REFERENCES.


100


The author was born on November 1st, 1935 in Manado, North Celebes. After having received his elementary education in 1951, he attended the Junior and Senior High School in Manado. After his graduation in 1957, he enrolled at the Faculty of Veterinary Medicine and Animal Husbandry, University of Indonesia in Bogor, West Java. He received his Degree of Doctor of Veterinary Medicine in August 1962. Since January 1961 he has joined the faculty as a staff member of the Department of Pathology.

From September 1963 to September 1965 he was awarded a scholarship for study in the Graduate School of the Colorado State University, College of Veterinary Medicine, Department of Pathology and Microbiology in Fort Collins, Colorado, U.S.A. In June 1965 he obtained the Degree of Master of Science in Veterinary Pathology.

Since 1965 he worked as lecturer at the Department of Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University and in April 1976 promoted to Senior Lecturer of Pathology.

From September 1976 to until October 1978 he was granted a research fellowship from the International Technisch Hulp of the Government of the Kingdom of the Netherlands and did his research at the Central Veterinary Institute in Rotterdam,
the Netherlands, where he pursued and completed the experimental part of his dissertation in partial fulfillment of the Degree of Doctor of Philosophy in Veterinary Sciences at the Bogor Agricultural University.
Figure 11. Removal of skin graft the size of a microscope slide.

Figure 12. The donor's wound was sutured.
Figure 15.

The grafts in position.

Figure 16

The grafts were sutured.
Figure 17.
The sutured grafts were covered with wound paste, sterile gauze and Hansapor tape.

Figure 18.
The covered grafts (Fig. 17) were dressed with plaster tape.
Figure 19. White skin grafts of ABL5-treated calften days post-operative. The right graft is the control autograft, the left is the allograft. Both show no sign of rejection.

Figure 20. Two grafts three weeks after operation. The left autograft shows signs of desquamation of the epidermal layer but no signs of rejection. White discoloration of surrounding hairs was caused by the application of wound paste. The right graft is an allograft showing signs of rejection.
1. Diagnostik menggugurkan efek silang yang lebih besar pada komunitas komunponta dibandingkan suku modul.
2. Diagnostik menggugurkan efek silang yang lebih besar pada komunitas komunponta dibandingkan suku modul.
3. Diagnostik menggugurkan efek silang yang lebih besar pada komunitas komunponta dibandingkan suku modul.
4. Diagnostik menggugurkan efek silang yang lebih besar pada komunitas komunponta dibandingkan suku modul.
5. Diagnostik menggugurkan efek silang yang lebih besar pada komunitas komunponta dibandingkan suku modul.
6. Diagnostik menggugurkan efek silang yang lebih besar pada komunitas komunponta dibandingkan suku modul.
21. Section of a lymph node of a calf that died of an overdose of ABLS (7.5 - 10 ml/kg body weight) showing an enlarged follicle with nuclear debris, fibrine deposition and a few surviving germinal cells. Magnification 350x.

22. Section of a lymph node of a calf sacrificed 4 days after receiving 18 ABLS injection. An enlarged follicle with depletion of follicular cells surrounding by a small rim of perifollicular cells. It is an expression of immunological exhaustion. Magnification 350x.
1. Dilihat menggunakan mikroskop. Dilihat bahwa pada kolom bawah ada organ tampak.
2. Dan menggunakan mikroskop. Dilihat bahwa pada kolom bawah ada organ tampak.
Figure 23. The paracortical area of a lymph node of a calf that died of an overdose ABLS. Cell depletion and proliferation of reticular cells and fibroblasts. Magnification 350x

Figure 24. A greater magnification of the upper left area in figure 23. Plasma cells, eosinophils and a few lymphocytes are seen among the proliferated reticular cells and fibroblasts. Magnification 600x
25. Section of a lymph node of a calf that died of an overdose of ABLS. Extensive cellular depletion in the paracortical area (arrow) Magnification 60x

26. Section of a lymph node of a calf sacrificed 4 days after receiving 18 injections of 1 ml ABLS per kg body weight. Extensive cellular depletion in the cortical area. Islands of surviving follicles with surrounding cells are present. Magnification 60x
Figure 27. Section of a lymph node of a calf sacrificed 3 days after receiving 18 injections of 1 ml ABLS per kg body weight. Extensive cellular depletion in cortical and paracortical area (right) which shows fibrosis. The medulla (left) shows sinusoidal congestion. Magnification 60x.

Figure 28. Section of a lymph node of a calf sacrificed 4 days after receiving 18 injections of 1 ml ABLS per kg body weight. Cortical area with starry sky appearance. Magnification 150x.
Section of a lymph node of a calf mentioned in figure 27.

Medullary area shows widening of sinuses with proliferation and desquamation of sinusoidal cells ("sinus catarrh"). Remarkable infiltration of eosinophils in the medullary cords. Magnification 150x

Section of a lymph node of a calf that died of an overdose of AELS. Medullary area with congested lymph vessels and scarcity of cells. Magnification 150x
1. Section of the large intestine. Loss of Lieberkühn's glands in areas with extensive haemorrhagic necrosis. Magnification 60x

2. Section of the kidney of a calf sacrificed 4 days after receiving 18 injections of ABLS. Two glomeruli showing engorgement of glomerular capillaries with erythrocytes. Magnification 350x