PENGARUH PENGELOLAAN AIR MELALUI PENGERINGAN
TERHADAP BEBERAPA SIFAT FISIK
TANAH SULFAT MASAM DARI DELTA TELANG,
MUSIBANYUASIN, SUMATRA SELATAN

Oleh :
SYARIF HERMANSYAH
A04495058

JURUSAN TANAH
FAKULTAS PETANIAN
INSTITUT PERTANIAN BOGOR
1999
DENGAN MENYEBUT NAMA ALLAH
YANG MAHA PENAGIH LAGI MAHA PENYAYANG

DAN KAMI HIMPURAKAN BUMI LUJU DAN KAMI LETAKAN
PADANYA GUNUNG-GUNUNG YANG KOKOH DAN KAMI
TUMBUHKAN PADANYA SEGALA MACAM TANAMAN YANG
INDAH DIPANDANG MATA. UNTUK MENJADI PENGAJARAN DAN
PERINGATAN BAGI TIAP-TIAP HAMBA YANG Kembali
(MENGINGAT ALLAH)
(QS QAAF : 31

SUNGOVHNYA JIKA KAMU BERSYAIR TKB. NISAYA KAMU (ALLAH)
AKAN MENAMBAGH NIHMAT KEPADA KAMU DAN JIKA KAMU INGAR
MAKA SUNGOVHNYA AZAB-KV SANGAT PEDIH
(QS IBRAHIM : 33

Kupersenbahrkan sebuah karya kecil untuk ...
Bapak, ibu, adikku tersayang
Juga sahabat-sahabatku
RINGKASAN

SYARIF HERMANSYAH. Pengaruh Pengelolaan Air melalui Pengeringan terhadap Beberapa Sifat Fisik Tanah Sulfat Masam Dari Delta Telang, Musibanyuasin, Sumatra Selatan. Dibawah bimbingan KUKIH MURTIILAKSONO dan SUDARMO.

Tanah sulfat masam berasal dari endapan yang dipengaruhi oleh air laut, berkadar liat tinggi dan mengandung pirit (FeS₂). Permasalahan pokok pemanfaatan tanah sulfat masam untuk pertanian adalah drainase yang buruk sehingga jika drainase diperbaiki, maka hilangnya air oleh proses drainase akan meruntuhkan struktur mikro awal yang akan mengakibatkan pengkerutan dan pembentukan celah-celah pada tanah. Usaha yang dilakukan untuk meningkatkan produktivitas tanah sulfat masam antara lain dengan pengelolaan air terutama drainase secara terencana.

Tujuan penelitian ini adalah untuk mempelajari perilaku perubahan sifat fisik tanah sulfat masam sebagai akibat perlakuan pengeringan.

Kolom tanah sulfat masam ini mendapat delapan kombinasi perlakuan yaitu : K0 = penggenangan diatas permukaan tanah, K1 = Pengeringan pada permukaan lapisan pirit 0,3% sedalam 50 cm, K2 = Pengeringan dibawah permukaan pirit (80 cm) selama 1 minggu, K3 = Pengeringan dibawah permukaan pirit (80 cm) selama 2 minggu, K4 = Pengeringan dibawah permukaan pirit (80 cm) selama 3 minggu, K5 = Pengeringan dibawah permukaan pirit (80 cm) selama 4 minggu, K6 =
Pengeringan dibawah permukaan pirit (80 cm) selama 6 minggu, K7 = Pengeringan dibawah permukaan pirit (80 cm) selama 8 minggu.

Hasil sidik ragam menunjukkan bahwa secara umum perlakuan memberikan pengaruh yang nyata terhadap sifat-sifat fisik tanah, walaupun pengaruh tersebut tidak sama untuk setiap parameter yang diuji. Hal ini menunjukkan bahwa respon setiap parameter terhadap perlakuan pengeringan yang diberikan berbeda-beda. Disamping itu, pengaruh pengeringan juga tidak sama pada setiap kedalaman.

Pengaruh perlakuan pengeringan terhadap nilai indeks stabilitas agregat menunjukkan bahwa secara umum pengeringan menyebabkan nilai indeks stabilitas agregat yang lebih tinggi dibandingkan dengan penggenangan. Nilai indeks stabilitas agregat pada kedalaman 15 dan 45 cm mempunyai kelas agak stabil, namun pada kedalaman 75 cm, kelas indeks stabilitas agregat bervariasi yaitu agak stabil hingga kurang stabil.

Secara umum pada kedalaman 15 dan 45 cm, pengaruh perlakuan terhadap nilai COLE tidak menyebabkan perbedaan yang nyata dibandingkan penggenangan, sedangkan pada kedalaman 75 cm, pengaruh perlakuan tidak menunjukkan pola yang jelas (nilai COLE bervariasi antara 0,20 – 0,33).

Secara umum pengaruh perlakuan pengeringan pada permukaan lapisan pirit 0,3% maupun dibawah lapisan pirit 0,3% terhadap nilai permeabilitas tanah pada kedalaman 15 tidak berbeda nyata dengan perlakuan penggenangan. Pada kedalaman 45 cm, pengaruh perlakuan terhadap nilai permeabilitas tanah tidak berbeda nyata kecuali perlakuan K1, K2 dan K4. Pada kedalaman 75 cm, perlakuan penggenangan
mempunyai nilai permeabilitas yang lebih tinggi dibandingkan perlakuan pengeringan.

Secara umum nilai rataan kerapatan limbak pada kedalaman 15 cm lebih tinggi dari pada kedalaman 45 dan 75 cm. Pada lapisan 15 cm terdapat deposit Fe-oksida karena proses oksidasi yang berjalan lebih cepat dibandingkan lapisan lain dibawahnya sehingga memberikan kontribusi yang berarti terhadap nilai kerapatan limbaknya.

Nilai pori total dipengaruhi secara nyata oleh perlakuan pengeringan pada berbagai kedalaman. Nilai pori drainase cepat tidak berpengaruh nyata pada kedalaman 45 dan 75 cm, namun pada kedalaman 15 cm berpengaruh nyata. Nilai pori drainase lambat dan air tersedia berpengaruh secara tidak nyata pada berbagai kedalaman.
Pengaruh Pengelolaan Air Melalui Pengeringan Terhadap
Beberapa Sifat Fisik Tanah Sulfat Masam Dari Delta Telang,
Musibanyuasin Sumatra Selatan

Skripsi ini merupakan salah satu syarat untuk mendapat
Gelar Sarjana Pertanian
Pada
Fakultas Pertanian, Institut Pertanian Bogor

Oleh :
Syarif Hermansyah
A04495058

Jurusan Tanah
Fakultas Pertanian
Institut Pertanian Bogor
1999
Judul : Pengaruh Pengelolaan Air melalui Pengerapan terhadap Beberapa Sifat Fisik Tanah Sulfat Masam Dari Delta Telang, Musibanyuasin, Sumatra Selatan

Nama Mahasiswa : Syarif Hermansyah

Nomor Pokok : A04495058

Menyetujui :

Pembimbing I

[Signature]

Dr. Ir. Kukuh Murtiaksono MS.
NIP. 131 861 468

Pembimbing II

[Signature]

Ir. Sudarmo MSi.
NIP. 131 284 622

Mengetahui :

Ketua Jurusan Tanah
Fakultas Pertanian IPB

[Signature]

Dr. Ir. Hj. Astiana Sastiono M.Sc.
NIP. 730 079 513

Tanggal lulus : 2 DEC 1998
KATA PENGANTAR

Puji syukur alhamdulillah penulis panjatkan kehadirat Allah SWT yang telah melimpahkan rahmat dan hidayah-Nya sehingga skripsi ini bisa diselesaikan.

Pemanfaatan lahan sulfat masam untuk usaha tani banyak dihadapkan pada berbagai kendala baik fisik, kimia dan biologi. Masalah utama yang dihadapi pada tanah ini adalah karena bahan yang kaya akan pirit (FeS₂), oleh sebab itu, tanah ini memerlukan pengelolaan yang khusus apabila digunakan sebagai areal pengembangan pertanian. Pengelolaan yang penting bagi keberhasilan pengembangan pertanian lahan sulfat masam adalah penyelenggaraan teknik pengelolaan lahan dan tata air yang tepat agar pencucian senyawa beracun, proses pematangan tanah dan konservasinya dapat berjalan lancar.

Pada kesempatan ini, penulis menyampaikan rasa hormat dan terima kasih kepada Bapak Dr. Ir. Kukuh Murtialaksono, MS dan Bapak Ir. Sudarmo, MS atas segala bimbingan, petunjuk, nasehat dan perhatian yang diberikan selama penulis mengadakan penelitian sehingga penulis dapat menyelesaikan skripsi dan studi di Institut Pertanian Bogor.

Penulis juga mengucapkan banyak terima kasih kepada semua pihak yang telah memberikan bimbingan, saran dan bantuan kepada penulis yaitu:

1. Bapak Ir. Dwi Putro Tejo Baskoro selaku Dosen/Penguji yang telah mengarahkan dan memberi masukan untuk perbaikan skripsi ini.

2. Kedua orang tua yang telah merestui penulis.

4. Seluruh Staff Laboratorium Fisika dan Konservasi Tanah dan Staff Laboratorium Genesis, Klasifikasi dan Mineralogi Tanah yang telah membantu selama penelitian.

5. Seluruh anggota tim: Bapak Susilo, Bapak Hatta, Jumadi, Inne dan Anti, atas dukungan dan ide-ide sehingga penulis dapat menyelesaikan skripsi ini.

7. Semua pihak yang telah memberikan dorongan dan masukan sehingga tersusunnya skripsi ini.

Mengingat dalam penulisan ini masih dimungkinkan terdapat kekurangan, penulis mengharapkan saran, masukan dari semua pihak. Semoga tulisan ini akan selalu bermanfaat bagi pembangunan pertanian di Indonesia.

Bogor, November 1999

Penulis
RIWAYAT HIDUP

Penulis lahir di Kota Ciamis pada tanggal 29 Juli 1976 sebagai anak pertama dari tiga bersaudara dari keluarga Bapak Enin Radiana dan Ibu Neni Karmeni.

<table>
<thead>
<tr>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAFTAR TABEL xi</td>
</tr>
<tr>
<td>DAFTAR GAMBAR xiii</td>
</tr>
<tr>
<td>PENDAHULUAN</td>
</tr>
<tr>
<td>Latar Belakang 1</td>
</tr>
<tr>
<td>Tujuan 3</td>
</tr>
<tr>
<td>Hipotesis 3</td>
</tr>
<tr>
<td>TINJAUAN PUSTAKA</td>
</tr>
<tr>
<td>Klasifikasi Tanah Sulfat Masam 4</td>
</tr>
<tr>
<td>Pembentukan dan Sifat Umum Tanah Sulfat Masam 6</td>
</tr>
<tr>
<td>Oksidasi Tanah Sulfat Masam 7</td>
</tr>
<tr>
<td>Drainase Tanah Sulfat Masam 9</td>
</tr>
<tr>
<td>Sifat Fisik Tanah Sulfat Masam 10</td>
</tr>
<tr>
<td>Kemantapan Agregat Tanah 10</td>
</tr>
<tr>
<td>Nilai COLE 11</td>
</tr>
<tr>
<td>Permeabilitas Tanah 12</td>
</tr>
<tr>
<td>Kerapatan Limbak Tanah 13</td>
</tr>
<tr>
<td>Porositas Tanah 14</td>
</tr>
</tbody>
</table>
BAHAN DAN METODE

Tempat dan Waktu Penelitian ... 16
Bahan dan Alat .. 16
Metode Penelitian .. 16
Analisis Data ... 18
Pelaksanaan Percobaan .. 18

HASIL DAN PEMBAHASAN

Sifat Fisik Tanah Awal ... 20
Pengaruh Perlakuan Terhadap Sifat Fisik Tanah 20
 Kemantapan Agregat Tanah ... 21
Nilai COLE .. 24
Permeabilitas Tanah 26
Kerapatan Limbok Tanah ... 28
Porositas Tanah .. 30

