam kandang sistem "cage" aktifitasnya sangat terbatas sehingga kemungkinan energi yang tersedia untuk produksi lebih besar bila dibandingkan dengan yang dipelihara dalam kandang sistem litter (dalam jumlah pemberian ransum yang sama). Pada ayam petelur tipe ringan menurut hasil penelitian Sugandi (1974), perbedaan itu nyata lebih berat pada telur yang dihasilkan oleh
<table>
<thead>
<tr>
<th>Periode</th>
<th>Ransum I (EM = 2850 kcal/kg)</th>
<th>Ransum II (EM = 2650 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum</td>
<td>ad libitum</td>
</tr>
<tr>
<td></td>
<td>90% dari ad libitum</td>
<td>90% dari ad libitum</td>
</tr>
<tr>
<td></td>
<td>80% dari ad libitum</td>
<td>80% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>54.66</td>
<td>54.62</td>
</tr>
<tr>
<td></td>
<td>54.43</td>
<td>53.07</td>
</tr>
<tr>
<td></td>
<td>54.40</td>
<td>52.55</td>
</tr>
<tr>
<td>II</td>
<td>57.35</td>
<td>56.85</td>
</tr>
<tr>
<td></td>
<td>57.23</td>
<td>55.35</td>
</tr>
<tr>
<td></td>
<td>56.12</td>
<td>54.39</td>
</tr>
<tr>
<td>III</td>
<td>58.70</td>
<td>58.73</td>
</tr>
<tr>
<td></td>
<td>58.18</td>
<td>58.39</td>
</tr>
<tr>
<td></td>
<td>57.90</td>
<td>56.61</td>
</tr>
<tr>
<td>IV</td>
<td>59.03</td>
<td>58.95</td>
</tr>
<tr>
<td></td>
<td>59.96</td>
<td>58.13</td>
</tr>
<tr>
<td></td>
<td>58.73</td>
<td>57.51</td>
</tr>
<tr>
<td>V</td>
<td>60.01</td>
<td>59.86</td>
</tr>
<tr>
<td></td>
<td>60.78</td>
<td>59.76</td>
</tr>
<tr>
<td></td>
<td>59.98</td>
<td>59.88</td>
</tr>
<tr>
<td>VI</td>
<td>59.83</td>
<td>59.88</td>
</tr>
<tr>
<td></td>
<td>59.88</td>
<td>59.36</td>
</tr>
<tr>
<td></td>
<td>59.94</td>
<td>59.32</td>
</tr>
<tr>
<td>VII</td>
<td>60.20</td>
<td>60.79</td>
</tr>
<tr>
<td></td>
<td>60.14</td>
<td>59.35</td>
</tr>
<tr>
<td></td>
<td>60.71</td>
<td>59.06</td>
</tr>
<tr>
<td>VIII</td>
<td>60.73</td>
<td>60.31</td>
</tr>
<tr>
<td></td>
<td>61.91</td>
<td>59.35</td>
</tr>
<tr>
<td></td>
<td>61.20</td>
<td>59.06</td>
</tr>
<tr>
<td>IX</td>
<td>61.75</td>
<td>60.12</td>
</tr>
<tr>
<td></td>
<td>61.43</td>
<td>60.31</td>
</tr>
<tr>
<td></td>
<td>60.31</td>
<td>60.06</td>
</tr>
<tr>
<td>X</td>
<td>62.11</td>
<td>60.97</td>
</tr>
<tr>
<td></td>
<td>62.21</td>
<td>60.98</td>
</tr>
<tr>
<td></td>
<td>61.43</td>
<td>60.98</td>
</tr>
<tr>
<td>XI</td>
<td>61.79</td>
<td>61.18</td>
</tr>
<tr>
<td></td>
<td>61.08</td>
<td>60.80</td>
</tr>
<tr>
<td></td>
<td>60.86</td>
<td>60.80</td>
</tr>
<tr>
<td>XII</td>
<td>61.77</td>
<td>61.49</td>
</tr>
<tr>
<td></td>
<td>62.52</td>
<td>60.37</td>
</tr>
<tr>
<td></td>
<td>61.47</td>
<td>61.12</td>
</tr>
<tr>
<td>XIII</td>
<td>63.00</td>
<td>61.03</td>
</tr>
<tr>
<td></td>
<td>62.30</td>
<td>61.13</td>
</tr>
<tr>
<td></td>
<td>61.84</td>
<td>60.81</td>
</tr>
</tbody>
</table>

| Rata-rata | 60.46 | 59.66 | 59.72 | 58.94 | 58.59 |
Tabel 14. Berat Telur Rata-rata yang Dihasilkan Strain Shaver yang Dipelihara
dalam Kandang Sistem Litter pada Berbagai Jumlah Pemberian Ransum
dengan Interval Pengamatan 28 Hari (gram)

<table>
<thead>
<tr>
<th>Periode</th>
<th>Ransum I (EM = 2850 kcal/kg)</th>
<th>Ransum II (EM = 2650 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum</td>
<td>90% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>54.80</td>
<td>54.74</td>
</tr>
<tr>
<td>II</td>
<td>57.45</td>
<td>57.35</td>
</tr>
<tr>
<td>III</td>
<td>59.53</td>
<td>58.38</td>
</tr>
<tr>
<td>IV</td>
<td>59.32</td>
<td>58.95</td>
</tr>
<tr>
<td>V</td>
<td>60.48</td>
<td>59.59</td>
</tr>
<tr>
<td>VI</td>
<td>61.09</td>
<td>60.25</td>
</tr>
<tr>
<td>VII</td>
<td>61.88</td>
<td>60.69</td>
</tr>
<tr>
<td>VIII</td>
<td>62.68</td>
<td>59.38</td>
</tr>
<tr>
<td>IX</td>
<td>63.51</td>
<td>60.71</td>
</tr>
<tr>
<td>X</td>
<td>63.77</td>
<td>61.77</td>
</tr>
<tr>
<td>XI</td>
<td>63.22</td>
<td>60.82</td>
</tr>
<tr>
<td>XII</td>
<td>63.63</td>
<td>61.24</td>
</tr>
<tr>
<td>XIII</td>
<td>64.16</td>
<td>62.23</td>
</tr>
</tbody>
</table>

Rata-rata 61.19 59.70 59.16 59.86 58.63 58.49
<table>
<thead>
<tr>
<th>Periode</th>
<th>Pengukuhan</th>
<th>Ransum I (EM = 2850 kcal/kg)</th>
<th>Ransum II (EM = 2850 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ac libitum</td>
<td>90% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>53.94</td>
<td>52.09</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>58.75</td>
<td>55.99</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td>59.37</td>
<td>57.19</td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td>59.97</td>
<td>58.20</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>60.80</td>
<td>58.85</td>
</tr>
<tr>
<td>VI</td>
<td></td>
<td>60.65</td>
<td>59.18</td>
</tr>
<tr>
<td>VII</td>
<td></td>
<td>60.52</td>
<td>58.77</td>
</tr>
<tr>
<td>VIII</td>
<td></td>
<td>60.11</td>
<td>57.74</td>
</tr>
<tr>
<td>IX</td>
<td></td>
<td>60.91</td>
<td>58.85</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>61.51</td>
<td>59.76</td>
</tr>
<tr>
<td>XI</td>
<td></td>
<td>61.27</td>
<td>59.91</td>
</tr>
<tr>
<td>XII</td>
<td></td>
<td>61.46</td>
<td>60.89</td>
</tr>
<tr>
<td>XIII</td>
<td></td>
<td>62.76</td>
<td>60.81</td>
</tr>
<tr>
<td>Rata-rata</td>
<td></td>
<td>60.15</td>
<td>58.32</td>
</tr>
</tbody>
</table>
Tabel 16. Berat Telur Rata-rata yang Dihasilkan Strain Super Harco yang Dipelihara dalam Kandang Sistem Cage pada Berbagai Jumlah Pemberian Ransum dengan Interval Pengamatan 28 Hari (gram)

<table>
<thead>
<tr>
<th>Periode Pengukuran</th>
<th>Ransum II (EM = 2850 kcal/kg)</th>
<th></th>
<th></th>
<th>Ransum III (EM = 2650 kcal/kg)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum</td>
<td>90% dari ad libitum</td>
<td>80% dari ad libitum</td>
<td>ad libitum</td>
<td>90% dari ad libitum</td>
<td>80% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>54.36</td>
<td>56.67</td>
<td>53.82</td>
<td>55.19</td>
<td>54.17</td>
<td>53.74</td>
</tr>
<tr>
<td>II</td>
<td>57.05</td>
<td>58.08</td>
<td>56.79</td>
<td>57.66</td>
<td>56.92</td>
<td>57.19</td>
</tr>
<tr>
<td>III</td>
<td>59.0</td>
<td>59.69</td>
<td>58.59</td>
<td>58.49</td>
<td>58.48</td>
<td>59.18</td>
</tr>
<tr>
<td>IV</td>
<td>59.62</td>
<td>60.75</td>
<td>59.26</td>
<td>59.77</td>
<td>59.35</td>
<td>59.57</td>
</tr>
<tr>
<td>V</td>
<td>60.07</td>
<td>62.45</td>
<td>60.57</td>
<td>60.83</td>
<td>60.97</td>
<td>60.86</td>
</tr>
<tr>
<td>VI</td>
<td>60.73</td>
<td>62.98</td>
<td>60.22</td>
<td>60.88</td>
<td>61.45</td>
<td>61.92</td>
</tr>
<tr>
<td>VII</td>
<td>59.98</td>
<td>62.63</td>
<td>59.71</td>
<td>61.91</td>
<td>61.33</td>
<td>58.61</td>
</tr>
<tr>
<td>VIII</td>
<td>59.19</td>
<td>62.54</td>
<td>58.36</td>
<td>60.67</td>
<td>59.62</td>
<td>58.54</td>
</tr>
<tr>
<td>IX</td>
<td>60.96</td>
<td>63.04</td>
<td>59.22</td>
<td>61.86</td>
<td>61.42</td>
<td>59.89</td>
</tr>
<tr>
<td>X</td>
<td>61.11</td>
<td>63.28</td>
<td>59.99</td>
<td>62.67</td>
<td>61.46</td>
<td>60.15</td>
</tr>
<tr>
<td>XI</td>
<td>62.33</td>
<td>62.88</td>
<td>59.72</td>
<td>62.13</td>
<td>61.16</td>
<td>60.34</td>
</tr>
<tr>
<td>XII</td>
<td>62.95</td>
<td>64.20</td>
<td>61.46</td>
<td>63.39</td>
<td>62.94</td>
<td>61.21</td>
</tr>
<tr>
<td>XIII</td>
<td>62.94</td>
<td>64.35</td>
<td>60.61</td>
<td>62.75</td>
<td>62.20</td>
<td>61.12</td>
</tr>
</tbody>
</table>

Rata-rata 60.02 61.81 59.10 60.64 60.12 59.34
ayam petelur yang dipelihara dalam kandang sistem "cage".

Perbedaan jumlah pemberian ransum, ternyata sangat mempengaruhi berat telur yang dihasilkan. Pada ayam petelur yang diberi ransum ad libitum, telur yang dihasilkan lebih berat ($P < 0.05$) bila dibandingkan dengan telur yang dihasilkan oleh ayam yang diberi ransum 80% dari jumlah ad libitum. Antara ayam petelur yang diberi ransum dengan ad libitum dan 90% dari ad libitum, berat telur yang dihasilkan tidak berbeda nyata. Begitu pula antara berat telur yang dihasilkan oleh ayam petelur yang diberi ransum 90% dari ad libitum dan 80% dari ad libitum tidak berbeda nyata. Adanya perbedaan berat telur tersebut erat sekali hubungannya dengan jumlah pemberian ransum yang berbeda, yang langsung mempengaruhi jumlah zat-zat makanan yang dikonsumsi di antaranya protein. Pada ayam petelur yang diberi ransum ad libitum, 90% dari ad libitum dan 80% dari ad libitum, konsumsi proteinnya berturut-turut sekitar 21.26 gram/ekor/hari, 19.13 gram/ekor/hari dan 17.01 gram/ekor/hari. Dalam penelitian ini terlihat bahwa dengan makin rendahnya konsumsi protein, berat telur yang dihasilkan juga makin menurun. Sesuai dengan pendapat Creswell (1979), bahwa bila jumlah konsumsi protein optimum tidak tercapai akan menyebabkan berat telur dan produksinya akan menurun. Pada ayam petelur tipe ringan dewasa, untuk mencapai berat telur dan produksi yang optimal memerlukan konsumsi protein sekitar 16 – 18 gram/ekor/hari. Dalam
penelitian ini walaupun konsumsi protein pada tiap jumlah pemberian ransum lebih tinggi dari anjuran Creswell (1979), berat telur yang dihasilkan tetap menurun karena ayam yang digunakan dalam penelitian adalah ayam petelur tipe medium.

Bila dilihat dari segi strain ayam dan energi ransum yang digunakan, ternyata strain Shaver yang diberi ransum dengan energi 2850 kkal/kg, telur yang dihasilkan lebih berat (P < 0.05) dari telur yang dihasilkan oleh ayam yang diberi ransum dengan energi 2650 kkal/kg. Pada strain Super Harco, antara ayam petelur yang diberi ransum dengan energi 2850 kkal/kg dan 2650 kkal/kg, berat telur yang dihasilkan tidak berbeda nyata. Dalam hal ini ternyata perbedaan kandungan energi ransum dalam sistem pemberian makanan terbatas, memperlihatkan pengaruh yang berbeda terhadap berat telur yang dihasilkan oleh strain Shaver dan Super Harco.

Sesuai dengan hasil penelitian Balnave (1973) bahwa pengaruh sistem pemberian makanan terbatas terhadap performans, tergantung kepada strain dari ayam dan metoda yang digunakan.

Konversi Ransum pada Periode Produksi

Seperti telah dikemukakan semula, besarnya angka konversi ransum tergantung kepada banyaknya ransum yang dikonsumsi dan produksi telur yang dihasilkan. Angka-angka mengenai konversi ransum yang diperoleh dari hasil penelitian tercantum dalam Tabel 17, 18, 19 dan 20.
<table>
<thead>
<tr>
<th>Periode</th>
<th>Ransum II (EM = 2850 kkal/kg)</th>
<th>Ransum III (EM = 2650 kkal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum</td>
<td>90% dari</td>
</tr>
<tr>
<td>I</td>
<td>2.57</td>
<td>4.58</td>
</tr>
<tr>
<td>II</td>
<td>2.66</td>
<td>4.57</td>
</tr>
<tr>
<td>III</td>
<td>2.44</td>
<td>2.30</td>
</tr>
<tr>
<td>IV</td>
<td>2.59</td>
<td>2.49</td>
</tr>
<tr>
<td>V</td>
<td>2.56</td>
<td>2.37</td>
</tr>
<tr>
<td>VI</td>
<td>2.78</td>
<td>2.75</td>
</tr>
<tr>
<td>VII</td>
<td>3.01</td>
<td>3.25</td>
</tr>
<tr>
<td>VIII</td>
<td>2.70</td>
<td>2.72</td>
</tr>
<tr>
<td>IX</td>
<td>2.61</td>
<td>2.79</td>
</tr>
<tr>
<td>X</td>
<td>3.13</td>
<td>2.94</td>
</tr>
<tr>
<td>XI</td>
<td>2.90</td>
<td>2.69</td>
</tr>
<tr>
<td>XII</td>
<td>3.18</td>
<td>2.78</td>
</tr>
<tr>
<td>XIII</td>
<td>3.48</td>
<td>3.40</td>
</tr>
</tbody>
</table>

| Rata-rata konversi ransum/tahun | 2.91 | 2.89 | 2.97 | 3.13 | 2.86 | 3.11 |

<table>
<thead>
<tr>
<th>Periode Pengukuran</th>
<th>Ransum II (EM=2850 kkal/kg)</th>
<th>Ransum III (EM=2650 kkal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum</td>
<td>90% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>3.51</td>
<td>3.43</td>
</tr>
<tr>
<td>II</td>
<td>2.37</td>
<td>2.27</td>
</tr>
<tr>
<td>III</td>
<td>2.38</td>
<td>2.46</td>
</tr>
<tr>
<td>IV</td>
<td>2.67</td>
<td>2.68</td>
</tr>
<tr>
<td>V</td>
<td>2.52</td>
<td>2.73</td>
</tr>
<tr>
<td>VI</td>
<td>2.78</td>
<td>3.19</td>
</tr>
<tr>
<td>VII</td>
<td>2.97</td>
<td>2.84</td>
</tr>
<tr>
<td>VIII</td>
<td>2.70</td>
<td>2.56</td>
</tr>
<tr>
<td>IX</td>
<td>2.69</td>
<td>2.52</td>
</tr>
<tr>
<td>X</td>
<td>2.80</td>
<td>2.41</td>
</tr>
<tr>
<td>XI</td>
<td>2.93</td>
<td>2.65</td>
</tr>
<tr>
<td>XII</td>
<td>3.27</td>
<td>2.72</td>
</tr>
<tr>
<td>XIII</td>
<td>3.01</td>
<td>2.70</td>
</tr>
</tbody>
</table>

