Lampiran
Lampiran 1 Penurunan Persamaan (3.2.11)

Jika \(P = u_e + u_d > G \), maka dari Persamaan (3.2.4) dan Persamaan (3.2.8) diperoleh

\[
C(F) = 5BFc_f + \zeta_p P + (\bar{\zeta}_p - \zeta_p)(P-G)^+ \\
= 5BFc_f + \zeta_p(u_e + u_d) + (\bar{\zeta}_p - \zeta_p)(u_e + u_d - G)^+ \\
= 5BFc_f + \zeta_p(B(2E + 5D - 5F)) + (\bar{\zeta}_p - \zeta_p)(B(2E + 5D - 5F) - G) \\
= 5BFc_f + \bar{\zeta}_p(B(2E + 5D - 5F)) - G\zeta_p + G\zeta_p \\
= 5BFc_f + \bar{\zeta}_p(B(2E + 5D - 5F)) - gB\zeta_p + gB\zeta_p \\
= B(5Fc_f + (2E + 5D - 5F - g)\zeta_p + g\zeta_p).
\]

Jika \(P = u_e + u_d \leq G \), maka dari Persamaan (3.2.4) dan Persamaan (3.2.8) diperoleh

\[
C(F) = 5BFc_f + \zeta_p P + (\bar{\zeta}_p - \zeta_p)(P-G)^+ \\
= 5BFc_f + \zeta_p(u_e + u_d) \\
= 5BFc_f + \bar{\zeta}_p(B(2E + 5D - 5F)) \\
= B(5Fc_f + (2E + 5D - 5F))\zeta_p.
\]

Jika \(P = u_e + u_d = 0 \), maka dari Persamaan (3.2.4) diperoleh

\[
C(F) = 5BFc_f + \zeta_p P + (\bar{\zeta}_p - \zeta_p)(P-G)^+ \\
= 5BFc_f.
\]

Jadi akan didapat Persamaan (3.2.11).

Lampiran 2 Fungsi \(C(F) \) pada Persamaan (3.2.11) minimum pada \(F = b_g \)

Misalkan

\[
C_1(F) = B\left(5Fc_f + (2E + 5D - 5F - g)\zeta_p + g\zeta_p\right), \\
C_2(F) = B(5Fc_f + (2E + 5D - 5F)\zeta_p), \\
C_3(F) = 5BFc_f,
\]

maka Persamaan (3.2.11) menjadi

\[
C(F) = \begin{cases}
C_1(F), & 0 \leq F \leq b_g, \\
C_2(F), & b_g < F \leq b_1, \\
C_3(F), & b_1 < F.
\end{cases}
\]

Untuk menentukan titik minimum fungsi \(C(F) \), terlebih dahulu akan ditentukan kemiringan \(C(F) \) pada setiap selang dan nilai \(C(F) \) pada setiap ujung selang. Dengan \(\zeta_p < c_f < \bar{\zeta}_p \), maka

- \(C_1(F) \) mempunyai kemiringan negatif sebesar \(5B(c_f - \bar{\zeta}_p) \) dengan

\[
C_1(b_g) = B\left(5b_g c_f + (2E + 5D - 5b_g - g)\zeta_p + g\zeta_p\right) \\
= B\left(5\left(\frac{2E + 5D - g}{5}\right)c_f + (2E + 5D - 5\left(\frac{2E + 5D - g}{5}\right) - g)\zeta_p + g\zeta_p\right) \\
= B(2E + 5D)c_f - (c_f - \zeta_p)g
\]

- \(C_2(F) \) mempunyai kemiringan positif sebesar \(5B(c_f - \zeta_p) \) dengan
\[C_2(b_g) = B(5b_c c_f + (2E + 5D - 5b_g)\xi_p) \]
\[= B\left(5\left(\frac{2E + 5D - g}{5}\right)c_f + (2E + 5D - 5\left(\frac{2E + 5D - g}{5}\right)\xi_p\right)\right) \text{ dan} \]
\[C_2(b_h) = B(5b_c c_f + (2E + 5D - 5b_h)\xi_p) \]
\[= B\left(5\left(\frac{2E + 5D}{5}\right)c_f + (2E + 5D - 5\left(\frac{2E + 5D}{5}\right)\xi_p\right)\right) \]
\[= B((2E + 5D) c_f - (c_f - \xi_p)g) \]

- \(C_3(F) \) mempunyai kemiringan positif sebesar \(5Bc_f \) dengan
\[C_3(b_h) = B(2E + 5D)c_f \]
\[= B((2E + 5D)c_f) \]

Karena \(C_i(b_g) = C_2(b_g) \) dan \(C_2(b_h) = C_3(b_h) \), maka \(C(F) \) minimum pada \(F = b_g \).

