PENGEMBANGAN SISTEM INFORMASI PERENCANAAN
PRODUKSI TERPADU (COMPUTER INTEGRATED BUSINESS SYSTEM)
PADA PERUSAHAAN AGROINDUSTRI
STUDI KASUS DI PT. INDONESIAN MALTOSE INDUSTRY

Oleh
MUHAMMAD YASIR HARAHAP
FO3496041

2003
FAKULTAS TEKNOLOGI PERTANIAN
INSTITUT PERTANIAN BOGOR
PENGEMBANGAN SISTEM INFORMASI PERENCANAAN PRODUKSI TERPADU (COMPUTER INTEGRATED BUSINESS SYSTEM) PADA PERUSAHAAN AGROINDUSTRI
STUDI KASUS DI PT. INDONESIAN MALTOSE INDUSTRY

Oleh
MUHAMMAD YASIR HARAHAP
F03496041

SKRIPSI
Sebagai salah satu syarat untuk memperoleh gelar
SARJANA TEKNOLOGI PERTANIAN
pada Jurusan Teknologi Industri Pertanian
Fakultas Teknologi Pertanian
Institut Pertanian Bogor

2003
FAKULTAS TEKNOLOGI PERTANIAN
INSTITUT PERTANIAN BOGOR
BOGOR
SKRIPSI
Sebagai salah satu syarat untuk memperoleh gelar
SARJANA TEKNOLOGI PERTANIAN
pada Jurusan Teknologi Industri Pertanian
Fakultas Teknologi Pertanian
Institut Pertanian Bogor

Oleh

MUHAMMAD YASIR HARAHAP
FO3436041

Dilahirkan di Pasaman-Sumatera Barat
Tanggal 27 Desember 1977

Tanggal lulus : 25 Agustus 2003

Dtsetujui,
Bogor, 9 September 2003

Dr. Ir. Yandra Arkeman, M.Eng.
Dosen Pembimbing I

Ir. Taufik Dja'tna
Dosen Pembimbing II
RINGKASAN

PT. Indonesian Maltose Industry (PT. IMI) memproduksi sirup glukosa yang menghadapi ketidakpastian tingkat penjualan untuk periode-periode berikutnya. Diperlukan suatu perencanaan yang lebih baik untuk menentukan tingkat penjualan potensial sekaligus tingkat produksi yang layak sehingga semua produk yang diproduksi dapat terjual.

Alat bantu yang dapat dipakai untuk perencanaan adalah peramalan penjualan yang berfungsi untuk memperkirakan jumlah produk yang akan terjual. Metode peramalan yang digunakan harus sesuai dengan pola data yang digunakan agar hasil peramalan yang diperoleh akurat. Hasil peramalan ditetapkan menjadi perkiraan tingkat penjualan potensial setelah dimasukkan pertimbangan pihak manajemen, misalnya membandingkannya dengan jumlah permintaan aktual produk.

Pengembangan SISIDU dilakukan melalui empat tahapan meliputi spesifikasi sistem, rancang bangun sistem, implementasi sistem dan verifikasi sistem. Spesifikasi sistem untuk menetapkan deskripsi dan kebutuhan-kebutuhan sistem. Rancang bangun SISIDU dibantu dengan perangkat lunak Computer Aided Software
Engineering (CASE) tools PowerDesigner 6 ProcessAnalyst untuk membuat rancang bangun model fungsional SISIDU dalam bentuk diagram alir data dan PowerDesigner 6 DataArchitect untuk merancang bangun pangkalan data sistem dalam format Microsoft Access. Bahasa pengembang yang digunakan adalah Microsoft Visual Basic 6.0 untuk membuat kode-kode program. Sistem bantuan (help) dibangun menggunakan WindowHelpDesigner 6, instalasi program SISIDU dibuat dengan WiseInstallMaker 8, dan pengolahan gambar dengan Adobe Photoshop 7.0. SISIDU dapat dioperasikan pada personal computer (PC) dengan spesifikasi prosesor minimal Pentium 233 MMX, RAM 64 MB, ruang harddisk kosong 50 MB, monitor VGA resolusi 800 x 600 pixel dan sistem operasi Windows 95 atau yang lebih tinggi.

Pada PT.IMI belum terdapat sistem informasi berbasis komputer. Fungsi peramalan penjualan tidak dilakukan, tingkat penjualan ditetapkan sesuai jumlah order konsumen. PT. IMI tidak memiliki sistem perencanaan kebutuhan bahan untuk mengelola persediaan bahan. PT. IMI tidak memasukkan komponen biaya depresiasi dan pemeliharaan gedung dan mesin kedalam biaya tak langsung pabrik untuk menetapkan harga pokok penjualan sirup glukosa.
SUMMARY

PT Indonesian Maltose Industry (PT IMI) produces glucose syrup and it faces sale rate uncertainty for some periods. This condition forces the IMI management to make better plan on potential sale rate and accurate production rate that will make whole out put sale be possible.

A tool for plan purpose is sales forecasting, which can predict sum of sold products and with considering actual demand, the potential sale rate can be specified. Then sale rate can be processed further to become a weekly production schedule in a weekly production period. To make that kind of schedule a material requirements planning is needed to decide its sort, its sum, and its supply schedule. That input plan can make production continuity achieved as scheduled before and consumer will be serviced on time. Next step is to count costs that needed for production as planned before, such as for materials input cost, direct labor cost, and factory overhead. Materials input cost is calculated based on its sum ordered, direct labor cost is calculated based on production rate, and factory overhead calculated based on PT IMI’s overhead standard.

Development Information System for Integrated Production Planning (SISIDU) integrates those kinds of production plan and provides process-oriented information system where information flows from sales forecasting to production costs calculation. The process begins with sales forecasting which determines potential sale rate from actual demand. If sales forecasting is higher than actual demand, then potential sale will be specified from the forecasting. Then potential sale rate will be converted to become weekly production schedule, and next step is material requirements planning, product reserve, material reserve, and bill of material. Final test will be production cost, direct labor cost, and overhead calculation. SISIDU users at PT IMI are marketing division, production division, financial division, purchasing division, and store division.

SISIDU development has been done through four stages. They are system specification, system design, system implementation, and system verification. System specification’s purpose is to determine description and system need. SISIDU development was helped by some softwares, CASE tools PowerDesigner 6 ProcessAnalyst and DataArchitect, Microsoft Visual Basic 6.0 programming language, and it also uses Microsoft Access 2000 for data base system. Report system was made with CrystalReport 8, help system was made with WindowsHelpDesigner 6, the SISIDU installation was made with WiseInstallMaster 8, and image processing used Adobe Photoshop 7.0. SISIDU is expected can be operated on PC with these minimal specification: Pentium 233 MHz processor, 32 MB RAM, 50 MB free space harddisc, 800 x 600 pixel resolution VGA monitor, and Window 95 or higher operating system.
BIO DATA PENULIS

KATA PENGANTAR

Selama melaksanakan penelitian dan penyusunan skripsi, penulis telah banyak mendapat dukungan moril maupun materi. Untuk itu penulis mengucapkan terimakasih kepada Bapak Dr. Ir. Yandra Arkeman, M.Eng, dan Bapak Ir. Taufik Djaatra, sebagai Dosen Pembimbing I dan Dosen Pembimbing II, atas dukungan, bantuan, bimbingan, dan saran-saran yang diberikan kepada penulis, terimakasih kepada:

2. Pemda Kabupaten Pasaman khususnya Bapak Taufik Martha
3. Yayasan Dompet Dhuafa Republika, khususnya Mbak Nana, Mba Dwi, Mas Jamil, Bang Darwin, Mas Eri. Dan Yayasan Prof. Dr. D.J. Hutosoit
4. Rekan-rekan KARIBIS, khususnya KARIBIS Bogor (Jae, Parman, Euis, Ali), Indra (FK UI), Arum (FMIPA UI), Badriyah (FISIP UI), Mas Afolah, Aep, Zein (IAIN Jakarta).
5. Teman-teman di ex Wismaraya dan Feliciano
6. Teman-teman TIN 17 atas kebersamaannya
7. Semua pihak yang membantu kelangsungan studi penulis

Khusus kepada Ibu, Ayah, kakak, adik-adik terima kasih yang setulus-tulusnya atas do’an dan dukungan, biaya, perhatian, dan kesabarannya selama penulis menjalani pendidikan.

Semoga hasil penelitian skripsi ini bermanfaat bagi yang membutuhkannya dan menambah khazanah karya ilmiah.

Cimandala - Bogor, Agustus 2003

M. Yasir Harahap
DAFTAR ISI

Halaman

KATA PENGANTAR ... iii
DAFTAR ISI ... iv
DAFTAR GAMBAR ... vi
DAFTAR TABEL ... vii
DAFTAR LAMPIRAN ... viii

I. PENDAHULUAN
 A. LATAR BELAKANG ... 1
 B. TUJUAN PENELITIAN ... 5
 C. RUANG LINGKUP .. 5

II. TINJAUAN PUSTAKA
 A. SISTEM INFORMASI .. 7
 B. PERAMALAN DAN PERENCANAAN TINGKAT PENJUALAN 12
 C. PERENCANAAN KEBUTUHAN BAHAN PRODUKSI 16
 D. PENGANGGARAN (BIAYA) PRODUKSI 16
 E. PENELITIAN TERDAHULU ... 34

III. METODOLOGI PENELITIAN
 A. KERANGKA PEMIKIRAN .. 37
 B. PENDEKATAN SISTEM .. 39
 C. FORMULASI PERMASALAHAN .. 42
 D. TATA LAKSANA .. 43
 1. Kajian Pustaka .. 43
 2. Pengamatan Sistem .. 43
 3. Pemdefinisian Masalah ... 43
 4. Pengumpulan Data dan Informasi 44
 5. Perancangan Sistem .. 44
 6. Implementasi Sistem .. 44
 7. Verifikasi Sistem .. 45
IV. PENGAMATAN SISTEM
 A. KEADAAN UMUM PT. IMI ... 46
 B. SUB SISTEM PT. IMI .. 47
 C. SISTEM PERENCANAAN OPERASIONAL PT. IMI 50

