"Karya ini penulis persembahkan kepada orang-orang tercinta yang selalu berdo'a dan berusaha dengan penuh pengorbanan untuk kemajuan penulis, yaitu Indah istriku, Bapak Kartorejo, Mbok Gemi Sutari, Mas Pujo, Mbak Surati, Mas Sarno, Adik Sisar dan Bapak Drh. Abadi Soetisna Msi selaku sponsorku"

Dan scandainya pohon-pohon dibumi menjadi pena dan laut menjadi tinta. Ditambahkan kepadanya tujuh laut lagi sesudah (keringnya), niscaya tidak akan habis-habisnya dituliskan kalimat Allah, sesungguhnya Allah Maha Perkasa lagi maha bijaksana. (QS : Luqman :27)
STUDI KASUS PEMBERIAN PROBIOTIK "S"
TERHADAP KASUS KEMBUNG PADA SAPI PERAH FRIES HOLLAND
(FH) DI PETERNAKAN METASARI FARM CIMANDE BOGOR

SKRIPSI

Oleh
LANGGENG PRIYANTO
B.01497131

FAKULTAS KEDOKTERAN HEWAN
INSTITUT PERTANIAN BOGOR
2001
STUDI KASUS PEMBERIAN PROBIOTIK “S”
TERHADAP KASUS KEMBUNG PADA SAPI PERAH FRIES HOLLAND
(FH) DI PETERNAKAN METASARI FARM CIMANDE BOGOR

SKRIPSI

Diajukan sebagai salah satu syarat untuk memperoleh
gelar sarjana kedokteran hewan pada Fakultas Kedokteran Hewan
Institut Pertanian Bogor

Oleh
LANGGENG PRIYANTO
B.01497131

FAKULTAS KEDOKTERAN HEWAN
INSTITUT PERTANIAN BOGOR
2001
Judul : Studi Kasus Pemberian Probiotik “S” Terhadap Kasus Kembung Pada Sapi Perah Fries Holland (FH) di Peternakan Metasari Farm Cimande Bogor
Nama : Langgeng Priyanto
NRP : B.01497131

Menyetujui,

Dosen pembimbing I

Drs. Abadi Soetisna, M.Si
NIP. 130422700

Dosen pembimbing II

Drs. Mins Rachminiwati, M.Si, Ph.D
NIP.131473989

Mengetahui
Pembantu Dekan I
Fakultas Kedokteran Hewan
Institut Pertanian Bogor

Dr. Drh. I Wayan T. Wibawan, MS
NIP. 131129090

Tanggal : 11 Januari 2002
RINGKASAN

Sejak tahun 1970 penggunaan antibiotik di Indonesia khususnya pada unggas sangat intensif, tercatat sekitar 341,7 ton antibiotik digunakan terutama untuk memacu pertumbuhan pada ternak. Di Amerika Serikat sendiri, yang merupakan negara maju, diperkirakan 80% unggas, 75% babi, 60% sapi potong dan 75% anak sapi perah mendapat antibiotik dengan 3 tujuan. Dosis relatif besar untuk mengobati hewan sakit (therapeutically), dosis medium untuk mencegah penyakit (prophylactically) dan dosis kecil (sub therapeutically) untuk memperbaiki efisiensi penggunaan ransum dan laju pertumbuhan (Suharsono, 1999).

Probiotik merupakan substansi yang dikeluarkan oleh suatu mikroba yang memacu pertumbuhan mikroba lainnya (Lilley dan Stillwell, 1965). Sedangkan menurut Fuller (1992), probiotik adalah feed supplement mikroba hidup yang menguntungkan dan mempengaruhi induk semang malah perbaikan keseimbangan mikroorganisme dalam saluran pencernaan.

Probiotik “S” merupakan suplemen pakan yang terdiri dari beberapa koloni mikroba nonpathogen hidup yang berasal dari rumen, koloni tanah dan diperkaya dengan bakteri inner rhizopher, yang kaya akan bakteri fiksasi nitrogen non simbiotik yang berfungsi untuk meningkatkan nilai kecema, menurunkan proporsi asam laktat, merubah metanogenesis, memindahkan molekul-molekul toksik dan memperbaiki stabilitas pH dan merubah proporsi volatil fatty acid (VFA) (Suharto, 1999).

Penelitian ini bertujuan untuk mengetahui pengaruh penggunaan probiotik “S” terhadap kasus kembung (tympani) pada sapi perah FH di peternakan Metasari Farm Cimade Bogor.

Penelitian terdiri dari 2 tahap. Tahap I, penelitian tingkat kejadian kasus kembung pada sapi FH tanpa pemberian probiotik “S”. Tahap II, penelitian tingkat kejadian kasus kembung dengan pemberian probiotik “S” di dalam konsentrat sebanyak 5 gram / kg konsentrat / hari / ekor. Penelitian ini menggunakan 25 ekor sapi FH laktasi dan 5 ekor sapi dara FH.

Hasil penelitian menunjukan adanya hubungan antara pemberian probiotik “S” dengan yang tidak menggunakan probiotik “S”...
Riwayat Hidup

Selama Penulis menggeluti pendidikan di Fakultas Kedokteran Hewan Institut Pertanian Bogor, Penulis pernah aktif di HIMPRO RUMINASIA sambil bekerja di Peternakan Metasari Farm Cimande Bogor.
KATA PENGANTAR

Puji dan syukur penulis ucapkan segala rahmat karunia serta nikmat yang telah Allah SWT berikan sehingga penulis akhirnya dapat menyelesaikan tugas akhir ini. Shalawat serta salam semoga tetap Allah SWT limpahkan Kehadirat Nabi Muhammad SAW.

Penulis sadar bahwa tulisan ini jauh dari sempurna, oleh karena itu penulis menerima dan mengharapkan saran dan kritik demi kemajuan bersama. Jadikan tantangan sebagai motivasi untuk menentukan inovasi terbaru.
Sebagai prakata terakhir dari penulis, semoga karya tulis ini dapat bermanfaat bagi semua pihak. Amin. Mohon maaf dari segala kekurangan,

Penulis
DAFTAR ISI

<table>
<thead>
<tr>
<th>I. Pendahuluan</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II. Tinjauan pustaka</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Diskripsi probiotik</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Probiotik “S”</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Pencernaan dan kecemaan</td>
<td>12</td>
</tr>
<tr>
<td>2.4 Pemberian ransum</td>
<td>13</td>
</tr>
<tr>
<td>2.5 Kembung (Tympani, Bloat, Meteorismus)</td>
<td>14</td>
</tr>
<tr>
<td>2.6 Mekanisme kembung</td>
<td>18</td>
</tr>
<tr>
<td>2.7 Fisiologi saluran pencernaan</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>III. Materi dan metode penelitian</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Waktu dan tempat penelitian</td>
<td>28</td>
</tr>
<tr>
<td>3.2 Materi penelitian</td>
<td>28</td>
</tr>
<tr>
<td>3.3 Metode penelitian</td>
<td>29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IV. Hasil dan pembahasan</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Hasil</td>
<td>31</td>
</tr>
<tr>
<td>4.2 Pembahasan</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V. Kesimpulan dan saran</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Kesimpulan dan saran</td>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VI. Daftar pustaka</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI. Daftar pustaka</td>
<td>40</td>
</tr>
</tbody>
</table>
DAFTAR TABEL