Lampiran 3 Bukti pertaksamaan \(C_i\left(\left[\begin{array}{c} b_g \\ b_g \end{array}\right]\right) < C_2\left(\left[\begin{array}{c} b_g \\ b_g \end{array}\right]\right) \) pada Persamaan (3.2.12) ekuivalen dengan
\[\left(b_g - [b_g]\right)\xi_p + \left(\left[\begin{array}{c} b_g \\ b_g \end{array}\right]-\left[b_g \right]\right)\xi_p < c_f \]

Jika \(C_i(F) = B\left(5Fc_f + (2E + 5D - 5F - g)\xi_p + g\xi_p\right) \) dan \(C_2(F) = B(5Fc_f + (2E + 5D - 5F)\xi_p) \), maka
\[C_i\left(\left[\begin{array}{c} b_g \\ b_g \end{array}\right]\right) < C_2\left(\left[\begin{array}{c} b_g \\ b_g \end{array}\right]\right) \iff \left(b_g - [b_g]\right)\xi_p + \left(\left[\begin{array}{c} b_g \\ b_g \end{array}\right]-\left[b_g \right]\right)\xi_p < c_f \]

Bukti : \(C_i\left(\left[\begin{array}{c} b_g \\ b_g \end{array}\right]\right) < C_2\left(\left[\begin{array}{c} b_g \\ b_g \end{array}\right]\right) \)
\[\iff B\left(\left[\begin{array}{c} b_g \\ b_g \end{array}\right]c_f + (2E + 5D - 5\left[b_g \right]-g)\xi_p + g\xi_p\right) < B\left(\left[\begin{array}{c} b_g \\ b_g \end{array}\right]c_f + (2E + 5D - 5\left[b_g \right])\xi_p\right) \]
\[\iff \left(\left[\begin{array}{c} b_g \\ b_g \end{array}\right]c_f + (2E + 5D - 5\left[b_g \right]-g)\xi_p + g\xi_p\right) < \left(\left[\begin{array}{c} b_g \\ b_g \end{array}\right]c_f + (2E + 5D - 5\left[b_g \right])\xi_p\right) \]
\[\iff \left(\left[\begin{array}{c} b_g \\ b_g \end{array}\right]c_f - 5\left[b_g \right]c_f + (2E + 5D - 5\left[b_g \right])\xi_p - 5\left[b_g \right]\xi_p - 5\left[b_g \right]\xi_p - g\xi_p + g\xi_p < 0 \]
\[\iff \left(\left[\begin{array}{c} b_g \\ b_g \end{array}\right]c_f - \left[b_g \right]c_f + (2E + 5D - 5\left[b_g \right])\xi_p - 5\left[b_g \right]\xi_p - \left[b_g \right]\xi_p < 0 \]
\[\iff \left(\left[\begin{array}{c} b_g \\ b_g \end{array}\right]c_f - \left[b_g \right]c_f + \left[b_g \xi_p - \xi_p\right] - \left[b_g \xi_p - \left[b_g \right]\xi_p\right] < 0 \]
\[\iff (b_g - [b_g])\xi_p + \left(\left[\begin{array}{c} b_g \\ b_g \end{array}\right]-\left[b_g \right]\right)\xi_p < c_f \]

Lampiran 4 Fungsi \(C(F) \) pada Persamaan (3.2.13) minimum pada \(F = b_i \)

Misalkan
\[C_i(F) = B(5Fc_f + (2E + 5D - 5F)\xi_p) \], dan
\[C_i(F) = 5BFc_f \],

maka Persamaan (3.2.13) menjadi
\[C(F) = \begin{cases} C_i(F) & 0 \leq F \leq b_i, \\ C_i(F) & b_i < F. \end{cases} \]

Untuk menentukan titik minimum fungsi \(C(F) \), terlebih dahulu akan ditentukan kemiringan \(C(F) \) pada setiap selang dan nilai \(C(F) \) pada setiap ujung selang. Dengan \(\xi_p < c_f < \xi_p \), maka
- \(C_4(F) \) mempunyai kemiringan negatif sebesar \(5B(c_f - \xi_p) \) dengan
\[C_4(b_1) = B(5h_f + (2E + 5D - 5h_f)c_p) \]
\[= B(5 \left(\frac{2E + 5D}{5}\right)c_f + (2E + 5D - 5 \left(\frac{2E + 5D}{5}\right)c_p) \). \]
\[= B(2E + 5D)c_f \]

- \(C_3(F) \) mempunyai kemiringan positif sebesar \(5Bc_f \) dengan \(C_3(b_1) = 5Bb_f c_f \)
\[= B(5 \left(\frac{2E + 5D}{5}\right)c_f) \]
\[= B(2E + 5D)c_f \]

Karena \(C_4(b_1) = C_3(b_1) \), maka \(C(F) \) minimum pada \(F = b_1 \).