Rata-rata Konversi ransum/tahun 2.82 2.70 3.10 3.09 2.66 3.10
<table>
<thead>
<tr>
<th>Periode Pengukuran</th>
<th>Ransum II (EN= 2850 kcal/kg)</th>
<th>Ransum III (EN= 2650 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum</td>
<td>90 % dari ad libitum</td>
</tr>
<tr>
<td>II</td>
<td>2.95</td>
<td>2.63</td>
</tr>
<tr>
<td>III</td>
<td>2.59</td>
<td>2.31</td>
</tr>
<tr>
<td>IV</td>
<td>2.93</td>
<td>2.62</td>
</tr>
<tr>
<td>V</td>
<td>2.66</td>
<td>2.66</td>
</tr>
<tr>
<td>VI</td>
<td>3.26</td>
<td>2.92</td>
</tr>
<tr>
<td>VII</td>
<td>3.56</td>
<td>3.31</td>
</tr>
<tr>
<td>VIII</td>
<td>2.90</td>
<td>2.68</td>
</tr>
<tr>
<td>IX</td>
<td>2.92</td>
<td>2.72</td>
</tr>
<tr>
<td>X</td>
<td>3.05</td>
<td>2.91</td>
</tr>
<tr>
<td>XI</td>
<td>2.92</td>
<td>2.95</td>
</tr>
<tr>
<td>XII</td>
<td>3.20</td>
<td>2.85</td>
</tr>
<tr>
<td>XIII</td>
<td>3.35</td>
<td>2.82</td>
</tr>
</tbody>
</table>

Rata-rata konversi ransum/tahun
3.12 2.91 3.93 3.02 3.03 4.31
<table>
<thead>
<tr>
<th>Periode Pengukuran</th>
<th>Ransum II (EM= 2850 kcal/kg)</th>
<th>Ransum III (EM=2690 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum</td>
<td>90 % dari</td>
</tr>
<tr>
<td>I</td>
<td>3.05</td>
<td>3.90</td>
</tr>
<tr>
<td>II</td>
<td>2.43</td>
<td>2.53</td>
</tr>
<tr>
<td>III</td>
<td>2.47</td>
<td>2.28</td>
</tr>
<tr>
<td>IV</td>
<td>2.73</td>
<td>2.48</td>
</tr>
<tr>
<td>V</td>
<td>2.50</td>
<td>2.63</td>
</tr>
<tr>
<td>VI</td>
<td>2.90</td>
<td>2.98</td>
</tr>
<tr>
<td>VII</td>
<td>3.50</td>
<td>3.14</td>
</tr>
<tr>
<td>VIII</td>
<td>2.91</td>
<td>2.49</td>
</tr>
<tr>
<td>IX</td>
<td>2.82</td>
<td>2.54</td>
</tr>
<tr>
<td>X</td>
<td>3.12</td>
<td>2.60</td>
</tr>
<tr>
<td>XI</td>
<td>3.31</td>
<td>2.78</td>
</tr>
<tr>
<td>XII</td>
<td>3.48</td>
<td>2.74</td>
</tr>
<tr>
<td>XIII</td>
<td>3.52</td>
<td>2.99</td>
</tr>
</tbody>
</table>

| Rata-rata konversi ransum/tahun | 2.98 | 2.78 | 3.10 | 3.10 | 2.96 | 3.02 |
Dari hasil analisa data dan pembahasan dapat dinyatakan bahwa dengan penggunaan energi ransum 2650 dan 2850 kkal/kg, tidak memperlihatkan perbedaan yang nyata terhadap konversi ransum. Hal ini disebabkan karena penggunaan energi tersebut, tidak memberikan pengaruh yang berbeda terhadap produksi telur yang dihasilkan. Ini berarti bahwa efisiensi ransum-ransum tersebut adalah sama. Lain halnya dengan hasil penelitian Singsen, et al. (1959) yang dilaporkan Ewing (1963), bahwa makin tinggi energi ransum maka efisiensi penggunaan makanan makin baik.

Dari hasil penelitian juga diketahui pula bahwa untuk strain Super Harco dengan jumlah pemberian ransum 80% dari ad libitum dalam kandang sistem litter, menghasilkan konversi ransum yang paling jelek (P<0.01) bila dibandingkan dengan pemberian ransum lainnya. Hal ini disebabkan karena produksi telur yang dihasilkan lebih rendah dan kurang efisien dalam menggunakan makanan sehingga konversi ransum tersebut lebih jelek.

Antara jumlah pemberian ransum lainnya baik dalam sistem litter atau "cage", pada strain Shaver dan Super Harco tidak memperlihatkan perbedaan yang nyata terhadap konversi ransum.

Konsumsi Air Minum pada Periode Produksi

Banyaknya konsumsi air minum untuk tiap jumlah pemberian ransum dapat diketahui pada Tabel 21, 22, 23, 24.

Terlihat dari tabel tersebut bahwa konsumsi air minum
<table>
<thead>
<tr>
<th>Periode Pengu-</th>
<th>Ransum II (EM = 2650 kcal/kg)</th>
<th>Ransum III (EM = 2650 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kuran</td>
<td>ad libitum 90% dari ad libitum</td>
<td>ad libitum 90% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>170.62 158.25 150.14</td>
<td>193.69 190.98 185.72</td>
</tr>
<tr>
<td>II</td>
<td>194.21 181.38 188.40</td>
<td>214.29 223.25 216.86</td>
</tr>
<tr>
<td>III</td>
<td>215.12 221.91 240.69</td>
<td>231.53 247.91 252.06</td>
</tr>
<tr>
<td>IV</td>
<td>212.19 237.05 262.00</td>
<td>239.15 239.93 283.64</td>
</tr>
<tr>
<td>V</td>
<td>197.35 247.05 331.60</td>
<td>228.23 265.74 319.46</td>
</tr>
<tr>
<td>VI</td>
<td>214.11 265.82 317.85</td>
<td>257.06 296.13 345.04</td>
</tr>
<tr>
<td>VII</td>
<td>209.47 266.71 345.67</td>
<td>248.88 258.67 373.46</td>
</tr>
<tr>
<td>VIII</td>
<td>218.17 286.89 333.74</td>
<td>249.75 275.58 369.71</td>
</tr>
<tr>
<td>IX</td>
<td>206.14 302.94 307.72</td>
<td>233.07 267.35 351.38</td>
</tr>
<tr>
<td>X</td>
<td>208.52 301.62 358.42</td>
<td>248.67 278.00 398.08</td>
</tr>
<tr>
<td>XI</td>
<td>210.69 289.23 348.42</td>
<td>231.71 277.93 385.72</td>
</tr>
<tr>
<td>XII</td>
<td>192.71 242.29 357.03</td>
<td>221.51 246.00 344.72</td>
</tr>
<tr>
<td>XIII</td>
<td>244.48 258.49 346.28</td>
<td>241.12 272.77 343.61</td>
</tr>
<tr>
<td>Rata-rata/</td>
<td>207.21 250.13 297.54</td>
<td>233.44 256.94 320.73</td>
</tr>
<tr>
<td>tahun</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabel 22. Rata-rata Konsumsi Air Minum per Ekor per Hari selama Periode Produksi pada Berbagai Jumlah Pemberian Ransum untuk Strain Shaver dalam Kandang Sistem Cage dengan Interval Pengamatan 28 Hari (ml/ekor/hari)

<table>
<thead>
<tr>
<th>Periode Pengukuran</th>
<th>Ransum II (EM = 2850 kcal/kg)</th>
<th>Ransum III (EM = 2650 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum</td>
<td>90% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>194.05</td>
<td>236.91</td>
</tr>
<tr>
<td>II</td>
<td>237.01</td>
<td>296.52</td>
</tr>
<tr>
<td>III</td>
<td>271.41</td>
<td>317.99</td>
</tr>
<tr>
<td>IV</td>
<td>286.12</td>
<td>300.70</td>
</tr>
<tr>
<td>V</td>
<td>251.01</td>
<td>259.99</td>
</tr>
<tr>
<td>VI</td>
<td>259.70</td>
<td>245.06</td>
</tr>
<tr>
<td>VII</td>
<td>279.99</td>
<td>244.16</td>
</tr>
<tr>
<td>VIII</td>
<td>258.25</td>
<td>261.22</td>
</tr>
<tr>
<td>IX</td>
<td>253.63</td>
<td>268.12</td>
</tr>
<tr>
<td>X</td>
<td>273.23</td>
<td>309.23</td>
</tr>
<tr>
<td>XI</td>
<td>270.08</td>
<td>308.80</td>
</tr>
<tr>
<td>XII</td>
<td>236.24</td>
<td>253.23</td>
</tr>
<tr>
<td>XIII</td>
<td>266.49</td>
<td>259.94</td>
</tr>
</tbody>
</table>

Rata-rata/th 256.71 273.99 290.36 269.92 274.14 316.35
<table>
<thead>
<tr>
<th>Penyelengga</th>
<th>Ransum II (FM=2850 kcal/kg)</th>
<th>Ransum III (FM=2850 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum</td>
<td>90% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>191.49</td>
<td>183.38</td>
</tr>
<tr>
<td>II</td>
<td>204.79</td>
<td>195.48</td>
</tr>
<tr>
<td>III</td>
<td>223.56</td>
<td>234.93</td>
</tr>
<tr>
<td>IV</td>
<td>218.97</td>
<td>243.43</td>
</tr>
<tr>
<td>V</td>
<td>220.21</td>
<td>250.69</td>
</tr>
<tr>
<td>VI</td>
<td>222.02</td>
<td>280.29</td>
</tr>
<tr>
<td>VII</td>
<td>205.21</td>
<td>268.04</td>
</tr>
<tr>
<td>VIII</td>
<td>216.69</td>
<td>282.77</td>
</tr>
<tr>
<td>IX</td>
<td>209.78</td>
<td>289.18</td>
</tr>
<tr>
<td>X</td>
<td>218.15</td>
<td>277.87</td>
</tr>
<tr>
<td>XI</td>
<td>225.66</td>
<td>265.77</td>
</tr>
<tr>
<td>XII</td>
<td>210.30</td>
<td>237.71</td>
</tr>
<tr>
<td>XIII</td>
<td>209.11</td>
<td>269.35</td>
</tr>
</tbody>
</table>

Rata-rata/th 213.55 252.22 265.49 243.27 257.59 274.62

<table>
<thead>
<tr>
<th>Periode</th>
<th>Pengukuran</th>
<th>Ransum II (EM=2650 kkal/kg)</th>
<th>Ransum III (EM=2650 kkal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ad libitum</td>
<td>90% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>215.18</td>
<td>208.78</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>241.74</td>
<td>238.96</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td>264.42</td>
<td>264.49</td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td>273.62</td>
<td>260.42</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>249.15</td>
<td>253.45</td>
</tr>
<tr>
<td>VI</td>
<td></td>
<td>258.16</td>
<td>251.74</td>
</tr>
<tr>
<td>VII</td>
<td></td>
<td>263.08</td>
<td>265.37</td>
</tr>
<tr>
<td>VIII</td>
<td></td>
<td>244.99</td>
<td>271.40</td>
</tr>
<tr>
<td>IX</td>
<td></td>
<td>251.49</td>
<td>242.94</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>274.55</td>
<td>284.96</td>
</tr>
<tr>
<td>XI</td>
<td></td>
<td>286.19</td>
<td>316.78</td>
</tr>
<tr>
<td>XII</td>
<td></td>
<td>252.86</td>
<td>225.68</td>
</tr>
<tr>
<td>XIII</td>
<td></td>
<td>240.39</td>
<td>261.13</td>
</tr>
</tbody>
</table>

Rata-rata/ th 255.33 | 257.39 | 269.95 | 233.22 | 273.48 | 288.55
ayam petelur yang dipelihara dalam kandang sistem "cage", tidak berbeda nyata bila dibandingkan dengan konsumsi air minum ayam petelur yang dipelihara dalam kandang sistem litter. Menurut North (1972), yang sangat mempengaruhi konsumsi air minum pada ayam petelur di antaranya yang sangat perlu diperhatikan adalah temperatur kandang. Makin tinggi temperatur kandang maka konsumsi air minum makin meningkat dan sebaliknya. Menurut Sturkie (1976), air ini sangat diperlukan oleh ayam tersebut untuk mendinginkan tubuhnya melalui penguapan terutama pada saat temperatur kandang bertambah. Dalam penelitian ini antara temperatur kandang sistem litter (24.95°C ± 0.73) dan "cage" (26.25°C ± 0.74) tidak berbeda nyata. Oleh karena itu konsumsi air minum ayam petelur yang dipelihara dalam kandang sistem litter dan "cage" tidak berbeda nyata.

Perbedaan penggunaan energi ransum antara 2650 kkal/kg dan 2850 kkal/kg, memperlihatkan perbedaan yang nyata (P<0.05) terhadap konsumsi air minum. Menurut hasil penelitian North (1972) dan Sturkie (1976), ayam petelur yang berproduksi tinggi umumnya memerlukan konsumsi air minum yang lebih banyak. Hal ini disebabkan karena telur mengandung air 66%, sehingga untuk menghasilkan produksi telur yang tinggi diperlukan konsumsi air minum yang lebih banyak. Dalam penelitian ini produksi telur yang dihasilkan oleh ayam yang diberi ransum dengan energi 2850 kkal/kg (64.35%) lebih tinggi dibandingkan dengan ayam petelur
yang diberi ransum dengan energi 2650 kkal/kg (63.64%). Namun demikian walaupun produksi tersebut secara statistik tidak berbeda nyata tetapi pengaruhnya terhadap konsumsi air minum berbeda nyata ($P < 0.05$).

Lebih lanjut dijelaskan bahwa perbedaan jumlah pemberian ransum, juga menyebabkan perbedaan dalam konsumsi air minum, makin tinggi derajat pengurangan ransum konsumsi air minum makin meningkat ($P < 0.01$). Hal ini diduga karena ayam petelur yang telah dikurangi jumlah ransumnya masih merasa lapar bila dibandingkan dengan yang diberi ransum ad libitum. Oleh karena itu ayam tersebut mengimbangi dengan minum yang lebih banyak.

Antara strain Shaver dan Super Harco, pada jumlah pemberian ransum ad libitum dan 90% dari ad libitum tidak terdapat perbedaan jumlah konsumsi air minum yang nyata. Pada jumlah pemberian ransum 80% dari ad libitum, antara strain Shaver dan Super Harco terdapat perbedaan jumlah konsumsi air minum yang nyata. Strain Super Harco lebih banyak minum ($P < 0.05$) bila dibandingkan dengan strain Shaver. Hal ini karena pada jumlah pemberian ransum 80% dari ad libitum, strain Super Harco rata-rata mempunyai bobot badan yang lebih tinggi (2078.42 gram) dibandingkan dengan strain Shaver (1968.51 gram), sehingga memerlukan konsumsi air minum yang lebih banyak. Sesuai dengan pendapat Owing (1980), bahwa konsumsi air minum pada ayam petelur erat hubungannya dengan bobot badannya. Pada umum-
nya konsumsi air minum pada ayam petelur ini, besarnya merupakan 13.6% dari bobot badan.

Kematian pada Masa "Developer" dan pada Periode Produksi

Kematian masa "Developer". Untuk tiap jumlah pemberian ransum, ayam yang dipelihara dalam kandang sistem "cage" tidak terjadi kematian baik pada strain Shaver maupun pada Super Harco. Sebaliknya pada ayam yang dipelihara dalam kandang sistem litter dengan jumlah pemberian ransum dengan ad libitum, baik pada strain Shaver maupun Super Harco pada masing-masing strain terjadi kematian sebanyak 0,3% walaupun angka kematian ini boleh dikatakan cukup rendah.