<table>
<thead>
<tr>
<th>No.</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Enzim-enzim yang dihasilkan oleh probiotik “S”</td>
<td>8</td>
</tr>
<tr>
<td>2.</td>
<td>Beberapa bakteri yang penting di rumen</td>
<td>10</td>
</tr>
<tr>
<td>3.</td>
<td>Kandungan nutrien pakan yang digunakan dipeternakan Metasari Farm</td>
<td>29</td>
</tr>
<tr>
<td>4.</td>
<td>Data jumlah kasus kembung pada sapi FH tanpa pemberian probiotik “S”</td>
<td>34</td>
</tr>
<tr>
<td>5.</td>
<td>Data jumlah kasus kembung pada sapi FH dengan pemberian probiotik “S”</td>
<td>35</td>
</tr>
<tr>
<td>No.</td>
<td>Teks</td>
<td>Halaman</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>1.</td>
<td>Bagan kerja probiotik “S” dalam rumen</td>
<td>11</td>
</tr>
<tr>
<td>2.</td>
<td>Perubahan karbohidrat menjadi piruvat dalam rumen</td>
<td>27</td>
</tr>
<tr>
<td>No.</td>
<td>Teks</td>
<td>Halaman</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>1.</td>
<td>Grafik jumlah kasus kembung pada sapi FH tanpa pemberian probiotik “S”</td>
<td>34</td>
</tr>
<tr>
<td>2.</td>
<td>Grafik jumlah kasus kembung pada sapi FH dengan pemberian probiotik “S”</td>
<td>35</td>
</tr>
</tbody>
</table>
I. PENDAHULUAN

1.1 Latar Belakang

Sejak tahun 1970 penggunaan antibiotik di Indonesia khususnya pada unggas sangat intensif tercatat sekitar 341,7 ton antibiotik digunakan terutama untuk memacu pertumbuhan pada ternak. Di Amerika Serikat sendiri, yang merupakan negara maju, diperkirakan 80 % unggas, 75 % babi, 60 % sapi potong dan 75 % anak sapi perah mendapat antibiotik dengan 3 tujuan dosis relatif besar untuk mengobati hewan sakit (therapeutically), dosis medium untuk mencegah penyakit (prophylactically) dan dosis kecil (sub therapeutically) untuk memperbaiki efisiensi penggunaan ransum dan laju pertumbuhan.

Secara keseluruhan penggunaan antibiotik untuk hewan di Amerika Serikat dapat mencapai 45 –55 % dari jumlah antibiotik yang ada. Antibiotik yang biasa digunakan pada hewan antara lain aureomisin, basitrasin, bambermisin, lincomisin, penisilllin, streptomisin, tetrasiklin, tylosin dan lain-lain. Akan tetapi beberapa antibiotik seperti virginamisin, basitrasin, spiramisin dan tylosin di negara Eropa sejak awal Januari 1999 di larang penggunaannya (Suharsono, 1999). Antibiotik tersebut dalam penggunaannya di lapangan ada yang dikombinasikan dengan vitamin ada pula yang tidak. Persoalan yang timbul ialah penggunaan dengan dosis kecil dalam waktu yang panjang, karena sudah tidak disangka lagi akan menimbulkan residu pada daging, susu maupun telur, terutama golongan antibiotik tersebut bukan alami (sintetik). Kondisi ini mendorong para ilmuwan untuk mencari alternatif lain, untuk mencegah adanya residu atau zat
toksik yang dikandung oleh beberapa antibiotik atau metabolitnya yang berupa karsinogenik, yang berbahaya bagi kesehatan manusia.

Dalam upaya menjamin keamanan produk hewan tersebut sudah saatnya mencurahkan perhatian yang lebih besar pada bidang pengobatan alternatif pada ternak yang tidak menimbulkan dampak negatif terhadap masyarakat veteriner (konsumen). Saat ini banyak mikroorganisme dimanfaatkan untuk kesehatan manusia maupun hewan, bahkan tumbuh-tumbuhan. Kelompok mikroorganisme tersebut bekerja menekan pertumbuhan mikroorganisme pathogen dan dikenal sebagai probiotik.

Probiotik merupakan substansi yang dikeluarkan oleh suatu mikroba yang memacu pertumbuhan mikroba lainnya (Lilley dan Stillwell, 1965). Sedangkan menurut Fuller (1992), probiotik adalah *feed suplement* mikroba hidup yang menguntungkan dan mempengaruhi induk semang melalui perbaikan keseimbangan mikroorganisme dalam saluran pencernaan. Di bidang peternakan muncul istilah probiotik sebagai imbuhan pakan yang bermanfaat untuk kesehatan, produksi ternak serta mencegah penyakit (Suharsono, 1999)

Prinsip kerja probiotik adalah mikroorganisme hidup *nonpatogenik* yang berasal dari mikroorganisme *indigenous* yang mekanisme kerjanya meudesak mikroorganisme *nonindigenous* keluar dari ekosistem saluran pencernaan, menggantikan lokasi mikroorganisme *patogenik* (translokasi) di dalam saluran pencernaan. Karena probiotik berasal dari mikroorganisme *nonpatogenik indigenous*, maka proses translokasi adalah alamiah dalam ekosistem usus. Mikroba *pathogen nonindigenous* merupakan benda asing, sehingga mereka didesak keluar dari saluran

Probiotik “S” merupakan suplemen pakan yang terdiri dari beberapa koloni mikroba nonpathogen hidup yang berasal dari rumen, koloni tanah dan diperkaya dengan bakteri inner rhizopher, yang kaya akan bakteri fiksasi nitrogen non simbiotik yang berfungsi untuk meningkatkan nilai kecernaan, menurunkan proporsi asam laktat, merubah metanogenesis, memindahkan molekul-molekul toksik dan memperbaiki stabilitas pH dan merubah proporsi volatil fatty acid (VFA) (Suharto, 1999). Dari konsep probiotik “S” yang mampu menurunkan asam laktat dan merubah metanogenesis menjadi landasan penelitian ini, bahwa probiotik “S” mempunyai potensi digunakan untuk mencegah kasus kembung pada sapi FH.

1.2 Tujuan Penelitian

Penelitian ini bertujuan untuk mengetahui seberapa besar pengaruh penggunaan probiotik “S” terhadap kasus kembung (tympani) pada sapi perah FH di Peternakan Metasari Farm Cimande Bogor.
Manfaat dari penelitian ini diharapkan dapat memberikan informasi tentang penggunaan / penambahan probiotik “S” di dalam mengantisipasi kasus kembung (tympani) pada sapi perah FH di peternakan-peternakan yang ada di sekitar kita.
II. TINJAUAN PUSTAKA

2.1 Deskripsi Probiotik

Probiotik berasal dari bahasa Yunani yang artinya “untuk hidup”, dan merupakan substansi yang dikeluarkan oleh suatu mikroba yang memacu pertumbuhan mikroba lainnya (Lilley dan Stillwell, 1965). Sedangkan menurut Fuller (1992), probiotik adalah *feed supplement* mikroba hidup yang menguntungkan dan mempengaruhi induk semang melalui perbaikan keseimbangan mikroorganisme dalam saluran pencernaan. Di bidang peternakan muncul istilah probiotik sebagai imbuhan pakan yang bermanfaat untuk kesehatan, produksi ternak serta mencegah penyakit.