Lampiran 5 Bukti pertaksamaan \(c_4(\left\lfloor b_1 \right\rfloor) < c_3(\left\lfloor b_1 \right\rfloor) \) pada Persamaan (3.2.14) ekuivalen dengan

\[\left(b_1 - \left\lfloor b_1 \right\rfloor \right) < \frac{c_f}{c_p} \cdot \]

Jika \(C_4(F) = B(5F + (2E + 5D - 5F)c_p) \), dan \(C_3(F) = 5Bc_f \), maka

\[c_4(\left\lfloor b_1 \right\rfloor) < c_3(\left\lfloor b_1 \right\rfloor) \Rightarrow \left(b_1 - \left\lfloor b_1 \right\rfloor \right) < \frac{c_f}{c_p} \]

Bukti : \(c_4(\left\lfloor b_1 \right\rfloor) < c_3(\left\lfloor b_1 \right\rfloor) \)
\[\Rightarrow B(5\left\lfloor b_1 \right\rfloor c_f + (2E + 5D - 5\left\lfloor b_1 \right\rfloor)c_p) < 5B\left\lfloor b_1 \right\rfloor c_f \]
\[\Rightarrow (5\left\lfloor b_1 \right\rfloor c_f + (2E + 5D)c_p) - 5\left\lfloor b_1 \right\rfloor c_p < 5\left\lfloor b_1 \right\rfloor c_f \]
\[\Rightarrow \left(b_1 - \left\lfloor b_1 \right\rfloor \right)c_f + b_pc_p - \left(b_1 - \left\lfloor b_1 \right\rfloor \right)c_p < \left(b_1 - \left\lfloor b_1 \right\rfloor \right)c_f \]
\[\Rightarrow b_pc_p - \left(b_1 - \left\lfloor b_1 \right\rfloor \right)c_p < \left(b_1 - \left\lfloor b_1 \right\rfloor \right)c_f \]
\[\Rightarrow \left(b_1 - \left\lfloor b_1 \right\rfloor \right)c_p < \left(b_1 - \left\lfloor b_1 \right\rfloor \right)c_f \]
\[\Rightarrow \left(b_1 - \left\lfloor b_1 \right\rfloor \right) < \frac{c_f}{c_p} \]

Lampiran 6 Penurunan Persamaan (3.2.15)

Jika \(P = u_e + u_d > G \), maka dari Persamaan (3.2.4) dan Persamaan (3.2.8) diperoleh

\[C(F) = 5Bc_f + c_p(P + (c_p - G)(P - G))^+ \]
\[= 5Bc_f + c_p(u_e + u_d) + (c_p - G)(u_e + u_d - G))^+ \]
\[= 5Bc_f + c_p(B(2E + 5D - 5F)) + (c_p - G)(B(2E + 5D - 5F) - G) \]
\[= 5Bc_f + c_p(B(2E + 5D - 5F) - Gc_p + Gc_p) \]
\[= 5Bc_f + c_p(B(2E + 5D - 5F) - gGc_p + GgGc_p) \]
\[= B(5c_F f + (2E + 5D - 5F - g)c_p + gGc_p) \]

Jika \(P = u_e + u_d \leq G \), maka dari Persamaan (3.2.4) dan Persamaan (3.2.8) diperoleh
$C(F) = 5BFc f + \varepsilon_p P + (\varepsilon_p - \varepsilon_p)(P - G) +$

$= 5BFc f + \varepsilon_p (u_e + u_d)$

$= 5BFc f + \varepsilon_p (B(2E + 5D - 5F))$

$= B(5Fc f + \varepsilon_p (2E + 5D - 5F))$

Jika $P = u_e < G$, maka dari Persamaan (3.2.4) dan Persamaan (3.2.1) diperoleh

$C(F) = 5BFc f + \varepsilon_p P + (\bar{\varepsilon_p} - \varepsilon_p)(P - G) +$

$= 5BFc f + \varepsilon_p \mu_e$

$= 5BFc f + \varepsilon_p (2B(E - (1 - \theta)F))$

$= B(5Fc f + \varepsilon_p (2E - 2(1 - \theta)F))$

Jika $P = 0$, maka dari Persamaan (3.2.4) diperoleh

$C(F) = 5BFc f + \varepsilon_p P + (\bar{\varepsilon_p} - \varepsilon_p)(P - G) +$

$= 5BFc f.$

Jadi akan diperoleh Persamaan (3.2.15).