Pada ayam yang jumlah ransumnya telah dikurangi, ternyata tidak terjadi angka kematian. Hal ini sesuai dengan hasil penelitian Pym dan Dillon (1974), yang menyatakan bahwa sampai derajat pemberian ransum 80% dari ad libitum pada masa pertumbuhan tidak akan menyebabkan kematian yang tinggi. Sebaliknya ayam yang diberi ransum ad libitum, kematianannya meningkat.

Kematian pada Periode Produksi. Untuk memperoleh gambaran mengenai angka kematian selama periode produksi, dapat diketahui dalam Tabel 25, 26, 27, 28.

Dari hasil analisa data dan pembahasan, ternyata ayam petelur yang dipelihara dalam kandang sistem "cage" angka kematianya lebih tinggi (P<0.05) bila dibandingkan dengan ayam petelur yang dipelihara dalam kandang sistem litter.
<table>
<thead>
<tr>
<th>Periode Pengukuran</th>
<th>Ransum II (EM = 2890 kcal/kg)</th>
<th>Ransum III (EM = 2650 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum 90% dari ad libitum</td>
<td>ad libitum 90% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>II</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>III</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IV</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VI</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VII</td>
<td>-</td>
<td>3.57</td>
</tr>
<tr>
<td>VIII</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IX</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>X</td>
<td>-</td>
<td>3.57</td>
</tr>
<tr>
<td>XI</td>
<td>-</td>
<td>3.57</td>
</tr>
<tr>
<td>XII</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XIII</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>-</td>
<td>0.82</td>
</tr>
<tr>
<td>Periode Pengukuran</td>
<td>Ransum II (EM= 2850 kcal/kg)</td>
<td>Ransum III (EM=2650 kcal/kg)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>ad libitum</td>
<td>90% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>II</td>
<td>3.57</td>
<td>3.57</td>
</tr>
<tr>
<td>III</td>
<td>-</td>
<td>3.57</td>
</tr>
<tr>
<td>IV</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VI</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VII</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VIII</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IX</td>
<td>-</td>
<td>7.14</td>
</tr>
<tr>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XI</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XII</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XIII</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Rata-rata: 0.27 0.55 0.55 0.27 0.27 0.82
Tabel 27. Angka Kematian Rata-rata pada Berbagai Jumlah Pemberian Ransum untuk Strain Super Harco dalam Kandang Sistem Litter dengan Interval Pengamatan 28 Hari (%)

<table>
<thead>
<tr>
<th>Periode Pengukuran</th>
<th>Ransum II (EM= 2650 kcal/kg)</th>
<th>Ransum III (EM=2650 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum</td>
<td>90 % dari</td>
</tr>
<tr>
<td>I</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>III</td>
<td>3.57</td>
<td>-</td>
</tr>
<tr>
<td>IV</td>
<td>3.57</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VI</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VII</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VIII</td>
<td>3.57</td>
<td>-</td>
</tr>
<tr>
<td>IX</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XI</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XII</td>
<td>-</td>
<td>3.57</td>
</tr>
<tr>
<td>XIII</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>1.06</td>
<td>0.27</td>
</tr>
</tbody>
</table>
Tabel 28. Angka Kematian Rata-rata pada Berbagai Jumlah Pemberian Ransum untuk Strain Super Harco dalam Kandang Sistem Cage dengan Interval Pengamatan 28 Hari (%)

<table>
<thead>
<tr>
<th>Periode Pengukuran</th>
<th>Ransum II (EM= 2850 kcal/kg)</th>
<th>Ransum III (EM=2650 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum 90 % dari 80 % dari</td>
<td>ad libitum ad libitum 90 % dari 80 % dari</td>
</tr>
<tr>
<td>I</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>II</td>
<td>3.57</td>
<td>3.57</td>
</tr>
<tr>
<td>III</td>
<td>3.57</td>
<td>3.57</td>
</tr>
<tr>
<td>IV</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VI</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VII</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VIII</td>
<td>-</td>
<td>7.14</td>
</tr>
<tr>
<td>IX</td>
<td>-</td>
<td>3.57</td>
</tr>
<tr>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XI</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XII</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>XIII</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Rata-rata 0.27 0.82 0.55 0.27 0.82 0.55
Kematian dalam kandang sistem "cage" terutama disebabkan oleh "prolapsus" yang disertai dengan "pick-out" sekitar 1.42%, terjepit 1.04% dan lain-lain 0.39%. Kematian dalam kandang sistem litter disebabkan oleh "prolapsus" sekitar 0.25%, terjepit 0.13% dan lain-lain 0.91%.

Bila dilihat dari strain ayam yang digunakan, strain Super Harco angka kematiannya lebih tinggi (P<0.05) bila dibandingkan dengan strain Shaver. Adanya perbedaan angka kematian ini, karena tiap strain mempunyai sifat yang berbeda dalam mempertahankan daya hidupnya. Dalam hal ini strain Super Harco daya hidupnya lebih rendah dari strain Shaver, dilihat dari jumlah kematian yang terjadi.

Perbedaan kandungan energi dalam ransum juga memperlihatkan pengaruh yang berbeda terhadap angka kematian. Pada ayam petelur yang mendapat ransum dengan energi 2850 kkal/kg, angka kematiannya lebih tinggi (P<0.05) bila dibandingkan dengan ayam petelur yang diberi ransum dengan energi 2650 kkal/kg. Hal ini disebabkan karena pada ayam petelur yang mendapat ransum dengan energi 2850 kkal/kg, konsumsi energinya lebih tinggi (313.75 kkal/ekor/hari) bila dibandingkan dengan ayam petelur yang mendapat ransum dengan energi 2650 kkal/kg (294.34 kkal/ekor/hari). Dengan demikian ayam petelur yang mendapat ransum dengan energi 2850 kkal/kg, mempunyai peluang yang lebih besar untuk membentuk lemak tubuh yang lebih tinggi. Menurut Fuller dan Chaney (1974), ayam petelur dengan kandungan lemak yang le-
bih tinggi angka kematiannya akan lebih besar. Oleh karena itu ayam petelur yang mendapat ransum dengan energi sebanyak 2850 kkal/kg, angka kematiannya lebih tinggi dari ayam petelur yang diberi ransum dengan energi 2650 kkal/kg. Menurut Sugandi (1974), untuk ayam petelur tipe ringan dengan pemberian energi ransum antara 2650 dan 2850 kkal/kg tidak memperlihatkan pengaruh yang nyata terhadap angka kematian.

Antara ayam petelur yang diberi ransum ad libitum, 90% dari ad libitum dan 80% dari ad libitum, tidak memperlihatkan perbedaan angka kematian secara nyata. Rata-rata angka kematian pada ayam petelur yang mendapat ransum dengan ad libitum, 90% dari ad libitum, 80% dari ad libitum, berturut-turut sekitar 1.42%, 1.42% dan 1.30% atau jumlah seluruhnya sekitar 4.14% per tahun. Menurut North (1972), untuk ayam petelur bila terjadi kematian sekitar 15% per tahun masih dianggap cukup baik atau tidak akan merugikan. Oleh karena itu angka kematian yang terjadi dalam penelitian ini dapat dikatakan cukup rendah.

Tinjauan Ekonomi

Harga bahan-bahan makanan rata-rata sejak mulai pemeliharaan ayam masa "developer" hingga ayam tersebut diapkir (umur 12 minggu - 76 minggu), dapat diperlihatkan di halaman berikutnya pada Tabel 29.

Berdasarkan harga-harga yang tercantum dalam Tabel 29, ransum yang telah disusun untuk ayam masa "developer" har-
Tabel 29. Harga Bahan-bahan Makanan Selama Penelitian Berlangsung

<table>
<thead>
<tr>
<th>Bahan makanan</th>
<th>Harga/kg (Rp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jagung kuning</td>
<td>121.75</td>
</tr>
<tr>
<td>Dedak</td>
<td>50.00</td>
</tr>
<tr>
<td>Bungkil kedele</td>
<td>270.00</td>
</tr>
<tr>
<td>Bungkil kelapa</td>
<td>105.00</td>
</tr>
<tr>
<td>Tepung ikan</td>
<td>442.50</td>
</tr>
<tr>
<td>Kulit kerang</td>
<td>22.00</td>
</tr>
<tr>
<td>Premix - A (buatan Pfizer)</td>
<td>1100.00</td>
</tr>
<tr>
<td>Premix - B (buatan Pfizer)</td>
<td>850.00</td>
</tr>
</tbody>
</table>

ganya sekitar Rp 145.53 per kilogram. Untuk ransum pada periode produksi dengan energi metabolis 2850 kkal/kg dan protein 18% harganya sekitar Rp 164.69 per kilogram sedangkan ransum dengan energi metabolis 2650 kkal/kg yang kandungan proteinnya sama, harganya sekitar Rp 157.26 per kilogram.

Berdasarkan biaya makanan sejak mulai penelitian sampai dengan ayam tersebut diejek, keuntungan yang dihasilkan dari penjualan telur dapat diketahui dalam Tabel 30, 31. Selanjutnya untuk memudahkan pembahasan dalam penelitian ini, dihitung berdasarkan keuntungan rata-rata per ekor per tahun. Perhitungan tersebut berdasarkan jumlah ayam mula-mula yang dimasukkan (hen-housed).

Terlihat dari Tabel 30, 31, bahwa keuntungan dari ti-
<table>
<thead>
<tr>
<th>Sistem Kandang</th>
<th>Energi Metabolis (kcal/kg)</th>
<th>Jumlah pemberian ransum</th>
<th>Konversi ransum (kg)</th>
<th>Harga ransum (Rp)</th>
<th>Harga telur (Rp)</th>
<th>Biaya makanan /kg telur (Rp)</th>
<th>Biaya makanan /kg Developer (Rp)</th>
<th>Keuntungan rata-rata/tahun/ekor (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litter 2650</td>
<td>ad libitum</td>
<td>3.13</td>
<td>157.26</td>
<td>875</td>
<td>245.13</td>
<td>1026.49</td>
<td>4911.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90% dari ad libitum</td>
<td>2.86</td>
<td>157.26</td>
<td>875</td>
<td>238.16</td>
<td>923.89</td>
<td>3549.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80% dari ad libitum</td>
<td>3.11</td>
<td>157.26</td>
<td>875</td>
<td>259.33</td>
<td>821.30</td>
<td>4240.41</td>
<td></td>
</tr>
<tr>
<td>2850 ad libitum</td>
<td>2.91</td>
<td>164.69</td>
<td>875</td>
<td>469.14</td>
<td>1026.49</td>
<td>5030.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90% dari ad libitum</td>
<td>2.89</td>
<td>164.69</td>
<td>875</td>
<td>453.03</td>
<td>923.89</td>
<td>5162.97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80% dari ad libitum</td>
<td>2.97</td>
<td>164.69</td>
<td>875</td>
<td>494.76</td>
<td>821.30</td>
<td>4561.49</td>
<td></td>
</tr>
<tr>
<td>Cage 2650</td>
<td>ad libitum</td>
<td>3.09</td>
<td>157.26</td>
<td>875</td>
<td>245.27</td>
<td>1008.13</td>
<td>4827.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90% dari ad libitum</td>
<td>2.86</td>
<td>157.26</td>
<td>875</td>
<td>244.07</td>
<td>907.39</td>
<td>5754.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80% dari ad libitum</td>
<td>3.10</td>
<td>157.26</td>
<td>875</td>
<td>475.96</td>
<td>806.38</td>
<td>3482.44</td>
<td></td>
</tr>
<tr>
<td>2850 ad libitum</td>
<td>2.82</td>
<td>164.69</td>
<td>875</td>
<td>456.66</td>
<td>1008.13</td>
<td>5317.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90% dari ad libitum</td>
<td>2.70</td>
<td>164.69</td>
<td>875</td>
<td>438.32</td>
<td>907.39</td>
<td>5091.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80% dari ad libitum</td>
<td>3.0</td>
<td>164.69</td>
<td>875</td>
<td>474.54</td>
<td>806.38</td>
<td>3892.45</td>
<td></td>
</tr>
<tr>
<td>Sistem kandang</td>
<td>Energi Metabolisme ransum (kcal/kg)</td>
<td>Jumlah pemberian ransum</td>
<td>Konversi ransum</td>
<td>Harga ransum /kg (Rp)</td>
<td>Harga telur /kg (Rp)</td>
<td>Biaya makanan /makanan massa telur /kg (Rp)</td>
<td>Biaya masak per ekor (Rp)</td>
<td>Keuntungan rata-rata per ekor (Rp)</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------------------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>---------------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Litter 2650</td>
<td>ad libitum</td>
<td>3.02</td>
<td>157.26</td>
<td>875</td>
<td>461.69</td>
<td>1032.37</td>
<td>5131.49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90% dari ad libitum</td>
<td>3.00</td>
<td>157.26</td>
<td>875</td>
<td>447.46</td>
<td>929.21</td>
<td>5022.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80% dari ad libitum</td>
<td>4.31</td>
<td>157.26</td>
<td>875</td>
<td>555.20</td>
<td>826.04</td>
<td>2464.51</td>
<td></td>
</tr>
<tr>
<td>2850</td>
<td>ad libitum</td>
<td>3.12</td>
<td>164.69</td>
<td>875</td>
<td>497.22</td>
<td>1032.37</td>
<td>3969.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90% dari ad libitum</td>
<td>2.91</td>
<td>164.69</td>
<td>875</td>
<td>464.47</td>
<td>929.21</td>
<td>4334.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80% dari ad libitum</td>
<td>3.93</td>
<td>164.69</td>
<td>875</td>
<td>578.20</td>
<td>826.04</td>
<td>2105.91</td>
<td></td>
</tr>
<tr>
<td>Cage 2650</td>
<td>ad libitum</td>
<td>3.10</td>
<td>157.26</td>
<td>875</td>
<td>474.09</td>
<td>1029.36</td>
<td>4606.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90% dari ad libitum</td>
<td>2.96</td>
<td>157.26</td>
<td>875</td>
<td>463.22</td>
<td>926.34</td>
<td>4339.68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80% dari ad libitum</td>
<td>3.02</td>
<td>157.26</td>
<td>875</td>
<td>451.36</td>
<td>825.90</td>
<td>4269.23</td>
<td></td>
</tr>
<tr>
<td>2850</td>
<td>ad libitum</td>
<td>2.98</td>
<td>164.69</td>
<td>875</td>
<td>481.87</td>
<td>1029.36</td>
<td>4685.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90% dari ad libitum</td>
<td>2.78</td>
<td>164.69</td>
<td>875</td>
<td>445.51</td>
<td>926.34</td>
<td>4382.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80% dari ad libitum</td>
<td>3.10</td>
<td>164.69</td>
<td>875</td>
<td>482.81</td>
<td>825.90</td>
<td>3594.11</td>
<td></td>
</tr>
</tbody>
</table>
ap strain ternyata berbeda, juga tergantung kepada energi ransum yang digunakan serta jumlah ransum yang diberikan. Untuk lebih jelasnya dapat diuraikan sebagai berikut:

(1) Untuk strain Super Harco, dengan menggunakan energi ransum 2850 kkal/kg yang disertai dengan pemberian makanan terbatas ternyata kurang menguntungkan. Makin tinggi derajat pengurangan ransum maka keuntungan makin menurun. Lebih menguntungkan bila ayam tersebut diberi ransum dengan ad libitum. Pada pemberian ransum dengan 90% dari ad libitum, keuntungan tersebut turun sekitar 2% (Rp 109/ekor/tahun) pada strain Super Harco yang dipelihara dalam kandang sistem litter. Pada strain Super Harco yang dipelihara dalam kandang sistem "cage", keuntungan tersebut turun sekitar 7% (Rp 347/ekor/tahun). Sebaliknya bila digunakan ransum dengan energi 2850 kkal/kg, pada pemberian ransum 90% dari ad libitum ternyata lebih menguntungkan bila dibandingkan dengan yang diberi ransum ad libitum baik yang dipelihara dalam kandang sistem litter maupun "cage". Keuntungan yang paling rendah yaitu pada pemberian ransum 80% dari ad libitum. Keuntungan yang diperoleh pada ayam petelur yang dipelihara dalam kandang sistem litter dan "cage" dengan jumlah pemberian ransum 90% dari ad libitum berturut-turut sekitar 19% (Rp 935/ekor/tahun) dan 5% (Rp 248/ekor/tahun) lebih tinggi dari ayam petelur yang diberi ransum ad libitum. Sehubungan dengan hal tersebut tadi maka untuk strain Super Harco, lebih mengun-
tungkan bila diberi ransum 90% dari ad libitum pada tingkat energi 2850 kkal/kg yang disertai dengan pemeliharaan dalam kandang sistem litter. (2) Untuk strain Shaver, pada penggunaan tingkat energi ransum 2650 kkal/kg dengan jumlah pemberian ransum 90% dari ad libitum umumnya paling menguntungkan baik dalam kandang sistem litter maupun dalam kandang sistem "cage". Keuntungan pada pemberian ransum 90% dari ad libitum dalam kandang sistem litter dan "cage" berturut-turut sekitar 8.2% (Rp 439/ekor/tahun) dan 16% (Rp 927/ekor/tahun) lebih tinggi dari ayam petelor yang diberi ransum ad libitum. Keuntungan yang paling rendah yaitu pada ayam petelor yang diberi ransum 80% dari ad libitum. Penggunaan tingkat energi ransum 2850 kkal/kg untuk strain Shaver dengan pemberian ransum ad libitum dalam kandang sistem "cage", keuntungannya lebih tinggi 4% (Rp 225/ekor/tahun) bila dibandingkan dengan yang diberi ransum 90% dari ad libitum. Sebaliknya pada strain Shaver yang dipelihara dalam kandang sistem litter dengan pemberian ransum 90% dari ad libitum, keuntungannya lebih tinggi 2.6% (Rp 132/ekor/tahun) bila dibandingkan dengan yang diberi ransum ad libitum. Pada pemberian ransum 80% dari ad libitum, keuntungan tersebut paling rendah. Dengan demikian maka untuk strain Shaver, lebih menguntungkan bila digunakan tingkat energi ransum yang lebih rendah yaitu 2650 kkal/kg yang disertai dengan pemberian ransum 90% dari ad libitum. Keuntungan ini lebih tinggi lagi pada
ayam petelur strain Shaver yang dipelihara dalam kandang sistem "cage".