Prinsip kerja probiotik adalah mikroorganisme hidup *nonpatogenik* yang berasal dari mikroorganisme *indigenous* dan mekanisme kerjanya menuduhk mikroorganisme *nonindigenous* keluar dari ekosistem saluran pencernaan, menggantikan lokasi mikroorganisme *patogenik* (translokasi) di dalam saluran pencernaan. Karena probiotik berasal dari mikroorganisme *nonpatogenik indigenous*, maka proses translokasi adalah alamiah dalam ekosistem usus. Mikroba *pathogen nonindigenous* merupakan benda asing, sehingga mereka didesak keluar dari saluran pencernaan. Dengan demikian, mekanisme probiotik ialah mempertahankan keseimbangan, mengelaminasi mikroorganisme yang tidak diharapkan atau bakteri *patogenik* dari induk semang (Soeharsono, 1994). Jadi fungsi probiotik adalah meningkatkan laju pertumbuhan dan meningkatkan kesehatan ternak. Probiotik tidak hanya menjaga keseimbangan ekosistem, tetapi juga...
menyediakan enzim-enzim yang mampu mencerna serat kasar, protein, lemak dan mendetoksifikasi zat racun. Probiotik terdiri atas bakteri dan kamir (Shin et al., 1989).

1.2 Probiotik “S”

Starter mikroba atau “S” adalah probiotik hasil bioteknologi yang dibuat dari mikroba rumen sapi yang dicampur tanah, akar rambut dan daun serta dahan pohon. Koloni tersebut memiliki mikroba yang spesifik dengan fungsi yang berbeda-beda, serta lipolitik (Cellulomonas, Clostridium thermocellosa), lignolitik dan proteolitik (Klepsistella, azospirium brazilllsenis). Hasil analisis Argrarius coprinus probiotik “S” adalah sebagai berikut: kadar air (9,71 %), protein kasar (10,42 %), lemak (0,11 %), serat kasar (8,37 %) dan abu (51,54 %) (Zaenudin dkk, 1995).

Pada ternak ruminansia nilai kecurnaannya sangat tergantung pada aktivitas mikroorganisme. Pakan ternak yang mengandung serat kasar yang tinggi dan protein yang rendah menyebabkan produktivitas ternak menjadi rendah (Wibisono, 1997). Kombinasi mikroba tertentu kalau dimasukan kedalam rumen sapi akan

Bakteri-bakteri probiotik "S" akan menghasilkan enzim yang berfungsi untuk memecah stuktur karbohidrat (selulosa, hemiselulosa, lignin) dan protein serta lemak. Jika pakan ditambahkan probiotik "S" maka nutrien dari bahan pakan tersebut akan dipecah menjadi nutrisi secara enzymatis atau melalui sintesa protein mikroba dan langsung dapat diserap oleh tubuh ternak (Suharto, B. 1995).

Penggunaan probiotik dalam pakan dapat meningkatkan fermentasi bahan organik terutama komponen serat dan sintesa protein mikroba rumen, sehingga dapat memberikan sumber energi tersedia yang lebih tinggi dan memberikan kecukupan protein ternak. Dengan demikian integritas probiotik ke dalam pakan ternak ruminansia diharapkan dapat meningkatkan sintesis mikroba serta nilai kecermana bahan organik pakan (Suharto, A. 1995).

Beberapa produk yang dihasilkan oleh probiotik "S" yang akan dimanfaatkan oleh ternak sebagai sumber energi, sintesis protein mikrobial seperti tersaji pada tabel 1. sebagai berikut (Suharto, A. 1995).
<table>
<thead>
<tr>
<th>No</th>
<th>Enzim</th>
<th>Substrat</th>
<th>Produk Akhir</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LIGNIN Lignase</td>
<td>- Lignin -Fenol oksidase -Peroksidase</td>
<td>- kornifelsidase - korniferilalkohol</td>
</tr>
<tr>
<td>2</td>
<td>SELULOSA Sellulase</td>
<td>- Sellulosa</td>
<td>- Monosakarida dan Disakarida</td>
</tr>
<tr>
<td>3</td>
<td>HEMISELULOSA Hemiselulase</td>
<td>- Homoglikan Homoglikan</td>
<td>- Xylase, manosa, dan Galaktsosa Pentosa, Heksosa Glukononik</td>
</tr>
<tr>
<td>4</td>
<td>Protein Protease Protease Polipeptidase Dipeptidase Deaminase Transaminase</td>
<td>- Konfesi protein Protein Polipeptida Dipeptida Asam amino Asam amino</td>
<td>- Asam amino Polipeptida dan Dipeptida Dipeptida dan Asam amino Asam amino Alkohol, NH₃ dan CO₂ Asam amino</td>
</tr>
<tr>
<td>5</td>
<td>LIPIDA Lipida Lipase</td>
<td>- Lipid Pospolipid</td>
<td>- Gliserol Dan Asam lemak Fospat An-Organik Dan Lemak</td>
</tr>
<tr>
<td>6</td>
<td>KARBOHIDRAT Amilase Maltase Sukrase Laktat dehidrogenase Dekstranase</td>
<td>- Menghidrolisis Maltsa Sukrosa Asam laktat Dekstaru</td>
<td>- Dekstrin dan Maltosa Glukosa Glukosa Dan Fruktosa Asam piruvat Glukosa</td>
</tr>
<tr>
<td>7</td>
<td>MINERAL Sulfatase Fosfatase Phytase</td>
<td>- Sulfat Ester Fosfat Ester Phytin</td>
<td>- Sulfat An-Organik Fosfat An-Organik dan alkohol Dan mineral</td>
</tr>
<tr>
<td>8</td>
<td>Lain-lain Urease Bakteri Nitrogen fiksasi non simbiotik</td>
<td>- Urea</td>
<td>- NH₃ + CO₂ Meningkatkan nilai tukar kation</td>
</tr>
</tbody>
</table>

Sumber: Suharto (1995) Lembah Hijau Multi Farm, Solo
Probiotik “S” mempunyai fungsi efek metabolis (metabolic effect), efek merangsang pembentukan zat makanan (nutrient sparing effect) dan mampu mengontrol penyakit saluran pencernaan (disease control). Suatu produk mikroorganisme baru disebut probiotik bila mempunyai kriteria-kriteria yaitu dapat diproduksi dalam skala industri, stabil dalam waktu lama bila disimpan dilapangan, mikroorganisme harus dapat kembali hidup didalam tubuh dan harus dapat memberikan manfaat dan tidak berbahaya bagi induk semangnya (host)(Suharsono, 1997).