V. PERANCANGAN SISTEM
 A. SPEsIFIKASI SISTEM .. 53
 1. Deskripsi Sistem .. 53
 2. Analisa Kebutuhan Informasi 54
 3. Kebutuhan Perangkat Keras dan Perangkat Lunak 57
 4. Kebutuhan Tenaga .. 58
 5. Masukan dan Keluaran Sistem 58
 6. Pemeliharaan Sistem .. 60
 B. RANCANG BANGUN SISTEM .. 60
 1. Rancang Bangun Umum .. 60
 2. Rancang Bangun Terinci .. 64

VI. PEMBAHASAN
 A. PERENCANAAN PRODUKSI ... 68
 B. PERANCANGAN SISTEM ... 72
 C. IMPLEMENTASI DAN VERIFIKASI SISTEM 89
 D. KELEBIHAN DAN KEKURANGAN SISTEM 92
 E. REKOMENDASI OPERASIONALISASI SISTEM 93

VII. KESIMPULAN DAN SARAN
 A. KESIMPULAN ... 94
 B. SARAN ... 96

DAFTAR PUSTAKA .. 97

LAMPIRAN ... 99
DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Gambar</th>
<th>Deskripsi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Integrasi arsitektur sistem informasi untuk pencapaian tujuan perusahaan</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Sistem Informasi Manajemen Terpadu</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Masukan dan keluaran program MRP</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>Pohon struktur produk dan informasi artikel</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Skema tahapan penyusunan anggaran penunjang rugi-laba</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>Contoh anggaran penjualan perusahaan</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>Contoh anggaran unit produk yang akan diproduksi perusahaan</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>Contoh anggaran unit kebutuhan bahan baku</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>Contoh anggaran pembelian bahan baku</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>Contoh anggaran biaya bahan baku</td>
<td>32</td>
</tr>
<tr>
<td>11</td>
<td>Contoh anggaran upah tenaga kerja langsung</td>
<td>33</td>
</tr>
<tr>
<td>12</td>
<td>Contoh anggaran biaya pabrik tidak langsung</td>
<td>34</td>
</tr>
<tr>
<td>13</td>
<td>Tahapan dan langkah-langkah pendekatan sistem</td>
<td>40</td>
</tr>
<tr>
<td>14</td>
<td>Model sistem umum suatu perusahaan</td>
<td>43</td>
</tr>
<tr>
<td>15</td>
<td>Tahapan kegiatan pengembangan SISIDU</td>
<td>45</td>
</tr>
<tr>
<td>16</td>
<td>Diagram masukan dan keluaran SISIDU</td>
<td>59</td>
</tr>
<tr>
<td>17</td>
<td>Struktur sistem SISIDU</td>
<td>61</td>
</tr>
<tr>
<td>18</td>
<td>Diagram alir data tingkat 0</td>
<td>62</td>
</tr>
<tr>
<td>19</td>
<td>Diagram alir data tingkat 1 untuk fungsi pemasaran dan produksi</td>
<td>63</td>
</tr>
<tr>
<td>20</td>
<td>Diagram alir data tingkat 1 untuk fungsi keuangan</td>
<td>64</td>
</tr>
<tr>
<td>21</td>
<td>Diagram model data konseptual SISIDU</td>
<td>65</td>
</tr>
<tr>
<td>22</td>
<td>Diagram model data fisik SISIDU</td>
<td>67</td>
</tr>
</tbody>
</table>
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Tabel</th>
<th>deskripsi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabel 1</td>
<td>Jadwal produksi induk untuk produk kursi</td>
<td>21</td>
</tr>
<tr>
<td>Tabel 2</td>
<td>Daftar bahan baku yang diinden (tergantungkan)</td>
<td>22</td>
</tr>
<tr>
<td>Tabel 3</td>
<td>Jumlah permintaan sirup glukosa PT. IMI</td>
<td>46</td>
</tr>
<tr>
<td>Tabel 4</td>
<td>Matriks kebutuhan informasi pemakai sistem SISIDU</td>
<td>55</td>
</tr>
<tr>
<td>Tabel 5</td>
<td>Data histori penjualan glukosa PT. IMI</td>
<td>74</td>
</tr>
<tr>
<td>Tabel 6</td>
<td>Data pesanan produk glukosa (kg) untuk Minggu IV April 2002</td>
<td>77</td>
</tr>
<tr>
<td>Tabel 7</td>
<td>Perkiraan penjualan potensial glukosa (kg) untuk periode minggu IV 2002</td>
<td>78</td>
</tr>
<tr>
<td>Tabel 8</td>
<td>Data persediaan awal produk glukosa (kg) untuk minggu IV April 2002</td>
<td>78</td>
</tr>
<tr>
<td>Tabel 9</td>
<td>Hasil perhitungan jadwal produksi induk (kg) untuk periode minggu IV 2002</td>
<td>79</td>
</tr>
<tr>
<td>Tabel 10</td>
<td>Hasil perhitungan jumlah masakan awal produksi untuk minggu IV April 2002</td>
<td>79</td>
</tr>
<tr>
<td>Tabel 11</td>
<td>Hasil perhitungan jumlah masakan akhir produksi untuk minggu IV April 2002</td>
<td>80</td>
</tr>
<tr>
<td>Tabel 12</td>
<td>Hasil perhitungan jumlah persediaan akhir produk (kg) untuk minggu IV April 2002</td>
<td>80</td>
</tr>
<tr>
<td>Tabel 13</td>
<td>Standar biaya tenaga kerja langsung PT. IMI</td>
<td>81</td>
</tr>
<tr>
<td>Tabel 14</td>
<td>Hasil perhitungan upah TKL untuk periode minggu IV April 2002</td>
<td>81</td>
</tr>
<tr>
<td>Tabel 15</td>
<td>Standar biaya tidak langsung pabrik PT. IMI</td>
<td>82</td>
</tr>
<tr>
<td>Tabel 16</td>
<td>Hasil perhitungan biaya tak langsung pabrik untuk minggu IV April 2002</td>
<td>82</td>
</tr>
<tr>
<td>Tabel 17</td>
<td>Data jumlah kebutuhan standar bahan baku dan bahan pembantu per ton produk</td>
<td>83</td>
</tr>
<tr>
<td>Tabel 18</td>
<td>Hasil perhitungan jumlah kebutuhan kotor bahan (kg) minggu IV 2002</td>
<td>84</td>
</tr>
<tr>
<td>Tabel 19</td>
<td>Data tenggang waktu pemesanan dan jumlah minimal pemesanan bahan</td>
<td>86</td>
</tr>
<tr>
<td>Tabel 20</td>
<td>Hasil perhitungan jumlah kebutuhan bersih, waktu pemesanan, jumlah pemesanan, dan jumlah persediaan akhir tepung tapioka untuk minggu IV April 2002</td>
<td>87</td>
</tr>
<tr>
<td>Tabel 21</td>
<td>Hasil perhitungan jumlah kebutuhan bersih, waktu pemesanan, jumlah pemesanan, dan jumlah persediaan akhir soda ash untuk minggu IV April 2002</td>
<td>88</td>
</tr>
<tr>
<td>Tabel 22</td>
<td>Jumlah biaya pembelian bahan periode Minggu IV April 2002</td>
<td>88</td>
</tr>
<tr>
<td>Tabel 23</td>
<td>Total biaya produksi dan biaya per unit produk minggu IV April 20.</td>
<td>89</td>
</tr>
<tr>
<td>Lampiran</td>
<td>Judul</td>
<td>Halaman</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>Lampiran 1</td>
<td>Diagram alir proses produksi sirup glukosa di PT. IMI</td>
<td>99</td>
</tr>
<tr>
<td>Lampiran 2</td>
<td>Struktur organisasi PT. IMI</td>
<td>100</td>
</tr>
<tr>
<td>Lampiran 3</td>
<td>Teknik forecasting dengan Minitab 11 for Windows</td>
<td>101</td>
</tr>
<tr>
<td>Lampiran 4</td>
<td>Perhitungan jumlah kebutuhan bersih, waktu pesan, jumlah pesan, dan persediaan akhir bahan</td>
<td>104</td>
</tr>
<tr>
<td>Lampiran 5</td>
<td>Instalasi aplikasi SISIDU</td>
<td>106</td>
</tr>
<tr>
<td>Lampiran 6</td>
<td>Penggunaan sistem SISIDU</td>
<td>108</td>
</tr>
</tbody>
</table>
I. PENDAHULUAN

A. LATAR BELAKANG

Banyak hal yang cenderung dapat mempengaruhi lingkungan bisnis dewasa ini. Di antaranya adalah tingkat persaingan bisnis yang semakin ketat, terlebih setelah diberlakukannya zona perdagangan bebas ASEAN (AFTA). AFTA membuat cakupan persaingan bisnis tidak hanya di antara pelaku bisnis yang berada dalam satu negara, tetapi mencakup pelaku bisnis yang berada di seluruh negara yang tergabung dalam ASEAN. Suatu perusahaan sebagai pelaku bisnis dapat bersaing jika perusahaan tersebut memiliki keunggulan kompetitif dibandingkan dengan pesaingnya. Salah satu cara agar suatu perusahaan memiliki keunggulan kompetitif adalah dengan menerapkan teknologi informasi pada keseluruhan operasionalnya. Melalui penerapan teknologi informasi suatu perusahaan memiliki kemampuan untuk mendapatkan, memproses, menyimpan dan mendistribusikan informasi lebih cepat, akurat, tepat waktu dibandingkan pesaingnya, sehingga dapat membuat keputusan secara akurat untuk dapat memenangkan persaingan.

Informasi menjadi sumber daya yang harus dikelola secara optimal oleh setiap perusahaan, agar tercipta efektifitas menghasilkan dan pemakaian informasi yang merupakan faktor penentu untuk terciptanya ketepatan pengambilan keputusan, misalnya melalui keputusan yang tepat tentang perencanaan produksi untuk dapat menghasilkan produk atau jasa ke konsumen dengan tepat waktu.

Seiring dengan terjadinya divisionalisasi pada organisasi perusahaan, mengakibatkan terbentuk struktur jaringan pada organisasi perusahaan. Bentuk organisasi perusahaan berubah kearah struktur organisasi fleksibel yang menggunakan pendekatan tim untuk mengkombinasikan sumber daya yang dibutuhkan untuk menghadapi perubahan kekuatan persaingan pasar. Munculnya struktur organisasi perusahaan yang lebih fleksibel, diperlukan suatu sistem informasi yang merupakan inti dari teknologi
informasi dapat menyediakan informasi yang efektif untuk mendukung fungsional departemen yang dimiliki perusahaan.