KESIMPULAN DAN SARAN

Kesimpulan .. 37
Saran ... 38

DAFTAR PUSTAKA ... 39

LAMPIRAN .. 42

X
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Nomor</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teks</td>
<td></td>
</tr>
<tr>
<td>1. Parameter Sifat Fisik Tanah yang Diamati dalam Penelitian</td>
<td>17</td>
</tr>
<tr>
<td>2. Pengaruh Perlakuan terhadap Nilai Rataan Indeks Stabilitas Agregat Pada Berbagai Kedalaman</td>
<td>21</td>
</tr>
<tr>
<td>3. Pengaruh Perlakuan terhadap Nilai Rataan COLE pada Berbagai Kedalaman</td>
<td>24</td>
</tr>
<tr>
<td>4. Pengaruh Perlakuan terhadap Nilai Rataan Permeabilitas pada Berbagai Kedalaman</td>
<td>26</td>
</tr>
<tr>
<td>5. Pengaruh Perlakuan terhadap Nilai Rataan Kerapatan Limbak pada Berbagai Kedalaman</td>
<td>29</td>
</tr>
<tr>
<td>6. Pengaruh Perlakuan terhadap Nilai Rataan Porositas pada Berbagai Kedalaman</td>
<td>31</td>
</tr>
</tbody>
</table>

Lampiran

<table>
<thead>
<tr>
<th>Nomor</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Analisis Pendahuluan Tanah Sulfat Masam dari Delta Telang, Musibanyuasin, Sumatra Selatan</td>
<td>43</td>
</tr>
<tr>
<td>2. Hasil Uji Sidik Ragam Pengaruh Perlakuan terhadap Indeks Stabilitas Agregat</td>
<td>43</td>
</tr>
<tr>
<td>3. Hasil Uji Sidik Ragam Pengaruh Perlakuan terhadap COLE</td>
<td>44</td>
</tr>
<tr>
<td>4. Hasil Uji Sidik Ragam Pengaruh Perlakuan terhadap Permeabilitas</td>
<td>44</td>
</tr>
<tr>
<td>5. Hasil Uji Sidik Ragam Pengaruh Perlakuan terhadap Kerapatan Limbak</td>
<td>45</td>
</tr>
<tr>
<td>6. Hasil Uji Sidik Ragam Pengaruh Perlakuan terhadap Pori Total</td>
<td>45</td>
</tr>
<tr>
<td>7. Hasil Uji Sidik Ragam Pengaruh Perlakuan terhadap Pori Drainase Cepat</td>
<td>46</td>
</tr>
</tbody>
</table>
8. Hasil Uji Sidik Ragam Pengaruh Perlakuan terhadap Pori Drainase Lambat

9. Hasil Uji Sidik Ragam Pengaruh Perlakuan terhadap Air Tersedia...

10. Analisis Fraksi Liat (%) Tanah Sulfat Masam pada Berbagai Kedalaman

 ... 47

 ... 47
<table>
<thead>
<tr>
<th>Nomor</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bagan Perlakuan yang diterapkan dalam Penelitian</td>
<td>19</td>
</tr>
<tr>
<td>2.</td>
<td>Hubungan Perlakuan dengan Indeks Stabilitas Agregat pada Berbagai Kedalaman</td>
<td>24</td>
</tr>
<tr>
<td>3.</td>
<td>Hubungan Perlakuan dengan COLE pada Berbagai Kedalaman</td>
<td>26</td>
</tr>
<tr>
<td>4.</td>
<td>Hubungan Perlakuan dengan Permeabilitas pada Berbagai Kedalaman</td>
<td>28</td>
</tr>
<tr>
<td>5.</td>
<td>Hubungan Perlakuan dengan Kerapatan Limbak pada Berbagai Kedalaman</td>
<td>30</td>
</tr>
<tr>
<td>6.</td>
<td>Hubungan Perlakuan dengan Pori Total pada Berbagai Kedalaman</td>
<td>34</td>
</tr>
<tr>
<td>7.</td>
<td>Hubungan Perlakuan dengan Pori Drainase Cepat pada Berbagai Kedalaman</td>
<td>35</td>
</tr>
<tr>
<td>8.</td>
<td>Hubungan Perlakuan dengan Pori Drainase Lambat pada Berbagai Kedalaman</td>
<td>35</td>
</tr>
<tr>
<td>9.</td>
<td>Hubungan Perlakuan dengan Air Tersedia pada Berbagai Kedalaman</td>
<td>36</td>
</tr>
</tbody>
</table>
PENDAHULUAN

Latar Belakang

Swasembada pangan merupakan kebijaksanaan pemerintah yang sangat strategis ditinjau dari segi ekonomi, sosial dan politik. Berbagai upaya dilakukan melalui pengembangan dan peningkatan produksi padi melalui perluasan areal pertanian, namun masalah efisiensi penggunaan sumberdaya menuntut perhatian yang utama (Idjudin dan Haryono, 1998).

Salah satu lahan bukan yang dikembangkan untuk tanaman pangan, khususnya padi sawah yang terletak di dataran pantai adalah lahan pasang surut yang akhir-akhir ini mulai dikembangkan secara intensif untuk lahan pertanian, terutama padi. Perluasan areal tanaman pangan, khususnya padi dengan memanfaatkan lahan pasang surut yang mempunyai tanah sulfat masam mempunyai luasan yang cukup luas di Indonesia ini yaitu diperkirakan 6,7 juta hektar yang terdiri dari tanah sulfat masam potensial 1,1 juta hektar, berasosiasi dengan gambut, tanah agak salin, tanah
salin masing-masing 0,07, 1, dan 2,1 juta hektar serta tanah sulfat masam aktual yang berasosiasi dengan tanah salin seluas 2,4 juta hektar (Nugroho et al., 1992).

Pemanfaatan tanah sulfat masam untuk usaha tani banyak dihadapkan pada berbagai kendala baik fisik, kimia dan biologi. Oleh sebab itu, tanah ini memerlukan pengelolaan yang khusus apabila digunakan sebagai areal pengembangan pertanian. Salah satu faktor penting bagi keberhasilan pengembangan pertanian pada daerah ini adalah penyelenggaraan teknik pengelolaan lahan dan tata air yang tepat agar proses pencucian senyawa beracun pada tanah sulfat masam aktual dan konservasinya dapat berjalan lancar sehingga bisa menciptakan media tumbuh yang baik bagi tanaman (Ar-Riza dan Sardijjo, 1998).

Menurut Breemen dan Pons (1976), tanah sulfat masam berasal dari endapan yang dipengaruhi oleh air laut, berkadar liat tinggi dan mengandung pirit (FeS₂). Pirit terakumulasi pada tanah tergenang yang kaya kandungan bahan organik dan sering mendapat limpasan sulfat yang berasal dari air laut. Tanah ini dibedakan menjadi dua yaitu tanah sulfat masam potensial dan tanah sulfat masam aktual. Tanah sulfat masam potensial adalah tanah sulfat masam yang mempunyai lapisan pirit belum teroksidasi karena tergenang air. Pada keadaan demikian pirit relatif stabil dan belum terjadi proses penguraian. Sedangkan tanah sulfat masam aktual adalah tanah sulfat masam dimana pirit mengalami oksidasi dan menghasilkan kemasaman, kelarutan aluminium dan besi yang tinggi serta ketersediaan P rendah.

Dengan adanya pengeringan (kondisi oksidatif) yang terus menerus akan mempercepat terjadinya proses oksidasi pirit sehingga akumulasi besi hidroksida, sulfat dan ion hidrogen akan meningkat dalam tanah, dan apabila tanah sulfat masam
digenangi maka tingkat kemasaman tanah dapat ditekan tetapi apabila dilakukan penggenangan yang berlebihan maka akan menyebabkan terakumulasinya Fe$^{2+}$, H$^+$, H$_2$S, CO$_2$ dan keracunan unsur lainnya.

Dengan demikian diperlukan upaya pengkajian karakteristik sifat fisik tanah sulfat masam sehingga tanah tersebut dapat dikelola secara berkelanjutan.

Tujuan

Penelitian ini bertujuan untuk mempelajari perilaku perubahan sifat fisik tanah sulfat masam sebagai akibat perlakuan pengeringan.

Hipotesis

Perubahan sifat kimia tanah sulfat masam karena proses oksidasi akan mempengaruhi sifat fisik tanah baik secara langsung maupun tidak langsung.
TINJAUAN PUSTAKA

Klasifikasi Tanah Sulfat Masam

Pengelompokkan tanah yang mempunyai sifat dan karakteristik yang serupa merupakan informasi yang diperlukan, sebagai dasar dalam perencanaan penggunaan lahan dan pengelolaan tanah. Dengan demikian klasifikasi tanah akan mempermudah mengetahui sifat dan karakter tanah, menentukan lahan-lahan terbaik dan menaksir produktivitas lahan (Hardjowigeno, 1993).

Menurut Soil Taxonomi (Soil Survey Staff, 1996), tanah sulfat masam diklasifikasikan kedalam Ordo Histosol, Entisol dan Inceptisol. Tanah sulfat masam tidak selalu terdapat pada tanah mineral, akan tetapi sering ditemukan pada lahan gambut (Ordo Histosol), dengan great grup : (1) Sulfohemist, terdapat horison sulfurik dengan batas atas 50 cm dari permukaan tanah. Horison sulfurik adalah horison yang tersusun oleh bahan tanah mineral atau organik dengan pH<3,5 rendahnya pH tersebut karena adanya asam sulfat. Sulfohemist mempunyai satu sub-grup Typic Sulfohemist. (2) Sulfihemist, terdapat bahan sulfidik pada kedalaman 100 cm dari permukaan tanah. Bahan sulfidik ini merupakan bahan tanah mineral atau organik yang jenuh air mengandung beberang 0,75% atau lebih (berat kering), bila terdapat besi (Fe) akan membentuk pirit (FeS₂). Sulfihemist terbagi kedalam dua sub-grup yaitu Terric Sulfihemist yang dicirikan adanya lapisan mineral ≥ 30 cm sebagai control section, dan Typic Sulfihemist yang tidak mempunyai sifat diatas.
(3) Sulfosaprist, terdapat horison sulfurik dengan batas atas 50 cm dari permukaan tanah, dan mempunyai sub-grup Typic Sulfosaprist.

Tanah sulfat masam dengan Ordo Entisol, dimasukan dalam great grup Sulfaquent yang dicirikan adanya bahan sulfidik pada kedalaman ≤ 50 cm dari permukaan tanah mineral. Sulfaquent dapat diberikan dalam beberapa sub-grup yaitu (1) Histik Sulfaquent, jika mempunyai epipedon histik, (2) Haplik Sulfaquent, jika bahan sulfidik pada kedalaman ≤ 30 cm dari permukaan tanah mineral dengan nilai n ≤ 0,7 pada kedalaman 20-50 cm, (3) Typic Sulfaquent, jika tidak termasuk kedua persyaratan tersebut.