Penambahan probiotik “S” dalam pakan memberikan keuntungan antara lain biaya pakan dapat ditekan karena penggunaan pakan menjadi lebih efisien dan konversi pakan lebih baik, bobot badan meningkat, ternak lebih sehat dan tidak mudah terserang penyakit, sanitasi kandang lebih baik karena bebas dari bau amonia (NH₃) dan (H₂S). Keunggulan Probiotik “S” yaitu stabil pada suhu 80-90 °C dan bisa disimpan pada suhu kamar (25 °C) dapat stabil dalam waktu yang lama.
<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Morfologi</th>
<th>Grams</th>
<th>Motilitas</th>
<th>Basic products of fermentasi</th>
<th>Substrat</th>
<th>product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobacilli</td>
<td>Long and short</td>
<td>+</td>
<td>-</td>
<td>Glucose</td>
<td>L, A</td>
<td></td>
</tr>
<tr>
<td>Eubacterium ruminantium</td>
<td>Small rods</td>
<td>-</td>
<td>-</td>
<td>Glucose</td>
<td>A,Bu,F,L,CO₂,H₂</td>
<td></td>
</tr>
<tr>
<td>Methanobacterium ruminantium</td>
<td>Coccus-like</td>
<td>+</td>
<td>-</td>
<td>H₂, CO₂</td>
<td>CH₄</td>
<td></td>
</tr>
<tr>
<td>Lachnoepira multiparus</td>
<td>Bent rods</td>
<td>+</td>
<td>+</td>
<td>Glucose</td>
<td>A,E,F,L,H₂,CO₂</td>
<td></td>
</tr>
<tr>
<td>Bacteroides ruminicola</td>
<td>Long rods or coccus-like cells</td>
<td>-</td>
<td>-</td>
<td>Glucose</td>
<td>A,F,S,CO₂</td>
<td></td>
</tr>
<tr>
<td>Bacteroides amyplphilus</td>
<td>Coccus-like cells</td>
<td>-</td>
<td>-</td>
<td>Starch</td>
<td>A,F,S,CO₂</td>
<td></td>
</tr>
<tr>
<td>Bacteroides succinogenes</td>
<td>Rods sometimes bent at ends</td>
<td>-</td>
<td>-</td>
<td>Cellulosa glucose</td>
<td>A,F,S,L,CO₂</td>
<td></td>
</tr>
<tr>
<td>Bacteroides sp.</td>
<td>Long or coccus-like rods</td>
<td>-</td>
<td>-</td>
<td>Glucose</td>
<td>A,Bu,F,L,H₂,CO₂</td>
<td></td>
</tr>
<tr>
<td>Fusobacterium sp.</td>
<td>Short or long rods</td>
<td>-</td>
<td>-</td>
<td>A,Bu,F,L,H₂,CO₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butyrivibrio fibrosolves</td>
<td>Small</td>
<td>-</td>
<td>-</td>
<td>Glucose</td>
<td>A,F,L,S,CO₂</td>
<td></td>
</tr>
<tr>
<td>Spirillum</td>
<td>Big, curved rods</td>
<td>-</td>
<td>+</td>
<td>Glucose cellulosa</td>
<td>A,Bu,F,L,S,CO₂,H₂</td>
<td></td>
</tr>
<tr>
<td>Selenomonas ruminantium</td>
<td>Big, bent rods</td>
<td>-</td>
<td>+</td>
<td>Glucose</td>
<td>A,L,P,CO₂</td>
<td></td>
</tr>
<tr>
<td>Borelia sp.</td>
<td>Small spiricheta</td>
<td>-</td>
<td>+</td>
<td>Lactate</td>
<td>A,F,S,CO₂</td>
<td></td>
</tr>
<tr>
<td>Succinimonas amylolitica</td>
<td>Short, oval or coccus</td>
<td>-</td>
<td>+</td>
<td>Glucose</td>
<td>A,S,CO₂</td>
<td></td>
</tr>
<tr>
<td>Peptostreptococcus elsdentii</td>
<td>Big coccus</td>
<td>-</td>
<td>-</td>
<td>Glucose lactate</td>
<td>A,Bu,S,CO₂,H₃</td>
<td></td>
</tr>
<tr>
<td>Ruminococcus flavaeiens</td>
<td>Medium or big coccus</td>
<td>+/-</td>
<td>-</td>
<td>Cellulose cellulobiose</td>
<td>A,L,F,S,CO₂,H₂</td>
<td></td>
</tr>
<tr>
<td>Ruminococcus albus</td>
<td>Small spiricheta</td>
<td>+/-</td>
<td>-</td>
<td>Cellulose cellulobiose</td>
<td>A,F,L,H₂,CO₂</td>
<td></td>
</tr>
<tr>
<td>Veillonella alcalescens</td>
<td>Small and cocccus</td>
<td>-</td>
<td>-</td>
<td>Lactat</td>
<td>A,P,CO₂,H₂</td>
<td></td>
</tr>
<tr>
<td>Succinivibrio detrinosolvens</td>
<td>Bent or straight rods</td>
<td>-</td>
<td>+</td>
<td>Glucose</td>
<td>A,F,L,S,CO₂</td>
<td></td>
</tr>
</tbody>
</table>

A- acetate, Bu- butyrate, L- lactate, P- propionat, S- succinate, F- formate, E- ethanol
Gambar 1. Bagan Kerja Probiotik “S” dalam Rumen (Fuller, 1994)
Produksi asam laktat dalam rumen berkurang karena dimanfaatkan oleh bakteri pengguna asam laktat yaitu dengan adanya enzim laktat dehidrogenase, dengan demikian maka keadaan pH akan normal yaitu antara 6 sampai 7. Produksi methan berkurang sehingga energi yang terbuang sedikit dan penimbunan dari gas methan (CH₄) tidak akan terjadi. Karena gas methan (CH₄) yang dihasilkan oleh bakteri *Methanobacterium ruminantium* selaku pembentuk methan (CH₄) akan dioksidasi bersama karbohidrat menjadi asam asetat (Lay, 1992), sehingga kemungkinan kembung akan sangat kecil terjadi. Pencernaan bahan pakan semakin cepat menyebabkan konsumsi ransum meningkat sehingga produksi ternak juga meningkat.

2.3 Pencernaan dan Kecernaan

Pencernaan bahan makanan dapat didefinisikan sebagai suatu proses untuk memperkecil partikel sebelum diserap oleh selaput lendir usus ke dalam darah. Pencernaan itu dibagi menjadi tiga bagian yaitu pencernaan mekanik, enzimatik dan mikrobial (Tillman *et al.*, 1983).

Menurut Anggorodi (1979) selisih zat-zat makanan yang terkandung dalam makanan yang dikonsumsi dengan zat makanan dalam feces adalah jumlah yang tertinggal di dalam tubuh dinamakan kecernaan atau koefisien cerna. Haryanto *et al.* (1997) menyatakan bahwa laju kecepatan cerna komponen serat (*Neutral Detergent Fiber = NDF*) dapat ditingkatkan 1,81 sampai dengan 28,80 % dibandingkan kontrol apabila probiotik ditambahkan pada media inkubasi selama 24 jam pertama. Hal ini menggambarkan bahwa dalam periode yang sama, penambahan probiotik dapat
mempercepat proses degradasi komponen serat kasar yang selanjutnya akan mempengaruhi proses fermentasi polisakarida oleh mikroba rumen sehingga dihasilkan asam lemak terbang (Volatile Fatty Acid = VFA) yang lebih cepat. Hal ini berarti ketersediaan energi untuk proses metabolisme jaringan tubuh ternak tersedia lebih cepat sehingga dapat meningkatkan produktivitas ternak.