Pengelolaan sumber daya informasi secara optimal melalui penerapan sistem informasi yang dapat memaksimalkan penggunaan sumber daya perusahaan akan tercipta kemampuan perusahaan untuk memberikan pelayanan ke konsumen secara efektif, dapat menganalisa kesempatan pemasaran, mengontrol sumber daya keuangan dan mengelola produksi dan operasi manufakturnya. Pada akhirnya penerapan sistem informasi akan memberikan peningkatan kompetitif perusahaan seperti melalui pengurangan biaya dan memberikan kesempatan nilai tambah terhadap produk dan memperluas cakupan kompetitif perusahaan.

Tujuan perusahaan dirumuskan dan ditetapkan dalam perencanaan strategis. Perencanaan strategis merupakan proses penetapan aktivitas yang akan dilakukan di masa depan dengan rentang waktu jangka panjang, satu
sampai lima tahun. Rencana strategis menetapkan tujuan perusahaan seperti menetapkan target laba, peningkatan pangsa pasar dan peningkatan kapasitas pabrik. Tujuan perusahaan dapat tercapai jika operasional perusahaan berjalan efisien dan efektif. Dibutuhkan perencanaan operasional yang baik terutama perencanaan yang melibatkan fungsi-fungsi departemen pemasaran, keuangan dan produksi perusahaan. Rencana operasional merupakan rencana yang menetapkan tentang aktifitas secara rinci cara untuk mencapai tujuan perusahaan dengan jangka waktu satu tahun atau kurang, misalnya rencana produksi mingguan. Dengan rencana diperoleh arah operasional perusahaan, mengurangi dampak perubahan, memperkecil pemborosan, sehingga para karyawan pada setiap departemen mengetahui apa yang harus dilakukan, mudah mengkoordinasikan kegiatan-kegiatan operasional, kerja sama antar departemen dan bekerja dalam satu tim perusahaan.

Salah satu cara agar suatu sistem informasi yang diterapkan dapat menyediakan informasi yang efektif untuk mendukung fungsi seluruh departemen perusahaan adalah dengan menerapkan konsep sistem bisnis terintegrasi berbasis komputer (computer integrated business system/CIBS). CIBS mengintegrasikan fungsi semua departemen perusahaan ke dalam satu sistem informasi berbasis komputer. Melalui sistem informasi yang terintegrisi akan tercipta sinkronisasi pengambilan keputusan diantara departemen-departemen perusahaan, karena memiliki satu sumber informasi.

produksi masing-masing dilakukan oleh departemen pemasaran, departemen produksi dan departemen keuangan. Masing-masing perencanaan tersebut belum memiliki suatu sistem informasi berbasis komputer, baik sistem informasi yang hanya ada pada satu proses perencanaan maupun dalam bentuk satu sistem informasi terintegrasi berbasis komputer yang mencakup keseluruhan fungsi operasional PT. IMI.

Perencanaan tingkat penjualan produk untuk periode berikutnya, perencanaan kebutuhan bahan dan perhitungan biaya produksi merupakan fungsi yang menjadi penentu untuk tercapainya jumlah produksi sesuai dengan tingkat permintaan produk dan dapat diproduksi dengan tepat waktu. Kondisi tersebut tercapai jika terdapat mekanisme pengambilan keputusan yang terkoordinasi antara departemen pemasaran, keuangan dan produksi. Oleh karena itu diperlukan suatu alat sebagai penyedia kebutuhan data dan informasi yang terintegrasi untuk departemen-departemen tersebut, agar tercipta pengambilan keputusan terpadu.

Perencanaan tingkat penjualan produk, perencanaan kebutuhan bahan dan perhitungan biaya produksi disebut sebagai rangkaian dari suatu perencanaan produksi (Welsch, 1995). Agar rangkaian perencanaan produksi terlaksana dengan baik dan dapat menghasilkan keputusan yang akurat tentang tingkat penjualan, jumlah kebutuhan bahan baku dan jumlah biaya produksi, maka diperlukan sistem informasi terpadu untuk aktifitas yang berkaitan dengan perencanaan produksi.

Hasil pengembangan sistem informasi manajemen perencanaan produksi terpadu dapat diimplementasikan untuk proses perencanaan produksi di PT. IMI. Sistem informasi berbasis komputer yang dibuat dapat menghasilkan informasi mengenai perkiraan jumlah penjualan potensial produk, informasi penjadwalan produksi, informasi kebutuhan bahan baku yang dipesan ke pemasok, informasi biaya pengadaan bahan baku, upah tenaga kerja langsung dan biaya tak langsung pabrik PT. IMI serta biaya per unit produk.
B. TUJUAN PENELITIAN

Tujuan penelitian untuk:
Menganalisa aktifitas nyata perusahaan dalam proses perencanaan produksi dalam arti luas yang meliputi penentuan tingkat penjualan produk, penjadwalan produksi, penghitungan kebutuhan bahan produksi, dan proses penghitungan kebutuhan biaya untuk produksi meliputi biaya bahan produksi, upah tenaga kerja langsung dan biaya tak langsung pabrik. Aktifitas-aktifitas tersebut dirancang kedalam satu sistem informasi manajemen yang mengacu pada konsep computer integrated business system. Mengimplementasikan rancangan sistem informasi perencanaan produksi terpadu serta melakukan verifikasi dan validasi sistem yang telah dikembangkan.

C. RUANG LINGKUP

Sistem bisnis terpadu bebasis komputer (computer integrated business system/CIBS) mengintegrasikan semua fungsi-fungsi manajemen seluruh departemen suatu perusahaan kedalam satu sistem informasi berbasis komputer. Suatu perusahaan manufaktur melakukan produksi sesuai dengan tingkat permintaan produknya. Proses produksi mulai dari pengadaan bahan baku, produk dihasilkan sampai produk terjual ke konsumen melibatkan departemen produksi, departemen pemasaran atau penjualan, departemen keuangan, departemen penjaminan kualitas (quality assurance) dan departemen lainnya. Agar rangkaian proses aktifitas menghasilkan dan penjualan produk yang melibatkan semua departemen perusahaan dapat terkoordinasi secara terpadu, diperlukan suatu alat yang dapat menyediakan informasi untuk seluruh departemen perusahaan. Dengan menerapkan CIBS semua informasi perusahaan dapat diintegrasikan ke dalam satu sistem informasi berbasis komputer, sehingga semua kebutuhan informasi departemen-departemen perusahaan dapat terpenuhi.

Pada penelitian ini, tidak sepenuhnya dikembangkan suatu sistem bisnis terpadu berbasis komputer (CIBS) karena luasnya cakupan CIBS.

Informasi yang dikembangkan meliputi; peramalan penjualan, hasil peramalan digunakan untuk mengetahui dan menetapkan tingkat penjualan potensial produk dengan mempertimbangkan pesanan aktual produk dari konsumen. Tingkat penjualan potensial ditransformasikan ke dalam jadwal produksi mingguan. Agar tercapai kontinuitas proses produksi diperlukan perencanaan kebutuhan bahan untuk mengetahui kapan dan jumlah bersih bahan baku yang perlu dipesan. Berdasarkan informasi kuantitas produksi mingguan dapat dilakukan proses penghitungan biaya produksi. Biaya produksi meliputi upah tenaga kerja langsung, biaya pengadaan bahan baku, dan biaya tak langsung pabrik.
II. TINJAUAN PUSTAKA

A. SISTEM INFORMASI

sistem dan menunjang rasionalisasi keputusan yang berhubungan dengan perihal yang dihadapi. Perilaku sistem diartikan sebagai status sistem dalam suatu periode waktu tertentu, di mana perubahan status sistem tersebut diamati melalui dinamika keluarannya.

Bagian-bagian sistem ada yang secara langsung dapat dikontrol dan sebagian lagi tidak dapat dikontrol oleh pembuat keputusan. Variabel sistem merupakan sesuatu yang dapat dikontrol oleh pembuat keputusan, misalnya harga produk. Parameter sistem adalah nilai atau kuantitas yang tidak dapat dikontrol oleh pembuat keputusan misalnya biaya bahan baku (Stair dan Reynolds, 1998).

Interaksi dalam suatu sistem bisnis terjadi melalui informasi antar departemen fungsional perusahaan dan atau dengan lingkungannya. Menurut Long (1989), informasi merupakan data yang telah dikumpulkan dan diproses sehingga dihasilkan suatu bentuk yang memiliki nilai bagi pemakainya. Pada era sistem informasi sekarang, sistem informasi bermakna sistem berbasis komputer yang dapat mengolah data dan menyajikan informasi untuk dapat mendukung pengambilan keputusan yang bersifat manajerial.

Sistem informasi manajemen adalah kumpulan elemen-elemen yang saling berhubungan atau komponen-komponen yang dikumpulkan sebagai masukan, kemudian dilakukan pengolahan, transformasi dan penyimpanan

Menurut Schulties dan Summer (1992), sistem informasi mempunyai karakteristik yang sama seperti sistem secara umum. Tujuan utama sistem informasi adalah untuk mentransformasi data menjadi informasi yang bernilai. Dalam konteks bisnis suatu sistem informasi adalah sub sistem dari sistem bisnis pada perusahaan. Setiap sistem memiliki tujuan seperti peningkatan profit, peningkatan pangsa pasar, atau peningkatan pelayanan terhadap pelanggan. Suatu sistem informasi pada perusahaan dapat didesain untuk menyediakan informasi bagi setiap aktifitas bisnis, baik yang bersifat operasional, taktis, dan strategis.

Pada perusahaan, sistem informasi berbasis komputer dapat dijadikan sebagai bentuk dasar pengembangan proses dan sistem informasi bisnis, dan mendukung pencapaian tujuan perusahaan. Gambar 1, merupakan gambaran keterpaduan arsitektur sistem informasi untuk pencapaian tujuan dan sasaran perusahaan, garis terputus-putus antar bagian perencanaan bisnis dengan arsitektur sistem informasi menandakan bahwa
keterpaduan penting untuk pencapaian tujuan dan peningkatan kinerja perusahaan.

Gambar 1. Integrasi arsitektur sistem informasi untuk pencapaian tujuan perusahaan (Stair dan Reynolds, 1998).