Tanah sulfat masam dengan Ordo Inceptisol, jika pada kedalaman ≤ 50 cm dari permukaan tanah mineral tidak terdapat bahan sulfidik. Selain itu pada kedalaman 20-50 cm dari permukaan tanah mineral, mempunyai nilai n sebesar 0,7 atau kurang pada salah satu sub-horison atau lebih atau liat < 8% pada salah satu sub-horison atau lebih, serta mempunyai horison sulfurik yang batas atasnya pada kedalaman ≤ 50 cm dari permukaan tanah mineral. Tanah sulfat masam yang termasuk ordo Inceptisol terbagi dalam dua great grup yaitu (1) Sulfaquepts, yang dicirikan horison sulfurik yang batas atasnya ≤ 50 cm dari permukaan tanah mineral. (2) Sulfochrepts, merupakan ocrepts yang mempunyai horison sulfurik pada kedalaman ≤ 50 cm dari permukaan tanah mineral.
Pembentukan dan Sifat Umum Tanah Sulfat Masam

Menurut Widjaja Adhi et al. (1992), tanah sulfat masam terbentuk sebagai akibat drainase bahan induk yang kaya akan pirit. Endapan pirit terbentuk karena adanya reaksi antara besi dalam bentuk ferro dengan belerang yang berasal dari dekomposisi bahan organik dan air laut. Proses pembentukan senyawa pirit melalui beberapa tahapan antara lain:

1. Pembentukan sulfida

\[\text{SO}_4^{2-} + 9\text{H}^+ \Leftrightarrow \text{HS}^- + 4\text{H}_2\text{O} \]
\[\text{SO}_4^{2-} + 10\text{H}^+ \Leftrightarrow \text{H}_2\text{S} + 4\text{H}_2\text{O} \]

2. Pembentukan sulfur

\[\text{HS}^- \Leftrightarrow \text{S}^{2-} + \text{H}^+ + 2\text{e} \]
\[\text{H}_2\text{S} \Leftrightarrow \text{S} + \text{H}^+ + 2\text{e} \]
3. Reaksi dengan besi

\[\text{Fe(OH)}_2 + \text{H}_2\text{S} \leftrightarrow \text{S} + 2\text{H}_2\text{O} \]
\[\text{H}_2\text{S} + \text{Fe}^{2+} \rightarrow \text{FeS} + \text{H}^+ \]

4. Pembentukan pirit

\[\text{FeS} + \text{S} \rightarrow \text{FeS}_2 \]

Menurut Dent (1986), jika tanah teroksidasi karena drainase maka senyawa pirit akan membentuk senyawa Fe(OH)₃, SO₄²⁻, H⁺ sehingga tanah menjadi masam. Kondisi ini menyebabkan kelerutan ion Al³⁺, Fe²⁺ dan Mn²⁺ bertambah dalam tanah sehingga kelerutan unsur tersebut jadi toksik bagi pertumbuhan tanaman, pH rendah, fiksasi P tinggi dan kandungan basa-basa rendah.

Sifat fisik tanah sulfat masam antara lain drainase yang buruk, tanah belum berstruktur dan belum matang. Sementara sifat biologi tanah sulfat masam yaitu mempunyai kondisi yang buruk bagi habitat sebagian besar mikroorganisme (Subagyono et al., 1993).

Oksidasi Tanah Sulfat Masam

Pirit adalah mineral sulfur dominan dalam tanah sulfat masam yang mengandung Fe, mono sulfat dan unsur sulfur. Reaksi secara keseluruhan pembentukan pirit dengan oksida besi (III) sebagai berikut:

\[\text{Fe}_2\text{O}_3 + 4\text{SO}_4^{2-} + 8\text{CH}_2\text{O} + \frac{1}{2}\text{O}_2 \rightarrow 2\text{FeS}_2 + 8\text{HCO}_3^- + 4\text{H}_2\text{O} \]

\[\text{Sulfat bahan organik} \quad \text{pirit} \]
Akan tetapi pirit yang dibentuk selama proses sedimentasi tergantung dari beberapa faktor yaitu tersedianya sulfur yang cukup, keadaan reduksi yang kuat, tersedianya bahan organik yang cukup, tersedianya senyawa besi yang mobil dan bakteri pereduksi sulfat yang sangat tersedia pada keadaan tergenang (Van Beers, 1962).

Dalam keadaan tergenang (reduktif), pirit yang terbentuk relatif stabil dan tidak membahayakan pertumbuhan tanaman. Tetapi apabila teroksidasi akan dihasilkan asam sulfat dan melepaskan Fe$^{3+}$, reaksi yang terjadi sebagai berikut:

$$\text{FeS}_2 + \frac{15}{4}\text{O}_2 + \frac{7}{2}\text{H}_2\text{O} \rightarrow \text{Fe(OH)}_3 + 2\text{SO}_4^{2-} + 4\text{H}^+$$

Pada permulaan oksidasi pirit dengan oksigen berjalan lambat, selanjutnya akan terbentuk Fe$^{3+}$, maka dengan adanya ion Fe$^{3+}$ akan mempercepat reaksi perubahan pirit. Reaksi yang terjadi sebagai berikut:

$$\text{FeS}_2 + 14\text{Fe} + 8\text{H}_2\text{O} \rightarrow 15\text{Fe}^{2+} + 16\text{H}^+ + 2\text{SO}_4^{2-}$$

Peningkatan reaksi ini juga disebabkan adanya aktivitas bakteri Thiobacillus ferrooxidans yang tumbuh optimal pada pH 2,5 – 5,8 dan mengoksidasi Fe$^{2+}$ menjadi Fe$^{3+}$ (Dent, 1986).

Menurut Nugroho et al. (1998), pelepasan ion ferri dalam reaksi oksidasi dapat berpresipitasi menjadi amorf hidrooksida, yang akhirnya ditransformasi ke bentuk gutit dan hematit. Dibawah kondisi asam dan oksidasi, jarosit biasanya terbentuk:

$$\text{FeS}_2 + \frac{15}{4}\text{O}_2 + \frac{5}{2}\text{H}_2\text{O} + \frac{1}{3}\text{K}^+ \rightarrow \frac{1}{3}\text{KFe}_3(\text{SO}_4)_2(\text{OH})_6 + \frac{4}{3}\text{SO}_4^{2-} + 3\text{H}^+$$

Drainase Tanah Sulfat Masam

Drainase adalah membuang kelebihan air dari dalam tanah atau dari permukaan lahan dengan tujuan untuk menciptakan kondisi lahan yang lebih sesuai untuk dikelola. Drainase lahan dapat membahayakan bagi tanaman pada tanah sulfat masam, terutama bila drainase tersebut berlebihan. Namun, untuk tujuan reklamasi, drainase bermaksud untuk meningkatkan produksi, mendapatkan hasil yang berkelanjutan, mengurangi biaya pengolahan tanah dan mencapai keuntungan yang maksimal (Subagyono *et al.*, 1993).

Drainase lahan menyebabkan turunnya permukaan air tanah dan mengakibatkan terjadinya kontak antara tanah dan udara. Oksigen dari udara masuk kedalam tanah dan menyebabkan terjadinya perubahan dalam tanah. Perubahan ini
antara lain yaitu perubahan volume tanah, pembentukan struktur, pembentukan pori-pori dan perubahan konsistensi menjadi semakin teguh. Selain itu juga, perubahan stabilitas tanah menjadi semakin kuat yang disebabkan oleh konsentrasi besi dan aluminium yang tinggi yang berfungsi sebagai pengikat antar agregat-agregat tanah (Ismangun dan Driessen, 1974).

Sifat Fisik Tanah Sulfat Masam

Kemantapan Agregat Tanah

Agregat tanah terdiri dari pengelompokkan erat sejumlah butir-butir primer tanah, sedangkan kemantapan agregat adalah ketahanan agregat tanah terhadap daya penghancur agregat tersebut. Daya penghancur agregat tanah antara lain pukulan butiran air hujan, aliran permukaan atau akibat penggunaan alat-alat mekanik berat (Haridjaja et al., 1983).

Pembentukan agregat tergantung pada terdapatnya butiran-butiran primer yang dapat beragregasi, penggumpalan dan penjonjotan butir-butir tanah serta sementasi dari bahan-bahan yang menggumpal menjadi agregat yang stabil. Faktor-faktor yang mempengaruhi perkembangan agregat adalah tekstur, bahan organik,
kation-kation pada komplek jerapan, faktor biotik dan pengolahan tanah (Haridjaja et al., 1983).

Menurut Abdurachman et al. (1997), peranan bahan organik dalam meningkatkan kemantapan agregat tanah sangat penting. Bahan organik merupakan sumber energi bagi mikroorganisme dan dalam aktivitasnya mengeluarkan bahan semen agregat tanah, yang berarti secara tak langsung bahan organik meningkatkan kemantapan agregat tanah.

Nilai COLE (Coefficient of Linier Ekstensibility)

Nilai COLE digunakan untuk meneliti tingkat pengembangan dan pengkerutan tanah. Faktor yang mempengaruhi pengembangan tanah yaitu jenis liat, kandungan liat, soil fibrik dan adsorpsi kation. Faktor-faktor ini akan mempengaruhi kemampuan tanah mengikat air, sehingga menimbulkan perbedaan kemampuan pengembangan dan pengkerutan tanah (Haridjaja et al., 1983).

Jika suatu tanah kering dibasahi maka ia akan mengembang, karena air masuk, butir-butir koloid itu didesak terpisah relatif jauh sehingga material itu
mengembang, sebaliknya tanah basah apabila kering ia akan mengkerut (Herudjito, 1985).

Kemampuan tanah untuk mengembang jika dibasahi dipengaruhi oleh jumlah dan jenis mineral liatnya. Tanah yang didominasi oleh liat kaolinit mempunyai nilai COLE lebih kecil dari 0,03, sedangkan tanah yang didominasi oleh liat montmorillonit mempunyai nilai COLE 0,03 – 0,18. Keadaan tersebut menunjukkan bahwa perbandingan jenis liat 1:1 dengan liat 2:1 akan mempengaruhi nilai COLE.

Pengaruh *soil fibrik* Fe_2O_3 bersifat memperkecil nilai COLE karena merupakan bahan penyemen yang mantap dan tidak mudah menyerap air. Selain itu juga pengembangan liat mempunyai hubungan dengan besarnya kapasitas tukar kation. Pengembangan yang lebih besar pada liat ditunjukkan pula oleh kapasitas tukar kation yang lebih tinggi (Baver *et al*., 1972).

Pada tanah sulfat masam apabila terjadi kehilangan air oleh proses drainase akan mengakibatkan pengkerutan dan pembentukan celah-celah pada tanah.

Permeabilitas Tanah

Menurut Nugroho et al. (1998), permeabilitas pada tanah sulfat masam dilapisan atas (0-20 cm) berkisar antara 0,34 – 1,59 cm/jam yang digolongkan lambat sampai agak lambat. Permeabilitas pada tanah sulfat masam banyak dipengaruhi oleh berbagai faktor antara lain kematangan dan ketebalan dari brown layer (lapisan tanah kedalaman 0 – 50 cm), adanya pori besar, lubang akar, retakan tanah dan kandungan bahan organik. Dari faktor diatas, retakan tanah dan lubang akar merupakan faktor yang sangat besar kontribusinya untuk nilai permeabilitas (Subagyono et al., 1990).

Kerapatan Limbak

Kerapatan limbak merupakan cara lain untuk menyatakan bobot tanah, dalam hal ini jumlah ruangan dalam tanah (ruang yang ditempati padatan, air dan udara) turut diperhitungkan (Soepardi, 1983). Haridjaja et al. (1983) menyatakan bahwa kerapatan limbak atau bobot isi adalah bobot kering suatu unit volume yang terisi bahan padat dan volume ruangan (ruang pori tanah) yang dinyatakan dalam gram tiap sentimeter kubik.

Bobot isi suatu tanah dapat berubah dan beragam tergantung pada keadaan struktur tanah, khususnya dalam hubungannya dengan proses pemadatan tanah. Struktur tanah merupakan faktor utama yang menentukan perubahan kerapatan limbak dari waktu ke waktu pada setiap horizon sesuai dengan perubahan ruang pori dan struktur tanah. Kerapatan limbak dapat memberikan perkiraan besarnya ruang pori total, tetapi tidak menunjukkan bagaimana kecepatan air menembus tanah (Foth dan Turk, 1972).
Menurut hasil penelitian Nugroho et al. (1998), perubahan sifat fisik tanah sulfat masam Tarantang memperlihatkan keragaman yang cukup besar dan nilai bobot isi yang rendah antara 0,52 – 0,95 gram/cm³. Hal ini karena adanya perbedaan yang jelas dari kadar bahan organik dilapisan atasnya.