2.4 Pemberian Ransum

Selanjutnya dinyatakan oleh Sutardi (1981), bahwa dalam menyusun ransum sebaiknya digunakan beberapa jenis pakan dengan perbandingan tertentu, karena tidak satu pun bahan pakan yang mengandung zat makanan dalam jumlah cukup.

2.5 Kembung (Tympani, Bloat, Meteorismus)

Kembung adalah gejala suatu penyakit metabolisme yang dicirikan oleh pembesaran rumen secara berlebihan akibat pembentukan gas atau busa selama proses fermentasi yang tidak normal di dalam rumen. Akibat pertambahan gas ini
maka daya renggang permukaan umurnya bertambah dan akan merentangkan bagian permukaan rumen dan terjadilah gangguan perut, susah bergerak kemudian dalam beberapa menit susah bernafas dan akhirnya mati. Jenis gas yang dihasilkan sebagai hasil fermentasi dalam rumen yaitu methana (CH₄) dan karbondioksida (CO₂) (West. 1985).

Hal ini disebabkan karena terperangkapnya gas yang dihasilkan dalam rumen oleh busa sehingga gas tidak bisa dikeluarkan, eruktasi yang tidak normal dan adanya peristaltik rumen yang semakin melemah. Kembung akut ini biasanya terjadi setelah memakan tanaman yang banyak menghasilkan busa atau pakan dengan komposisi konsentrat lebih tinggi. Kembung yang kronis terjadinya dalam
beberapa hari atau beberapa minggu selama memakan rumput atau makanan lainnya yang dapat menyebabkan kembung tersebut maupun akibat penyakit lainnya (Hungerford, 1975).

Hal ini disebabkan karena terperangkapnya gas yang dihasilkan dalam rumen oleh busa sehingga gas tidak bisa dikeluarkan, eructasi yang tidak normal dan adanya peristaltik rumen yang semakin melemah. Kembung akut ini biasanya terjadi setelah memakan tanaman yang banyak menghasilkan busa atau pakan dengan komposisi konsentrat lebih tinggi. Kembung yang kronis terjadinya dalam beberapa hari atau beberapa minggu selama memakan rumput atau makanan lainnya
yang dapat menyebabkan kembung tersebut maupun akibat penyakit lainnya (Hungerford, 1975).

Sapi lebih dapat menderita kembung daripada domba. Hewan yang mengkonsumsi sejumlah besar makanan akan lebih mudah menderita kembung daripada yang makan sedikit, oleh sebab itulah sapi perah yang sedang berproduksi lebih mudah menderita kembung daripada sapi perah yang sedang dalam keadaan kering. Sapi dara dan domba yang sedang menyusui akan menderita gejala kembung lebih sering dari pada domba lainnya (Anggorodi, 1979).

Pemuaian lambung hewan ruminansia terutama rumen dan reticulum karena penimbunan gas fermentasi yang bercampur atau terpisah dari isi rumen. Gangguan ini dapat terjadi sekunder karena suatu gangguan pada eruktasi atau terjadi primer karena pengaruh makanan.

Etiologi:

1). Makanan yang mudah terfermentasi
 Misalnya: Hijauan segar yang tinggi kadar airnya, hijauan muda dengan kadar protein tinggi atau hijauan yang diberikan terlalu basah atau lembab.

2). Gangguan ini dapat pula disebabkan oleh pengaruh makanan penguat yang terlalu banyak atau makanan yang diberikan terlalu halus.

3). Faktor Predisposisi antara lain, terlalu banyak merumput di lapangan setelah lama dikandangkan, kontraksi rumen yang semakin menurun.

Kembung rumen sekunder terjadi akibat karena suatu penyumbatan *Oesophagus* oleh benda asing, oleh *stenosis Oesophagus* atau oleh tekanan bengkok dari luar *Oesophagus*, gangguan fungsi *sulcus oesophagus* dapat terjadi karena
kerusakan *n. Vagus. Carsinomo / papiloma* yang tumbuh dalam *sulcus oesophagus reticulum* dapat pula menyebabkan tympani akibat penyumbatan.

Kembung kronis sering ditemukan pada anak sapi sampai umur 6 bulan tanpa diketahui sebab-sebabnya yang pasti. Mungkin bentuk ini disebabkan oleh suatu kebengkakan kelenjar tymus atau adanya suatu atoni rumen kronis karena sering diberi makanan kasar atau karena indigesti yang disebabkan oleh makanan yang mudah terfermentasi (Wirasmono, FKH, IPB).

2.6 Mekanisme kembung

Faktor-faktor yang mendorong terbentuknya busa (gas) meliputi: Viskositas dan tegangan permukaan cairan di dalam rumen, aliran dan susunan air liur dan kegiatan jasad renik di dalam rumen (Subroto, 1995). Selain itu pengaruh dari pencernaan yang abnormal atau makanan yang mengandung hidrat arang yang tinggi, rumput muda, leguminosa dan insuffisiensi motorik-muskulator rumen (paresis rumen) (Ressang, 1984).

Laju produksi gas dalam rumen paling cepat terjadi segera setelah makan dan bisa melebihi 30 l/jam. Komposisi gas rumen yang khas adalah karbondioksida 40 %, metan 30 %, hidrogen 5 % dan sisanya oksigen serta nitrogen yang tertelan dari udara (Manalu, 1999).

Beberapa macam protein, terutama protein dari 18 S dan protein diduga mempunyai peranan di dalam peningkatan vikositas cairan di dalam rumen. Oleh karena enzim pektin metil esteros senyawa pektin akan diuraikan menjadi asam
pektat dan asam poligalakturanat yang keduaunya memiliki sifat seperti gel, sehingga vikositas cairan rumen akan sangat meningkat (Nichols, 1968).

Protein mucin yang terdapat di dalam air liur berguna untuk mencegah membussanya air liur tersebut. Jumlah air liur yang dihasilkan rupa-rupanya juga mempunyai pengaruh terhadap terjadinya kembung rumen. Telah terbukti bahwa pada sapi-sapi yang mudah mengalami kembung rumen jumlah air liur yang dihasilkan lebih sedikit dari sapi-sapi yang tidak mengalami kembung (Mendel dan Noko, 1961). Air liur yang mempunyai fungsi sebagai penyegar, atau buffer, mampu memelihara derajat keasaman isi rumen dalam batas-batas normal. Protein mucin yang terdapat di dalam air liur berguna untuk mencegah membussanya air liur tersebut (Subroto, 1995).

Proses eruktasi diperlukan adanya rangsangan yang cukup kuat, yang umumnya berupa rangsangan tekanan pada selaput lendir kardia lumen oleh ingesta. Reseptor refleks terdapat di dalam kardia rumen, karena terbentuknya gas, mungkin reseptor tersebut akan tertutup sehingga rangsangan atasnya tidak dapat berlangsung dengan baik, karena proses eruktasi tidak terselenggara, gas yang terbentuk akan makin banyak tertimbun di dalam rumen (Subroto, 1995).