Keluaran SPT (sistem pengolahan transaksi) dapat berupa pangkalan data transaksi yang yang dapat dijadikan sebagai masukan penting untuk pengembangan sistem informasi manajemen, selain pangkalan data internal dan pangkalan data eksternal. Sistem informasi manajemen (SIM) yang merupakan bagian dari sistem informasi adalah pengorganisasian kumpulan manusia, prosedur, pangkalan data, dan peralatan yang dapat digunakan untuk penyediaan informasi rutin bagi manajer dan pengambil keputusan lainnya. Input SIM berasal dari sumber data internal dan data eksternal, sumber internal dapat berasal dari pelanggan, penyalur, pesaing, dan data stake-holder yang tidak terdapat pada SPT. Dengan memandangkan
data-data tersebut dan memprosesnya menjadi informasi yang berguna bagi manajer, terutama dalam bentuk laporan yang telah ditetapkan sebelumnya (Stair dan Reynolds, 1998).

Secara umum keluaran SIM berupa kumpulan informasi yang telah diproses dan diserahkan kepada manajer, laporan tersebut meliputi laporan terjadwal, laporan permintaan, laporan eksepsi, laporan key-indicator, dan laporan drill-down. Laporan terjadwal merupakan laporan yang dihasilkan secara periodik misalnya laporan harian, mingguan atau bulanan. Laporan key-indicator merupakan jenis laporan terjadwal yang diringkas untuk melihat atau mengetahui aktivitas kritis harian dan jenis yang dapat diperoleh pada setiap permulaan hari kerja. Laporan permintaan merupakan laporan yang dikembangkan untuk memenuhi permintaan para manajer. Laporan eksepsi merupakan laporan yang secara otomatis dihasilkan ketika dibutuhkan tindakan manajemen. Laporan drill-down menyediakan informasi yang semakin terperinci tentang kondisi sesuatu (Stair dan Reynolds, 1998).

B. PERAMALAN DAN PERENCANANAAN TINGKAT PENJUALAN

Departemen pemasaran perlu memahami pasar dan potensi penjualan untuk meningkatkan akurasi prediksi penjualan produk. Informasi peramalan penjualan digunakan sebagai dasar untuk proses perencanaan penjualan sehingga dapat dilakukan penetapan kepastian kuantitas produk yang akan diproduksi untuk periode kedepannya (Eckles, 1990).
Pada industri manufaktur dikenal adanya dua jenis permintaan yaitu; *independent demand* dan *dependent demand*. *Independent demand* didefinisikan sebagai permintaan terhadap produk, komponen, yang tidak terkait langsung dengan struktur rincian bahan (*bill of material*) untuk produk akhir atau item tertentu. Produk yang tergolong kedalam *independent demand* merupakan obyek untuk peramalan. *Dependent demand* didefinisikan sebagai permintaan terhadap material, atau produk yang terkait langsung yang diturunkan dari struktur rincian bahan untuk produk akhir atau item tertentu. Permintaan terhadap material yang bersifat *dependent demand* harus dihitung dan tidak boleh diramalkan. Dalam kasus industri mobil permintaan untuk produk mobil merupakan *independent demand* maka permintaan untuk produk mobil dapat diramalkan, sedangkan permintaan untuk ban terkait langsung dengan struktur rincian bahan untuk produk akhirnya berupa mobil harus dihitung (Gaspersz, 1998).

Peramalan penjualan merupakan proses kalkulasi angka-angka terhadap penjualan produk masa lalu suatu perusahaan untuk prediksi tingkat penjualan periode mendatang. Seringkali kalkulasi angka peramalan penjualan berbeda dengan hasil penjualan aktual yang dicapai perusahaan. Oleh karena itu, diperlukan ketepatan peramalan yang ditentukan oleh faktor penggunaan sistematika dan prosedur-prosedur yang peka terhadap sumber kesalahan statistika dan non-statistika, pemakaian sumber data yang benar sehingga dapat memberikan informasi tepat waktu dan terperinci untuk pembuatan keputusan (Eckles, 1990).

Tujuan peramalan adalah untuk memprediksi permintaan terhadap produk yang dihasilkan di masa depan, sehingga tercipta efektifitas dan efisiensi dari manajemen produksi dan inventori dalam industri manufakturing. Item yang diramalkan adalah item yang bersifat permintaan
bebas. Dalam industri manufakturing, pemilihan interval waktu adalah
mingguan dimaksudkan untuk peramalan jangka pendek, sedangkan
interval waktu bulanan untuk peramalan jangka menengah, dan interval

Lebih lanjut Gaspersz (1998), menerangkan teknik peramalan
penjualan terdiri dari tiga cara yaitu:

1. Metode kualitatif; metode pengumpulan pendapat dari individu-
individu yang berpengalaman dan berpengetahuan tanpa berdasarkan
data kuantitatif, misalnya opini eksekutif senior, pengalaman dari para
tenaga penjualan, dan informasi ekspektasi pelanggan yang diperoleh
dari survei yang dilakukan, baik secara formal maupun informal.
Metode ini antara lain, Dugaan Manajemen, Riset pasar, Metode
Kelompok Terstruktur, dan Analogi Historis. Metode kualitatif
ditujukan untuk peramalan produk baru, pasar baru, perubahan sosial
masyarakat, atau penyesuaian terhadap ramalan berdasarkan metode
kuantitatif.

2. Metode deret waktu; metode yang mengaplikasikan teknik statistika
terhadap data historis untuk membuat angka-angka peramalan
penjualan. Metode ini menggunakan sekumpulan data berdasarkan
interval waktu tertentu seperti; mingguan, bulanan, triwulan,
semesteran atau tahunan. Metode ini meliputi Metode Rata-rata
Bergerak, Metode Pemulusan Eksponensial, Analisis Garis
Kecenderungan, Proyeksi Garis Lurus, Dekomposisi Klasikal, dan Box-
Jenkins. Metode Rata-rata Bergerak dan Pemulusan Eksponensial efektif
dipakai jika pola data tidak menunjukkan kecenderungan dari waktu ke
waktu serta diasumsikan bahwa permintaan pasar akan relatif stabil,
pada umumnya dipergunakan dalam periode peramalan dalam satu
tahun. Metode Analisis Garis Kecenderungan merupakan
pembandingan model-model regresi deret waktu berdasarkan tingkat
pertumbuhan data sepanjang waktu. Metode Analisis Garis
Kecenderungan akan efektif jika pola data menunjukkan kecenderungan
menaik atau menurun sepanjang waktu, dalam model regresi deret
waktu yang menjadi variabel tak bebas adalah variabel yang akan
diramalkan (penjualan atau permintaan) sedangkan variabel bebas
adalah deret waktu. Pada metode proyeksi garis lurus tidak dilakukan
pembandingan model-model regresi linear, kuadratik, dan regresi kubik
dari selalu menggunakan model regresi deret waktu linear. Metode
dekomposisi klasikal merupakan metode yang mengasumsikan bahwa
data ada paling sedikit terbentuk dari tiga komponen, yaitu; pengaruh
musiman, kecenderungan, dan keteracakan. Metode ini, melakukan
pemisahan komponen-komponen sehingga menyederhanakan
masalah peramalan, dan akan efektif jika pola data berpengaruh dari
eketiga komponen tersebut.

3. Metode sebab-akibat; merupakan metode yang mengaplikasikan model-
model statistika terhadap data historis penjualan ditambah dengan
tindakan-tindakan yang mendasari penyebab kedinasan penjualan.
Metode ini mencakup model regresi dan indikator utama. Metode ini
berusaha menemukan hubungan sebab akibat diantara variabel yang
akan diramalkan satu atau lebih variabel yang lain, misalnya peramalan
permintaan mobil bedasarkan harga mobil, jumlah penduduk, tingkat
pendapatan keluarga, dan biaya iklan.

Menurut Welsch et al (1995), peramalan bukanlah rencana, peramalan
bersifat pernyataan atau perkiraan dalam bentuk kuantitas keadaan di masa
datang tentang hal tertentu misalnya pendapatan penjualan, berdasarkan
asumsi yang jelas. Peramalan harus dianggap hanya sebagai salah satu
masukan dalam pembuatan rencana penjualan. Manajemen suatu
perusahaan dapat menerima, mengubah, atau menolak suatu peramalan.
Sebaliknya rencana penjualan memasukkan keputusan manajemen yang
didasarkan pada peramalan, masukan lain, pertimbangan manajemen
tentang hal-hal yang berkaitan dengan volume penjualan, produksi dan
pembiayaan.

Ditambahkan Welsch et al (1995), bahwa suatu peramalan penjualan
diubah menjadi suatu rencana penjualan kalau manajemen telah
memasukkan pertimbangan manajemen, strategi yang direncanakan,
komitmen sumber daya, dan komitmen manajemen pada tindakan agresif untuk mencapai sasaran penjualan. Tujuan utama rencana penjualan adalah:

1. Untuk mengurangi ketidakpastian tentang pendapatan di masa mendatang.
2. Untuk memasukkan pertimbangan dan keputusan manajemen ke dalam proses perencanaan misalnya, dalam perencanaan pemasaran.
3. Untuk memberikan informasi yang diperlukan untuk pembuatan unsur lain yang terdapat dalam rencana laba terpadu.
4. Untuk mempermudah pengendalian kegiatan penjualan oleh manajemen.

C. PERENCANAAN KEBUTUHAN BAHAN PRODUKSI

Hasil perencanaan penjualan adalah berupa angka-angka yang menunjukkan kuantitas produk akhir yang diperkirakan akan terjual. Berdasarkan hasil kebijakan tersebut, departemen produksi menetapkan tingkat produksi sesuai dengan tingkat penjualan yang ditetapkan menjadi jadwal induk produksi untuk periode yang sama. Untuk menjaga kontinuitas proses produksi departemen produksi harus dapat mengelola tingkat persediaan bahan baku sehingga produk yang dihasilkan dapat memenuhi permintaan produk dari konsumen tepat waktu. Persediaan merupakan segala sesuatu sumber daya yang disimpan dalam antisipasinya terhadap permintaan.