Porositas Tanah

Ruang pori tanah yaitu bagian dari tanah yang ditempati air dan udara, sedangkan ruang pori total terdiri atas ruang diantara partikel pasir, debu dan liat serta ruang diantara agregat-agregat tanah (Haridjaja et al., 1983).

Pada tanah liat, porositasnya sangat beragam karena perubahan pengembangan dan pengerutan, agregasi, dispersi dan pemadatan. Dengan demikian porositas tanah dipengaruhi oleh tekstur, struktur dan bahan organik (Baver et al., 1972).

Cara sederhana dan praktis untuk menghitung porositas total dikemukakan oleh Baver et al. (1972) berdasarkan bobot isi dan bobot jenis partikel melalui persamaan:

\[\text{Porositas total} = 1 - \frac{\text{bobot isi}}{\text{bobot jenis partikel}} \times 100\% \]

Soedarmo dan Djojoprawiro (1984) mengadakan pembagian ukuran pori dengan batas ukuran pori dan tegangannya atas dasar kemampuan tanaman mengisap air, kemampuan tanah menahan dan melalukan air. Kelompok ukuran tersebut adalah
pori berguna dengan diameter lebih besar dari 0,2 μ dan pori tak berguna yaitu diameter kurang dari 0,2 μ.

Pori-pori berguna meliputi:

a. Pori drainase dengan diameter lebih dari 8,6 μ, terbagi atas;
 - pori drainase cepat, berdiameter 28,8 μ pada tegangan 100 cm H₂O
 - pori drainase lambat, berdiameter 8,6 - 28,8 μ merupakan batas atas pori-pori terisi air pada kapasitas lapang atau 0,337 bar tension

b. Pori pemegang air, berdiameter antara 0,2 – 8,6 μ ekuivalen dengan tegangan 15 atm yaitu batas atas kemampuan akar tanaman menghisap air.

Air tersedia merupakan kandungan air pada batas antara kapasitas lapang (0,3 atm) dan titik layu permanen (15 atm), dimana air yang ada dapat diserap oleh tanaman dan digunakan untuk pertumbuhan dan perkembangan tanaman. Air tersedia ini terdapat dalam pori mikro yang disebut juga pori pemegang air yang berfungsi menghambat laju pergerakan air dan udara didalam tanah (Soepardi, 1983).

BAHAN DAN METODE

Tempat dan Waktu Penelitian

Bahan dan Alat

Bahan

Bahan yang digunakan dalam penelitian ini terdiri dari kolom tanah sulfat masam yang berasal dari Delta Telang, Musibanyuasin, Sumatra Selatan, air bebas ion, aquadest, \(\text{H}_2\text{O}_2 \) 30\%, 1N (\(\text{NaPO}_3 \))\(_n\), HCl 0.4N, kapur, parafin.

Alat

Alat yang digunakan yaitu paralon PVC dengan panjang 100 cm dan diameter 20 cm untuk pengambilan contoh tanah, ring sample, ayakan basah dan kering, neraca analitik, gelas ukur, oven.

Metode Penelitian

Penelitian ini diawali dengan pengambilan contoh tanah sulfat masam yang berasal dari Delta Telang, Musibanyuasin, Sumatra Selatan. Pengambilan kolom tanah dilakukan dengan menggunakan tabung paralon PVC yang berdiameter 20 cm dan panjangnya 100 cm sebanyak 24 buah.
Untuk melihat pengaruh pengeringan maka terdapat 8 perlakuan yang diterapkan yaitu sebagai berikut:

K0 = penggenangan diatas permukaan tanah
K1 = Pengeringan pada permukaan pirit 0,3% (50 cm) selama 8 minggu
K2 = Pengeringan dibawah permukaan pirit 0,3% (80 cm) selama 1 minggu
K3 = Pengeringan dibawah permukaan pirit 0,3% (80 cm) selama 2 minggu
K4 = Pengeringan dibawah permukaan pirit 0,3% (80 cm) selama 3 minggu
K5 = Pengeringan dibawah permukaan pirit 0,3% (80 cm) selama 4 minggu
K6 = Pengeringan dibawah permukaan pirit 0,3% (80 cm) selama 6 minggu
K7 = Pengeringan dibawah permukaan pirit 0,3% (80 cm) selama 8 minggu

Setiap perlakuan diulang sebanyak 3 kali sehingga terdapat 24 satuan percobaan.

Parameter sifat fisik tanah yang diamati disajikan pada Tabel 1. Analisis pendahuluan yang merupakan sebagai pembanding, dilakukan pada 3 kolom tanah diluar kolom tanah yang diberi perlakuan. Pengukuran sifat fisik tanah dilakukan terhadap contoh tanah yang diambil pada tiga kedalaman dari setiap satuan percobaan yaitu pada kedalaman 15, 45 dan 75 cm.

Tabel 1. Parameter sifat fisik tanah yang diamati dalam penelitian

<table>
<thead>
<tr>
<th>No</th>
<th>Peubah yang dianalisis</th>
<th>Metode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kemantapan Agregat Tanah</td>
<td>Ayakan Kering dan Basah</td>
</tr>
<tr>
<td>2.</td>
<td>Kerapatan Limbak</td>
<td>Gravimetri</td>
</tr>
<tr>
<td>3.</td>
<td>Nilai COLE</td>
<td>Gravimetri</td>
</tr>
<tr>
<td>4.</td>
<td>Porositas Tanah</td>
<td>Kurva pF</td>
</tr>
<tr>
<td>5.</td>
<td>Permeabilitas</td>
<td>Hukum Darcy</td>
</tr>
</tbody>
</table>
Analisis Data

Penelitian ini dilakukan dengan Rancangan Acak Lengkap dengan rancangan satu faktor, selanjutnya untuk pengujian hipotesis menggunakan sidik ragam satu faktor dengan uji lanjut Duncan pada taraf 95%.

Pelaksanaan Percobaan

1. Penggenangan diatas permukaan tanah

 Penggenangan yang dilakukan yaitu dengan mempertahankan tinggi permukaan air tetap. Untuk menjamin tinggi permukaan air tetap maka kolom tanah tidak diberi lubang outlet seperti pada perlakuan lainnya. Desain kolom tanah dapat dilihat pada Gambar 1.

2. Pengeringan pada permukaan lapisan pirit 0,3%

 Pengeringan yang dilakukan dijaga pada permukaan lapisan pirit 0,3% pada kedalaman 50 cm. Untuk menjamin pengeringan pada kolom tanah sampai kedalaman 50 cm maka permukaan air tanah tetap dijaga pada kedalaman tersebut dengan memberi lubang outlet (Gambar 1). Pengeringan yang dilakukan selama 8 minggu.

3. Pengeringan dibawah permukaan lapisan pirit 0,3%

 Pengeringan yang dilakukan dijaga dibawah permukaan lapisan pirit 0,3% pada kedalaman 80 cm. Untuk menjamin pengeringan pada kolom tanah sampai kedalaman 80 cm maka permukaan air tanah tetap dijaga pada kedalaman tersebut dengan memberi lubang outlet (Gambar 1). Karena untuk mengetahui perilaku perubahan sifat fisik yang terjadi apabila tanah sulfat masam
dikeringkan dibawah lapisan pirit maka pengujian masing-masing dilakukan pada berbagai waktu yaitu selama 1, 2, 3, 4, 6 dan 8 minggu.

Keterangan: o = tempat pengambilan contoh tanah yang dianalisis pada kedalaman 15 cm, 45 cm dan 75 cm

Gambar 1. Bagan perlakuan yang diterapkan dalam penelitian
HASIL DAN PEMBAHASAN

Sifat Fisik Tanah Awal

Hasil analisis pendahuluan beberapa sifat fisik tanah sulfat masam disajikan pada Tabel Lampiran 1. Hasil tersebut menunjukkan bahwa stabilitas agregat tergolong kurang stabil sampai agak stabil dengan kisaran nilai indeks stabilitas agregat antara 49,60 - 57,30. Nilai kerapatan limbak tergolong rendah dengan kisaran nilai antara 0,61 - 0,80 gr/cm³ dan nilai kerapatan limbak lapisan atas (15 cm) cenderung lebih tinggi dibandingkan dengan lapisan lain dibawahnya. Nilai kerapatan jenis zarah berkisar antara 2,30 - 2,55 gr/cm³. Kelas tekstur tergolong liat dengan kisaran kadar liat, debu dan pasir berturut-turut adalah 53,30 - 60,90%, 38,00 - 44,00% dan 1,10 - 2,70%. Nilai COLE berkisar antara 0,17 - 0,24, nilai permeabilitas yang tergolong sangat lambat antara 0,01 - 0,05 cm/jam dan nilai porositas antara 65,52 - 76,01 untuk semua kedalaman (15, 45 dan 75 cm).

Pengaruh Perlakuan Terhadap Sifat Fisik Tanah

Hasil sidik ragam pengaruh perlakuan terhadap sifat fisik tanah disajikan pada Tabel Lampiran 2, 3, 4, 5, 6, 7, 8 dan 9. Hasil tersebut menunjukkan bahwa secara umum perlakuan memberikan pengaruh yang nyata terhadap sifat-sifat fisik tanah, walaupun pengaruh tersebut tidak sama untuk setiap parameter yang diuji. Hal ini menunjukkan bahwa respon setiap parameter terhadap perlakuan pengeringan yang
diberikan berbeda-beda. Disamping itu, pengaruh pengeringan juga tidak sama pada setiap kedalaman.

Kemantapan Agregat Tanah

Pengaruh perlakuan pengeringan terhadap nilai indeks stabilitas agregat disajikan pada Tabel 2. Tabel 2 menunjukkan bahwa secara umum pengeringan menyebabkan nilai indeks stabilitas agregat yang lebih tinggi dibandingkan dengan penggenangan. Nilai indeks stabilitas agregat pada kedalaman 15 dan 45 cm mempunyai kelas agak stabil, namun pada kedalaman 75 cm, kelas indeks stabilitas agregat bervariasi yaitu agak stabil hingga kurang stabil.

Tabel 2. Pengaruh Perlakuan terhadap Nilai Rataan Indeks Stabilitas Agregat Tanah pada Berbagai Kedalaman.

<table>
<thead>
<tr>
<th>Kedalaman</th>
<th>K0</th>
<th>K1</th>
<th>K2</th>
<th>K3</th>
<th>K4</th>
<th>K5</th>
<th>K6</th>
<th>K7</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 cm</td>
<td>54.64</td>
<td>60.14</td>
<td>53.12</td>
<td>62.26</td>
<td>53.08</td>
<td>53.00</td>
<td>57.19</td>
<td>62.27</td>
</tr>
<tr>
<td>45 cm</td>
<td>57.29</td>
<td>54.93</td>
<td>62.36</td>
<td>57.93</td>
<td>51.91</td>
<td>53.59</td>
<td>51.19</td>
<td>57.16</td>
</tr>
<tr>
<td>75 cm</td>
<td>49.59</td>
<td>53.53</td>
<td>56.09</td>
<td>46.56</td>
<td>49.91</td>
<td>45.82</td>
<td>49.43</td>
<td>51.84</td>
</tr>
</tbody>
</table>

* Angka yang diikuti huruf yang tidak sama dalam setiap baris berbeda nyata pada taraf 5% menurut uji Duncan

Tabel 2 juga menunjukkan bahwa pada kedalaman 15 cm nilai indeks stabilitas agregat akibat perlakuan pengeringan pada permukaan lapisan pirit 0,3% (K1) maupun pengeringan dibawah lapisan pirit 0,3% selama 8 minggu (K7) nyata lebih tinggi dibandingkan perlakuan penggenangan (K0). Nilai indeks stabilitas agregat pada kedalaman 15 cm akibat perlakuan K1 dan K7, berturut-turut adalah 60,14 dan 62,27 dan nilai ini nyata lebih tinggi dibandingkan nilai indeks stabilitas agregat akibat penggenangan (K0) sebesar 54,64. Pengeringan menyebabkan jumlah...
air tanah berkurang. Berkurangnya kadar air menyebabkan lengkung meniskus air antara dua butir tanah akan meningkat dan menarik keduaunya lebih berdekatan sehingga ikatan antar partikel semakin kuat, yang berarti agregat yang terbentuk semakin mantap. Selain itu, pengeringan dapat meningkatkan Fe-oksida. Fe-oksida ini merupakan bahan penyemen yang penting dalam proses granulasi sehingga agregat semakin stabil. Walauupun demikian, terdapat pengecualian bahwa perlakuan pengeringan pada K2, K4 dan K5 cenderung memberikan nilai indeks stabilitas agregat yang relatif sama dengan penggenangan (K0), hal ini karena variabilitas kolom tanah yang diuji.