Sehubungan dengan hal tersebut tadi, maka kandungan energi yang optimum perlu ditentukan dengan pertimbangan ekonomis. Dalam situasi di Indonesia tampaknya penggunaan tingkat energi 2650 kcal/kg untuk ayam petelur tipe medium lebih cocok, mengingat penggunaan energi ransum yang tinggi memerlukan jagung sebagai sumber energi yang lebih banyak dan hal ini harganya mahal di samping kurangnya persediaan.
KESIMPULAN

Dari hasil analisa data dan pembahasan dapat diambil kesimpulan-kesimpulan sebagai berikut:

1. Kebutuhan energi dengan menggunakan perhitungan Scott (1976), tidak berlaku untuk daerah tropik.

2. Kebutuhan energi untuk ayam petelur tipe medium di daerah tropik lebih rendah dari daerah beriklim sedang.

3. Penghematan energi sebanyak 10% pada masa "developer", merupakan cara terbaik untuk memperoleh berat badan dan umur mencapai dewasa kelamin yang optimal baik untuk strain Shaver maupun Super Harco yang dipelihara dalam kandang sistem litter dan "cage".

4. Ransum dengan energi 2650 kcal/kg yang disertai dengan pemberian ransum 90% dari ad libitum selama periode produksi, untuk strain Shaver lebih menguntungkan bila dipelihara dalam kandang sistem "cage". Besarnya keuntungan tersebut Rp 927 /ekor/tahun (16%) lebih tinggi dari ayam petelur yang diberi ransum ad libitum. Ransum dengan energi 2850 kcal/kg yang disertai dengan pemberian ransum 90% dari ad libitum selama periode produksi, untuk strain Super Harco lebih menguntungkan bila dipelihara dalam kandang sistem litter. Besarnya keuntungan tersebut Rp 935 /ekor/tahun (19%) lebih tinggi dari ayam petelur yang diberi ransum ad libitum.

5. Sebelum tersedia hasil penelitian yang lebih lengkap mengenai energi metabolis dari bahan-bahan makanan...
yang ada di Indonesia, untuk sementara maka data yang
dikemukakan dalam NRC (1971) dapat dipergunakan sebagai-
mananya diketahui dalam penelitian ini. Namun demikian
hal ini tidak mengurangi adanya penelitian yang lebih
khusus.

6. Dalam menentukan kebutuhan energi metabolis untuk hidup
pokok dan aktifitas, bagi ayam petelur yang dipelihara
di daerah tropik secara tepat masih diperlukan penelitian
an lebih lanjut.
DAFTAR PUSTAKA

LAMPIRAN
Lampiran 1. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Shaver Masa Developer dengan Pemberian Ransum Ad Libitum dalam Kandang Sistem Litter

<table>
<thead>
<tr>
<th>Umur (minggu)</th>
<th>Pertambahan berat badan</th>
<th>Konsumsi makanan/ kkal</th>
<th>Konsumsi EM/ekor/ kkal</th>
<th>Kebutuhan Konsumsi protein/ kkal</th>
<th>Kebutuhan Konsumsi protein/ kkal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Berat rata- rata</td>
<td>Berat/hari</td>
<td>EM/ekor/ hari</td>
<td>hari</td>
<td>EM/ekor/ hari</td>
</tr>
<tr>
<td>12</td>
<td>1115.90</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>1208.30</td>
<td>13.20</td>
<td>89.09</td>
<td>258.36</td>
<td>214.77</td>
</tr>
<tr>
<td>14</td>
<td>1299.30</td>
<td>13.00</td>
<td>87.25</td>
<td>253.03</td>
<td>223.85</td>
</tr>
<tr>
<td>15</td>
<td>1387.01</td>
<td>12.53</td>
<td>84.98</td>
<td>246.44</td>
<td>231.95</td>
</tr>
<tr>
<td>16</td>
<td>1468.91</td>
<td>11.70</td>
<td>85.46</td>
<td>247.83</td>
<td>237.80</td>
</tr>
<tr>
<td>17</td>
<td>1539.96</td>
<td>10.15</td>
<td>78.92</td>
<td>228.87</td>
<td>240.35</td>
</tr>
<tr>
<td>18</td>
<td>1606.11</td>
<td>9.45</td>
<td>83.16</td>
<td>241.16</td>
<td>245.36</td>
</tr>
<tr>
<td>19</td>
<td>1669.18</td>
<td>9.01</td>
<td>83.47</td>
<td>242.06</td>
<td>250.08</td>
</tr>
<tr>
<td>20</td>
<td>1720.63</td>
<td>7.35</td>
<td>83.00</td>
<td>240.70</td>
<td>254.30</td>
</tr>
<tr>
<td>31</td>
<td>1770.33</td>
<td>7.10</td>
<td>81.65</td>
<td>251.29</td>
<td>257.93</td>
</tr>
</tbody>
</table>

Rata-rata 1509.54 10.05 84.86 246.09 240.65 12.57 8.11

EM = Energi metabolis
kkal = kilokalori
g = gram
Lampiran 2. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Shaver Masa Developer dengan Pemberian Ransum 90% dari Ad libitum dalam Kandang Sistem Litter

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1122.46</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>1215.21</td>
<td>13.25</td>
<td>80.18</td>
<td>232.52</td>
<td>216</td>
<td>11.87</td>
<td>8.49</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1304.04</td>
<td>12.69</td>
<td>78.53</td>
<td>227.73</td>
<td>222.92</td>
<td>11.63</td>
<td>8.50</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1309.37</td>
<td>12.19</td>
<td>76.48</td>
<td>221.80</td>
<td>230.93</td>
<td>11.33</td>
<td>8.53</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1470.22</td>
<td>11.55</td>
<td>76.91</td>
<td>233.05</td>
<td>237.35</td>
<td>11.39</td>
<td>8.49</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1538.96</td>
<td>9.82</td>
<td>71.03</td>
<td>205.99</td>
<td>239.35</td>
<td>10.52</td>
<td>7.99</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1604.13</td>
<td>9.31</td>
<td>74.84</td>
<td>217.04</td>
<td>243.93</td>
<td>11.08</td>
<td>7.96</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1665.73</td>
<td>8.80</td>
<td>75.12</td>
<td>217.85</td>
<td>245.45</td>
<td>11.13</td>
<td>7.92</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1715.71</td>
<td>7.14</td>
<td>74.70</td>
<td>216.64</td>
<td>249.45</td>
<td>11.06</td>
<td>7.40</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1759.45</td>
<td>6.32</td>
<td>77.98</td>
<td>226.13</td>
<td>250.97</td>
<td>11.55</td>
<td>7.19</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1801.25</td>
<td>5.90</td>
<td>77.99</td>
<td>226.16</td>
<td>253.64</td>
<td>11.55</td>
<td>7.13</td>
<td></td>
</tr>
<tr>
<td>Rata-rata</td>
<td>1507.91</td>
<td>9.70</td>
<td>76.37</td>
<td>221.47</td>
<td>239.40</td>
<td>11.31</td>
<td>7.96</td>
<td></td>
</tr>
</tbody>
</table>

EM = Energi metabolis kkal = kilokalori
g = gram
Lampiran 3. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Shaver Masa Developer dengan Pemberian Ransum 80% dari Ad libitum dalam Kandang Sistem Litter

<table>
<thead>
<tr>
<th>Umur (minggu)</th>
<th>Pertambahan berat badan</th>
<th>Konsumsi makanan/ekor/hari</th>
<th>Konsumsi EM/ekor/hari</th>
<th>Kebutuhan EM/ekor/hari</th>
<th>Konsumsi protein/ekor/hari</th>
<th>Kebutuhan protein/ekor/hari</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g</td>
<td>g</td>
<td>g</td>
<td>kkal</td>
<td>kkal</td>
<td>g</td>
</tr>
<tr>
<td>12</td>
<td>1148.24</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10.56</td>
</tr>
<tr>
<td>13</td>
<td>1236.65</td>
<td>12.63</td>
<td>71.27</td>
<td>206.69</td>
<td>216.30</td>
<td>10.56</td>
</tr>
<tr>
<td>14</td>
<td>1321.91</td>
<td>12.18</td>
<td>69.80</td>
<td>202.42</td>
<td>223.52</td>
<td>10.34</td>
</tr>
<tr>
<td>15</td>
<td>1396.04</td>
<td>10.59</td>
<td>67.98</td>
<td>197.15</td>
<td>227.19</td>
<td>10.07</td>
</tr>
<tr>
<td>16</td>
<td>1466.74</td>
<td>10.10</td>
<td>68.37</td>
<td>198.26</td>
<td>233.00</td>
<td>10.13</td>
</tr>
<tr>
<td>17</td>
<td>1529.04</td>
<td>8.90</td>
<td>63.14</td>
<td>183.10</td>
<td>235.56</td>
<td>9.35</td>
</tr>
<tr>
<td>18</td>
<td>1582.45</td>
<td>7.63</td>
<td>66.53</td>
<td>192.93</td>
<td>236.87</td>
<td>9.85</td>
</tr>
<tr>
<td>19</td>
<td>1631.45</td>
<td>7.00</td>
<td>66.78</td>
<td>193.65</td>
<td>240.02</td>
<td>9.89</td>
</tr>
<tr>
<td>20</td>
<td>1677.30</td>
<td>6.55</td>
<td>66.40</td>
<td>192.56</td>
<td>243.71</td>
<td>9.83</td>
</tr>
<tr>
<td>21</td>
<td>1720.00</td>
<td>6.10</td>
<td>69.31</td>
<td>201.01</td>
<td>246.53</td>
<td>10.26</td>
</tr>
<tr>
<td>22</td>
<td>1758.78</td>
<td>6.54</td>
<td>69.32</td>
<td>201.10</td>
<td>248.63</td>
<td>10.27</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>1497.15</td>
<td>8.72</td>
<td>67.89</td>
<td>196.88</td>
<td>235.11</td>
<td>10.05</td>
</tr>
</tbody>
</table>

EM = Energi metabolis
kkal = kilokalori
g = gram
Lampiran 4. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Shaver Masa Developer dengan Pemberian Ransum *Ad libitum* dalam Kandang Sistem Cage

<table>
<thead>
<tr>
<th>Umur (minggu)</th>
<th>Pertambahan berat badan Rata-rata (g)</th>
<th>Pertambahan makanan/ekor/hari (g)</th>
<th>Konsumsi makanan/EM/ekor/hari (kcal)</th>
<th>Kebutuhan EM/ekor/hari (kcal)</th>
<th>Konsumsi protein/ekor/hari (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1168.75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>1263.67</td>
<td>13.56</td>
<td>90.82</td>
<td>263.38</td>
<td>205.90</td>
</tr>
<tr>
<td>14</td>
<td>1359.57</td>
<td>13.70</td>
<td>90.87</td>
<td>263.52</td>
<td>215.75</td>
</tr>
<tr>
<td>15</td>
<td>1450.36</td>
<td>12.97</td>
<td>85.71</td>
<td>249.56</td>
<td>222.13*</td>
</tr>
<tr>
<td>16</td>
<td>1536.04</td>
<td>12.24</td>
<td>88.01</td>
<td>255.23</td>
<td>228.42</td>
</tr>
<tr>
<td>17</td>
<td>1613.11</td>
<td>11.01</td>
<td>83.34</td>
<td>241.69</td>
<td>231.23</td>
</tr>
<tr>
<td>18</td>
<td>1680.59</td>
<td>9.64</td>
<td>84.16</td>
<td>244.06</td>
<td>233.56</td>
</tr>
<tr>
<td>19</td>
<td>1740.58</td>
<td>8.57</td>
<td>84.85</td>
<td>246.07</td>
<td>235.79</td>
</tr>
<tr>
<td>20</td>
<td>1797.70</td>
<td>8.16</td>
<td>84.93</td>
<td>246.30</td>
<td>239.97</td>
</tr>
<tr>
<td>21</td>
<td>1847.54</td>
<td>7.12</td>
<td>85.83</td>
<td>248.91</td>
<td>241.33</td>
</tr>
<tr>
<td>22</td>
<td>1896.54</td>
<td>7.0</td>
<td>85.83</td>
<td>248.91</td>
<td>245.41</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>1577.68</td>
<td>10.40</td>
<td>86.44</td>
<td>250.68</td>
<td>229.92</td>
</tr>
</tbody>
</table>

EM * = Energi metabolis
kkal = kilokalori
g = gram
Lampiran 5. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Shaver Masa Developer dengan Pemberian Ransum 90% dari Ad libitum dalam Kandang Sistem Cage

<table>
<thead>
<tr>
<th>Umur (minggu)</th>
<th>Pertambahan berat badan</th>
<th>Konsumsi makanan/ekor/hari</th>
<th>Konsumsi EM/ekor/hari</th>
<th>Kebutuhan protein/ekor/hari</th>
<th>Konsumsi protein/ekor/hari</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g</td>
<td>g</td>
<td>kkcal</td>
<td>kkcal</td>
<td>g</td>
</tr>
<tr>
<td>12</td>
<td>1129.47</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>1223.97</td>
<td>13.50</td>
<td>81.74</td>
<td>237.04</td>
<td>201.48</td>
</tr>
<tr>
<td>14</td>
<td>1314.47</td>
<td>13.00</td>
<td>81.78</td>
<td>237.17</td>
<td>208.80</td>
</tr>
<tr>
<td>15</td>
<td>1400.23</td>
<td>12.18</td>
<td>77.14</td>
<td>223.70</td>
<td>215.02</td>
</tr>
<tr>
<td>16</td>
<td>1479.26</td>
<td>11.29</td>
<td>79.21</td>
<td>229.71</td>
<td>219.94</td>
</tr>
<tr>
<td>17</td>
<td>1554.44</td>
<td>10.74</td>
<td>75.01</td>
<td>217.52</td>
<td>224.86</td>
</tr>
<tr>
<td>18</td>
<td>1613.73</td>
<td>8.47</td>
<td>75.74</td>
<td>219.65</td>
<td>223.61</td>
</tr>
<tr>
<td>19</td>
<td>1666.79</td>
<td>7.58</td>
<td>76.37</td>
<td>221.46</td>
<td>226.46</td>
</tr>
<tr>
<td>20</td>
<td>1712.78</td>
<td>6.57</td>
<td>76.44</td>
<td>221.67</td>
<td>227.09</td>
</tr>
<tr>
<td>21</td>
<td>1755.06</td>
<td>6.04</td>
<td>77.25</td>
<td>224.02</td>
<td>230.02</td>
</tr>
<tr>
<td>22</td>
<td>1797.27</td>
<td>6.03</td>
<td>77.25</td>
<td>224.02</td>
<td>233.58</td>
</tr>
</tbody>
</table>