Untuk dapat melakukan penanganan persediaan barang dengan baik terlebih dahulu harus dibedakan antara barang yang sifat permintaannya bebas dan barang permintaan tidak bebas karena sistem pengendalian persediaan diantara keduanya berbeda. Permintaan tidak bebas adalah tingkat dimana permintaan terhadap barang tertentu tergantung pada permintaan barang bebas (produk). Pada permintaan bebas, permintaan terhadap barang yang satu tidak ada hubungannya dengan permintaan barang lain. Untuk mengetahui permintaan terhadap barang yang sifatnya
bebas, dapat dilakukan dengan teknik peramalan penjualan dengan berbagai metode peramalan (Lockyer et al, 1990).

Untuk kondisi permintaan tidak bebas, jika jumlah permintaan produk akhir yang bersifat bebas sudah diketahui, maka permintaan terhadap komponen penyusun produk tersebut dapat diketahui jumlahnya, dan dapat dihitung kuantitas komponen atau sub-komponen yang dibutuhkan untuk memproduksi keseluruhan produk akhir yang akan terjual (Lockyer et al, 1990).

Untuk mengelola persediaan yang sifatnya tidak bebas dapat dilakukan dengan mengaplikasikan sistem perencanaan kebutuhan bahan (material requirement planning/MRP) yang bersifat proaktif dan lebih baik dari metode persediaan reaktif seperti Economic Order Quantity. Sistem MRP, tidak memerlukan persediaan penyangga yang besar, karena biasanya dapat diketahui berapa jumlah kebutuhan masing-masing bahan, dengan catatan yang akurat dan pengendalian bahan yang tepat, tidak terjadi kekurangan atau kelebihan persediaan jika dibutuhkan (Mecimore dan Weeks, 1992).

Metode MRP merupakan metode perencanaan dan pengendalian pesanan dan inventori untuk bahan-bahan tidak bebas. Item-bahan yang termasuk dalam tidak bebas adalah: bahan baku, komponen, sub rakitan, dan rakitan yang semuanya disebut manufacturing inventories, MRP juga dapat diadopsi pada lingkungan repetitive manufacturing. Berdasarkan MPS (jadwal produksi induk) yang diturunkan dari rencana produksi induk, suatu sistem MRP mengidentifikasi bahan apa yang harus dipesan, berapa banyak kuantitas bahan yang harus dipesan, dan kapan waktu memesan bahan.

Menurut Gaspersz (1998), suatu sistem MRP dimaksudkan untuk memberikan:
1. Kebutuhan-kebutuhan sediaan yang berkurang. MRP menentukan jumlah komponen yang diperlukan dan kapan memenuhi jadwal produksi induk.

2. Waktu tenggang (lead time) produksi dan waktu tenggang penyerahan yang dikurangi kepada para pelanggan. MRP mengidentifikasi bahan dan komponen yang diperlukan (jumlah dan waktunya), ketersediannya, dan tindakan-tindakan (pengadaan dan produksi) yang diperlukan untuk memenuhi batas waktu penyerahan.

4. Efisiensi produksi yang meningkat. MRP mengkoordinasikan berbagai departemen dan pusat kerja ketika proses produksi berlangsung di pusat kerja itu.

 Menurut McLeod (1996), MRP memiliki komponen daftar kebutuhan (rincian) bahan yang digunakan untuk menguraikan jumlah kebutuhan bahan setiap jenis produk yang dijadwalkan untuk produksi. Tujuan penguraian pada daftar kebutuhan bahan adalah untuk menentukan total kebutuhan bahan yang diperlukan untuk menghasilkan produk. Jumlah total kebutuhan bahan merupakan hasil perkalian jumlah unit yang akan diproduksi dengan daftar kebutuhan bahan tiap unit produk. Penentuan kebutuhan bahan yang akan dipesan dari pemasok ditetapkan setelah total kebutuhan bahan yang dibutuhkan dikurangi dengan bahan yang tersedia.

 Krajewski dan Ritzman (1996), menyatakan bahwa masukan utama suatu sistem MRP adalah daftar kebutuhan bahan, jadwal produksi induk dan catatan persediaan. Menurut (Attaran, 1992), catatan persediaan (inventory status file), memuat setiap artikel (produk) yang dikendalikan oleh MRP yang tersedia sekarang, jumlah yang ada, tingkat persediaan penyangga, dan jumlah yang dialokasikan ke berbagai pesanan-pesanan yang diproses. Jadwal produksi induk alat untuk mengidentifikasi berapa banyak masing-masing produk akhir diperlukan selama periode-periode waktu perencanaan (biasanya per minggu).
Menurut Aquilano dan Chase (1991), gambaran keseluruhan masukan program kebutuhan bahan standar dan laporan-laporan yang dihasilkan program dapat dilihat pada Gambar 3 berikut.

Prosedur penghitungan MRP menggunakan informasi masukan untuk menghitung catatan persediaan sekarang untuk tiap komponen dan artikel seperti ilustrasi berikut; Suatu perusahaan yang membuat kursi dengan model H, mempunyai dua komponen kerangka, satu untuk jok kaki depan dan yang lain untuk sandaran dan kaki belakang. Untuk merakit jok ke kaki depan, seorang pekerja memerlukan empat buah pasak. Kedua kerangka bagian rakitan tersebut (F dan G) kemudian digabung satu sama lain dengan empat buah pasak lagi. Setelah kedua rakitan tersebut digabungkan, perakitan kursi tersebut selesai (Gaspersz, 1998).

Gambar 4. Pohon struktur produk dan informasi artikel

Logika pengolahan MRP diterapkan pertama kali pada produk akhir dalam struktur produk, kemudian ke komponen berikutnya yang lebih rendah. Selanjutnya ke bawah, tingkat demi tingkat, hingga ditetapkan kebutuhan-kebutuhan yang diperlukan semua bahan dalam struktur produk untuk memenuhi jadwal produksi induk. Pada contoh tabel 1, kursi sebagai produk (H) adalah artikel tingkat "0" (tingkat atas) yang membutuhkan 500 unit lengkap pada pada minggu ke delapan; informasi ini merupakan masukan dari sistem pengolahan dari MPS (Jadwal Induk Produksi) ke MRP. Semua pengolahan informasi berikutnya dicocokkan untuk mempertahankan jadwal yang telah ditetapkan. Catatan keadaan persediaan memberitahukan bahwa 30 unit H saat ini tersedia dari persediaan yang ada; 30 unit tersebut diteruskan untuk tetap tersedia pada akhir minggu tujuh, mengakibatkan "kebutuhan bersih" 470 unit H tambahan pada minggu delapan. Logika pengolahan MRP kemudian menghitung suatu "penerimaan pesanan yang direncanakan" yang timbul dalam minggu ke delapan (pada saat diperlukan) untuk 470 unit H. Waktu pesanan yang tepat untuk dilaksanakan sehingga barang yang dipesan tiba tepat pada waktunya, adalah dengan mempertimbangkan terlebih dahulu panjang tenggang waktu, satu minggu, seperti pada artikel H.
Proses "penyeimbangan dengan tenggang waktu, hasilnya adalah pelepasan pesanan yang direncanakan pada permulaan minggu tujuh, yang setelah satu minggu waktu tenggang, akan mengakibatkan suatu penerimaan 470 unit pada awal minggu delapan (Gapersz, 1998).

Tabel 1. Jadwal produksi induk untuk produk kursi

<table>
<thead>
<tr>
<th>Waktu tenggang: 1 minggu</th>
<th>Minggu ke-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumlah pesanan standar : 10 unit</td>
<td>1</td>
</tr>
<tr>
<td>Kebutuhan kotor</td>
<td>50</td>
</tr>
<tr>
<td>Penerimaan yang dijadwalkan</td>
<td></td>
</tr>
<tr>
<td>Tersedia</td>
<td>100</td>
</tr>
<tr>
<td>Rencana pelepasan</td>
<td>30</td>
</tr>
</tbody>
</table>

Jika sudah dibentuk kebutuhan-kebutuhan untuk semua artikel tingkat nol pengolahan mulai pada artikel-artikel tingkat rendah berikutnya, baik F maupun G sesuai struktur produk. Artikel tingkat satu dipertimbangkan berikutnya; karena tingkat satu yang diperlukan untuk memproduksi artikel tingkat nol "Kebutuhan kotor" untuk komponen F dan G ditentukan oleh "pelepasan pesanan yang direncanakan" dari artikel tingkat yang lebih tinggi H, 470 unit dalam minggu ketujuh. Pada umumnya, "kebutuhan-kebutuhan kotor" untuk artikel yang lebih rendah harus meliputi "pelepasan pesanan yang direncanakan" dari artikel induknya untuk periode waktu tersebut. Kemudian "kebutuhan-kebutuhan bersih" untuk tiap F dan G dapat ditentukan dan "penerimaan pesanan yang direncanakan" dapat ditetapkan untuk periode tersebut. Seperti pada H waktu tenggang 'yang diimbangi' untuk F dan G untuk menentukan "pelepasan pesanan yang direncanakan". Logika pengolahan selanjutnya ke tingkat rendah berikutnya dari struktur produk dan menentukan kebutuhan-kebutuhan untuk tiap artikel A, B, C, D, E kemudian jumlah kebutuhan bahan baku dapat ditentukan (Gapersz, 1998).

Untuk menyatakan perhitungan tingkat-demi tingkatnya logika pengolahan MRP perhitungannya memerlukan informasi yang akurat dan singkat tentang hubungan suatu artikel akhir dengan semua sub-komponennya. Daftar bahan yang diinden (tergantungkan) menyisakan informasi jenis tersebut. Kursi model H (produk) mempunyai daftar bahan bahan yang diinden (lihat tabel 2) dengan informasi yang sama seperti struktur produknya. Untuk menciptadakan suatu produk akhir, sering
membutuhkan unit-unit yang berlipat ganda dari artikel tingkat-bawahanya. Satu H, misalnya membutuhkan empat unit E, maka "pelepasan yang direncanakan" dari 470 H dalam minggu tujuh harus dikalikan dengan empat (4 \times 470 = 1880) untuk menentukan kebutuhan kotor dari E untuk minggu tujuh, proses seperti ini disebut peledakan produk (Gaspersz, 1998).