Tabel 2 menunjukkan bahwa perbedaan kedalaman pengeringan tidak menyebabkan perbedaan nilai indeks stabilitas agregat pada kedalaman 15 cm secara nyata. Walauupun demikian terdapat kecenderungan bahwa nilai indeks stabilitas agregat pengeringan dibawah lapisan pirit 0,3% (K7) lebih tinggi dibandingkan pengeringan pada permukaan lapisan pirit 0,3% (K1). Hal ini karena pengeringan pada permukaan lapisan pirit 0,3% (K1) dipengaruhi oleh pergerakan air kapiler dari permukaan air tanah yang dipertahankan pada kedalaman 50 cm sehingga perkembangan agregat lebih lambat.

Pada kedalaman 45 cm, pengeringan baik pada permukaan lapisan pirit 0,3% (K1) maupun dibawah lapisan pirit 0,3% (K7) tidak menyebabkan nilai indeks stabilitas agregat yang berbeda nyata dengan perlakuan penggenangan (K0). Hal ini karena pengeringan tidak menyebabkan perubahan kadar air yang berarti pada kedalaman 45 cm. Setelah perlakuan pengeringan, kadar air masih relatif tinggi yaitu berkisar antara 102,71 – 188,58%, sehingga pembentukan agregat terhambat.
Perlakuan pengeringan dengan waktu yang berbeda-beda dibawah lapisan pirit 0,3%(K2 – K7) tidak memberikan pengaruh yang jelas terhadap nilai indeks stabilitas agregat pada kedalaman 45 cm. Nilai indeks stabilitas agregat tertinggi diperoleh pada perlakuan K2, dengan pengeringan yang paling singkat (selama satu minggu). Nilai indeks stabilitas agregat pada perlakuan K2 tersebut berbeda nyata dibandingkan dengan nilai indeks stabilitas agregat akibat penggenangan ataupun perlakuan lainnya. Tidak konsistennya pengaruh perlakuan terhadap nilai indeks stabilitas agregat ini disebabkan oleh tingginya kadar liat contoh tanah yang dipergunakan yaitu 60,90% (Tabel Lampiran 1) dan keadaan tanah yang masih belum matang (kadar air yang terlalu tinggi).

Pada kedalaman 75 cm, nilai indeks stabilitas agregat akibat perlakuan pengeringan pada kedalaman 50 cm (K1) maupun 80 cm (K7) selama 8 minggu lebih tinggi dibandingkan perlakuan penggenangan (K0). Perlakuan pengeringan dengan waktu yang berbeda-beda dibawah lapisan pirit 0,3% (K2 – K7) tidak memberikan pengaruh yang jelas terhadap nilai indeks stabilitas agregat pada kedalaman 75 cm. Tidak konsistennya pengaruh perlakuan terhadap nilai indeks stabilitas agregat ini disebabkan oleh tingginya kadar liat contoh tanah yang dipergunakan yaitu 60,40% (Tabel Lampiran 1) dan keadaan tanah yang masih belum matang (kadar air yang terlalu tinggi).
Gambar 2. Hubungan perlakuan dengan indeks stabilitas agregat pada berbagai kedalaman.

Nilai COLE

Perubahan terhadap nilai COLE akibat perlakuan pengeringan ditunjukkan dalam Tabel 3. Secara umum nilai COLE perlakuan pengeringan tidak berbeda nyata dibandingkan nilai COLE akibat penggenangan pada kedalaman 15 dan 45 cm, sedangkan pada kedalaman 75 cm berbeda nyata.

Tabel 3. Pengaruh Perlakuan terhadap Nilai Rataan COLE pada Berbagai Kedalaman

<table>
<thead>
<tr>
<th>Kedalaman</th>
<th>Perlakuan</th>
<th>K0</th>
<th>K1</th>
<th>K2</th>
<th>K3</th>
<th>K4</th>
<th>K5</th>
<th>K6</th>
<th>K7</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 cm</td>
<td></td>
<td>0.18 a</td>
<td>0.23 a</td>
<td>0.22 ab</td>
<td>0.14 c</td>
<td>0.18 abc</td>
<td>0.19 abc</td>
<td>0.22 ab</td>
<td>0.17 bc</td>
</tr>
<tr>
<td>45 cm</td>
<td></td>
<td>0.21 a</td>
<td>0.26 a</td>
<td>0.25 a</td>
<td>0.24 a</td>
<td>0.22 a</td>
<td>0.25 a</td>
<td>0.24 a</td>
<td></td>
</tr>
<tr>
<td>75 cm</td>
<td></td>
<td>0.23 c</td>
<td>0.28 b</td>
<td>0.25 bc</td>
<td>0.27 b</td>
<td>0.33 a</td>
<td>0.26 bc</td>
<td>0.26 bc</td>
<td>0.20 d</td>
</tr>
</tbody>
</table>

*Angka yang diikuti huruf yang tidak sama dalam setiap baris berbeda nyata pada taraf 5% menurut uji Duncan

Pada kedalaman 15 cm, perlakuan pengeringan tidak memberikan pengaruh yang nyata terhadap nilai COLE. Walaupun beberapa perlakuan yaitu perlakuan K1, K2, K5 dan K6 cenderung menyebabkan nilai COLE lebih tinggi dibandingkan K0, namun pada perlakuan K3, K4 dan K7 relatif tetap dan cenderung menyebabkan nilai
COLE yang lebih rendah dibandingkan K0. Keadaan diatas disebabkan pengaruh jenis mineral liat. Tanah yang dipengaruhi oleh liat montmorilonit mempunyai nilai COLE lebih tinggi dibandingkan tanah yang didominasi liat kaolinit (Baver et al., 1972).

Pada kedalaman 45 cm, perlakuan pengeringan pada permukaan lapisan pirit 0,3% maupun pengeringan dibawah lapisan pirit 0,3% memberikan kisaran nilai COLE yang lebih tinggi yaitu antara 0,22 – 0,26 dibandingkan dengan perlakuan penggenangan yaitu 0,21. Hal ini menunjukkan bahwa pengaruh variabilitas kolom yang digunakan, seperti perbedaan kandungan kadar liat pada tiap kolom (Tabel Lampiran 10) lebih dominan dibandingkan pengaruh perlakuan. Tanah yang didominasi liat akan memberikan efek mengembang dan mengkerut yang lebih besar pada pengeringan dibandingkan dengan penggenangan.

Pada kedalaman 75 cm, terjadi fenomena yang sama seperti pada kedalaman 45 cm yaitu secara umum perlakuan pengeringan pada permukaan lapisan pirit 0,3% maupun dibawah lapisan pirit 0,3% memberikan kisaran nilai COLE yang lebih tinggi yaitu antara 0,25 – 0,33 kecuali perlakuan K7, dibandingkan dengan perlakuan penggenangan yaitu 0,23. Selain itu perlakuan pengeringan dibawah lapisan pirit 0,3% dengan waktu yang berbeda-beda memberikan hasil nilai COLE yang bervariasi antara 0,20 – 0,33. Hal ini karena pengaruh variabilitas kolom tanah yang dianalisis serta tingginya kadar bahan organik kolom tanah yang dianalisis yaitu 18,18% (Tabel Lampiran 1) pada kondisi jenuh dan variabilitas dari tingkat kematangan tanah yang masih rendah yang dicirikan dengan kadar air yang masih tinggi.
Gambar 3. Hubungan perlakuan dengan nilai COLE pada berbagai kedalaman

Permeabilitas Tanah

Perubahan nilai permeabilitas akibat perlakuan pengeringan disajikan dalam Tabel 4. Berdasarkan uji statistik, pengaruh perlakuan berbeda nyata terhadap permeabilitas tanah pada kedalaman 15 dan 45 cm, namun tidak nyata pada kedalaman 75 cm.

Tabel 4. Pengaruh Perlakuan terhadap Nilai Rataan Permeabilitas pada Berbagai Kedalaman

<table>
<thead>
<tr>
<th>Kedalaman</th>
<th>K0</th>
<th>K1</th>
<th>K2</th>
<th>K3</th>
<th>K4</th>
<th>K5</th>
<th>K6</th>
<th>K7</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 cm</td>
<td>0.08 c</td>
<td>0.93 c</td>
<td>0.05 c</td>
<td>5.82 bc</td>
<td>4.49 bc</td>
<td>26 a</td>
<td>8.73 b</td>
<td>0.04 c</td>
</tr>
<tr>
<td>45 cm</td>
<td>0.05 c</td>
<td>38.7 a</td>
<td>10.2 b</td>
<td>5.15 bc</td>
<td>12.9 b</td>
<td>0.01 c</td>
<td>0.59 c</td>
<td>0.32 c</td>
</tr>
<tr>
<td>75 cm</td>
<td>2.21 a</td>
<td>0.09 a</td>
<td>0.4 a</td>
<td>0.11 a</td>
<td>0.0 a</td>
<td>2.13 a</td>
<td>0.0 a</td>
<td>0.5 a</td>
</tr>
</tbody>
</table>

*Angka yang diikuti huruf yang tidak sama dalam setiap baris berbeda nyata pada taraf 5% menurut uji Duncan

Tabel 4 menunjukkan bahwa secara umum pengaruh perlakuan pengeringan pada permukaan lapisan pirit 0,3% maupun dibawah lapisan pirit 0,3% terhadap nilai permeabilitas pada kedalaman 15 cm tidak berbeda nyata dengan perlakuan...
penggenangan (K0). Hal ini karena pada perlakuan pengeritingan akan terbentuk Fe-oksida hasil oksidasi pirit. Fe-oksida ini cenderung terbentuk menggumpal pada pori tanah sehingga akan menutupi pori tanah yang menyebabkan pergerakan air terhambat. Pengecualian terjadi pada perlakuan K5 dan K6 yang mempunyai nilai permeabilitas tinggi. Tingginya nilai permeabilitas pada perlakuan K5 dan K6 karena adanya retakan-retakan tanah. Tabel 4 juga menunjukkan nilai permeabilitas perlakuan pengeritingan dengan waktu yang berbeda-beda dibawah lapisan pirit 0,3% semakin meningkat sampai periode pengeritingan 4 minggu (K5), namun setelah itu nilai permeabilitas semakin menurun. Hal ini karena pada lapisan atas terjadi penguapan yang mengakibatkan terbentuknya retakan-retakan yang semakin lama semakin besar. Nilai permeabilitas mengalami penurunan pada akhir minggu ke-6 (K6) dan minggu ke-8 (K7), karena pengeritingan yang terlalu lama di tanah sulfat masam menyebabkan pirit teroksidasi menghasilkan Fe-oksida yang menggumpal sehingga pori-pori tanah tersumbat oleh besi tersebut yang menyebabkan daya lolos air tanah menurun.