Rata-rata 1513.45 9.54 77.80 225.61 221.09 11.52 7.91

EM = Energi metabolis
kkal = kilokalori

\[g = \text{gram} \]
Lampiran 6. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Shaver Masa Developer dengan Pemberian Ransum 80% dari Ad libitum dalam Kandang Sistem Cage

<table>
<thead>
<tr>
<th>Umur (minggu)</th>
<th>Pertambahan berat badan berat rata-rata</th>
<th>Pertambahan makanan/ ekor/hari</th>
<th>Konsumsi EM/ekor/hari</th>
<th>Konsumsi EM/ekor/hari</th>
<th>Kebutuhan protein/ekor/hari</th>
<th>Rata-rata</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1162.27</td>
<td>-</td>
<td>g</td>
<td>g</td>
<td>kkal</td>
<td>g</td>
</tr>
<tr>
<td>13</td>
<td>1247.81</td>
<td>12.22</td>
<td>72.66</td>
<td>210.70</td>
<td>200.59</td>
<td>10.76</td>
</tr>
<tr>
<td>14</td>
<td>1328.31</td>
<td>11.50</td>
<td>72.70</td>
<td>210.82</td>
<td>206.23</td>
<td>10.77</td>
</tr>
<tr>
<td>15</td>
<td>1403.56</td>
<td>10.75</td>
<td>68.57</td>
<td>198.85</td>
<td>210.73</td>
<td>10.16</td>
</tr>
<tr>
<td>16</td>
<td>1473.91</td>
<td>10.05</td>
<td>70.41</td>
<td>204.18</td>
<td>215.28</td>
<td>10.43</td>
</tr>
<tr>
<td>17</td>
<td>1534.39</td>
<td>8.64</td>
<td>66.67</td>
<td>193.35</td>
<td>216.68</td>
<td>9.87</td>
</tr>
<tr>
<td>18</td>
<td>1589.55</td>
<td>7.88</td>
<td>67.33</td>
<td>195.25</td>
<td>219.99</td>
<td>9.97</td>
</tr>
<tr>
<td>19</td>
<td>1637.36</td>
<td>6.83</td>
<td>67.88</td>
<td>196.86</td>
<td>221.44</td>
<td>10.05</td>
</tr>
<tr>
<td>20</td>
<td>1681.18</td>
<td>6.26</td>
<td>67.94</td>
<td>197.04</td>
<td>223.42</td>
<td>10.06</td>
</tr>
<tr>
<td>21</td>
<td>1722.41</td>
<td>5.89</td>
<td>68.66</td>
<td>199.13</td>
<td>225.94</td>
<td>10.17</td>
</tr>
<tr>
<td>22</td>
<td>1762.17</td>
<td>5.68</td>
<td>68.66</td>
<td>199.13</td>
<td>228.94</td>
<td>10.17</td>
</tr>
</tbody>
</table>

Rata-rata 1503.90 8.57 69.15 200.54 216.92 10.24 7.49

EM = Energi metabolis
kkal = kilokalori
g = gram
Lampiran 7. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Super Harco Masa Developer dengan Pemberian Ransum Ad Libitum dalam Kandang Sistem Litter

<table>
<thead>
<tr>
<th>Umur (minggu)</th>
<th>Pertambahan berat badan</th>
<th>Konsumsi makanan /ekor/hari</th>
<th>Konsumsi EM* /ekor/hari</th>
<th>Kebutuhan EM /ekor/hari</th>
<th>Konsumsi protein /ekor/hari</th>
<th>Kebutuhan protein /ekor/hari</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>g</td>
<td>g</td>
<td>kkal</td>
<td>kkal</td>
<td>g</td>
<td>g</td>
</tr>
<tr>
<td>12</td>
<td>1216.10</td>
<td>-</td>
<td>90.67</td>
<td>262.94</td>
<td>233.60</td>
<td>13.43</td>
</tr>
<tr>
<td>13</td>
<td>1324.88</td>
<td>15.54</td>
<td>92.58</td>
<td>268.48</td>
<td>242.51</td>
<td>13.71</td>
</tr>
<tr>
<td>14</td>
<td>1427.43</td>
<td>14.65</td>
<td>85.71</td>
<td>248.56</td>
<td>247.98</td>
<td>12.69</td>
</tr>
<tr>
<td>15</td>
<td>1521.09</td>
<td>13.38</td>
<td>87.76</td>
<td>254.50</td>
<td>255.41</td>
<td>13.0</td>
</tr>
<tr>
<td>16</td>
<td>1610.69</td>
<td>12.80</td>
<td>83.47</td>
<td>242.06</td>
<td>263.16</td>
<td>12.36</td>
</tr>
<tr>
<td>17</td>
<td>1697.28</td>
<td>12.37</td>
<td>85.15</td>
<td>246.94</td>
<td>268.03</td>
<td>12.61</td>
</tr>
<tr>
<td>18</td>
<td>1776.73</td>
<td>11.35</td>
<td>85.30</td>
<td>247.37</td>
<td>273.42</td>
<td>12.63</td>
</tr>
<tr>
<td>19</td>
<td>1852.75</td>
<td>10.86</td>
<td>84.07</td>
<td>243.80</td>
<td>278.31</td>
<td>12.45</td>
</tr>
<tr>
<td>20</td>
<td>1924.29</td>
<td>10.22</td>
<td>87.55</td>
<td>253.80</td>
<td>284.57</td>
<td>12.97</td>
</tr>
<tr>
<td>21</td>
<td>1992.47</td>
<td>9.74</td>
<td>87.55</td>
<td>253.80</td>
<td>289.60</td>
<td>12.97</td>
</tr>
<tr>
<td>22</td>
<td>2059.04</td>
<td>9.51</td>
<td>87.55</td>
<td>253.80</td>
<td>289.60</td>
<td>12.97</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>1672.98</td>
<td>12.04</td>
<td>86.98</td>
<td>252.23</td>
<td>263.66</td>
<td>12.88</td>
</tr>
</tbody>
</table>

* EM = Energi metabolis
 kkal = kilokalori
 g = gram
Lampiran 8. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Super Harco Masa Developer dengan Pemberian Ransum 90% dari Ad Libitum dalam Kandang Sistem Litter

<table>
<thead>
<tr>
<th>Umur (minggu)</th>
<th>Pertambahan berat badan</th>
<th>Konsumsi makanan/ekor/hari</th>
<th>Konsumsi EM*/ekor/hari</th>
<th>Kebutuhan EM/ekor/hari</th>
<th>Kebutuhan protein/ekor/hari</th>
<th>Kebutuhan protein/ekor/hari</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g</td>
<td>g</td>
<td>g</td>
<td>kcal</td>
<td>kcal</td>
<td>g</td>
</tr>
<tr>
<td>12</td>
<td>1211.61</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>1308.49</td>
<td>13.84</td>
<td>81.60</td>
<td>236.65</td>
<td>227.43</td>
<td>12.08</td>
</tr>
<tr>
<td>14</td>
<td>1402.08</td>
<td>13.37</td>
<td>83.32</td>
<td>241.63</td>
<td>235.53</td>
<td>12.34</td>
</tr>
<tr>
<td>15</td>
<td>1490.77</td>
<td>12.67</td>
<td>77.14</td>
<td>223.70</td>
<td>242.78</td>
<td>11.42</td>
</tr>
<tr>
<td>16</td>
<td>1573.44</td>
<td>11.81</td>
<td>78.98</td>
<td>229.05</td>
<td>248.37</td>
<td>11.70</td>
</tr>
<tr>
<td>17</td>
<td>1649.81</td>
<td>10.91</td>
<td>75.12</td>
<td>217.85</td>
<td>253.76</td>
<td>11.13</td>
</tr>
<tr>
<td>18</td>
<td>1721.14</td>
<td>10.19</td>
<td>76.64</td>
<td>222.25</td>
<td>258.60</td>
<td>11.35</td>
</tr>
<tr>
<td>19</td>
<td>1784.84</td>
<td>9.10</td>
<td>76.77</td>
<td>222.63</td>
<td>261.28</td>
<td>11.37</td>
</tr>
<tr>
<td>20</td>
<td>1840.28</td>
<td>7.92</td>
<td>75.66</td>
<td>219.42</td>
<td>263.63</td>
<td>11.21</td>
</tr>
<tr>
<td>21</td>
<td>1892.57</td>
<td>7.48</td>
<td>78.80</td>
<td>228.51</td>
<td>267.15</td>
<td>11.67</td>
</tr>
<tr>
<td>22</td>
<td>1942.17</td>
<td>7.10</td>
<td>78.80</td>
<td>228.51</td>
<td>270.89</td>
<td>11.67</td>
</tr>
</tbody>
</table>

Rata-rata

| | 1619.75 | 10.44 | 78.28 | 227.02 | 252.94 | 11.59 | 8.56 |

EM = Energi metabolis
kcal = kilokalori

EM = gram
Lampiran 9. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Super Harco Masa Developer dengan Pemberian Ransum 80% dari Ad Libitum dalam Kandang Sistem Litter

<table>
<thead>
<tr>
<th>Umur (minggu)</th>
<th>Pertambahan berat badan berat rata-rata</th>
<th>Pertambahan makanan/hari</th>
<th>Konsumsi makanan/ekor/hari</th>
<th>Konsumsi EM* per ekor/hari</th>
<th>Kebutuhan EM/ekor/hari</th>
<th>Konsumsi protein/ekor/hari</th>
<th>Kebutuhan protein/ekor/hari</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1205.36</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>1273.96</td>
<td>9.80</td>
<td>72.54</td>
<td>210.37</td>
<td>211.05</td>
<td>10.74</td>
<td>7.28</td>
</tr>
<tr>
<td>14</td>
<td>1341.02</td>
<td>9.58</td>
<td>74.06</td>
<td>214.77</td>
<td>217.83</td>
<td>10.97</td>
<td>7.37</td>
</tr>
<tr>
<td>15</td>
<td>1404.58</td>
<td>9.08</td>
<td>68.57</td>
<td>198.85</td>
<td>222.66</td>
<td>10.16</td>
<td>7.34</td>
</tr>
<tr>
<td>16</td>
<td>1463.45</td>
<td>8.41</td>
<td>70.21</td>
<td>203.61</td>
<td>226.89</td>
<td>10.40</td>
<td>7.22</td>
</tr>
<tr>
<td>17</td>
<td>1520.57</td>
<td>8.16</td>
<td>66.78</td>
<td>193.66</td>
<td>232.32</td>
<td>9.89</td>
<td>7.28</td>
</tr>
<tr>
<td>18</td>
<td>1573.63</td>
<td>7.58</td>
<td>68.12</td>
<td>197.55</td>
<td>235.68</td>
<td>10.08</td>
<td>7.20</td>
</tr>
<tr>
<td>19</td>
<td>1621.09</td>
<td>6.78</td>
<td>68.24</td>
<td>197.90</td>
<td>238.35</td>
<td>10.11</td>
<td>7.00</td>
</tr>
<tr>
<td>20</td>
<td>1663.72</td>
<td>6.09</td>
<td>67.26</td>
<td>195.05</td>
<td>240.30</td>
<td>19.96</td>
<td>6.85</td>
</tr>
<tr>
<td>21</td>
<td>1704.04</td>
<td>5.76</td>
<td>70.04</td>
<td>203.12</td>
<td>243.33</td>
<td>10.37</td>
<td>6.82</td>
</tr>
<tr>
<td>22</td>
<td>1752.61</td>
<td>5.51</td>
<td>70.04</td>
<td>203.12</td>
<td>246.54</td>
<td>10.37</td>
<td>6.83</td>
</tr>
<tr>
<td>23</td>
<td>1789.34</td>
<td>5.39</td>
<td>70.04</td>
<td>203.12</td>
<td>250.15</td>
<td>10.37</td>
<td>6.89</td>
</tr>
<tr>
<td>24</td>
<td>1815.76</td>
<td>5.06</td>
<td>70.04</td>
<td>203.12</td>
<td>253.10</td>
<td>10.37</td>
<td>6.84</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>1546.93</td>
<td>7.27</td>
<td>69.66</td>
<td>202.02</td>
<td>234.85</td>
<td>10.32</td>
<td>7.08</td>
</tr>
</tbody>
</table>

* EM = Energi metabolis
* g = gram
* kkal = kilokalori
Lampiran 10. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Super Harco Masa Developer dengan Pemberian Ransum Ad Libitum dalam Kandang Sistem Cage

<table>
<thead>
<tr>
<th>Umur (minggu)</th>
<th>Pertambahan berat badan rata</th>
<th>Konsumsi makanan/ekor/hari</th>
<th>Konsumsi EM³/ekor/hari</th>
<th>Kebutuhan protein/ekor/hari</th>
<th>Kebutuhan EM/ekor/hari</th>
<th>g</th>
<th>kcal</th>
<th>g</th>
<th>kcal</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1225.89</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>1337.05</td>
<td>15.88</td>
<td>89.80</td>
<td>260.42</td>
<td>220.34</td>
<td>13.30</td>
<td>9.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1445.20</td>
<td>15.45</td>
<td>92.27</td>
<td>267.58</td>
<td>229.57</td>
<td>13.67</td>
<td>9.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1548.73</td>
<td>14.79</td>
<td>88.68</td>
<td>257.17</td>
<td>237.01</td>
<td>13.13</td>
<td>9.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1644.63</td>
<td>13.70</td>
<td>89.80</td>
<td>260.42</td>
<td>242.05</td>
<td>13.30</td>
<td>9.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1735.91</td>
<td>13.04</td>
<td>85.88</td>
<td>249.05</td>
<td>249.2</td>
<td>12.72</td>
<td>9.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1802.83</td>
<td>9.56</td>
<td>85.71</td>
<td>248.56</td>
<td>244.17</td>
<td>12.69</td>
<td>8.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1868.21</td>
<td>9.34</td>
<td>85.95</td>
<td>249.26</td>
<td>249.78</td>
<td>12.73</td>
<td>8.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1928.27</td>
<td>8.58</td>
<td>85.91</td>
<td>249.14</td>
<td>252.80</td>
<td>12.72</td>
<td>8.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1985.53</td>
<td>8.18</td>
<td>85.95</td>
<td>249.26</td>
<td>256.89</td>
<td>12.73</td>
<td>8.52</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rata-rata 1652.23 12.06 87.77 254.54 242.42 12.99 9.30

* EM = Energi metabolism

g = gram

kkal = kilokalori
Lampiran 11. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Super Harco Masa Developer dengan Pemberian Ransum 90% dari Ad Libitum dalam Kandang Sistem Cage