Lampiran 7 Fungsi $C(F)$ pada Persamaan (3.2.15) minimum pada $F = b_g$

Misalkan

$C_1(F) = B(5Fc f + (2E + 5D - 5F - g)\bar{\varepsilon_p} + g\varepsilon_p),$

$C_2(F) = B(5Fc f + (2E + 5D - 5F)\varepsilon_p),$

$C_3(F) = B(5Fc f + (2E - 2(1 - \theta)F)\varepsilon_p),$

$C_4(F) = 5BFc f,$

maka Persamaan (3.2.15) menjadi

$$C(F) = \begin{cases} C_1(F) & 0 \leq F \leq b_g, \\ C_2(F) & b_g < F \leq b_e, \\ C_3(F) & b_e < F \leq b_e, \\ C_4(F) & b_e < F \\ \end{cases}$$

Untuk menentukan titik minimum fungsi $C(F)$, terlebih dahulu akan ditentukan kemiringan $C(F)$ pada setiap selang dan nilai $C(F)$ pada setiap ujung selang. Dengan $\varepsilon_p < c_f < \bar{\varepsilon_p}$, maka

- $C_1(F)$ mempunyai kemiringan negatif sebesar $5B(c_f - \bar{\varepsilon_p})$ dengan

$C_1(b_g) = B(5b_g c_f + (2E + 5D - 5b_g - g)\bar{\varepsilon_p} + g\varepsilon_p)$

$= B\left(5\left(\frac{2E + 5D - g}{5}\right)c_f + (2E + 5D - 5\left(\frac{2E + 5D - g}{5}\right)\bar{\varepsilon_p} + g\varepsilon_p\right).$

$= B((2E + 5D)c_f - (c_f - \varepsilon_p)g)$

- $C_2(F)$ mempunyai kemiringan positif sebesar $5B(c_f - \varepsilon_p)$ dengan

$C_2(b_g) = B(5b_g c_f + (2E + 5D - 5b_g)\varepsilon_p)$

$= B\left(5\left(\frac{2E + 5D - g}{5}\right)c_f + (2E + 5D - 5\left(\frac{2E + 5D - g}{5}\right)\varepsilon_p\right)$

$= B((2E + 5D)c_f - (c_f - \varepsilon_p)g)$

dan
\[C_2(b_y) = B \left(5F_{c_y} + (2E + 5D - 5b_y)\xi_p \right) \]
\[= B \left(5D \left(\frac{E}{3 + 2\theta} \right) \xi_p + (2E + 5D - 5) \left(5D \right) \xi_p \right) \]
\[= B \left(5D \left(\frac{5D}{3 + 2\theta} \right) \xi_p + (2E + 5D) \xi_p \right) \]

- \(C_2(F) \) mempunyai kemiringan positif sebesar \(5Bc_y - 2(1 - \theta)\xi_p \) dengan

\[C_3(b_y) = B \left(5b_y c_y + (2E - 2(1 - \theta)b_y)\xi_p \right) \]
\[= B \left(5D \left(\frac{E}{3 + 2\theta} \right) \xi_p + (2E - 2(1 - \theta)) \left(5D \right) \xi_p \right) \]
\[= B \left(5D \left(\frac{5D}{3 + 2\theta} \right) \xi_p + (2E + 5D) \xi_p \right) \]
\[= B \left(5D \left(\frac{5D}{3 + 2\theta} \right) \xi_p \right) \]
\[\xi_p \]
dan

\[C_4(b_y) = B \left(5b_y c_y + (2E - 2(1 - \theta)b_y)\xi_p \right) \]
\[= B \left(5D \left(\frac{E}{1 - \theta} \right) \xi_p + (2E - 2(1 - \theta)) \left(\frac{E}{1 - \theta} \right) \xi_p \right) \]
\[= 5B \left(\frac{E}{1 - \theta} \right) c_y \]

Karena \(C_1(b_y) = C_2(b_y) \), \(C_2(b_d) = C_3(b_d) \) dan \(C_3(b_y) = C_4(b_y) \), maka \(C(F) \) minimum pada \(F = b_g \).