Tabel 4 juga menunjukkan bahwa secara umum pengaruh perlakuan pengeritingan terhadap nilai permeabilitas pada kedalaman 45 cm tidak berbeda nyata dengan perlakuan penggenangan. Hal ini karena pada kedalaman 45 cm mempunyai indeks stabilitas agregat yang tergolong sama yaitu agak stabil. Stabilitas agregat yang sama menunjukkan stabilitas pori tanah yang relatif sama. Stabilitas pori tanah merupakan faktor yang mempengaruhi daya melalukan air. Pengecualian pada perlakuan K1, K2 dan K4 karena adanya sisa akar dan bekas tanaman.
Pada kedalaman 75 cm, perlakuan penggenangan mempunyai nilai permeabilitas yang lebih tinggi dibandingkan perlakuan pengeritingan pada permukaan lapisan pirit 0,3% maupun dibawah lapisan pirit 0,3%. Keadaan tersebut terjadi karena pada perlakuan penggenangan (K0) persen total pori kolom tanah yang digunakan lebih tinggi (75,15%) dibandingkan dengan total pori kolom tanah pada perlakuan lainnya yang berkisar antara 68,49 – 74,11% (Tabel 6). Disamping itu pada kedalaman 75 cm ini kemungkinan terbentuknya Fe-oksida yang biasanya menutupi pori relatif kecil karena keadaan tanah yang masih jenuh air.

![Graph of permeabilities at various depths](image)

Gambar 4. Hubungan perlakuan dengan permeabilitas pada berbagai kedalaman

Kerapatan Limbak Tanah

Perubahan nilai kerapatan limbak pada berbagai kedalaman akibat perlakuan pengeritingan ditunjukkan dalam Tabel 5. Secara umum terlihat bahwa nilai rataan kerapatan limbak pada kedalaman 15 cm lebih tinggi dari pada kedalaman 45 dan 75 cm (Tabel Lampiran 1). Pada lapisan 15 cm terdapat deposit Fe-oksida karena proses oksidasi yang berjalan lebih cepat dibandingkan lapisan lain dibawahnya sehingga
memberikan kontribusi yang berarti terhadap nilai kerapatan limbaknya. Disamping itu, kondisi tanah lapisan bawah yang relatif lebih muda menyebabkan tingkat kematangan tanah yang lebih rendah, kadar air tanah lewat jenuh sehingga volume terukur lebih besar dari volume bulk sesungguhnya.

Tabel 5. Pengaruh Perlakuan terhadap Nilai Rataan Kerapatan Limbak pada Berbagai Kedalaman.

<table>
<thead>
<tr>
<th>Kedalaman</th>
<th>K0</th>
<th>K1</th>
<th>K2</th>
<th>K3</th>
<th>K4</th>
<th>K5</th>
<th>K6</th>
<th>K7</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 cm</td>
<td>0.83 d</td>
<td>0.89 bc</td>
<td>0.85 cd</td>
<td>0.92 ab</td>
<td>0.95 a</td>
<td>0.77 e</td>
<td>0.95 a</td>
<td>0.75 e</td>
</tr>
<tr>
<td>45 cm</td>
<td>0.69 a</td>
<td>0.66 ab</td>
<td>0.60 de</td>
<td>0.58 e</td>
<td>0.67 ab</td>
<td>0.62 cd</td>
<td>0.45 f</td>
<td>0.64 bc</td>
</tr>
<tr>
<td>75 cm</td>
<td>0.63 bc</td>
<td>0.58 d</td>
<td>0.63 bc</td>
<td>0.65 bc</td>
<td>0.61 cd</td>
<td>0.72 a</td>
<td>0.64 bc</td>
<td>0.66 b</td>
</tr>
</tbody>
</table>

*Angka yang diikuti huruf yang tidak sama dalam setiap baris berbeda nyata pada taraf 5% menurut uji Duncan

Secara umum Tabel 5 menunjukkan bahwa pada kedalaman 15 cm, perlakuan pengeringan menyebabkan nilai kerapatan limbak yang lebih tinggi dibandingkan dengan perlakuan penggenangan (K0). Hal ini disebabkan pada perlakuan pengeringan terjadi proses dekomposisi bahan organik sehingga volume tanah menurun tetapi berat massa tanah bertambah. Pengecualian pada perlakuan K5 dan K7 karena variabilitas kolom tanah yang diuji.

Pada kedalaman 45 cm, secara umum nilai kerapatan limbak pada perlakuan pengeringan baik pada permukaan lapisan pirit 0,3% maupun dibawah lapisan pirit 0,3% lebih rendah dari perlakuan penggenangan (K0). Hal ini karena pada perlakuan pengeringan terjadinya peningkatan pori akibat runtuhnya struktur mikro tanah sehingga memberikan kontribusi terhadap nilai kerapatan limbaknya.
Pada kedalaman 75 cm, perlakuan pengeringan memberikan pengaruh yang tidak nyata terhadap nilai kerapatan limbak dibandingkan dengan perlakuan penggenangan (K0) kecuali pada perlakuan K1 dan K5. Beberapa perlakuan yaitu perlakuan K3, K5, K6 dan K7 cenderung mempunyai nilai kerapatan limbak yang lebih tinggi dibandingkan dengan perlakuan penggenangan (K0), namun pada perlakuan K1, K2 dan K4 relatif sama dan bahkan cenderung lebih rendah dibandingkan dengan perlakuan penggenangan (K0). Keadaan diatas disebabkan kadar air yang relatif tinggi (104,40 – 138,98%) dan tingkat kematangan tanah yang masih rendah.

Gambar 5. Hubungan perlakuan dengan nilai kerapatan limbak pada berbagai kedalaman

Porositas Tanah

Perubahan terhadap nilai total pori, pori drainase cepat, pori drainase lambat dan air tersedia sebagai akibat perlakuan pengeringan ditunjukkan dalam Tabel 6. Nilai total pori dipengaruhi secara nyata oleh perlakuan pengeringan pada berbagai kedalaman. Nilai pori drainase cepat tidak nyata pada kedalaman 45 dan 75 cm,
namun pada kedalaman 15 cm berbeda nyata. Nilai pori drainase lambat dan air tersedia tidak berbeda nyata pada berbagai kedalaman.

Tabel 6. Pengaruh Perlakuan terhadap Nilai Rataan Porositas pada Berbagai Kedalaman

<table>
<thead>
<tr>
<th>kedalaman</th>
<th>K0</th>
<th>K1</th>
<th>K2</th>
<th>K3</th>
<th>K4</th>
<th>K5</th>
<th>K6</th>
<th>K7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total pori</td>
<td>64.59 a</td>
<td>63.90 bc</td>
<td>64.06 bc</td>
<td>61.04 cd</td>
<td>60.14 d</td>
<td>67.58 a</td>
<td>59.66 d</td>
<td>67.53 a</td>
</tr>
<tr>
<td>PD. Cepat</td>
<td>6.02 a</td>
<td>6.32 a</td>
<td>3.45 bcd</td>
<td>3.07 cd</td>
<td>2.16 d</td>
<td>3.37 bcd</td>
<td>4.89 abc</td>
<td>5.42 ab</td>
</tr>
<tr>
<td>PD. Lambat</td>
<td>3.84 a</td>
<td>5.23 a</td>
<td>3.9 a</td>
<td>8.33 a</td>
<td>3.67 a</td>
<td>5.91 a</td>
<td>8.28 a</td>
<td>7.87 a</td>
</tr>
<tr>
<td>Air Tersedia</td>
<td>10.77 a</td>
<td>22.14 a</td>
<td>12.44 a</td>
<td>17.83 a</td>
<td>18.78 a</td>
<td>13.5 a</td>
<td>14.37 a</td>
<td>9.72 a</td>
</tr>
<tr>
<td>Total pori</td>
<td>72.29 cd</td>
<td>72.49 cd</td>
<td>74.94 b</td>
<td>72.99 c</td>
<td>70.82 d</td>
<td>72.70 cd</td>
<td>80.20 a</td>
<td>72.45 cd</td>
</tr>
<tr>
<td>PD. Cepat</td>
<td>4.57 a</td>
<td>5.41 a</td>
<td>7.30 a</td>
<td>4.70 a</td>
<td>3.88 a</td>
<td>4.10 a</td>
<td>4.21 a</td>
<td>3.90 a</td>
</tr>
<tr>
<td>PD. Lambat</td>
<td>4.27 a</td>
<td>6.59 a</td>
<td>9.01 a</td>
<td>3.99 a</td>
<td>5.57 a</td>
<td>4.00 a</td>
<td>3.72 a</td>
<td>10.11 a</td>
</tr>
<tr>
<td>Air Tersedia</td>
<td>18.92 a</td>
<td>16.61 a</td>
<td>13.77 a</td>
<td>12.57 a</td>
<td>15.38 a</td>
<td>17.10 a</td>
<td>13.44 a</td>
<td>13.15 a</td>
</tr>
<tr>
<td>Total pori</td>
<td>75.15 a</td>
<td>73.78 ab</td>
<td>72.10 b</td>
<td>74.11 ab</td>
<td>74.77 ab</td>
<td>68.49 c</td>
<td>72.62 ab</td>
<td>73.39 ab</td>
</tr>
<tr>
<td>PD. Cepat</td>
<td>4.75 a</td>
<td>5.44 a</td>
<td>3.59 a</td>
<td>6.36 a</td>
<td>3.58 a</td>
<td>2.63 a</td>
<td>5.32 a</td>
<td>4.95 a</td>
</tr>
<tr>
<td>PD. Lambat</td>
<td>7.43 a</td>
<td>7.22 a</td>
<td>5.05 a</td>
<td>5.94 a</td>
<td>3.5 a</td>
<td>3.34 a</td>
<td>3.90 a</td>
<td>11.31 a</td>
</tr>
<tr>
<td>Air Tersedia</td>
<td>15.51 a</td>
<td>12.47 a</td>
<td>14.00 a</td>
<td>17.44 a</td>
<td>13.03 a</td>
<td>16.84 a</td>
<td>16.56 a</td>
<td>15.15 a</td>
</tr>
</tbody>
</table>

* Angka yang dilukis huruf yang tidak sama dalam setiap baris berbeda nyata pada taraf 5% menurut uji Duncan

Berdasarkan Tabel 6 terlihat bahwa pada kedalaman 15 cm, perlakuan penggenangan (K0) mempunyai total pori lebih tinggi dibandingkan perlakuan pengeringan pada permukaan lapisan pirit 0,3% (K1). Hal ini karena pada perlakuan K1 terjadi pergerakan air kapiler dari permukaan air tanah yang dipertahankan pada kedalaman 50 cm sehingga mempengaruhi keadaan pori tanah. Pada perlakuan pengeringan dibawah lapisan pirit 0,3% selama 8 minggu menunjukkan nilai total pori yang lebih tinggi dibandingkan dengan perlakuan penggenangan dan pori mikro semakin banyak. Secara umum nilai pori drainase cepat pada kedalaman 15 cm akibat perlakuan penggenangan (K0) lebih besar dibandingkan dengan nilai pori drainase cepat akibat perlakuan pengeringan dibawah lapisan pirit 0,3%. Dengan semakin
lama tanah mengalami pengeritingan maka struktur mikro tanah menjadi runtuh yang menyebabkan semakin rendahnya jumlah pori makro. Pengecualian pada perlakuan pengeritingan pada lapisan pirit 0,3% (K1), karena mempunyai nilai indeks stabilitas agregat yang tinggi (Gambar 2) sehingga menghasilkan ruang antar agregat yang berukuran besar lebih banyak dan keadaan tanah cenderung menjadi lepas dan sarang. Nilai pori drainase lambat pada kedalaman 15 cm, perlakuan penggenangan lebih kecil dibandingkan perlakuan pengeritingan pada permukaan lapisan pirit 0,3% maupun pengeritingan dibawah lapisan pirit 0,3% kecuali perlakuan K4. Hal ini karena pengeritingan yang semakin lama akan merangsang granulasi. Pada kedalaman 15 cm, nilai air tersedia perlakuan pengeritingan pada permukaan lapisan pirit 0,3% maupun dibawah lapisan pirit 0,3% lebih tinggi dibandingkan perlakuan penggenangan kecuali pada perlakuan K7. Peningkatan pori mikro akibat runtuhnya struktur mikro tanah menyebabkan peningkatan air tersedia. Menurut Soepardi (1983) air tersedia itu berada dalam pori mikro.