<table>
<thead>
<tr>
<th>Umur (minggu)</th>
<th>Pertambahan berat badan</th>
<th>Konsumsi makanan/EM/ekor/hari</th>
<th>Kcpsumsi EM/ekor/hari</th>
<th>Kebutuhan protein/ekor/hari</th>
<th>Kebutuhan kkal/ekor/hari</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1225.01</td>
<td>80.82</td>
<td>234.38</td>
<td>11.97</td>
<td>9.03</td>
</tr>
<tr>
<td>13</td>
<td>1322.31</td>
<td>13.90</td>
<td>212.47</td>
<td>12.30</td>
<td>9.08</td>
</tr>
<tr>
<td>14</td>
<td>1416.16</td>
<td>83.04</td>
<td>220.62</td>
<td>11.82</td>
<td>8.97</td>
</tr>
<tr>
<td>15</td>
<td>1503.96</td>
<td>79.81</td>
<td>225.58</td>
<td>11.97</td>
<td>8.73</td>
</tr>
<tr>
<td>16</td>
<td>1583.76</td>
<td>80.82</td>
<td>229.63</td>
<td>11.97</td>
<td>8.73</td>
</tr>
<tr>
<td>17</td>
<td>1644.45</td>
<td>77.29</td>
<td>226.96</td>
<td>11.45</td>
<td>7.76</td>
</tr>
<tr>
<td>18</td>
<td>1701.43</td>
<td>77.14</td>
<td>230.88</td>
<td>11.42</td>
<td>7.55</td>
</tr>
<tr>
<td>19</td>
<td>1752.39</td>
<td>77.36</td>
<td>236.13</td>
<td>11.45</td>
<td>7.46</td>
</tr>
<tr>
<td>20</td>
<td>1800.55</td>
<td>77.32</td>
<td>236.13</td>
<td>11.45</td>
<td>7.46</td>
</tr>
<tr>
<td>21</td>
<td>1848.71</td>
<td>77.36</td>
<td>239.20</td>
<td>11.46</td>
<td>7.46</td>
</tr>
<tr>
<td>22</td>
<td>1890.71</td>
<td>77.36</td>
<td>241.53</td>
<td>11.46</td>
<td>7.41</td>
</tr>
<tr>
<td>Rata-rata</td>
<td>1608.13</td>
<td>78.83</td>
<td>228.61</td>
<td>11.67</td>
<td>8.21</td>
</tr>
</tbody>
</table>

EM = Energi metabolis kkal = kilokalori
\(\varepsilon \) = gram
Lampiran 12. Konsumsi dan Kebutuhan Protein serta Energi untuk Strain Super Harco Masa Developer dengan Pemberian Ransum 80% dari Ad Libitum dalam Kandang Sistem Cage

<table>
<thead>
<tr>
<th>Umur (minggu)</th>
<th>Pertambahan berat badan (Berat rata-rata ± Pertambahan /hari)</th>
<th>Konsumsi makanan/ EM/ekor/ hari</th>
<th>Kebutuhan protein/ hari</th>
<th>Kebutuhan protein/ ekor/hari</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1250.60 ± 10.63</td>
<td>71.84</td>
<td>208.34</td>
<td>203.62</td>
</tr>
<tr>
<td>13</td>
<td>1325.01 ± 10.59</td>
<td>73.82</td>
<td>214.08</td>
<td>210.25</td>
</tr>
<tr>
<td>14</td>
<td>1399.14 ± 10.19</td>
<td>70.94</td>
<td>205.73</td>
<td>215.70</td>
</tr>
<tr>
<td>15</td>
<td>1470.47 ± 9.67</td>
<td>71.84</td>
<td>108.34</td>
<td>220.71</td>
</tr>
<tr>
<td>16</td>
<td>1538.16 ± 9.05</td>
<td>68.70</td>
<td>199.23</td>
<td>224.43</td>
</tr>
<tr>
<td>17</td>
<td>1601.51 ± 8.63</td>
<td>68.57</td>
<td>198.85</td>
<td>228.68</td>
</tr>
<tr>
<td>18</td>
<td>1661.92 ± 8.27</td>
<td>68.76</td>
<td>199.40</td>
<td>233.08</td>
</tr>
<tr>
<td>19</td>
<td>1719.81 ± 7.66</td>
<td>68.73</td>
<td>199.32</td>
<td>235.78</td>
</tr>
<tr>
<td>20</td>
<td>1773.43 ± 6.58</td>
<td>68.76</td>
<td>199.40</td>
<td>237.04</td>
</tr>
<tr>
<td>21</td>
<td>1819.49 ± 5.25</td>
<td>68.76</td>
<td>199.40</td>
<td>236.61</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rata-rata</td>
<td>1583.25 ± 8.65</td>
<td>70.07</td>
<td>203.20</td>
<td>224.59</td>
</tr>
</tbody>
</table>

*EM = Energi metabolis
 kkal = kilokalori
 g = gram

<table>
<thead>
<tr>
<th>Periode</th>
<th>Ransum II (EM =2850 kcal/kg)</th>
<th>Ransum III (EM =2650 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum</td>
<td>90% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>1971.88</td>
<td>1931.65</td>
</tr>
<tr>
<td>II</td>
<td>1996.88</td>
<td>2001.82</td>
</tr>
<tr>
<td>III</td>
<td>2024.38</td>
<td>2017.75</td>
</tr>
<tr>
<td>IV</td>
<td>2066.25</td>
<td>2041.57</td>
</tr>
<tr>
<td>V</td>
<td>2102.89</td>
<td>2058.83</td>
</tr>
<tr>
<td>VI</td>
<td>2122.70</td>
<td>2058.08</td>
</tr>
<tr>
<td>VII</td>
<td>2146.98</td>
<td>2076.25</td>
</tr>
<tr>
<td>VIII</td>
<td>2165.41</td>
<td>2106.51</td>
</tr>
<tr>
<td>IX</td>
<td>2181.50</td>
<td>2109.01</td>
</tr>
<tr>
<td>X</td>
<td>2230.28</td>
<td>2118.87</td>
</tr>
<tr>
<td>XI</td>
<td>2262.50</td>
<td>2141.39</td>
</tr>
<tr>
<td>XII</td>
<td>2275.38</td>
<td>2168.75</td>
</tr>
<tr>
<td>XIII</td>
<td>2306.38</td>
<td>2156.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Periode</th>
<th>Ransum II (EM = 2850 kkal/kg)</th>
<th>Ransum III (EM = 2650 kkal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum</td>
<td>90% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>2022.82</td>
<td>1920.32</td>
</tr>
<tr>
<td>II</td>
<td>2094.15</td>
<td>1946.26</td>
</tr>
<tr>
<td>III</td>
<td>2126.75</td>
<td>2001.25</td>
</tr>
<tr>
<td>IV</td>
<td>2175.32</td>
<td>2031.36</td>
</tr>
<tr>
<td>V</td>
<td>2232.09</td>
<td>2062.65</td>
</tr>
<tr>
<td>VI</td>
<td>2255.28</td>
<td>2084.78</td>
</tr>
<tr>
<td>VII</td>
<td>2258.02</td>
<td>2102.50</td>
</tr>
<tr>
<td>VIII</td>
<td>2296.25</td>
<td>2156.25</td>
</tr>
<tr>
<td>IX</td>
<td>2346.94</td>
<td>2212.50</td>
</tr>
<tr>
<td>X</td>
<td>2381.25</td>
<td>2225.05</td>
</tr>
<tr>
<td>XI</td>
<td>2406.33</td>
<td>2252.09</td>
</tr>
<tr>
<td>XII</td>
<td>2427.63</td>
<td>2243.75</td>
</tr>
<tr>
<td>XIII</td>
<td>2420.08</td>
<td>2258.75</td>
</tr>
</tbody>
</table>
Lampiran 15. Berat Badan Rata-rata Strain Super Harco pada Berbagai Jumlah Pemberian Ransum dalam Kandang Sistem Litter dengan Interval Pengamatan 28 Hari (gram)

<table>
<thead>
<tr>
<th>Periode</th>
<th>Ransum II (EM = 2850 kcal/kg)</th>
<th>Ransum III (EM = 2650 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum</td>
<td>90% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>2108.40</td>
<td>2006.88</td>
</tr>
<tr>
<td>II</td>
<td>2122.51</td>
<td>2056.88</td>
</tr>
<tr>
<td>III</td>
<td>2199.13</td>
<td>2091.32</td>
</tr>
<tr>
<td>IV</td>
<td>2251.87</td>
<td>2110.94</td>
</tr>
<tr>
<td>V</td>
<td>2256.57</td>
<td>2128.44</td>
</tr>
<tr>
<td>VI</td>
<td>2259.71</td>
<td>2161.88</td>
</tr>
<tr>
<td>VII</td>
<td>2298.38</td>
<td>2174.46</td>
</tr>
<tr>
<td>VIII</td>
<td>2317.19</td>
<td>2170.04</td>
</tr>
<tr>
<td>IX</td>
<td>2310.16</td>
<td>2178.13</td>
</tr>
<tr>
<td>X</td>
<td>2386.54</td>
<td>2196.13</td>
</tr>
<tr>
<td>XI</td>
<td>2428.91</td>
<td>2219.46</td>
</tr>
<tr>
<td>XII</td>
<td>2447.70</td>
<td>2250.89</td>
</tr>
<tr>
<td>XIII</td>
<td>2478.91</td>
<td>2287.50</td>
</tr>
</tbody>
</table>
Lampiran 16. Berat Badan Rata-rata Strain Super Harco pada Berbagai Jumlah Pemberian Ransum dalam Kandang Sistem Cage dengan Interval Pengamatan 28 Hari (gram)

<table>
<thead>
<tr>
<th>Periode Penguatan</th>
<th>Ransum II (EM = 2850 kcal/kg)</th>
<th>Ransum II (EM = 2650 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum</td>
<td>90% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>2076.63</td>
<td>2037.50</td>
</tr>
<tr>
<td>II</td>
<td>2091.88</td>
<td>2062.82</td>
</tr>
<tr>
<td>III</td>
<td>2124.38</td>
<td>2091.25</td>
</tr>
<tr>
<td>IV</td>
<td>2206.50</td>
<td>2132.50</td>
</tr>
<tr>
<td>V</td>
<td>2216.50</td>
<td>2163.00</td>
</tr>
<tr>
<td>VI</td>
<td>2233.64</td>
<td>2172.92</td>
</tr>
<tr>
<td>VII</td>
<td>2250.45</td>
<td>2184.38</td>
</tr>
<tr>
<td>VIII</td>
<td>2342.97</td>
<td>2199.38</td>
</tr>
<tr>
<td>IX</td>
<td>2349.22</td>
<td>2255.41</td>
</tr>
<tr>
<td>X</td>
<td>2378.19</td>
<td>2255.41</td>
</tr>
<tr>
<td>XI</td>
<td>2420.08</td>
<td>2287.51</td>
</tr>
<tr>
<td>XII</td>
<td>2429.06</td>
<td>2300.68</td>
</tr>
<tr>
<td>XIII</td>
<td>2436.25</td>
<td>2308.76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Periode</th>
<th>Ransum II (EM = 2850 kcal/kg)</th>
<th>Ransum III (EM = 2950 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum</td>
<td>90% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>98.78</td>
<td>88.90</td>
</tr>
<tr>
<td>II</td>
<td>115.09</td>
<td>103.58</td>
</tr>
<tr>
<td>III</td>
<td>121.88</td>
<td>109.69</td>
</tr>
<tr>
<td>IV</td>
<td>122.59</td>
<td>110.33</td>
</tr>
<tr>
<td>V</td>
<td>120.07</td>
<td>108.06</td>
</tr>
<tr>
<td>VI</td>
<td>122.99</td>
<td>110.69</td>
</tr>
<tr>
<td>VII</td>
<td>125.81</td>
<td>113.23</td>
</tr>
<tr>
<td>VIII</td>
<td>130.00</td>
<td>117.00</td>
</tr>
<tr>
<td>IX</td>
<td>130.23</td>
<td>117.21</td>
</tr>
<tr>
<td>X</td>
<td>126.26</td>
<td>113.63</td>
</tr>
<tr>
<td>XI</td>
<td>127.58</td>
<td>114.82</td>
</tr>
<tr>
<td>XII</td>
<td>124.57</td>
<td>112.11</td>
</tr>
<tr>
<td>XIII</td>
<td>126.91</td>
<td>114.22</td>
</tr>
</tbody>
</table>

EM = Energi metabolis
Lampiran 18. Konsumsi Ransum Rata-rata per Ekor per Hari pada Berbagai Jumlah Pemberian Ransum untuk Strain Shaver selama Periode Produksi dalam Rambang Sistem Cage dengan Interval Pengamatan 28 Hari (gram)

<table>
<thead>
<tr>
<th>Periode Pengukuran</th>
<th>Ransum II (EM = 2850 kcal/kg)</th>
<th>Ransum III (EM = 2650 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum</td>
<td>90% dari</td>
</tr>
<tr>
<td>I</td>
<td>96.67</td>
<td>87.00</td>
</tr>
<tr>
<td>II</td>
<td>111.52</td>
<td>100.37</td>
</tr>
<tr>
<td>III</td>
<td>118.37</td>
<td>106.53</td>
</tr>
<tr>
<td>IV</td>
<td>120.47</td>
<td>108.42</td>
</tr>
<tr>
<td>V</td>
<td>119.08</td>
<td>107.17</td>
</tr>
<tr>
<td>VI</td>
<td>123.06</td>
<td>110.75</td>
</tr>
<tr>
<td>VII</td>
<td>124.93</td>
<td>112.44</td>
</tr>
<tr>
<td>VIII</td>
<td>128.30</td>
<td>115.47</td>
</tr>
<tr>
<td>IX</td>
<td>127.54</td>
<td>114.79</td>
</tr>
<tr>
<td>X</td>
<td>125.33</td>
<td>112.80</td>
</tr>
<tr>
<td>XI</td>
<td>125.96</td>
<td>113.36</td>
</tr>
<tr>
<td>XII</td>
<td>122.75</td>
<td>110.48</td>
</tr>
<tr>
<td>XIII</td>
<td>121.23</td>
<td>109.11</td>
</tr>
</tbody>
</table>

Rata-rata 120.40 108.36 96.16 120.95 108.86 96.76

EM = Energi metabolis

<table>
<thead>
<tr>
<th>Periode Pengu-</th>
<th>Ransum II (EM = 2850 kcal/kg)</th>
<th>Ransum III (EM = 2650 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kuran</td>
<td>ad libitum</td>
<td>90% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>100.76</td>
<td>90.68</td>
</tr>
<tr>
<td>II</td>
<td>117.51</td>
<td>105.76</td>
</tr>
<tr>
<td>III</td>
<td>122.71</td>
<td>110.44</td>
</tr>
<tr>
<td>IV</td>
<td>125.61</td>
<td>113.05</td>
</tr>
<tr>
<td>V</td>
<td>123.29</td>
<td>110.96</td>
</tr>
<tr>
<td>VI</td>
<td>126.11</td>
<td>113.50</td>
</tr>
<tr>
<td>VII</td>
<td>127.41</td>
<td>114.67</td>
</tr>
<tr>
<td>VIII</td>
<td>131.16</td>
<td>118.04</td>
</tr>
<tr>
<td>IX</td>
<td>132.99</td>
<td>119.69</td>
</tr>
<tr>
<td>X</td>
<td>129.18</td>
<td>116.26</td>
</tr>
<tr>
<td>XI</td>
<td>128.22</td>
<td>115.40</td>
</tr>
<tr>
<td>XII</td>
<td>127.14</td>
<td>114.43</td>
</tr>
<tr>
<td>XIII</td>
<td>129.88</td>
<td>116.89</td>
</tr>
<tr>
<td>Rata-rata/th</td>
<td>124.77</td>
<td>112.29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Periode Pengu-</th>
<th>Ransum II (EM = 2850 kcal/kg)</th>
<th>Ransum III (EM = 2650 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pukan</td>
<td>ad libitum 90% dari 80% dari</td>
<td>ad libitum 90% dari 80% dari</td>
</tr>
<tr>
<td></td>
<td>ad libitum ad libitum</td>
<td>ad libitum ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>98.06 88.25 78.45</td>
<td>98.48 88.63 78.78</td>
</tr>
<tr>
<td>II</td>
<td>112.69 101.42 90.15</td>
<td>114.73 103.26 91.78</td>
</tr>
<tr>
<td>III</td>
<td>119.82 107.84 95.86</td>
<td>120.51 108.46 96.41</td>
</tr>
<tr>
<td>IV</td>
<td>122.48 110.23 97.98</td>
<td>124.08 111.67 99.26</td>
</tr>
<tr>
<td>V</td>
<td>119.65 107.69 95.72</td>
<td>122.31 110.08 97.85</td>
</tr>
<tr>
<td>VI</td>
<td>123.19 110.87 98.55</td>
<td>125.06 112.55 100.05</td>
</tr>
<tr>
<td>VII</td>
<td>123.55 111.20 98.84</td>
<td>125.91 113.32 100.73</td>
</tr>
<tr>
<td>VIII</td>
<td>128.57 115.71 102.86</td>
<td>129.67 116.70 103.74</td>
</tr>
<tr>
<td>IX</td>
<td>130.19 117.17 104.15</td>
<td>130.85 117.77 104.68</td>
</tr>
<tr>
<td>X</td>
<td>128.43 115.59 102.74</td>
<td>130.10 117.09 104.08</td>
</tr>
<tr>
<td>XI</td>
<td>127.13 114.42 101.70</td>
<td>127.59 114.83 102.07</td>
</tr>
<tr>
<td>XII</td>
<td>123.83 111.45 99.06</td>
<td>124.59 112.13 99.67</td>
</tr>
<tr>
<td>XIII</td>
<td>123.15 110.84 98.52</td>
<td>124.82 112.34 99.86</td>
</tr>
</tbody>
</table>

| Rata-rata /th | 121.60 109.44 97.28 | 122.98 110.68 98.38 |

EM = Energi metabolis

<table>
<thead>
<tr>
<th>Periode Penguukan</th>
<th>Ransum II (EM = 2350 kcal/kg)</th>
<th>Ransum III (EM = 2650 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum</td>
<td>90% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>27.09</td>
<td>15.38</td>
</tr>
<tr>
<td>II</td>
<td>19.91</td>
<td>17.92</td>
</tr>
<tr>
<td>III</td>
<td>21.09</td>
<td>18.98</td>
</tr>
<tr>
<td>V</td>
<td>20.77</td>
<td>18.69</td>
</tr>
<tr>
<td>VI</td>
<td>21.28</td>
<td>19.15</td>
</tr>
<tr>
<td>VII</td>
<td>21.77</td>
<td>19.59</td>
</tr>
<tr>
<td>VIII</td>
<td>22.49</td>
<td>20.24</td>
</tr>
<tr>
<td>IX</td>
<td>22.44</td>
<td>20.28</td>
</tr>
<tr>
<td>X</td>
<td>21.84</td>
<td>19.66</td>
</tr>
<tr>
<td>XI</td>
<td>22.07</td>
<td>19.86</td>
</tr>
<tr>
<td>XII</td>
<td>21.55</td>
<td>19.40</td>
</tr>
<tr>
<td>XIII</td>
<td>21.96</td>
<td>19.76</td>
</tr>
</tbody>
</table>