Kejadian kembung rumen pada sapi yang bersifat primer kebanyakan terdapat pada sapi-sapi yang digemelakan di padangan yang ditanami legum. Pada umumnya karena konsumsi legum akan terbentuk kembung rumen yang disertai oleh pembentukan busa, tanpa disertai oleh gejala-gejala hilangnya tonus rumen.

Sebagai reaksi tubuh untuk membebaskan gas yang tertimbun di dalam rumen, rumen akan berkontraksi lebih kuat serta lebih sering dari normalnya, karena

Dengan adanya konsentrat yang tinggi hidrat arang, kuman-kuman gram positif akan tumbuh dengan cepat. Pada awalnya kuman *streptococcus bovis* akan berbiak dengan cepat dan kemudian akan digantikan oleh kuman *lactobacillus*. Kuman yang terakhir akan menghasilkan asam laktat yang berlebihan sampai 20 % dari normalnya hingga mampu menurunkan derajat keasaman normal (pH 6-7) menjadi asam (pH 4.0) (Subroto, 1995).

Dengan meningkatnya jumlah asam laktat di dalam rumen tekanan osmose yang normalnya sebesar 6 – 9 osm, meningkat menjadi 20 – 25 osm. Untuk menetralkan asam yang berlebihan, produksi air liur akan meningkat. Karena produksi air liur yang berlebihan maka nafsu minum akan turun, hingga pemasukan

Dengan makin banyak gas yang terbentuk volume rumen juga akan meningkat. Pendeskakan rumen keerah dada menyebabkan penderita mengalami kesulitan bernafas, sehingga pernafasannya jadi frekuren, dangkal dan akhirnya hewan mati (Subroto, 1995).

2.7 Fisiologi Saluran Pencernaan

Proses faali pencernaan makanan pada hewan meliputi proses pengambilan pakan, pencernaan yang berlangsung di dalam lambung dan mulut. Penyerapan dan pembuangan sisa yang tidak berguna lagi bagi tubuh. Pencernaan di dalam mulut dilakukan dengan jalan pengunyah, pemberian air liur dan pencelanaan. Pencernaan didalam lambung disamping dilakukan secara mekanis, juga dilakukan secara biokimia, baik oleh pemberian asam HCL maupun enzim-enzim yang terdapat dalam getah lambung.

Sapi berbeda dengan ternak mamalia lainnya karena mempunyai lambung yang besar yaitu rumen, retikulum, omasum dan abomasum. Pada ternak ruminansia muda, rumen dan retikulumnya masih kecil dan belum berkembang. Kemudian bila ternak muda tersebut mulai makan-makanan padat, terutama hijauan bagian lambung retikulum mulai membesar dengan cepat. Sehingga ukuran daya tampungnya
mencapai 60 % sampai 65 % dari seluruh pencernaan ukuran relatif (Tilman et al. 1989).

Rumen mengandung mikroorganisme bakteri dan protozoa yang menghancurkan bahan-bahan berserat, bahan itu untuk kepentingan mikroba itu sendiri, membentuk asam lemak terbang, serta mensintesa vitamin B serta asam amino. Organisme tersebut yang jumlahnya dapat mencapai 200 bilyun dalam tiap sendok teh. Masa hidupnya singkat dan setelah mati lalu dicerna dan dilepaskanlah bermacam nutrient (lemak, karbohidrat, protein, mineral/vitamin) dari mikroba itu yang kemudian diserap oleh dinding usus hewan (James blakely, et.al 1996).

Saliva (air liur) disekresikan dalam jumlah banyak oleh semua ruminansia dan diperkirakan bahwa sapi dengan berat 450 kg akan mensekresikan dan menelan natrium karbonat sejumlah 60 sampai 80 liter saliva tiap hari. Saliva mengandung
sejumlah besar natrium bikarbonat yang sangat penting untuk menjaga pH yang tepat dan berfungsi sebagai buffer terhadap asam lemak volatile yang dihasilkan fermentasi bakterial. Saliva penting pula untuk menjaga sejumlah air yang optimal dalam cairan rumen. Aktivitas jasad renik rumen dicerminkan oleh kenyataan bahwa bahan kering di dalam retikulo-rumen hanya tinggal 30 % ketika masuk abomasum, sehingga 70 % nya telah dirubah oleh jasad renik tersebut menjadi senyawa yang dapat larut atau gas sehingga dapat diabsorbsi tubuh atau dikeluarkan lewat mulut secara eruktasi.

Kontraksi rumen mendorong partikel-partikel makanan halus dalam jumlah banyak ke omasum, tempat terjadinya absorpsi air, sebelum cairan ke abomasum. Abomasum ruminansi sama dengan lambung non ruminansi, disini terjadi sekresi cairan lambung oleh sel-sel abomasum. Setelah makanan masuk ke abomasum dan jalan terus, proses digesti dan absorpsi terjadi seperti non ruminansi.

Makanan ruminansi mengandung banyak selulosa, hemiselulosa, pati dan karbohydrat yang larut dalam air. Diperkirakan pada tanaman pandangan yang muda, kadar selulose dan hemiselulosenya kira-kira 40 % dari bahan kering dan karbohydrat yang larut dalam air kira-kira 25 %. Bila bijian makin tua, proporsi selulose, hemiselulose dan kombinasi bertambah, sedangkan karbohydrat yang larut dalam air berkurang. Selulose berhubungan erat dengan lignin dan kombinasi ligno-selulose dan kombinasi ini dapat merupakan bagian terbesar dari sebagian tanaman terutama jerami. Selulose dan hemiselulose tidak dicerna oleh enzim-enzim yang dihasilkan hewan ruminansi, tetapi dicerna oleh jasad renik, yang juga dapat mencerna pati dan
karbohidrat yang larut dalam air. Namun lignin tidak dapat dicerna baik oleh ruminansia maupun jasad renik.

Pentosa adalah hasil utama dari perombakan hemiselulose di dalam rumen. Pada kejadian ini hemiselulose jasad renik menghidrolisis hemiselulose menjadi xilosa, dan asam uronat yang mudah dibentuk menjadi xilosa. Asam uronat juga dihasilkan dari penguraian pektin-pektin oleh pektinase dan poligalakturonidase jasad renik menjadi xilosa. Xilosa juga dihasilkan dari penguraian xilan-xilan yang banyak dikandung oleh rumput-rumputan.

Pentosan-pentosan diuraikan menjadi gula sederhana, pentosa, oleh pentosanase jasad renik dan kemudian masuk ke jalur glikolitik. Gula seperti ini dihasilkan pada tahap pertama dari pencernaan karbohidrat dalam rumen. Namun hampir tidak mungkin untuk mengetahui adanya proses ini dalam cairan rumen karena hasil-hasil pencernaan tersebut segera dimetabolisme oleh jasad renik secara intraselular pada tahap kedua dari metabolisme karbohidrat. Asam piruvat diubah...
menjadi asam lemak volatil (atsiri) oleh beberapa jalur yang dicantumkan dalam gambar 2.