Lampiran 8 Penurunan Persamaan (3.2.17)

Jika \(P = u_e + u_d > G \), maka dari Persamaan (3.2.4) dan Persamaan (3.2.8) diperoleh

\[C(F) = 5Bc_f + \xi_p \left(u_e + u_d \right) + \left(\xi_p - \xi_p \right) \left(u_e + u_d - G \right) \]
\[= 5Bc_f + \xi_p \left(B(2E + 5D - 5F) + \xi_p - \xi_p \right) \left(B(2E + 5D - 5F) - G \right) \]
\[= 5Bc_f + \xi_p \left(B(2E + 5D - 5F) - G \xi_p + G \xi_p \right) \]
\[= 5Bc_f + \xi_p \left(B(2E + 5D - 5F) - gB \xi_p + gB \xi_p \right) \]
\[= B \left(5Fc_f + \xi_p \right) + g \xi_p \].

Jika \(P = u_e > G \), maka dari Persamaan (3.2.4) dan Persamaan (3.2.1) diperoleh
\[C(F) = 5BFcf + \xi_pP + (\overline{\xi}_p - \xi_p)(P - G)^+\]
\[= 5BFcf + \xi_pu + (\overline{\xi}_p - \xi_p)(u_e - G)\]
\[= 5BFcf + \overline{\xi}_pu - \overline{\xi}_pG + \xi_pG\]
\[= 5BFcf + (2B(E - (1 - \theta))F)\overline{\xi}_p - gB\overline{\xi}_p + g\xi_p\]
\[= B(5Fc_f + (2(E - (1 - \theta))F)\overline{\xi}_p - g\overline{\xi}_p + g\xi_p)\]
\[= B(5Fc_f + (2E - 2(1 - \theta)F - g)\overline{\xi}_p + g\xi_p).\]

Jika \(P = u_e \leq G\), maka dari Persamaan (3.2.4) dan Persamaan (3.2.1) diperoleh
\[C(F) = 5BFcf + \xi_pP + (\overline{\xi}_p - \xi_p)(P - G)^+\]
\[= 5BFcf + \xi_pu_e\]
\[= 5BFcf + (2B(E - (1 - \theta))F)\xi_p\]
\[= B(5Fc_f + (2E - 2(1 - \theta)F)\xi_p).\]

Jika \(P = 0\), maka dari Persamaan (3.2.4) diperoleh
\[C(F) = 5BFcf + \xi_pP + (\overline{\xi}_p - \xi_p)(P - G)^+\]
\[= 5BFcf.\]

Jadi akan diperoleh Persamaan (3.2.17).

Lampiran 9 Fungsi \(C(F)\) pada Persamaan (3.2.17) minimum pada \(F = b_g\) atau \(F = b_h\)

Misalkan
\[C_i(F) = B\left\{5Fc_f + (2E + 5D - 5F - g)\overline{\xi}_p + g\xi_p\right\},\]
\[C_i(F) = B\left\{5Fc_f + (2E - 2(1 - \theta)F - g)\overline{\xi}_p + g\xi_p\right\},\]
\[C_i(F) = B\left\{5Fc_f + (2E - 2(1 - \theta)F)\xi_p\right\},\]
\[C_i(F) = 5BFcf_i.\]

maka Persamaan (3.2.17) menjadi
\[C(F) = \begin{cases}
C_1(F), & 0 \leq F \leq b_d, \\
C_0(F), & b_d < F \leq b_h, \\
C_3(F), & b_h < F \leq b_c, \\
C_3(F), & b_c < F.
\end{cases}\]

Untuk menentukan titik minimum fungsi \(C(F)\), terlebih dahulu akan ditentukan kemiringan \(C(F)\) pada setiap selang dan nilai \(C(F)\) pada setiap ujung selang. Dengan \(\xi_p < c_f < \overline{\xi}_p\), maka

- \(C_i(F)\) mempunyai kemiringan negatif sebesar \(5B(c_f - \overline{\xi}_p)\) dengan
\[C_i(b_g) = B\left\{5b_gc_f + (2E + 5D - 5b_g - g)\overline{\xi}_p + g\xi_p\right\}\]
\[= B\left\{5\left(\frac{5D}{3 + 2\theta}\right)c_f + (2E + 5D - 5\left(\frac{5D}{3 + 2\theta}\right) - g)\overline{\xi}_p + g\xi_p\right\}\]
\[= B\left\{5\left(\frac{5D}{3 + 2\theta}\right)(c_f - \overline{\xi}_p) + (2E + 5D)\overline{\xi}_p - (\overline{\xi}_p - \xi_p)g\right\}\]