Tabel 6 secara umum menunjukkan bahwa pada kedalaman 45 cm, nilai total pori perlakuan penggenangan (K0) tidak berbeda nyata dengan perlakuan pengeritingan pada permukaan lapisan pirit 0,3% (K1) maupun pengeritingan dibawah lapisan pirit 0,3% pada berbagai waktu kecuali pada akhir minggu ke-1 (K2) dan minggu ke-6 (K6). Hal ini karena pada kedalaman 45 cm mempunyai kadar liat yang tinggi yaitu 60,90% dalam kondisi jenuh (kadar air antara 102,71 – 188,58%). Pengecualian pada perlakuan K2 dan K6 terjadi karena variabilitas kolom tanah. Pada kedalaman 45 cm, perlakuan tidak memberikan pengaruh yang jelas terhadap nilai pori drainase cepat. Beberapa perlakuan yaitu perlakuan K1, K2 dan K3 cenderung
mempunyai nilai pori drainase cepat lebih tinggi dibandingkan dengan penggenangan, namun perlakuan K4, K5, K6 dan K7 cenderung mempunyai nilai pori drainase cepat yang lebih rendah dibandingkan penggenangan. Pengaruh yang sama juga terlihat pada nilai pori drainase lambat dimana perlakuan K1, K2, K4 dan K7 cenderung mempunyai nilai pori drainase lambat yang lebih tinggi dibandingkan penggenangan, namun perlakuan K3, K5 dan K6 cenderung mempunyai nilai pori drainase lambat yang lebih rendah dibandingkan penggenangan. Keadaan tersebut disebabkan pada kedalaman 45 cm mempunyai kadar liat yang tinggi (60,90%) dalam kondisi jenuh sehingga perkembangan pori tanah menjadi tidak jelas. Nilai air tersedia pada kedalaman 45 cm akibat perlakuan penggenangan (K0) lebih tinggi dibandingkan akibat perlakuan pengeringan pada permukaan lapisan pirit 0,3% maupun pengeringan dibawah lapisan pirit 0,3%. Nilai air tersedia pada perlakuan penggenangan (K0) yang tinggi karena masih tingginya bahan organik akibat dekomposisi yang berjalan lambat dibandingkan perlakuan pengeringan. Soepardi (1983) menyatakan bahwa tingginya bahan organik akan meningkatkan air tersedia karena bahan organik mempunyai permukaan jerap yang besar dan mempunyai sifat hidrofilik sehingga mempunyai kemampuan yang cukup untuk memegang air dalam jumlah yang lebih tinggi.

Nilai total pori pada kedalaman 75 cm, perlakuan penggenangan (K0) tidak berbeda nyata dengan perlakuan pengeringan pada permukaan lapisan pirit 0,3% maupun pengeringan dibawah lapisan pirit 0,3%. Hal ini karena tingginya kandungan bahan organik (18,18%) dalam kondisi jenuh. Pengecualian pada perlakuan K2 dan K5 karena variabilitas kolom tanah yang dianalisis. Pada kedalaman 75 cm,
perlakuan memberikan pengaruh yang tidak jelas terhadap nilai pori drainase cepat. Beberapa perlakuan (K1, K3 dan K6) cenderung meningkatkan nilai pori drainase cepat, namun perlakuan lainnya yaitu K2, K4, K5 dan K7 cenderung menurunkan nilai pori drainase cepat dibandingkan penggenangan (K0). Fenomena yang sama juga terjadi pada nilai air tersedia dimana perlakuan K3, K5 dan K6 cenderung meningkatkan air tersedia, namun perlakuan K1, K2, K4 dan K7 cenderung menurunkan nilai air tersedia. Keadaan ini disebabkan tingginya kadar bahan organik (18,18%) dan kadar liat (60,40%) dalam kondisi jenuh (kadar air antara 118,49 – 138,98%). Pada kedalaman 75 cm, nilai pori drainase lambat perlakuan penggenangan (K0) lebih tinggi dibandingkan perlakuan pengeringan kecuali perlakuan K7, hal ini lebih disebabkan oleh variabilitas kolom tanah yang dianalisis. Pengecualian pada perlakuan K7 yang mempunyai nilai pori drainase lambat lebih tinggi, karena dengan semakin lama dikerlingkan akan semakin merangsang terjadinya granulasi sehingga cenderung terjadi pembentukan pori drainase lambat.

Gambar 6. Hubungan perlakuan dengan pori total pada berbagai kedalaman
Gambar 7. Hubungan perlakuan dengan pori drainase cepat pada berbagai kedalaman

Gambar 8. Hubungan perlakuan dengan pori drainase lambat pada berbagai kedalaman
Gambar 9. Hubungan perlakuan dengan air tersedia pada berbagai kedalaman
KESIMPULAN DAN SARAN

Kesimpulan

2. Secara umum peneringan menyebabkan nilai indeks stabilitas agregat yang lebih tinggi dibandingkan dengan penggenangan. Nilai indeks stabilitas agregat pada kedalaman 15 dan 45 cm mempunyai kelas agak stabil, namun pada kedalaman 75 cm, kelas indeks stabilitas agregat bervariasi yaitu agak stabil hingga kurang stabil.

3. Secara umum untuk kedalaman 15 dan 45 cm, perlakuan peneringan tidak menyebabkan perbedaan yang nyata pada nilai COLE dibandingkan dengan penggenangan, sedangkan untuk kedalaman 75 cm, perlakuan peneringan tidak memberikan pengaruh dengan pola yang jelas (nilai COLE yang bervariasi antara 0,20 - 0,33).

4. Secara umum pada kedalaman 15 cm nilai permeabilitas perlakuan peneringan semakin meningkat sampai periode peneringan 4 minggu (K5), namun setelah itu nilai permeabilitas semakin menurun pada akhir minggu ke-6 (K6) dan minggu ke-8 (K7). Untuk kedalaman 45 cm, perlakuan peneringan memberikan
pengaruh dengan pola yang tidak jelas (nilai permeabilitas yang bervariasi antara 0,01 - 38.7 cm/jam). Pada kedalaman 75 cm, penggenangan (2,21 cm/jam) mempunyai nilai permeabilitas yang lebih tinggi dibandingkan dengan pengeringan (nilai permeabilitas antara 0,0 - 2,13 cm/jam).

5. Secara umum nilai rataan kerapatan limbak pada kedalaman 15 cm lebih tinggi dari pada kedalaman 45 dan 75 cm. Pada lapisan 15 cm terdapat deposit Fe-oksida karena proses oksidasi yang berjalan lebih cepat dibandingkan lapisan lain dibawahnya sehingga memberikan kontribusi yang berarti terhadap nilai kerapatan limbaknya.

6. Perlakuan pengeringan berpengaruh nyata terhadap total pori pada berbagai kedalaman. Perlakuan pengeringan tidak berpengaruh nyata terhadap nilai pori drainase cepat pada kedalaman 45 dan 75 cm, namun berpengaruh nyata pada kedalaman 15 cm, sedangkan terhadap nilai pori drainase lambat dan air tersedia perlakuan pengeringan tidak berpengaruh nyata pada berbagai kedalaman.

Saran

Proses pengeringan pada tanah sulfat masam untuk memperbaiki sifat fisik tanah disarankan untuk lebih melihat perubahan yang terjadi pada berbagai tingkat kedalaman pengeringan karena perubahan sifat fisik yang variatif terjadi setelah pengeringan dibawah kedalaman 50 cm.
DAFTAR PUSTAKA

Ar-Riza, I dan Sardijjo. 1998. Teknologi penyiapan lahan untuk meningkatkan efisiensi penggunaan air dan meningkatkan hasil padi di Lahan Pasang Surut Sulfat Masam. Prosiding Seminar Nasional dan Pertemuan Tahunan Komda HITI.

LAMPIRAN
Tabel Lampiran 1. Analisis Pendahuluan Tanah Sulfat Masam dari Delta Telang, Musibanyuasin, Sumatra Selatan

<table>
<thead>
<tr>
<th>No</th>
<th>Peubah yang dianalisa</th>
<th>Kedalaman (cm)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>45</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Kemantapan Agregat Tanah</td>
<td>54.50</td>
<td>57.30</td>
<td>49.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(agak stabil)</td>
<td>(agak stabil)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Kerapatan Limbak (gr/cm³)</td>
<td>0.80</td>
<td>0.65</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Kerapatan Jenis Zarah (gr/cm³)</td>
<td>2.30</td>
<td>2.50</td>
<td>2.55</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Tekstur (%) :</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pasir</td>
<td>2.70</td>
<td>1.10</td>
<td>2.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Debu</td>
<td>44.00</td>
<td>38.00</td>
<td>37.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liat</td>
<td>53.30</td>
<td>60.90</td>
<td>60.40</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Nilai COLE</td>
<td>0.17</td>
<td>0.20</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Permeabilitas Tanah (cm/jam)</td>
<td>0.03</td>
<td>0.01</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(sangat lambat)</td>
<td>(sangat lambat)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Porositas Tanah (%)</td>
<td>65.52</td>
<td>74.00</td>
<td>76.01</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Bahan Organik Tanah (%)</td>
<td>16.80</td>
<td>14.14</td>
<td>18.81</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Kadar Pirit (%)</td>
<td>0.13</td>
<td>0.30</td>
<td>2.26</td>
<td></td>
</tr>
</tbody>
</table>

Tabel Lampiran 2. Hasil Uji Sidik Ragam Pengaruh Perlakuan terhadap Indeks Stabilitas Agregat

<table>
<thead>
<tr>
<th>Sumber</th>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F tabel 5%</th>
<th>Keterangan lain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kedalaman 15 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainase</td>
<td>7</td>
<td>353.14</td>
<td>50.45</td>
<td>16.98 **</td>
<td>2.66</td>
<td>R² = 0.88</td>
</tr>
<tr>
<td>Galat</td>
<td>16</td>
<td>47.53</td>
<td>2.97</td>
<td>CV</td>
<td>3.02</td>
<td></td>
</tr>
<tr>
<td>Galat Total</td>
<td>23</td>
<td>400.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kedalaman 45 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainase</td>
<td>7</td>
<td>280.71</td>
<td>40.10</td>
<td>15.54 **</td>
<td>2.66</td>
<td>R² = 0.87</td>
</tr>
<tr>
<td>Galat</td>
<td>16</td>
<td>41.28</td>
<td>2.58</td>
<td>CV</td>
<td>2.88</td>
<td></td>
</tr>
<tr>
<td>Galat Total</td>
<td>23</td>
<td>321.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kedalaman 75 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainase</td>
<td>7</td>
<td>243.76</td>
<td>34.82</td>
<td>32.77 **</td>
<td>2.66</td>
<td>R² = 0.93</td>
</tr>
<tr>
<td>Galat</td>
<td>16</td>
<td>17.00</td>
<td>1.06</td>
<td>CV</td>
<td>2.05</td>
<td></td>
</tr>
<tr>
<td>Galat Total</td>
<td>23</td>
<td>260.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabel Lampiran 3. Hasil Uji Sidik Ragam Pengaruh Perlakuan terhadap COLE

<table>
<thead>
<tr>
<th>Sumber</th>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F tabel 5%</th>
<th>Keterangan lain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kedalaman 15 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Drainase | 7 | 0.0191 | 0.0027 | 3.97 * | 2.66 | \(R^2 = 0.63 \)
| Galat | 16 | 0.0110 | 0.0007 | | | |
| Galat Total | 23 | 0.0301 | |
| | | | | | | \(CV = 13.59 \) |
| | | | | | | Kedalaman 45 cm |
| | | | | | | |
| Drainase | 7 | 0.0074 | 0.0011 | 1.87 tn | 2.66 | \(R^2 = 0.54 \)
| Galat | 16 | 0.0091 | 0.0006 | | | |
| Galat Total | 23 | 0.0165 | |
| | | | | | | \(CV = 10.04 \) |
| | | | | | | Kedalaman 75 cm |
| | | | | | | |
| Drainase | 7 | 0.0302 | 0.0043 | 15.23 ** | 2.66 | \(R^2 = 0.87 \)
| Galat | 16 | 0.0045 | 0.0003 | | | |
| Galat Total | 23 | 0.0347 | |
| | | | | | | \(CV = 6.52 \) |