EM = Energi metabolis

| Periode Pengu- | Ransum II (EM = 2850 kcal/kg) | | |
| kuran | ad libitum | 90% dari ad libitum | 80% dari ad libitum | Ransum III (EM = 2650 kcal/kg) | | |
|---------------|------------|---------------------|---------------------|--------------------------------|---------------------|
| | ad libitum |
| I | 16.72 | 15.05 | 13.38 | 17.00 | 15.30 | 13.60 |
| II | 19.29 | 17.36 | 15.44 | 19.67 | 17.71 | 15.74 |
| III | 20.48 | 18.43 | 16.38 | 20.72 | 18.61 | 16.55 |
| IV | 20.84 | 18.76 | 16.67 | 20.92 | 18.82 | 16.73 |
| V | 20.60 | 18.54 | 16.48 | 20.71 | 18.64 | 16.57 |
| VI | 21.29 | 19.16 | 17.03 | 21.06 | 18.95 | 16.85 |
| VII | 21.61 | 19.45 | 17.29 | 21.66 | 19.49 | 17.32 |
| VIII | 22.20 | 19.98 | 17.76 | 22.06 | 19.85 | 17.64 |
| IX | 22.06 | 19.86 | 17.65 | 22.13 | 19.92 | 17.71 |
| X | 21.68 | 19.51 | 17.34 | 21.76 | 19.58 | 17.41 |
| XI | 21.79 | 19.61 | 17.43 | 21.90 | 19.71 | 17.52 |
| XIII | 20.97 | 18.88 | 16.78 | 21.11 | 19.00 | 16.89 |

Rata-rata 20.83 18.75 16.64 20.92 18.83 16.74

EM = Energi metabolis

<table>
<thead>
<tr>
<th>Periode Pengu-</th>
<th>Dosis Ransum II (EM = 2850 kcal/kg)</th>
<th>Dosis Ransum III (EM = 2650 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- kuran</td>
<td>ad libitum 90% dari ad libitum 80% dari ad libitum</td>
<td>ad libitum 90% dari ad libitum 80% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>17.43 15.69 13.95</td>
<td>17.72 15.95 14.18</td>
</tr>
<tr>
<td>III</td>
<td>21.23 19.11 16.98</td>
<td>21.82 19.64 17.45</td>
</tr>
<tr>
<td>IV</td>
<td>21.73 19.56 17.38</td>
<td>21.89 19.70 17.52</td>
</tr>
<tr>
<td>V</td>
<td>21.33 19.20 17.06</td>
<td>21.54 19.38 17.23</td>
</tr>
<tr>
<td>VI</td>
<td>21.82 19.64 17.45</td>
<td>21.88 19.69 17.51</td>
</tr>
<tr>
<td>VII</td>
<td>22.04 19.84 17.63</td>
<td>22.12 19.91 17.70</td>
</tr>
<tr>
<td>VIII</td>
<td>22.69 20.42 18.15</td>
<td>22.74 20.47 18.19</td>
</tr>
<tr>
<td>IX</td>
<td>23.00 20.71 18.41</td>
<td>22.91 20.62 18.33</td>
</tr>
<tr>
<td>X</td>
<td>22.35 20.11 17.88</td>
<td>22.59 20.33 18.07</td>
</tr>
<tr>
<td>XI</td>
<td>22.18 19.96 17.75</td>
<td>22.37 20.14 17.90</td>
</tr>
<tr>
<td>XII</td>
<td>22.00 19.80 17.60</td>
<td>22.15 19.93 17.72</td>
</tr>
<tr>
<td>XIII</td>
<td>22.47 20.22 17.97</td>
<td>22.82 20.54 18.25</td>
</tr>
</tbody>
</table>

| Rata-rata/th | 21.59 19.43 17.27 | 21.83 19.65 17.46 |

EM = Energi metabolis

<table>
<thead>
<tr>
<th>Periode / Pengu kuran</th>
<th>Ransum II (EM = 2850 kcal/kg)</th>
<th>Ransum III (EM = 2650 kcal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum 90% dari ad libitum</td>
<td>ad libitum 90% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>16.96 15.27 13.57</td>
<td>17.04 15.33 13.63</td>
</tr>
<tr>
<td>II</td>
<td>19.50 17.55 15.60</td>
<td>19.85 17.86 15.88</td>
</tr>
<tr>
<td>III</td>
<td>20.73 18.66 16.58</td>
<td>20.85 18.76 16.68</td>
</tr>
<tr>
<td>V</td>
<td>20.70 18.63 16.56</td>
<td>21.16 19.04 16.93</td>
</tr>
<tr>
<td>VI</td>
<td>21.31 19.18 17.05</td>
<td>21.64 19.47 17.31</td>
</tr>
<tr>
<td>VII</td>
<td>21.37 19.24 17.10</td>
<td>21.78 19.60 17.43</td>
</tr>
<tr>
<td>VIII</td>
<td>22.24 20.02 17.79</td>
<td>22.43 20.19 17.95</td>
</tr>
<tr>
<td>IX</td>
<td>22.52 20.27 18.02</td>
<td>22.64 20.37 18.11</td>
</tr>
<tr>
<td>X</td>
<td>22.22 20.00 17.77</td>
<td>22.51 20.26 18.01</td>
</tr>
<tr>
<td>XI</td>
<td>21.99 19.79 17.59</td>
<td>22.07 19.87 17.66</td>
</tr>
<tr>
<td>XIII</td>
<td>21.30 19.18 17.04</td>
<td>21.59 19.43 17.28</td>
</tr>
</tbody>
</table>

Rata-rata /th

| | 21.04 | 18.93 | 16.83 | 21.28 | 19.15 | 17.02 |

EM = Energi metabolis

<table>
<thead>
<tr>
<th>Periode pengu-</th>
<th>Ransum II (EM = 2850 kкал/kg)</th>
<th>Ransum III (EM = 2650 kкал/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum</td>
<td>90% dari</td>
</tr>
<tr>
<td></td>
<td>ad libitum</td>
<td>ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>281.52</td>
<td>253.37</td>
</tr>
<tr>
<td>II</td>
<td>328.00</td>
<td>295.20</td>
</tr>
<tr>
<td>III</td>
<td>347.36</td>
<td>312.62</td>
</tr>
<tr>
<td>IV</td>
<td>349.38</td>
<td>314.44</td>
</tr>
<tr>
<td>V</td>
<td>342.20</td>
<td>307.97</td>
</tr>
<tr>
<td>VI</td>
<td>350.52</td>
<td>315.47</td>
</tr>
<tr>
<td>VII</td>
<td>358.56</td>
<td>322.71</td>
</tr>
<tr>
<td>VIII</td>
<td>370.50</td>
<td>333.45</td>
</tr>
<tr>
<td>IX</td>
<td>371.16</td>
<td>334.05</td>
</tr>
<tr>
<td>X</td>
<td>359.60</td>
<td>323.85</td>
</tr>
<tr>
<td>XI</td>
<td>363.60</td>
<td>327.24</td>
</tr>
<tr>
<td>XII</td>
<td>355.62</td>
<td>319.51</td>
</tr>
<tr>
<td>XIII</td>
<td>361.69</td>
<td>325.53</td>
</tr>
</tbody>
</table>

| Rata-rata /th | 349.18 | 314.26 | 279.34 | 327.39 | 294.66 | 261.91 |

EM = Energi metabolis

<table>
<thead>
<tr>
<th>Periode Penguukan</th>
<th>Ransum II (EM = 2850 kкал/kg)</th>
<th>Ransum III (EM = 2650 kкал/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum 90% dari 80% dari</td>
<td>ad libitum 90% dari 80% dari</td>
</tr>
<tr>
<td></td>
<td>ad libitum ad libitum</td>
<td>ad libitum ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>275.51 247.95 220.42</td>
<td>260.39 234.34 208.32</td>
</tr>
<tr>
<td>II</td>
<td>317.83 286.05 254.28</td>
<td>301.36 271.23 241.10</td>
</tr>
<tr>
<td>III</td>
<td>337.35 303.61 269.90</td>
<td>316.81 285.14 253.45</td>
</tr>
<tr>
<td>IV</td>
<td>343.34 309.00 274.68</td>
<td>320.39 288.35 256.31</td>
</tr>
<tr>
<td>V</td>
<td>339.38 305.43 271.49</td>
<td>317.23 285.51 252.79</td>
</tr>
<tr>
<td>VI</td>
<td>350.72 315.64 280.58</td>
<td>322.56 290.31 258.06</td>
</tr>
<tr>
<td>VII</td>
<td>356.05 320.45 284.83</td>
<td>331.73 298.55 265.37</td>
</tr>
<tr>
<td>VIII</td>
<td>365.66 329.09 292.52</td>
<td>337.85 304.06 270.27</td>
</tr>
<tr>
<td>IX</td>
<td>363.49 327.15 290.79</td>
<td>339.04 305.15 271.23</td>
</tr>
<tr>
<td>X</td>
<td>357.19 321.48 285.74</td>
<td>333.29 299.95 266.64</td>
</tr>
<tr>
<td>XI</td>
<td>358.99 323.08 287.19</td>
<td>335.49 301.94 268.39</td>
</tr>
<tr>
<td>XII</td>
<td>349.84 314.87 279.87</td>
<td>327.04 294.34 261.63</td>
</tr>
<tr>
<td>XIII</td>
<td>345.51 310.96 276.39</td>
<td>323.43 291.10 258.75</td>
</tr>
<tr>
<td>Rata-rata /th</td>
<td>343.14 308.83 274.51</td>
<td>320.51 288.46 256.41</td>
</tr>
</tbody>
</table>

EM = Energi metabolis

<table>
<thead>
<tr>
<th>Periode</th>
<th>Ransum II (EM = 2850 kcal/kg)</th>
<th></th>
<th>Ransum III (EM = 2650 kcal/kg)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum 90% dari 80% dari</td>
<td>ad libitum</td>
<td>ad libitum 90% dari 80% dari</td>
<td>ad libitum 90% dari 80% dari</td>
</tr>
<tr>
<td>I</td>
<td>289.17 258.44 229.74</td>
<td>271.41 244.28 217.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>334.90 301.42 267.93</td>
<td>325.37 292.83 260.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>349.72 314.75 279.78</td>
<td>334.27 300.85 267.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>357.99 322.19 286.40</td>
<td>335.38 301.84 268.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>351.38 316.24 281.10</td>
<td>329.90 296.91 263.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>356.41 323.48 287.54</td>
<td>335.20 301.68 268.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>363.12 326.81 290.50</td>
<td>338.91 305.02 271.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>373.81 336.41 299.05</td>
<td>348.32 313.50 278.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>375.02 341.12 303.21</td>
<td>350.97 315.88 280.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>368.16 331.34 294.52</td>
<td>342.72 308.46 276.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td>365.43 328.89 292.35</td>
<td>339.25 305.33 274.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XII</td>
<td>362.35 326.13 289.87</td>
<td>349.54 314.58 271.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XIII</td>
<td>370.16 333.14 296.12</td>
<td>349.54 314.58 279.63</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rata-rata 355.59 320.03 284.47 334.41 300.97 267.52

EM = Energi metabolis

<table>
<thead>
<tr>
<th>Periode Penukaran</th>
<th>Ransum II (EM = 2850 kkal/kg)</th>
<th>Ransum III (EM = 2650 kkal/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ad libitum 90% dari ad libitum</td>
<td>80% dari ad libitum</td>
</tr>
<tr>
<td>I</td>
<td>279.47 251.51 223.58</td>
<td>260.97 234.87 208.77</td>
</tr>
<tr>
<td>II</td>
<td>321.17 289.05 256.93</td>
<td>304.03 273.64 243.22</td>
</tr>
<tr>
<td>III</td>
<td>341.49 307.34 273.20</td>
<td>319.35 287.22 255.49</td>
</tr>
<tr>
<td>IV</td>
<td>349.07 314.16 279.24</td>
<td>328.81 295.93 263.04</td>
</tr>
<tr>
<td>V</td>
<td>341.00 306.92 272.80</td>
<td>324.12 291.71 259.30</td>
</tr>
<tr>
<td>VI</td>
<td>351.09 315.98 280.87</td>
<td>331.41 298.26 265.13</td>
</tr>
<tr>
<td>VII</td>
<td>352.12 316.92 281.69</td>
<td>333.66 300.30 266.93</td>
</tr>
<tr>
<td>VIII</td>
<td>356.43 329.77 293.15</td>
<td>343.63 309.26 274.91</td>
</tr>
<tr>
<td>IX</td>
<td>371.04 333.93 296.83</td>
<td>346.75 312.09 277.40</td>
</tr>
<tr>
<td>X</td>
<td>356.03 329.43 292.81</td>
<td>344.77 310.29 275.81</td>
</tr>
<tr>
<td>XI</td>
<td>352.32 325.10 289.85</td>
<td>338.11 304.30 270.49</td>
</tr>
<tr>
<td>XII</td>
<td>352.92 317.65 282.32</td>
<td>330.16 297.14 264.13</td>
</tr>
<tr>
<td>XIII</td>
<td>350.98 315.89 280.78</td>
<td>330.77 297.70 264.63</td>
</tr>
</tbody>
</table>