- \(C_0(F)\) mempunyai kemiringan positif atau negatif bergantung pada nilai \(5c_f - 2(1 - \theta)\overline{\xi}_p\).
\[C_e(b_j) = B \left(5b_c c_j + (2E - 2(1-\theta)b_j - g)\sigma_p + g\xi_p \right) \]
\[= B \left(5 \left(\frac{SD}{3 + 2\theta} \right) c_j + (2E - 2(1-\theta) \left(\frac{SD}{3 + 2\theta} \right) - g)\sigma_p + g\xi_p \right) \]
\[= B \left(5 \left(\frac{SD}{3 + 2\theta} \right) c_j - \sigma_p \right) + (2E + 5D)\sigma_p - \left(\sigma_p - \xi_p \right) g \]
dan
\[C_i(b_h) = B \left(5b_c c_j + (2E - 2(1-\theta)b_h - g)\sigma_p + g\xi_p \right) \]
\[= B \left(5 \left(\frac{2E - g}{2(1-\theta)} \right) c_j + (2E - 2(1-\theta) \left(\frac{2E - g}{2(1-\theta)} \right) - g)\sigma_p + g\xi_p \right) \]
\[= B \left(5 \left(\frac{2E - g}{2(1-\theta)} \right) c_j + g\xi_p \right) \]

- \[C_3(F) \] mempunyai kemiringan positif sebesar \(5Bc_j - 2(1-\theta)\sigma_p \) dengan

\[C_3(b_h) = B \left(5b_c c_j + (2E - 2(1-\theta)b_h)\xi_p \right) \]
\[= B \left(5 \left(\frac{2E - g}{2(1-\theta)} \right) c_j + (2E - 2(1-\theta) \left(\frac{2E - g}{2(1-\theta)} \right) - g)\xi_p \right) \]
\[= B \left(5 \left(\frac{2E - g}{2(1-\theta)} \right) c_j + g\xi_p \right) \]
dan
\[C_4(b_h) = B \left(5b_c c_j + (2E - 2(1-\theta)b_h)\xi_p \right) \]
\[= B \left(5 \left(\frac{E}{1-\theta} \right) c_j + (2E - 2(1-\theta) \left(\frac{E}{1-\theta} \right) - g)\xi_p \right) \]
\[= 5B \left(\frac{E}{1-\theta} \right) c_j \]

Jika \(5c_j \geq 2(1-\theta)\sigma_p \), maka \(C_3(F) \) mempunyai kemiringan positif. Karena \(C_3(b_h) = C_4(b_h) \), \(C_6(b_h) = C_4(b_h) \) dan \(C_5(b_c) = C_3(b_c) \), maka \(C(F) \) minimum pada \(F = b_d \).

Jika \(5c_j < 2(1-\theta)\sigma_p \), maka \(C_3(F) \) mempunyai kemiringan positif. Karena \(C_3(b_h) = C_6(b_h) \), \(C_6(b_h) = C_4(b_h) \) dan \(C_5(b_c) = C_3(b_c) \), maka \(C(F) \) minimum pada \(F = b_h \).

Lampiran 10 Bukti pertaksamaan \(C_1 \left(\left[b_d \right] \right) \leq C_6 \left(\left[b_d \right] \right) \) pada Persamaan (3.2.18) ekuivalen dengan

\(\left(b_d - \left[b_d \right] \right) \sigma_p < \left[5c_j - 2(1-\theta)\sigma_p \right] (3 + 2\theta) \)

Jika \(C_1(F) = B \left(5Fc_j + (2E + 5D - 5F - g)\sigma_p + g\xi_p \right) \), dan
\[C_6(F) = B \left(5Fc_j + (2E - 2(1-\theta)F - g)\sigma_p + g\xi_p \right) \]
maika
\[C_1 \left(\left[b_d \right] \right) < C_6 \left(\left[b_d \right] \right) \Leftrightarrow \left(b_d - \left[b_d \right] \right) \sigma_p < \left[5c_j - 2(1-\theta)\sigma_p \right] (3 + 2\theta) \]
Bukti : \(C_1 \left(\left[b_d \right] \right) < C_6 \left(\left[b_d \right] \right) \)
\[B \left(5 \left[b_d \right] c_f + (2E + 5D - 5) \left[b_d \right] - g \right) e_p + g \xi_p \left[b_d \right] \]
\[< B \left(5 \left[b_d \right] c_f + (2E - 2(1 - \theta) \left[b_d \right] - g \right) e_p + g \xi_p \left[b_d \right] \]

\[\left(5 \left[b_d \right] c_f + (2E + 5D - 5) \left[b_d \right] - g \right) e_p + g \xi_p \left[b_d \right] \)
\[< \left(5 \left[b_d \right] c_f + (2E - 2(1 - \theta) \left[b_d \right] - g \right) e_p + g \xi_p \left[b_d \right] \]

\[(5D - 5) \left[b_d \right] e_p + 2(1 - \theta) \left[b_d \right] e_p < 5 \left(c_f \right) \left[b_d \right] - 5 \left[b_d \right] c_f \]