<table>
<thead>
<tr>
<th>Tingkat</th>
<th>Jumlah</th>
<th>Bagian ID</th>
<th>Uraian</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>F</td>
<td>Bagian rakitan jok/kaki depan</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>A</td>
<td>Rangka jok/kaki depan</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>E</td>
<td>Pasak</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>C</td>
<td>Jok</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>G</td>
<td>Bagian rakitan sandaran/kaki belakang</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>B</td>
<td>Rangka sandaran/kaki belakang</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>E</td>
<td>Pasak</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>D</td>
<td>Sandaran</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>E</td>
<td>Pasak</td>
</tr>
</tbody>
</table>

Sistem MRP harus mengadopsi catatan terbaru, seperti status persediaan dari setiap bahan dalam struktur produk. Dokumen status persediaan terdiri dari nomor identifikasi, jumlah yang dimiliki, tingkat persediaan pengaman, jumlah yang dikeluarkan (dialokasikan) dan tenggang waktu yang dibutuhkan untuk memperoleh setiap bahan dari pemasok (Adam dan Ebert, 1996).

Menurut Krajewski dan Ritzman (1996), catatan persediaan sama seperti jadwal produksi induk yang membagi waktu mendatang ke dalam periode-periode waktu (time bucket). Time bucket menggambarkan kebijaksanaan terhadap ukuran lot sebuah bahan, tenggang waktu, kebutuhan persediaan pengaman, dan berbagai data tahapan waktu. Manfaat persediaan adalah untuk mengawasi tingkat persediaan dan kebutuhan penambahan komponen, yang termasuk dalam catatan persediaan adalah:

1. Kebutuhan kotor
2. Penerimaan yang dijadwalkan
3. Proyeksi persediaan yang dimiliki
4. Penerimaan terperinci, dan
5. Pelepasan pesanan yang terencana.

\[
\begin{align*}
KK &= P \times B \\
KB &= KK - I \\
BP &= KB - I - PO
\end{align*}
\]

Keterangan:

\begin{align*}
KK &: \text{Kebutuhan kotor bahan} \\
P &: \text{Jumlah unit produk yang harus diproduksi} \\
B &: \text{Kebutuhan bahan untuk setiap unit produk} \\
KB &: \text{Kebutuhan bersih bahan} \\
I &: \text{Persediaan yang dimiliki saat ini} \\
BP &: \text{Bahan yang harus dipesan} \\
PO &: \text{Persediaan yang telah dipesan}
\end{align*}

Ditambahkan Waters (1992), bahwa diperlukan informasi tenggang waktu untuk mengetahui waktu pengiriman pesanan, sehingga pesanan dapat diterima sebelum bahan betul-betul dibutuhkan. Untuk menghitung penerimaan yang dijadwalkan pada periode tertentu dapat digunakan rumusan berikut:

\[
P_n = M_n - TW
\]

Keterangan:

\begin{align*}
P_n &: \text{Penerimaan yang dijadwalkan pada periode } n \\
M_n &: \text{Dimulainya produksi atau dikirimkannya pesanan periode } n \\
TW &: \text{Tenggang waktu}
\end{align*}

MRP menghasilkan jadwal pesanan terencana yang memuat jadwal kebutuhan tiap bahan berdasarkan periode waktu. Jadwal pesanan terencana mencakup:

1. Perubahan pesanan terencana, yang menggambarkan pesanan dipercepat, kuantitas pesanan yang dibatalkan.
2. Laporan kinerja, sebagai penunjuk pada tingkat berapa efisiensi dan efektifitas sistem kerja.

3. Laporan pengecualian, yang menandai bahan-bahan yang membutuhkan perhatian manajemen.

4. Laporan perencanaan, alat yang dipakai manajemen manufaktur atau produksi untuk perencanaan persediaan ke depan (McLeod, 1996).

Menurut Aquilano dan Chase (1991), keluaran MRP umumnya berupa laporan-laporan yang diklasifikasikan kedalam laporan primer dan sekunder. Laporan primer adalah laporan utama yang digunakan untuk pengendalian produksi dan persediaan. Laporan sekunder merupakan laporan tambahan yang dapat dipilih dan dikategorikan kedalam laporan perencanaan, laporan hasil pelaksanaan, dan laporan pengecualian.

D. PENGGANGGARAN (BIAYA) PRODUKSI

Anggaran (business budget) adalah rencana yang disusun secara sistematis, meliputi seluruh kegiatan perusahaan, dinyatakan dalam satuan moneter (rupiah) dan berlaku untuk jangka waktu tertentu ke depan. Proses kegiatan dalam anggaran yaitu pengumpulan data dan informasi yang diperlukan untuk menyusun anggaran, kemudian analisis terhadap data dan informasi sebagai dasar membuat perkiraan-perkiraan anggaran, serta menyajikannya secara teratur dan sistematis, pengkoordinasian pelaksanaan anggaran, pengolahan dan analisis data dilakukan untuk membuat interpretasi dan memperoleh kesimpulan untuk membuat penilaian terhadap kerja yang dilaksanakan, kemudian menyusun kebijaksanaan sebagai tindak lanjut dari kesimpulan (Adisaputro dan Asri, 1996).

Menurut Moore et al (1992), bahwa jangka periode anggaran dapat ditetapkan untuk mingguan, bulanan, catu wulanan, satu tahun, atau lebih dari satu tahun (tidak ada ukuran baku terhadap interval waktu penganggaran).

Untuk menentukan jangka waktu berlakunya anggaran yang akan disusun, dipengaruhi oleh beberapa faktor yaitu; luas pasar penjualan produk yang dihasilkan, posisi perusahaan dalam persaingan, jenis produk yang dihasilkan (produk elastis atau inelastis), tersedianya data dan informasi, keadaan perekonomian secara umum (Batty, 1990).

Welsch et al (1995) menyatakan bahwa anggaran yang disusun memiliki tiga kegunaan pokok yaitu;

1. Pedoman kerja; berfungsi sebagai pedoman kerja dan memberikan arah dan target yang harus dicapai oleh kegiatan perusahaan di masa mendatang.
2. Alat pengkoordinasi kerja; berfungsi untuk mengkoordinasikan kerja agar departemen-departemen dalam perusahaan saling menunjang, dan bekerja sama, untuk menuju ke Sasaran yang telah ditetapkan.

3. Alat pengawasan kerja; berfungsi sebagai tolak ukur, alat pembanding untuk evaluasi realisasi kegiatan perusahaan. Dengan membandingkan antara apa yang tertuang di dalam anggaran dengan apa yang dicapai perusahaan, sehingga dapat dinilai tingkat keberhasilannya.

Menurut Batty (1990), anggaran dapat berfungsi dengan baik jika peramalan (forecasting) yang termuat didalamnya akurat sehingga tidak jauh berbeda dengan realisasinya. Untuk dapat melakukan peramalan secara akurat, diperlukan data, informasi dan pengalaman. Faktor-faktor yang dapat dipertimbangkan pada penyusunan anggaran adalah; pertama, faktor internal misalnya kuantitas penjualan tahun-tahun lalu, kebijaksanaan perusahaan yang berhubungan dengan masalah harga jual, kapasitas produksi, tenaga kerja (jumlah dan keahlian), modal kerja. Kedua, faktor eksternal seperti, keadaan persaingan, tingkat pertumbuhan penduduk, tingkat penghasilan masyarakat, tingkat pendidikan, tingkat penyebaran penduduk. Faktor yang bersifat internal merupakan faktor yang dapat disesuaikan dengan kebijakan perusahaan. Sedangkan faktor yang bersifat eksternal merupakan faktor yang tidak dapat dikontrol oleh perusahaan.

Menurut Munandar (2000), suatu anggaran yang baik seharusnya mencakup seluruh kegiatan perusahaan, sehingga fungsi-fungsi anggaran (pedoman kerja, alat pengkoordinasian kerja dan alat pengawasan kerja) dapat berjalan dengan baik. Anggaran menyeluruh disebut anggaran komprehensif. Isi anggaran komprehensif secara garis besar terdiri dari; Anggaran prakiraan yaitu anggaran yang berisi prakiraan-prakiraan tentang kegiatan-kegiatan perusahaan dalam jangka waktu (periode) tertentu ke depan, serta prakiraan-prakiraan tentang keadaan atau posisi finansial perusahaan pada suatu saat tertentu ke depan. Anggaran peramalan terdiri dari dua kelompok yaitu, pertama; anggaran operasional, ialah anggaran yang berisi taksiran-taksiran tentang biaya kegiatan-kegiatan perusahaan dalam jangka waktu tertentu ke depan. Kedua; anggaran finansial ialah
anggaran yang berisi peramalan-peramalan tentang keadaan atau posisi finansial perusahaan pada suatu saat tertentu ke depan (Welsch et al, 1995).

Adisaputro dan Asri (1996), menyatakan bahwa, anggaran operasional perusahaan selama periode tertentu meliputi dua sektor yaitu; sektor penghasilan dan sektor biaya. Dalam akuntansi, kegiatan-kegiatan yang berhubungan dengan sektor penghasilan dan sektor biaya pada akhir periode dituangkan dalam Laporan Rugi-Laba perusahaan. Jika penghasilan lebih besar dari pada biaya operasional berarti perusahaan memperoleh keuntungan, demikian sebaliknya. Atas dasar kelengkapan isinya laporan rugi laba dibedakan menjadi dua macam;

Gambar 5. Skema tahapan penyusunan anggaran penunjang rugi-laba (Munandar, 2000)

Anggaran penjualan adalah anggaran yang merencanakan secara lebih terperinci tentang penjualan perusahaan selama periode tertentu ke depan, meliputi rencana tentang jenis, jumlah, harga, waktu dan daerah barang yang akan dijual. Anggaran penjualan merupakan bagian dari rencana perusahaan di bidang pemasaran. Anggaran penjualan berguna sebagai dasar penyusunan semua anggaran-anggaran dalam perusahaan, sebab perusahaan yang menghadapi pasar bersaing, anggaran penjualan harus disusun paling awal dari pada anggaran yang lainnya (Adisaputro dan Asri, 1996).