Protein makanan dihidrolisis menjadi peptida dan asam amino oleh mikroorganisme rumen akan tetapi beberapa asam amino akan dirombakan menjadi asam organik, ammoniak dan karbon dioksida. Pembentukan protein mikroba yang
penting adalah bahwa bakteri mampu mensintesa asam amino esensial dan non esensial yang menyebabkan inang tidak tergantung pada penyedian makanan dari bahan makanan yang dikonsumsi oleh hewan. Jika ransum kekurangan protein atau tahan perombakan, maka konsentrasi cairan amoniak di dalam rumen akan rendah (50 mg/ l) sehingga pertumbuhan organisme rumen akan lambat, akibatnya perombakan karbohidrat akan lambat pula (Manalu, 1999).

Gambar 2 Perubahan Karbohidrat menjadi piruvat dalam rumen
III. MATERI DAN METODE

3.1 Waktu dan Tempat Penelitian

3.2 Materi Penelitian

Ternak yang digunakan adalah sapi perah Fries Holland (FH) yang terdiri dari 25 ekor sapi perah FH dengan masa laktasi dari laktasi I sampai laktasi VII dan 5 ekor sapi dara FH.

Sapi-sapi dipelihara dalam kandang individu tanpa dinding pembatas antara individu satu dengan individu yang lainnya, dengan luas lantai kandang 120 x 200 cm per individu. Lantai kandang terbuat dari plesteran semen dan atap terbuat dari genteng dengan model 2 atap. Kemiringan atap masing-masing 30° dan ketinggian tiang 280 cm sedangkan tempat makan dan minum letaknya terpisah. Dan kemiringan lantai 10 derajat.

Pakan hijauan diberikan 2x pagi hari jam 07.00 dan sore hari jam 15.00 sebanyak 30-40 kg / hari / ekor sedangkan konsentrat diberikan 2x pagi hari jam 05.00 WIB dan siang hari jam 13.00 WIB. Rumput gajah diberikan sebanyak 30 –40 kg /ekor /hari (10 % dari BB) didapat dari lahan sendiri dan konsentrat diberikan antara 5 –10 kg /ekor /hari. Konsentrat tersebut didapat dari pabrik pakan Harapan Petani Peternak Feed (HPPF) Bogor sedangkan penyediaan minum secara ad libitum.
Gambaran analisa proksimat konsentrat dan rumput gajah yang digunakan di Metasari Farm disajikan pada tabel 3.

Tabel 3. Kandungan pakan yang digunakan dipeternakan Metasari Farm.

<table>
<thead>
<tr>
<th>Bahan pakan</th>
<th>BK</th>
<th>protein</th>
<th>Serat kasar</th>
<th>Lemak</th>
<th>TDN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konsentrat**</td>
<td>7,8</td>
<td>16.24</td>
<td>8,5</td>
<td>7,17</td>
<td>70</td>
</tr>
<tr>
<td>Rumput gajah*</td>
<td>15</td>
<td>9</td>
<td>33</td>
<td>2,3</td>
<td>51</td>
</tr>
</tbody>
</table>

Keterangan:
- **Sumber** **: Harapan Petani Peternak Feed Bogor (HPPF)
- **Sumber** *: Hartadi *et al.* (1986)

3.3 Metode Penelitian

dengan sapi yang sama sebanyak 25 ekor laktasi I sampai dengan laktasi VII dan 5 ekor sapi dara.

Asumsi yang digunakan bahwa rumput dan konsentrat diberikan dalam kualitas yang sama dan jumlah yang berbeda sesuai berat badan hewan dan produksi hewan. Selama pengamatan terjadi musim hujan dan musim kemarau. Analisa diskripsi digunakan dalam pengolahan data dan uji anova digunakan untuk mengetahui perbedaannya.
IV. HASIL DAN PEMBAHASAN

4.1 Hasil

Menurut sebabnya kita mengenal kembung primer dan kembung sekunder. Kembung primer disebabkan oleh karena banyaknya konsentrat yang dikonsumsi, rumput muda dan insuffisiensi motorik muskulator rumen (peristaltik yang melemah). Kembung sekunder terjadi bila pengeluaran gas dari rumen yang terbentuk secara normal tidak terjadi. Hal ini disebabkan karena penyumbatan dari oesophagus atau usus karena benda asing atau tumor. Berdasarkan timbulnya kejadian kembung ada dua macam gejala kembung yaitu kembung akut dan kembung kronis (menahun). Jenis kembung akut yaitu terjadinya kembung dalam beberapa menit kemudian diikuti dengan kematian ternak tersebut. Sampai sekarang belum diketahui secara pasti yang menyebabkan kematian hewan akibat kembung ini. Pada kembung rumen yang berlangsung secara akut kolapsnya sistem
kardiovaskuler dan pernafasan mungkin menjadi penyebab kematian penderita (Subroto, 1995).

Kembung akut ini biasanya terjadi setelah memakan tanaman yang banyak menghasilkan busa atau pakan dengan komposisi konsentrat lebih tinggi. Kembung yang kronis terjadinya dalam beberapa hari atau beberapa minggu selama memakan rumput atau makanan lainnya. Sapi FH laktasi lebih banyak terserang kasus kembung dibanding sapi FH dara. Hal ini disebabkan oleh adanya pemberian konsentrat yang terlalu tinggi dibandingkan dengan pemberian konsentrat pada sapi dara. Selain disebabkan oleh hijauan yang basah dan banyak air, kasus kembung bisa disebabkan pula oleh pengaruh pemberian konsentrat yang tinggi (Ressang, 1984).

Kasus kembung frekuensi terendah terjadi pada bulan April 1999 sampai bulan Oktober 1999 pada sapi FH laktasi dengan rata-rata kejadian 4,6 % perbulan. Sapi dara FH kasus kembung terendah terjadi pada bulan Maret 1999 sampai bulan Oktober 1999 dengan frekuensi 0 %, dengan diselingi kasus kembung sebanyak 20 %
pada bulan Mei 1999. Data keseluruhan kasus kembung dari bulan November 1998 sampai bulan Oktober 1999 pada sapi FH laktasi ada 7,3 % perbulan dan pada sapi dara FH sebanyak 6,6 % perbulan.

4.2 Pembahasan

Terbukti bahwa pada sapi-sapi yang mudah mengalami kembung rumen jumlah air liur yang dihasilkan lebih sedikit dari sapi-sapi yang tidak mengalami kembung (Mendel dan Nodo, 1961). Air liur yang mempunyai fungsi sebagai penyangga, atau buffer, mampu memelihara derajat keasaman isi rumen dalam batas-batas normal. Protein mucin yang terdapat di dalam air liur berguna untuk mencegah membubusnya air liur tersebut (Subronsto, 1995).