Tabel Lampiran 4. Hasil Uji Sidik Ragam Pengaruh Perlakuan terhadap Permeabilitas

<table>
<thead>
<tr>
<th>Sumber</th>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F tabel 5%</th>
<th>Keterangan lain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kedalaman 15 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Drainase | 7 | 1622.89 | 231.84 | 18.16 ** | 2.66 | \(R^2 = 0.89 \)
| Galat | 16 | 204.28 | 12.77 | | | |
| Galat Total | 23 | 1827.17 | |
| | | | | | | \(CV = 61.95 \) |
| | | | | | | Kedalaman 45 cm |
| | | | | | | |
| Drainase | 7 | 3654.40 | 522.06 | 28.07 ** | 2.66 | \(R^2 = 0.92 \)
| Galat | 16 | 297.59 | 18.60 | | | |
| Galat Total | 23 | 3951.99 | |
| | | | | | | \(CV = 50.81 \) |
| | | | | | | Kedalaman 75 cm |
| | | | | | | |
| Drainase | 7 | 18,464 | 2,637 | 2.22 tn | 2.66 | \(R^2 = 0.49 \)
| Galat | 16 | 18,989 | 1,187 | | | |
| Galat Total | 23 | 37,453 | |
| | | | | | | \(CV = 160.2 \) |
Tabel Lampiran 5. Hasil Uji Sidik Ragam Pengaruh Perlakuan terhadap Kerapatan Limbark

<table>
<thead>
<tr>
<th>Sumber</th>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F tabel 5%</th>
<th>Keterangan lain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kedalaman 15 cm</td>
</tr>
<tr>
<td>Drainase</td>
<td>7</td>
<td>0.1271</td>
<td>0.0182</td>
<td>21.36 **</td>
<td>2.66</td>
<td>R² = 0.90</td>
</tr>
<tr>
<td>Galat</td>
<td>16</td>
<td>0.0136</td>
<td>0.0001</td>
<td></td>
<td></td>
<td>CV = 3.38</td>
</tr>
<tr>
<td>Galat Total</td>
<td>23</td>
<td>0.1407</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kedalaman 45 cm</td>
</tr>
<tr>
<td>Drainase</td>
<td>7</td>
<td>0.1268</td>
<td>0.0206</td>
<td>42.61 **</td>
<td>2.66</td>
<td>R² = 0.95</td>
</tr>
<tr>
<td>Galat</td>
<td>16</td>
<td>0.0068</td>
<td>0.0004</td>
<td></td>
<td></td>
<td>CV = 3.36</td>
</tr>
<tr>
<td>Galat Total</td>
<td>23</td>
<td>0.1334</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kedalaman 75 cm</td>
</tr>
<tr>
<td>Drainase</td>
<td>7</td>
<td>0.0322</td>
<td>0.0046</td>
<td>8.61 **</td>
<td>2.66</td>
<td>R² = 0.79</td>
</tr>
<tr>
<td>Galat</td>
<td>16</td>
<td>0.0085</td>
<td>0.0005</td>
<td></td>
<td></td>
<td>CV = 3.61</td>
</tr>
<tr>
<td>Galat Total</td>
<td>23</td>
<td>0.0407</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel Lampiran 6. Hasil Uji Sidik Ragam Pengaruh Perlakuan terhadap Pori Total

<table>
<thead>
<tr>
<th>Sumber</th>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F tabel 5%</th>
<th>Keterangan lain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kedalaman 15 cm</td>
</tr>
<tr>
<td>Drainase</td>
<td>7</td>
<td>200.26</td>
<td>28.61</td>
<td>10.09 **</td>
<td>2.66</td>
<td>R² = 0.82</td>
</tr>
<tr>
<td>Galat</td>
<td>16</td>
<td>45.36</td>
<td>2.83</td>
<td></td>
<td></td>
<td>CV = 2.65</td>
</tr>
<tr>
<td>Galat Total</td>
<td>23</td>
<td>245.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kedalaman 45 cm</td>
</tr>
<tr>
<td>Drainase</td>
<td>7</td>
<td>175.73</td>
<td>25.10</td>
<td>24.44 **</td>
<td>2.66</td>
<td>R² = 0.91</td>
</tr>
<tr>
<td>Galat</td>
<td>16</td>
<td>16.43</td>
<td>1.03</td>
<td></td>
<td></td>
<td>CV = 1.38</td>
</tr>
<tr>
<td>Galat Total</td>
<td>23</td>
<td>192.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kedalaman 75 cm</td>
</tr>
<tr>
<td>Drainase</td>
<td>7</td>
<td>92.98</td>
<td>13.28</td>
<td>7.37 **</td>
<td>2.66</td>
<td>R² = 0.76</td>
</tr>
<tr>
<td>Galat</td>
<td>16</td>
<td>28.83</td>
<td>1.80</td>
<td></td>
<td></td>
<td>CV = 1.84</td>
</tr>
<tr>
<td>Galat Total</td>
<td>23</td>
<td>121.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabel Lampiran 7. Hasil Uji Sidik Ragam Pengaruh Perlakuan terhadap Pori Drainase Cepat

<table>
<thead>
<tr>
<th>Sumber</th>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F tabel 5%</th>
<th>Keterangan lain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kedalaman 15 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainase</td>
<td>7</td>
<td>48.82</td>
<td>6.97</td>
<td>5.59 *</td>
<td>2.66</td>
<td>$R^2 = 0.71$</td>
</tr>
<tr>
<td>Galat</td>
<td>16</td>
<td>19.94</td>
<td>1.25</td>
<td></td>
<td></td>
<td>$CV = 25.75$</td>
</tr>
<tr>
<td>Galat Total</td>
<td>23</td>
<td>68.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kedalaman 45 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainase</td>
<td>7</td>
<td>27.55</td>
<td>3.94</td>
<td>1.36 tn</td>
<td>2.66</td>
<td>$R^2 = 0.57$</td>
</tr>
<tr>
<td>Galat</td>
<td>16</td>
<td>46.23</td>
<td>2.89</td>
<td></td>
<td></td>
<td>$CV = 35.73$</td>
</tr>
<tr>
<td>Galat Total</td>
<td>23</td>
<td>73.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kedalaman 75 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainase</td>
<td>7</td>
<td>20.27</td>
<td>2.9</td>
<td>2.12 tn</td>
<td>2.66</td>
<td>$R^2 = 0.58$</td>
</tr>
<tr>
<td>Galat</td>
<td>16</td>
<td>21.82</td>
<td>1.36</td>
<td></td>
<td></td>
<td>$CV = 26.98$</td>
</tr>
<tr>
<td>Galat Total</td>
<td>23</td>
<td>42.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel Lampiran 8. Hasil Uji Sidik Ragam Pengaruh Perlakuan terhadap Pori Drainase Lambat

<table>
<thead>
<tr>
<th>Sumber</th>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F tabel 5%</th>
<th>Keterangan lain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kedalaman 15 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainase</td>
<td>7</td>
<td>87.43</td>
<td>12.49</td>
<td>1.18 tn</td>
<td>2.66</td>
<td>$R^2 = 0.54$</td>
</tr>
<tr>
<td>Galat</td>
<td>16</td>
<td>169.23</td>
<td>10.58</td>
<td></td>
<td></td>
<td>$CV = 55.32$</td>
</tr>
<tr>
<td>Galat Total</td>
<td>23</td>
<td>256.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kedalaman 45 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainase</td>
<td>7</td>
<td>127.96</td>
<td>18.28</td>
<td>1.47 tn</td>
<td>2.66</td>
<td>$R^2 = 0.59$</td>
</tr>
<tr>
<td>Galat</td>
<td>16</td>
<td>198.54</td>
<td>12.41</td>
<td></td>
<td></td>
<td>$CV = 59.63$</td>
</tr>
<tr>
<td>Galat Total</td>
<td>23</td>
<td>326.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kedalaman 75 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainase</td>
<td>7</td>
<td>151.15</td>
<td>21.59</td>
<td>2.18 tn</td>
<td>2.66</td>
<td>$R^2 = 0.59$</td>
</tr>
<tr>
<td>Galat</td>
<td>16</td>
<td>158.16</td>
<td>9.89</td>
<td></td>
<td></td>
<td>$CV = 52.73$</td>
</tr>
<tr>
<td>Galat Total</td>
<td>23</td>
<td>309.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabel Lampiran 9. Hasil Uji Sidik Ragam Pengaruh Perlakuan terhadap Air Tersedia

<table>
<thead>
<tr>
<th>Sumber</th>
<th>DB</th>
<th>JK</th>
<th>KT</th>
<th>F hitung</th>
<th>F tabel 5%</th>
<th>Keterangan lain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kedalaman 15 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainase</td>
<td>7</td>
<td>384.59</td>
<td>54.94</td>
<td>1.45 tn</td>
<td>2.66</td>
<td>$R^2 = 0.59$</td>
</tr>
<tr>
<td>Galat</td>
<td>16</td>
<td>606.35</td>
<td>37.90</td>
<td></td>
<td></td>
<td>CV = 41.19</td>
</tr>
<tr>
<td>Galat Total</td>
<td>23</td>
<td>990.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kedalaman 45 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainase</td>
<td>7</td>
<td>107.12</td>
<td>15.30</td>
<td>1.28 tn</td>
<td>2.66</td>
<td>$R^2 = 0.56$</td>
</tr>
<tr>
<td>Galat</td>
<td>16</td>
<td>191.59</td>
<td>11.97</td>
<td></td>
<td></td>
<td>CV = 22.89</td>
</tr>
<tr>
<td>Galat Total</td>
<td>23</td>
<td>298.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kedalaman 75 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainase</td>
<td>7</td>
<td>69.72</td>
<td>9.96</td>
<td>0.44 tn</td>
<td>2.66</td>
<td>$R^2 = 0.61$</td>
</tr>
<tr>
<td>Galat</td>
<td>16</td>
<td>361.75</td>
<td>22.61</td>
<td></td>
<td></td>
<td>CV = 31.44</td>
</tr>
<tr>
<td>Galat Total</td>
<td>23</td>
<td>431.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan : DB = Derajat Bebas
JK = Jumlah Kuadrat
KT = Kuadrat Tengah
CV = Koefisien Keragaman
$R^2 = R$-square
* = nyata pada taraf 5%
** = sangat nyata pada taraf 5%
tn = tidak nyata

Tabel Lampiran 10. Analisis Fraksi Liat (%) Tanah Sulfat Masam pada Berbagai Kedalaman

<table>
<thead>
<tr>
<th>Kedalaman</th>
<th>K1</th>
<th>K2</th>
<th>K3</th>
<th>K4</th>
<th>K5</th>
<th>K6</th>
<th>K7</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 cm</td>
<td>53.29</td>
<td>66.86</td>
<td>58.52</td>
<td>62.34</td>
<td>56.73</td>
<td>65.16</td>
<td>59.68</td>
</tr>
<tr>
<td>45 cm</td>
<td>59.55</td>
<td>66.17</td>
<td>61.59</td>
<td>58.88</td>
<td>60.44</td>
<td>68.22</td>
<td>58.81</td>
</tr>
<tr>
<td>75 cm</td>
<td>60.34</td>
<td>56.36</td>
<td>67.33</td>
<td>64.77</td>
<td>60.01</td>
<td>62.32</td>
<td>58.97</td>
</tr>
</tbody>
</table>