<table>
<thead>
<tr>
<th>Keterangan</th>
<th>Produk X</th>
<th>Produk Y</th>
<th>Jumlah</th>
<th>Jumlah</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit</td>
<td>Harga (Rp)</td>
<td>Jumlah (Rp 000)</td>
<td>Unit</td>
</tr>
<tr>
<td>Januari</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jawa barat</td>
<td>35.000</td>
<td>400</td>
<td>14.000</td>
<td>26.000</td>
</tr>
<tr>
<td>Jawa tengah</td>
<td>52.000</td>
<td>430</td>
<td>22.560</td>
<td>39.000</td>
</tr>
<tr>
<td>Jawa Timur</td>
<td>28.000</td>
<td>420</td>
<td>11.760</td>
<td>15.000</td>
</tr>
<tr>
<td>Jumlah</td>
<td>115.000</td>
<td></td>
<td>38.260</td>
<td></td>
</tr>
<tr>
<td>Februari</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jawa barat</td>
<td>40.500</td>
<td>400</td>
<td>16.200</td>
<td>33.000</td>
</tr>
<tr>
<td>Jawa tengah</td>
<td>60.000</td>
<td>430</td>
<td>25.800</td>
<td>44.500</td>
</tr>
<tr>
<td>Jawa Timur</td>
<td>32.000</td>
<td>420</td>
<td>13.440</td>
<td>25.000</td>
</tr>
<tr>
<td>Jumlah</td>
<td>132.500</td>
<td></td>
<td>55.440</td>
<td></td>
</tr>
<tr>
<td>Maret</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jawa barat</td>
<td>45.000</td>
<td>400</td>
<td>18.000</td>
<td>40.000</td>
</tr>
<tr>
<td>Jawa tengah</td>
<td>66.000</td>
<td>430</td>
<td>28.380</td>
<td>51.000</td>
</tr>
<tr>
<td>Jawa Timur</td>
<td>36.000</td>
<td>420</td>
<td>15.120</td>
<td>31.000</td>
</tr>
<tr>
<td>Jumlah</td>
<td>147.000</td>
<td></td>
<td>61.500</td>
<td></td>
</tr>
<tr>
<td>Triwulan</td>
<td>394.500</td>
<td></td>
<td>135.060</td>
<td></td>
</tr>
</tbody>
</table>

Gambar 6. Contoh anggaran penjualan perusahaan

Anggaran unit yang akan diproduksi adalah anggaran yang direncanakan secara lebih terperinci tentang jumlah unit produk yang diproduksi untuk periode ke depan, meliputi rencana jenis, jumlah dan kapan akan diproduksi. Jumlah yang akan diproduksi sesuai dengan kebijakan perencanaan penjualan perusahaan (Welsch et al, 1995).

Terdapat tiga pola produksi yaitu; pola produksi stabil; yakni kuantitas produksi sama atau stabil, pola produksi bergelombang sesuai dengan pola penjualan, pola produksi bergelombang secara lebih moderat dimana perkembangan jumlah unit akan diproduksi pada bulan dimana jumlah unit akan dijual meningkat, maka jumlah unit yang diproduksi juga ditingkatkan, tetapi tidak setinggi tingkat penjualan tersebut, demikian untuk keadaan sebaliknya. Pada Gambar 7, dapat dilihat salah satu format anggaran produksi dengan pola produksi bergelombang yang lebih moderat;
<table>
<thead>
<tr>
<th>Keterangan</th>
<th>Penjualan (unit)</th>
<th>Persediaan awal (unit)</th>
<th>Kekurangan (Unit)</th>
<th>Produksi (unit)</th>
<th>Persediaan Akhir (unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produk X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Januari</td>
<td>115.000</td>
<td>15.700</td>
<td>99.400</td>
<td>120.000</td>
<td>20.700</td>
</tr>
<tr>
<td>Pebruari</td>
<td>132.500</td>
<td>20.700</td>
<td>111.800</td>
<td>135.000</td>
<td>23.200</td>
</tr>
<tr>
<td>Maret</td>
<td>147.000</td>
<td>23.200</td>
<td>123.800</td>
<td>150.000</td>
<td>26.200</td>
</tr>
<tr>
<td>April</td>
<td>165.200</td>
<td>26.200</td>
<td>139.000</td>
<td>165.000</td>
<td>26.000</td>
</tr>
<tr>
<td>Mei</td>
<td>159.000</td>
<td>26.000</td>
<td>133.000</td>
<td>160.000</td>
<td>27.000</td>
</tr>
<tr>
<td>Juni</td>
<td>152.000</td>
<td>27.000</td>
<td>125.000</td>
<td>155.000</td>
<td>30.000</td>
</tr>
<tr>
<td>Semester I</td>
<td>870.700</td>
<td>15.700</td>
<td>855.000</td>
<td>885.000</td>
<td>30.000</td>
</tr>
<tr>
<td>Produk X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Januari</td>
<td>80.000</td>
<td>12.000</td>
<td>68.000</td>
<td>90.000</td>
<td>22.000</td>
</tr>
<tr>
<td>Pebruari</td>
<td>100.500</td>
<td>22.000</td>
<td>78.500</td>
<td>105.000</td>
<td>26.500</td>
</tr>
<tr>
<td>Maret</td>
<td>122.000</td>
<td>26.500</td>
<td>95.500</td>
<td>125.000</td>
<td>29.500</td>
</tr>
<tr>
<td>April</td>
<td>142.000</td>
<td>29.500</td>
<td>112.500</td>
<td>133.000</td>
<td>20.500</td>
</tr>
<tr>
<td>Mei</td>
<td>135.000</td>
<td>20.500</td>
<td>114.500</td>
<td>135.000</td>
<td>20.500</td>
</tr>
<tr>
<td>Juni</td>
<td>127.000</td>
<td>20.500</td>
<td>106.500</td>
<td>130.000</td>
<td>23.500</td>
</tr>
<tr>
<td>Semester I</td>
<td>706.500</td>
<td>12.000</td>
<td>694.500</td>
<td>718.000</td>
<td>23.500</td>
</tr>
</tbody>
</table>

Gambar 7. Contoh anggaran unit produk yang akan diproduksi perusahaan

Menurut Batty (1990), anggaran bahan adalah anggaran yang merencanakan secara terperinci penggunaan bahan selama proses produksi. Anggaran ini disusun secara berurutan, yakni:
1. Anggaran unit kebutuhan bahan baku; merencanakan secara terperinci jumlah unit bahan mentah yang dibutuhkan untuk berproduksi.
2. Anggaran pembelian bahan baku; merencanakan secara terperinci pembelian bahan baku untuk memenuhi kebutuhan berproduksi.
3. Anggaran biaya bahan mentah; merencanakan secara terperinci biaya bahan baku untuk berproduksi selama periode yang bersangkutan.

Pada Gambar 8, dapat dilihat anggaran kebutuhan bahan baku dengan standar kebutuhan bahan untuk produk X membutuhkan jenis A 1.8 kg, jenis B 1.5 kg, dan jenis C 1.2 liter. Sedangkan untuk produk Y membutuhkan jenis A 1.7 kg dan jenis B 1.3 kg, tanpa jenis C.
Gambar 8. Contoh anggaran unit kebutuhan bahan baku

Berdasarkan anggaran di atas dilakukan penyusunan anggaran pembelian bahan (Gambar 9). Harus dipertimbangkan pada penyusunan anggaran pembelian yaitu; kuantitas kebutuhan bahan baku, biaya untuk setiap pembelian, biaya dan resiko yang ditanggung sehubungan dengan penyimpanan bahan, fluktuasi harga bahan, ketersediaan bahan, modal kerja, dan kebijaksanaan tingkat persediaan bahan. Kebijaksanaan tingkat persediaan bahan dipengaruhi oleh fluktuasi produksi, fasilitas penyimpanan, resiko yang timbul selama penyimpanan, biaya penyimpanan, tingkat perputaran persediaan bahan pada waktu yang lalu, dan lamanya waktu tenggang (Munandar, 2000).

Gambar 9. Contoh anggaran pembelian bahan baku
Untuk menyusun anggaran biaya bahan perlu diperhatikan kuantitas dan kualitas kebutuhan bahan, anggaran pembelian bahan khususnya harga masing-masing bahan, metode akuntansi bahan yang dipakai perusahaan terutama dalam penilaian bahan. Dalam akuntansi terdapat tiga jenis metode untuk membukukan bahan baku yaitu: pertama, metode first in first out (FIFO) bahan baku yang paling awal dibeli merupakan bahan baku yang paling awal pula untuk diolah. Kedua, metode last in first out (LIFO) merupakan kebalikan dari FIFO. Ketiga, rata-rata bergerak, berdasarkan nilai rata-rata pembelian (harga) bahan baku yang pernah dilakukan sejak awal sampai yang terakhir (Munandar, 2000). Berikut Gambar 10 contoh anggaran biaya bahan baku untuk dua jenis produk.

<table>
<thead>
<tr>
<th>Keterangan</th>
<th>Produk X</th>
<th>Produk Y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kebutuhan (unit)</td>
<td>Harga (Rp)</td>
</tr>
<tr>
<td>Januari</td>
<td>216.000</td>
<td>20</td>
</tr>
<tr>
<td>Jenis A</td>
<td>180.000</td>
<td>30</td>
</tr>
<tr>
<td>Jenis B</td>
<td>144.000</td>
<td>15</td>
</tr>
<tr>
<td>Jumlah</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Februari</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jenis A</td>
<td>243.000</td>
<td>20</td>
</tr>
<tr>
<td>Jenis B</td>
<td>202.500</td>
<td>30</td>
</tr>
<tr>
<td>Jenis C</td>
<td>162.000</td>
<td>15</td>
</tr>
<tr>
<td>Jumlah</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maret</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jenis A</td>
<td>220.000</td>
<td>20</td>
</tr>
<tr>
<td>Jenis B</td>
<td>225.000</td>
<td>30</td>
</tr>
<tr>
<td>Jenis C</td>
<td>180.000</td>
<td>15</td>
</tr>
<tr>
<td>Jumlah</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gambar 10. Contoh anggaran biaya bahan baku

Anggaran upah tenaga kerja langsung adalah anggaran yang merencanakan secara terperinci tentang upah yang dibayarkan kepada tenaga kerja langsung. Meliputi rencana jumlah waktu tenaga kerja untuk menyelesaikan produksi, tarip upah, dan kapan mulai produksi. Tenaga kerja langsung merupakan tenaga kerja yang langsung menangani proses produksi. Dalam penyusunannya, hal-hal yang harus dipertimbangkan antara lain; jumlah dan kualitas yang akan diproduksi, standar waktu untuk menyelesaikan produksi, dan sistem pembayaran upah tenaga kerja yang