Berdasarkan perbandingan tabel 4. dan tabel 5. menunjukan bahwa kejadian kembung yang dipicu oleh tanpa pemberian probiotik “S” sebanyak 22 ekor (7,3 % per bulan) sapi FH laktasi dan 4 ekor (6,67 % per bulan) pada sapi dara FH. Tetapi
Tabel 4. Jumlah kasus kembung FH tanpa pemberian probiotik "S"

<table>
<thead>
<tr>
<th>Uraian bulan</th>
<th>Jumlah kasus</th>
<th></th>
<th>Prosentasi</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Laktasi</td>
<td>Dara</td>
<td>Laktasi</td>
<td>Dara</td>
</tr>
<tr>
<td>November 1998</td>
<td>3</td>
<td>-</td>
<td>12 %</td>
<td>-</td>
</tr>
<tr>
<td>Desember 1998</td>
<td>3</td>
<td>1</td>
<td>12 %</td>
<td>20 %</td>
</tr>
<tr>
<td>Januari 1999</td>
<td>4</td>
<td>1</td>
<td>16 %</td>
<td>20 %</td>
</tr>
<tr>
<td>Pebruari 1999</td>
<td>2</td>
<td>1</td>
<td>8 %</td>
<td>20 %</td>
</tr>
<tr>
<td>Maret 1999</td>
<td>2</td>
<td>-</td>
<td>8 %</td>
<td>-</td>
</tr>
<tr>
<td>April 1999</td>
<td>1</td>
<td>-</td>
<td>4 %</td>
<td>-</td>
</tr>
<tr>
<td>Mei 1999</td>
<td>2</td>
<td>1</td>
<td>8 %</td>
<td>20 %</td>
</tr>
<tr>
<td>Juni 1999</td>
<td>1</td>
<td>-</td>
<td>4 %</td>
<td>-</td>
</tr>
<tr>
<td>Juli 1999</td>
<td>1</td>
<td>-</td>
<td>4 %</td>
<td>-</td>
</tr>
<tr>
<td>Agustus 1999</td>
<td>1</td>
<td>-</td>
<td>4 %</td>
<td>-</td>
</tr>
<tr>
<td>September 1999</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oktober 1999</td>
<td>2</td>
<td>-</td>
<td>8 %</td>
<td>-</td>
</tr>
<tr>
<td>Jumlah Total</td>
<td>22</td>
<td>4</td>
<td>88 %</td>
<td>80 %</td>
</tr>
</tbody>
</table>

Grafik 1. Jumlah kasus kembung FH tanpa pemberian probiotik "S"
dengan penggunaan probiotik “S” kejadian hanya 3 ekor (1 % per bulan) yang mengalami kasus kembung pada sapi FH laktasi dan 1 ekor (1,67 % per bulan) pada sapi FH dara. Hal ini menunjukkan probiotik “S” menekan terjadinya kasus kembung sampai 6,3 % per bulan untuk sapi FH laktasi dan sapi FH dara tidak jauh berbeda 5 % per bulan. Data ini diperkuat dengan hasil data pada tabel 6, yang menunjukan kejadian kasus kembung pada sapi FH laktasi sebanyak 20 % (1,6 % perbulan) dan sapi dara sebanyak 40 % (3,3 % perbulan) pada tahun sebelumnya yang tetap masih tinggi.

Rendahnya kasus kembung pada hewan yang memperoleh probiotik, barang kali disebabkan oleh enzim laktat dehydrogenase yang dihasilkan oleh probiotik “S” mampu mengubah asam laktat menjadi asam piruvat (Suharto, 1995). Sehingga jumlah asam laktat yang ada mampu ditekan di dalam rumen sapi FH, dengan demikian keadaan pH cairan rumen sapi FH dapat dipertahankan dalam kondisi normal yaitu antara 6 sampai 7, karena kalau pH turun akan menyebabkan kontraksi yang semakin menurun dan proses eruktasi akan terganggu sehingga gas tidak bisa dikeluarkan dengan normal. Hal ini akan mengakibatkan gas tertimbun dengan cepat dan akan menyebabkan kembung pada rumen sapi tersebut. Selain itu produksi methan (CH3) yang dihasilkan oleh bakteri Methanobacterium ruminantium selaku pembentuk methan (CH4) akan dioksidasi bersama karbohidrat menjadi asam asetat (Lay, 1992), sehingga memperkecil terjadinya kembung. Pencernaan bahan pakan semakin cepat menyebabkan proses regurgitasi semakin cepat pula sehingga gas yang ada cepat keluar.
Sapi FH laktasi lebih banyak terserang kasus kembung dibanding sapi FH dara hal ini disebabkan oleh adanya pemberian konsentrat yang terlalu tinggi dibandingkan dengan pemberian konsentrat pada sapi dara. Sapi FH laktasi diberi konsentrat 5-10 kg / ekor/ hari sedangkan sapi dara hanya 2 -4 kg /ekor /hari. Selain disebabkan oleh hijauan yang basah dan banyak air, kasus kembung bisa disebabkan pula oleh pengaruh pemberian konsentrat yang tinggi (Ressang, 1984).

Tabel 5. Jumlah kasus kembung FH dengan pemberian probiotik “S”

<table>
<thead>
<tr>
<th>Uraian bulan</th>
<th>Jumlah kasus</th>
<th>Prosentasi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Laktasi</td>
<td>Dara</td>
</tr>
<tr>
<td>November 1998</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Desember 1998</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Januari 1999</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pebruari 1999</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maret 1999</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>April 1999</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mei 1999</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Juni 1999</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Juli 1999</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Agustus 1999</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>September 1999</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oktober 1999</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jumlah Total</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Grafik 2. Jumlah kasus kembung FH dengan pemberian probiotik “S”

Tabel 6. Jumlah kasus kembung FH tanpa pemberian probiotik “S” (97/98)

<table>
<thead>
<tr>
<th>Uraian bulan</th>
<th>Jumlah kasus</th>
<th>Prosentasi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Laktasi</td>
<td>Dara</td>
</tr>
<tr>
<td>November 1997</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Desember 1997</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Januari 1998</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Februari 1998</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maret 1998</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>April 1998</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Mei 1998</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Juni 1998</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Juli 1998</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Agustus 1998</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>September 1998</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oktober 1998</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jumlah Total</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>
V. KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan analisa data secara deskripsi dan uji Anova selama 2 tahun dan didukung data sebelumnya dapat disimpulkan bahwa pemberian probiotik "S" dalam ransum konsentrat sebanyak 5 gram / kg / hari ternyata dapat mengurangi terjadinya kasus kembung (tympani) pada sapi FH (Fries Holland) di Peternakan Metasari Farm Cimande Bogor. Dengan kemampuan menekan kasus kembung sampai 6,3 % perbulan untuk sapi FH laktasi dan sapi dara FH sebesar 5 % perbulan. Analisa stastistik dengan uji anova menunjukan perbedaan yang nyata pada sapi FH laktasi (P < 0,05) dan untuk sapi dara FH tidak beda nyata (P > 0,05).

5.2 Saran

Adanya kemungkinan probiotik dapat mengurangi terjadinya kasus kembung pada sapi FH sangat bermanfaat bagi peternak sapi perah. Akan tetapi untuk memperoleh lebih lanjut mengenai efektifitas probiotik sebagai suatu sediaan yang digunakan untuk mencegah kasus kembung perlu penelitian yang lebih mendalam.
DAFTAR PUSTAKA

Anggorodi, R. 1979. Ilmu Makanan Ternak Umum. PT. Gramedia Jakarta. 175