Rata-rata/th 346.55 311.89 277.23 325.89 293.31 260.71

EM = Energi metabolis
Lampiran 29. Daftar Sidik Ragam untuk Produksi Telur

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F_hit</th>
<th>F.05</th>
<th>F.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistem Alas (SA)</td>
<td>1</td>
<td>0.0184</td>
<td>0.0184</td>
<td>0.0071</td>
<td>18.51</td>
<td>98.49</td>
</tr>
<tr>
<td>Galat (a)</td>
<td>2</td>
<td>5.1791</td>
<td>2.5896</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strain (ST)</td>
<td>1</td>
<td>28.4284</td>
<td>28.4284</td>
<td>7.3525*</td>
<td>4.17</td>
<td>7.56</td>
</tr>
<tr>
<td>Energi (E)</td>
<td>1</td>
<td>2.3232</td>
<td>2.3232</td>
<td>0.6009</td>
<td>4.17</td>
<td>7.56</td>
</tr>
<tr>
<td>Jumlah Ransum (TR)</td>
<td>2</td>
<td>717.8746</td>
<td>358.9373</td>
<td>92.8326**</td>
<td>3.32</td>
<td>5.39</td>
</tr>
<tr>
<td>linier</td>
<td>1</td>
<td>631.1016</td>
<td>631.1016</td>
<td>163.2230**</td>
<td>4.17</td>
<td>7.56</td>
</tr>
<tr>
<td>quadratic</td>
<td>1</td>
<td>86.7730</td>
<td>86.7730</td>
<td>22.4423**</td>
<td>4.17</td>
<td>7.56</td>
</tr>
<tr>
<td>Interaksi:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA x ST</td>
<td>1</td>
<td>2.5947</td>
<td>2.5947</td>
<td>0.6711</td>
<td>4.17</td>
<td>7.56</td>
</tr>
<tr>
<td>SA x E</td>
<td>1</td>
<td>0.3366</td>
<td>0.3366</td>
<td>0.0871</td>
<td>4.17</td>
<td>7.56</td>
</tr>
<tr>
<td>SA x TR</td>
<td>2</td>
<td>10.1040</td>
<td>5.052</td>
<td>1.3066</td>
<td>3.32</td>
<td>5.39</td>
</tr>
<tr>
<td>ST x E</td>
<td>1</td>
<td>0.4601</td>
<td>0.4601</td>
<td>0.1190</td>
<td>4.17</td>
<td>7.56</td>
</tr>
<tr>
<td>ST x TR</td>
<td>2</td>
<td>8.2755</td>
<td>4.1378</td>
<td>1.0702</td>
<td>3.32</td>
<td>5.39</td>
</tr>
<tr>
<td>SA x ST x TR</td>
<td>2</td>
<td>56.0491</td>
<td>28.0246</td>
<td>7.2481**</td>
<td>3.32</td>
<td>5.39</td>
</tr>
<tr>
<td>SA x E x ST</td>
<td>1</td>
<td>0.1367</td>
<td>0.1367</td>
<td>0.0354</td>
<td>4.17</td>
<td>7.56</td>
</tr>
<tr>
<td>Galat (b)</td>
<td>30</td>
<td>115.9953</td>
<td>3.8665</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** nyata pada taraf nyata pengujian 1%.
* nyata pada taraf nyata pengujian 5%.
Lampiran 30. Daftar Sidik Ragam untuk Berat Telur

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>Fhit</th>
<th>F.05</th>
<th>F.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistem Alas (SA)</td>
<td>1</td>
<td>1.6844</td>
<td>1.6844</td>
<td>0.1819</td>
<td>18.51</td>
<td>98.49</td>
</tr>
<tr>
<td>Galat (a)</td>
<td>2</td>
<td>18.5232</td>
<td>9.2616</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strain (ST)</td>
<td>1</td>
<td>1.0236</td>
<td>1.0236</td>
<td>0.9290</td>
<td>4.17</td>
<td>7.56</td>
</tr>
<tr>
<td>Energi (E)</td>
<td>1</td>
<td>1.5092</td>
<td>1.5092</td>
<td>1.3698</td>
<td>4.17</td>
<td>7.56</td>
</tr>
<tr>
<td>Jumlah Ransum (TR)</td>
<td>2</td>
<td>9.8654</td>
<td>4.8427</td>
<td>4.3953*</td>
<td>3.32</td>
<td>5.39</td>
</tr>
<tr>
<td>quadratic</td>
<td>1</td>
<td>0.0054</td>
<td>0.0054</td>
<td>0.0049</td>
<td>4.17</td>
<td>7.56</td>
</tr>
</tbody>
</table>

Interaksi.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SA x ST</td>
<td>1</td>
<td>1.1563</td>
<td>1.1563</td>
<td>1.0495</td>
<td>4.17</td>
<td>7.56</td>
</tr>
<tr>
<td>SA x E</td>
<td>1</td>
<td>0.8833</td>
<td>0.8833</td>
<td>0.8017</td>
<td>4.17</td>
<td>7.56</td>
</tr>
<tr>
<td>SA x TR</td>
<td>2</td>
<td>4.9970</td>
<td>2.4985</td>
<td>2.2677</td>
<td>3.32</td>
<td>5.39</td>
</tr>
<tr>
<td>ST x E</td>
<td>1</td>
<td>4.9696</td>
<td>4.9696</td>
<td>4.5104*</td>
<td>4.17</td>
<td>7.56</td>
</tr>
<tr>
<td>ST x TR</td>
<td>2</td>
<td>0.4839</td>
<td>0.2420</td>
<td>0.2196</td>
<td>3.32</td>
<td>5.39</td>
</tr>
<tr>
<td>SA x ST x TR</td>
<td>2</td>
<td>1.8182</td>
<td>0.9091</td>
<td>0.8251</td>
<td>3.32</td>
<td>5.39</td>
</tr>
<tr>
<td>SA x E x ST</td>
<td>1</td>
<td>1.0589</td>
<td>1.0589</td>
<td>0.9611</td>
<td>4.17</td>
<td>7.56</td>
</tr>
<tr>
<td>Galat (b)</td>
<td>30</td>
<td>33.0543</td>
<td>1.1018</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 47

* nyata pada taraf nyata pengujian 5%
** nyata pada taraf nyata pengujian 1%
Lampiran 31. Daftar Sidik Ragam untuk Konversi Ransum

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>Fhit</th>
<th>F.05</th>
<th>F.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistem Alas (SA)</td>
<td>1</td>
<td>0.6510</td>
<td>0.6510</td>
<td>26.3030**</td>
<td>18.51</td>
<td>98.49</td>
</tr>
<tr>
<td>Galat (a)</td>
<td>2</td>
<td>0.0495</td>
<td>0.0247</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strain (ST)</td>
<td>1</td>
<td>0.7129</td>
<td>0.7129</td>
<td>18.8598**</td>
<td>4.17</td>
<td>7.56</td>
</tr>
<tr>
<td>Energi (E)</td>
<td>1</td>
<td>0.1017</td>
<td>0.1017</td>
<td>2.6905</td>
<td>4.17</td>
<td>7.56</td>
</tr>
<tr>
<td>Jumlah Ransum (TR)</td>
<td>2</td>
<td>1.9393</td>
<td>0.9697</td>
<td>25.6534**</td>
<td>3.32</td>
<td>5.39</td>
</tr>
<tr>
<td>Linier</td>
<td>1</td>
<td>0.7534</td>
<td>0.7534</td>
<td>19.9312**</td>
<td>4.17</td>
<td>7.56</td>
</tr>
<tr>
<td>Quadratic</td>
<td>1</td>
<td>1.1859</td>
<td>1.1859</td>
<td>31.3730**</td>
<td>4.17</td>
<td>7.56</td>
</tr>
</tbody>
</table>

Interaksi:

SA x ST	1	0.3088	0.3088	6.1693**	4.17	7.56
SA x E	1	0.0068	0.0068	0.1799	4.17	7.56
SA x TR	2	0.4551	0.2276	6.0212**	3.32	5.39
ST x E	1	0.0005	0.0005	0.0132	4.17	7.56
ST x TR	2	0.4733	0.2367	6.2619**	3.32	5.39
SA x ST x TR	2	0.9557	0.4779	12.6429	3.32	5.39
SA x E x ST	1	0.0001	0.0001	0.0026	4.17	7.56

Galat (b) | 30 | 1.1834 | 0.0378 |

Total | 47 |

*nyata pada taraf nyata pengujian 5%
**nyata pada taraf nyata pengujian 1%
Lampiran 32. Daftar Sidik Ragam untuk Konsumsi Air Minum

<table>
<thead>
<tr>
<th>Sumber Keragaman</th>
<th>JK</th>
<th>KT</th>
<th>Fhit</th>
<th>F0.05</th>
<th>F0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistem Alas (SA)</td>
<td>2919.70</td>
<td>2919.70</td>
<td>10.10</td>
<td>18.51</td>
<td>98.49</td>
</tr>
<tr>
<td>Galat (a)</td>
<td>577.73</td>
<td>288.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strain (ST)</td>
<td>2194.84</td>
<td>2194.84</td>
<td>7.78</td>
<td>4.17</td>
<td>7.56</td>
</tr>
<tr>
<td>Energi (E)</td>
<td>1922.55</td>
<td>1922.55</td>
<td>6.81</td>
<td>4.17</td>
<td>7.56</td>
</tr>
<tr>
<td>Jumlah Ransum(TR)</td>
<td>21140.94</td>
<td>10570.47</td>
<td>37.45</td>
<td>3.32</td>
<td>5.39</td>
</tr>
<tr>
<td>linier</td>
<td>21056.60</td>
<td>21056.60</td>
<td>74.59</td>
<td>4.17</td>
<td>7.56</td>
</tr>
<tr>
<td>quadratic</td>
<td>84.34</td>
<td>84.34</td>
<td>0.30</td>
<td>4.17</td>
<td>7.56</td>
</tr>
</tbody>
</table>

Interaksi:

SA x ST	159.86	159.86	0.57	4.17	7.56
SA x E	200.08	200.08	0.71	4.17	7.56
SA x TR	1550.71	775.36	2.75	3.32	5.39
ST x E	128.77	128.77	0.46	4.17	7.56
ST x TR	1964.17	982.09	3.48	3.32	5.39
SA x ST x TR	886.66	443.33	1.57	3.32	5.39
SA x E x ST	19.46	19.46	0.07	4.17	7.56

Galat (b) 30 8468.55 282.28

Total 47

* nyata pada taraf nyata pengujian 5%
** nyata pada taraf nyata pengujian 1%
Lampiran 33. Pengujian Penyebaran Angka Kematian dengan "Independence Test"

1. Pengaruh Sistem Alas

<table>
<thead>
<tr>
<th>Sistem Alas</th>
<th>Jumlah kelompok (n)</th>
<th>Jumlah yang mati ((X_i))</th>
<th>Peluang untuk mati ((p_i))</th>
<th>(P_iX_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litter</td>
<td>336</td>
<td>10</td>
<td>0.0298</td>
<td>0.2980</td>
</tr>
<tr>
<td>Cage</td>
<td>336</td>
<td>22</td>
<td>0.0655</td>
<td>1.4410</td>
</tr>
<tr>
<td>Jumlah</td>
<td>772</td>
<td>32</td>
<td></td>
<td>1.7390</td>
</tr>
</tbody>
</table>

\[
\chi^2_{\text{hit}} = \frac{1.739 - 0.0415 \times 32}{0.0415 \times 0.9585} = 10.4070^* \]

\[
\chi^2_{0.05;1} = 3.84
\]

2. Pengaruh Strain

<table>
<thead>
<tr>
<th>Strain</th>
<th>Jumlah kelompok (n)</th>
<th>Jumlah yang mati ((X_i))</th>
<th>Peluang untuk mati ((p_i))</th>
<th>(P_iX_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaver</td>
<td>336</td>
<td>13</td>
<td>0.0387</td>
<td>0.5031</td>
</tr>
<tr>
<td>Harco</td>
<td>336</td>
<td>19</td>
<td>0.0565</td>
<td>1.0735</td>
</tr>
<tr>
<td>Jumlah</td>
<td>772</td>
<td>32</td>
<td>0.0952</td>
<td>1.5766</td>
</tr>
</tbody>
</table>

\[
\chi^2_{\text{hit}} = \frac{1.5766 - 0.0415 \times 32}{0.0415 \times 0.9585} = 6.2462^* \]

\[
\chi^2_{0.05;1} = 3.84
\]
(lanjutan)

3. Pengaruh Energi

<table>
<thead>
<tr>
<th>Energi ransum</th>
<th>Jumlah kelompok (n)</th>
<th>Jumlah yang mati ((x_1))</th>
<th>Peluang untuk mati ((p_i))</th>
<th>(p_i x_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2850 kcal/kg</td>
<td>336</td>
<td>17</td>
<td>0.0506</td>
<td>0.8602</td>
</tr>
<tr>
<td>2650 kcal/kg</td>
<td>336</td>
<td>15</td>
<td>0.0446</td>
<td>0.6690</td>
</tr>
<tr>
<td>Jumlah</td>
<td>772</td>
<td>32</td>
<td>0.0952</td>
<td>1.5292</td>
</tr>
</tbody>
</table>

\[
\chi^2_{hit} = \frac{1.5292 - 0.0415 \times 32}{0.0415 \times 0.9585} = 5.0553
\]

\[
\chi^2_{0.05;1} = 3.84
\]

4. Jumlah Pemberian Ransum (TR)

<table>
<thead>
<tr>
<th>Jumlah ransum</th>
<th>Jumlah kelompok (n)</th>
<th>Jumlah yang mati ((x_1))</th>
<th>Peluang untuk mati ((p_i))</th>
<th>(p_i x_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ad libitum</td>
<td>224</td>
<td>11</td>
<td>0.0491</td>
<td>0.5401</td>
</tr>
<tr>
<td>90% ad libitum</td>
<td>224</td>
<td>11</td>
<td>0.0491</td>
<td>0.5401</td>
</tr>
<tr>
<td>80% "</td>
<td>224</td>
<td>10</td>
<td>0.0446</td>
<td>0.4460</td>
</tr>
</tbody>
</table>

\[
\chi^2_{hit} = \frac{1.5262 - 0.0415 \times 32}{0.0415 \times 0.9585}
\]

\[
= 4.9799
\]

\[
\chi^2_{0.05;2} = 5.99
\]
Lampiran 34. Kelembaban dan Temperatur Rata-rata Pada Kandang Cage

<table>
<thead>
<tr>
<th>Periode</th>
<th>Temperatur</th>
<th>Kelembaban</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1</td>
<td>T2</td>
</tr>
<tr>
<td>I</td>
<td>22.75</td>
<td>29.80</td>
</tr>
<tr>
<td>II</td>
<td>22.55</td>
<td>28.45</td>
</tr>
<tr>
<td>III</td>
<td>22.79</td>
<td>29.50</td>
</tr>
<tr>
<td>IV</td>
<td>23.50</td>
<td>29.80</td>
</tr>
<tr>
<td>V</td>
<td>23.96</td>
<td>29.05</td>
</tr>
<tr>
<td>VI</td>
<td>24.07</td>
<td>29.66</td>
</tr>
<tr>
<td>VII</td>
<td>24.03</td>
<td>28.29</td>
</tr>
<tr>
<td>VIII</td>
<td>23.07</td>
<td>25.59</td>
</tr>
<tr>
<td>IX</td>
<td>23.61</td>
<td>28.29</td>
</tr>
<tr>
<td>X</td>
<td>23.70</td>
<td>29.27</td>
</tr>
<tr>
<td>XI</td>
<td>23.50</td>
<td>29.84</td>
</tr>
<tr>
<td>XII</td>
<td>23.30</td>
<td>29.71</td>
</tr>
<tr>
<td>XIII</td>
<td>22.39</td>
<td>29.29</td>
</tr>
</tbody>
</table>

Rata-rata | 26.25 | 84.67 |
Lampiran 35. Kelembaban dan Temperatur Pada Kandang Litter

<table>
<thead>
<tr>
<th>Periode</th>
<th>Temperatur</th>
<th>Kelembaban</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>I</td>
<td>29.55</td>
<td>20.45</td>
</tr>
<tr>
<td>II</td>
<td>28.65</td>
<td>20.65</td>
</tr>
<tr>
<td>III</td>
<td>29.21</td>
<td>21.04</td>
</tr>
<tr>
<td>IV</td>
<td>29.36</td>
<td>21.80</td>
</tr>
<tr>
<td>V</td>
<td>29.05</td>
<td>21.93</td>
</tr>
<tr>
<td>VI</td>
<td>28.77</td>
<td>21.5</td>
</tr>
<tr>
<td>VII</td>
<td>27.14</td>
<td>21.75</td>
</tr>
<tr>
<td>VIII</td>
<td>24.88</td>
<td>20.96</td>
</tr>
<tr>
<td>IX</td>
<td>27.34</td>
<td>21.46</td>
</tr>
<tr>
<td>X</td>
<td>28.64</td>
<td>21.80</td>
</tr>
<tr>
<td>XI</td>
<td>29.31</td>
<td>21.93</td>
</tr>
<tr>
<td>XII</td>
<td>29.13</td>
<td>21.63</td>
</tr>
<tr>
<td>XIII</td>
<td>29.62</td>
<td>21.18</td>
</tr>
</tbody>
</table>

Rata-rata | 24.95 | 85.57 |

151