\[(5D - 5) \left[b_d \right] e_p + 2(1 - \theta) \left[b_d \right] e_p < 5 \left(c_f \right) \left[b_d \right] - 5 \left[b_d \right] c_f \]

\[L_\text{ampaan 11} \quad \text{Bukti pertaksamaan } C_a \left(\left[b_h \right] \right) < C_\xi \left(\left[b_h \right] \right) \text{ pada Persamaan (3.2.19) ekuivalen dengan} \]

\[\left(b_h - \left[b_h \right] \right) e_p + \left(\left[b_h \right] - b_h \right) \xi_p < 5c_f / 2(1 - \theta) \]

\[\left(b_h - \left[b_h \right] \right) e_p + \left(\left[b_h \right] - b_h \right) \xi_p < 5c_f / 2(1 - \theta) \]

\[\text{Bukti: } C_a \left(\left[b_h \right] \right) < C_\xi \left(\left[b_h \right] \right) \]

\[\left(b_h - \left[b_h \right] \right) e_p + \left(\left[b_h \right] - b_h \right) \xi_p < 5c_f / 2(1 - \theta) \]
Lampiran 12 Fungsi $C(F)$ pada Persamaan (3.2.20) minimum pada $F = b_d$ atau $F = b_e$

Misalkan

$C_4(F) = B(5Ec_f + (2E + 5D - 5F)e_p)$,

$C_7(F) = B(5Ec_f + (2E - (1 - \theta)F)e_p)$ dan

$C_3(F) = 5BFc_f$,

maka Persamaan (3.2.20) menjadi

$$C(F) = \begin{cases}
C_4(F), & 0 \leq F \leq b_d, \\
C_7(F), & b_d < F \leq b_e, \\
C_3(F), & b_e < F.
\end{cases}$$

Untuk menentukan titik minimum fungsi $C(F)$, terlebih dahulu akan ditentukan kemiringan $C(F)$ pada setiap selang dan nilai $C(F)$ pada setiap ujung selang. Dengan $e_p < c_f < e_p$, maka

- $C_4(F)$ mempunyai kemiringan negatif sebesar $5B(e_f - e_p)$ dengan

$$C_4(b_d) = B(5b_d c_f + (2E + 5D - b_d e_p) e_p)$$

$$= B(5\left(\frac{SD}{3 + 2\theta}\right)c_f + (2E + 5D - 5\left(\frac{SD}{3 + 2\theta}\right)e_p))$$

$$= B(5\left(\frac{SD}{3 + 2\theta}\right)(c_f - e_p) + (2E + 5D)e_p)$$

- $C_7(F)$ mempunyai kemiringan positif atau negatif bergantung pada nilai $5c_f - 2(1 - \theta)e_p$.

$$C_7(b_d) = B(5b_d c_f + (2E - (1 - \theta)b_d) e_p)$$

$$= B(5\left(\frac{SD}{3 + 2\theta}\right)c_f + (2E - (1 - \theta)\left(\frac{SD}{3 + 2\theta}\right)e_p))$$

$$= B(5\left(\frac{SD}{3 + 2\theta}\right)(c_f - e_p) + (2E + 5D)e_p)$$

dan

$$C_7(b_e) = B(5b_e c_f + (2E - (1 - \theta)b_e) e_p)$$

$$= B(5\left(\frac{SD}{3 + 2\theta}\right)c_f + (2E - (1 - \theta)\left(\frac{SD}{3 + 2\theta}\right)e_p))$$

$$= 5B\left(\frac{E}{1 - \theta}\right)c_f$$

- $C_3(F)$ mempunyai kemiringan positif sebesar $5Bc_f$ dengan

$$C_3(b_e) = 5Bb_e c_f$$

$$= 5B\left(\frac{E}{1 - \theta}\right)c_f$$

Jika $5c_f \geq 2(1 - \theta)e_p$, maka $C_3(F)$ mempunyai kemiringan positif. Karena $C_4(b_d) = C_7(b_d)$, dan $C_3(b_e) = C_3(b_e)$, maka $C(F)$ minimum pada $F = b_d$.

Jika $5c_f < 2(1 - \theta)e_p$, maka $C(F)$ mempunyai kemiringan positif. Karena $C_4(b_d) = C_7(b_d)$, dan $C_3(b_e) = C_3(b_e)$, maka $C(F)$ minimum pada $F = b_e$.

Lampiran 13 Bukti pertaksamaan $C_4 ([h_e]) < C_7 ([h_e])$ pada Persamaan (3.2.21) ekuivalen dengan

\[(5D - 5[h_d] - [h_d])\varphi_p < 5c_{ef} / 2(1 - \theta)\]

Jika $C_4(F) = B(5Fc_f + (2E + 5D - 5F)\varphi_p)$ dan $C_7(F) = (5Fc_f + (2E - 2(1 - \theta)F)\varphi_p)$ maka

\[C_4 ([h_e]) < C_7 ([h_e]) \iff (5D - 5[h_d] - [h_d])\varphi_p < 5c_{ef} / 2(1 - \theta) .\]

Bukti :

\[
\begin{align*}
& B(5[h_d]e_f + (2E + 5D - 5[h_d])\varphi_p) < B(5[h_d]e_f + (2E - 2(1 - \theta)[h_d])\varphi_p) \\
& \iff 5[h_d]e_f + (5D - 5[h_d])\varphi_p < 5[h_d]e_f \\
& \iff (5D - 5[h_d] + 2(1 - \theta)[h_d])\varphi_p < 5[h_d]e_f - 5[h_d]e_f \\
& \iff (5D - 5[h_d] + 2(1 - \theta)[h_d])\varphi_p < 5c_f - 2(1 - \theta)\varphi_p \\
& \iff 5D\varphi_p - (5 - 2(1 - \theta))[h_d]e_f < 5c_f - 2(1 - \theta)\varphi_p \\
& \iff 5D\varphi_p - (3 + 2\theta)[h_d]e_f < 5c_f - 2(1 - \theta)\varphi_p \\
& \iff \frac{5c_f - 2(1 - \theta)\varphi_p}{(3 + 2\theta)} < 5c_{ef} - 2(1 - \theta)\varphi_p \\
& \iff \frac{5c_f - 2(1 - \theta)\varphi_p}{(3 + 2\theta)} < \frac{5c_{ef} - 2(1 - \theta)\varphi_p}{(3 + 2\theta)}.
\end{align*}
\]

Lampiran 14 Bukti pertaksamaan $C_7 ([h_e]) < C_3 ([h_e])$ pada Persamaan (3.2.22) ekuivalen dengan

\[b_e - [h_e] < 5c_{ef} / 2(1 - \theta)\varphi_p\]

Jika $C_7(F) = B(5Fc_f + (2E - 2(1 - \theta)F)\varphi_p)$ dan $C_3(F) = 5BFc_f$, maka

\[C_7 ([h_e]) < C_3 ([h_e]) \iff b_e - [h_e] < 5c_{ef} / 2(1 - \theta)\varphi_p .\]

Bukti :

\[
\begin{align*}
& B(5[h_e]e_f + (2E - 2(1 - \theta)[h_e])\varphi_p) < 5B[h_e]e_f \\
& \iff 5[h_e]e_f + (2E - 2(1 - \theta)[h_e])\varphi_p < 5[h_e]e_f \\
& \iff (2E - 2(1 - \theta)[h_e])\varphi_p < 5[h_e]e_f - 5[h_e]e_f \\
& \iff (2E - 2(1 - \theta)[h_e])\varphi_p < 5c_f - 2(1 - \theta)\varphi_p \\
& \iff \frac{(2E - 2(1 - \theta)[h_e])\varphi_p}{2(1 - \theta)} < \frac{5c_f}{2(1 - \theta)} \\
& \iff \frac{E - [h_e]}{2(1 - \theta)}\varphi_p < \frac{5c_f}{2(1 - \theta)} \\
& \iff \frac{b_e - [h_e]}{2(1 - \theta)}\varphi_p < \frac{5c_f}{2(1 - \theta)} \\
& \iff b_e - [h_e] < 5c_{ef} / 2(1 - \theta)\varphi_p.
\end{align*}
\]
Lampiran 15 *Workstretch* yang dihasilkan dari algoritme pembangkit jadwal dan modifikasinya untuk Contoh 4

<table>
<thead>
<tr>
<th></th>
<th>Banyaknya workstretch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 hr</td>
</tr>
<tr>
<td>a. Perusahaan dengan hari awal usaha hari Senin</td>
<td></td>
</tr>
<tr>
<td>- Algoritme pembangkit jadwal</td>
<td>8</td>
</tr>
<tr>
<td>- Algoritme pembangkit jadwal yang dimodifikasi</td>
<td>43</td>
</tr>
<tr>
<td>b. Perusahaan dengan hari awal usaha hari Minggu</td>
<td></td>
</tr>
<tr>
<td>- Algoritme pembangkit jadwal</td>
<td>19</td>
</tr>
<tr>
<td>- Algoritme pembangkit jadwal yang dimodifikasi</td>
<td>8</td>
</tr>
</tbody>
</table>