<table>
<thead>
<tr>
<th>Keterangan</th>
<th>Unit Produk</th>
<th>Jumlah jam</th>
<th>Upah per Jam (Rp)</th>
<th>Jumlah Upah (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Januari</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produk X</td>
<td>120.000</td>
<td>36.000</td>
<td>400</td>
<td>14.400.000</td>
</tr>
<tr>
<td>Produk Y</td>
<td>90.000</td>
<td>18.000</td>
<td>400</td>
<td>7.200.000</td>
</tr>
<tr>
<td>Jumlah</td>
<td>---</td>
<td>54.000</td>
<td></td>
<td>21.600.000</td>
</tr>
<tr>
<td>Februari</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produk X</td>
<td>135.000</td>
<td>40.500</td>
<td>400</td>
<td>16.200.000</td>
</tr>
<tr>
<td>Produk Y</td>
<td>105.000</td>
<td>21.000</td>
<td>400</td>
<td>8.400.000</td>
</tr>
<tr>
<td>Jumlah</td>
<td>---</td>
<td>61.500</td>
<td></td>
<td>24.600.000</td>
</tr>
<tr>
<td>Maret</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produk X</td>
<td>150.000</td>
<td>45.000</td>
<td>400</td>
<td>18.000.000</td>
</tr>
<tr>
<td>Produk Y</td>
<td>125.000</td>
<td>25.000</td>
<td>400</td>
<td>10.000.000</td>
</tr>
<tr>
<td>Jumlah</td>
<td>---</td>
<td>70.000</td>
<td></td>
<td>28.000.000</td>
</tr>
</tbody>
</table>

Gambar 11. Contoh anggaran upah tenaga kerja langsung

Anggaran biaya pabrik tidak langsung (factory overhead budget) adalah anggaran yang merencanakan secara terperinci tentang biaya pabrik tidak langsung, yang meliputi rencana tentang jenis biaya pabrik tidak langsung, jumlah biaya pabrik tidak langsung dan waktu (kapan) biaya pabrik tidak langsung tersebut dibebankan. Biaya pabrik tidak langsung adalah semua biaya yang terdapat serta terjadi dalam lingkungan pabrik, tetapi tidak secara langsung berhubungan dengan kegiatan proses produksi. Dalam penyusunannya, faktor-faktor yang harus dipertimbangkan antara lain: jumlah dan kualitas produk yang akan diproduksikan dari waktu ke waktu selama periode, standar yang ditetapkan perusahaan yang berkaitan dengan biaya pabrik tidak langsung, sistem pembayaran untuk tenaga kerja tidak langsung, metode depresiasi yang diterapkan terhadap aktiva tetap dalam lingkungan pabrik, metode alokasi biaya yang dipakai untuk membagi biaya-biaya yang semula merupakan kesatuan menjadi beberapa kelompok biaya, sesuai dengan tempat biaya tersebut terjadi (Adisaputro dan Asri, 1996). Contoh anggaran biaya pabrik tidak langsung (tanpa pengalokasian biaya menurut biaya terjadi) dapat dilihat pada Gambar 12 berikut;
E. PENELITIAN TERDAHULU

Pada penelitian ini dibuat satu sistem informasi perencanaan produksi terpadu berbasis komputer yang mengacu pada konsep computer integrated business system (CIBS). Konsep CIBS adalah mengintegrasikan keseluruhan fungsi manajemen seluruh departemen yang dimiliki perusahaan kedalam satu sistem informasi berbasis komputer. Sehubungan dengan luasnya cakupan CIBS, maka pada penelitian ini hanya mengembangkan sistem informasi yang mencakup sebagian fungsi manajemen dari departemen pemasaran, departemen produksi dan departemen produksi. Fungsi tersebut adalah peramalan penjualan dan perencanaan tingkat penjualan produk, penyajadwalan produksi, perencanaan kebutuhan bahan, kebutuhan biaya produksi yang terdiri dari upah tenaga kerja langsung, biaya pengadaan bahan baku, dan biaya tak langsung pabrik. Rangkaian aktifitas tersebut oleh Welsch (1995) digolongkan sebagai rangkaian perencanaan produksi, oleh karena itu sistem yang dikembangkan disebut sistem informasi perencanaan produksi terpadu yang disingkat dengan SISIDU.

Hasil pengembangan SISIDU dapat diimplementasikan pada aktifitas yang berkaitan dengan perencanaan produksi di PT. IMI. Sistem dimulai dengan proses peramalan penjualan, hasilnya dibandingkan dengan jumlah permintaan aktual produk, jika nilai peramalan penjualan lebih besar maka nilai tersebut ditetapkan sebagai tingkat penjualan potensial produk. Tingkat penjualan ditransformasikan kedalam bentuk jadwal produksi untuk menentukan tingkat (jumlah) produksi harian selama satu periode produksi, yakni enam hari untuk satu minggu. Aktifitas-aktifitas tersebut dilakukan oleh departemen pemasaran PT. IMI. Berdasarkan jadwal
produksi di buat perencanaan kebutuhan bahan produksi untuk mengetahui nama bahan, berapa jumlahnya dan kapan harus dipesan ke pemasok sehingga bahan tersebut diterima tepat waktu saat dibutuhkan untuk proses produksi. Aktifitas ini dilakukan oleh departemen produksi PT. IMI. Proses berikutnya adalah penghitungan biaya produksi langsung yang meliputi biaya pengadaan bahan yang dihitung berdasarkan jumlah bersih bahan yang dipesan, biaya tenaga kerja langsung dihitung berdasarkan kuantitas produk yang dihasilkan dan biaya pabrik tidak langsung dihitung berdasarkan standar biaya overhead yang ditetapkan manajemen PT. IMI. Proses ini menjadi tugas departemen keuangan PT. IMI.

SISIDU merupakan paket program aplikasi komputer yang dibuat dengan perangkat lunak Microsoft Visual Basic 6, dan pangkalan datanya dirancang dalam format Microsoft Access.
III. METODOLOGI PENELITIAN

A. KERANGKA PEMIKIRAN

Fungsi manajemen dalam perencanaan sangat menentukan kesuksesan perusahaan untuk menetapkan arah dan tujuan perusahaan. Arah dan tujuan perusahaan ditetapkan dalam perencanaan strategis atau perencanaan jangka panjang perusahaan. Perencanaan strategis merupakan proses penetapan aktifitas yang akan dilakukan di masa depan dengan rentang waktu jangka panjang, satu sampai lima tahun. Perencanaan jangka menengah memiliki rentang waktu tiga sampai delapan belas bulan, dan

Pada rangkaian aktifitas yang berhubungan dengan perencanaan produksi di PT. IMI melibatkan departemen pemasaran, departemen produksi, departemen keuangan, gudang, dan pembelian. Departemen pemasaran menentukan tingkat penjualan produk untuk periode berikutnya. Departemen produksi menentukan jumlah produk yang harus diproduksi dan jumlah bersih
bahan yang harus dipesan. Departemen keuangan menghitung biaya produksi yang dibutuhkan. Bagian pembelian melakukan pembelian bahan dan bagian gudang memberitahukan persediaan produk dan bahan baku.

Pada penelitian ini dirancang satu sistem informasi manajemen perencanaan produksi terpadu berbasis komputer yang dapat diterapkan di PT. IMI. Cakupan sistem informasi yang dikembangkan adalah fungsi peramalan penjualan, perkiraan tingkat penjualan potensial, penjadwalan produksi, perencanaan kebutuhan bahan dan biaya produksi langsung yang terdiri dari upah tenaga kerja langsung, biaya pengadaan bahan baku, dan biaya tak langsung pabrik. Rangkaian fungsi tersebut melibatkan departemen pemasaran, departemen produksi dan departemen keuangan PT. IMI. Berhubung titik berat dari cakupan sistem yang dikembangkan lebih fokus ke fungsi produksi, maka paket program aplikasi komputer yang dibuat lebih tepat ditempatkan di pabrik PT. IMI.

B. PENDEKATAN SISTEM

Pendekatan sistem adalah suatu pendekatan sistematis untuk pemecahan masalah yang ada. Masalah merupakan suatu kondisi yang memiliki potensi untuk merugikan atau menghasilkan keuntungan. Pemecahan masalah adalah suatu memberi respon terhadap masalah untuk menekan akibat buruknya atau memanfaatkan peluang keuntungannya. Menurut McLeod (1996), pendekatan sistem dapat dilakukan dengan tiga tahap yaitu; tahap persiapan, tahap pendefinisian, dan tahap pemecahan masalah. Untuk mempersiapkan pemecahan masalah, manajer harus memandang perusahaan sebagai suatu sistem, dapat memahami lingkungan perusahaan dan dapat mengidentifikasi subsistem-subsystem dalam perusahaan. Pada tahap pendefinisian masalah, manajer harus mengawalinya dari tingkatan sistem kemudian ke sub sistem dan menganalisa departemen-departemen sistem menurut urutan tertentu. Pada tahap pemecahan masalah, manajer harus dapat mengidentifikasi berbagai alternatif pemecahan masalah, kemudian mengevaluasi setiap alternatif
tersebut dan selanjutnya memilih dan menetapkan solusi yang terbaik, kemudian menerapkan solusi yang terpilih. Terakhir, manajer harus membuat suatu tahapan tindak lanjut yang dapat memastikan bahwa solusi yang diterapkan efektif (lihat Gambar 13 berikut).

![Diagram Tahap Usaha Persiapan]

Gambar 13. Tahapan dan langkah-langkah pendekatan sistem (McLeod, 1996)

Pendekatan sistem pada PT. IMI dalam tahap usaha persiapan adalah bahwa PT. IMI merupakan satu sistem bisnis yang bertujuan untuk memperoleh laba. PT. IMI merupakan sistem bisnis yang terdiri dari kombinasi berbagai sumber-sumber ekonomi yang secara langsung mempengaruhi proses produksi sirup glukosa dan untuk mencapai tujuan yang telah ditetapkan. Sumber-sumber ekonomi tersebut antara lain; bahan baku, tenaga kerja, modal, mesin, metode, dan manajemen. Sistem lingkungan PT. IMI berada pada satu supra-sistem yakni pada lingkungan agroindustri yang menghasilkan sirup glukosa. PT. IMI memiliki pesaing dalam industri tersebut antara lain PT. Raya Sugarindo Inti di Tasikmalaya-Jawa Barat, dan PT Saritani Nusantara di Malang-Jawa Timur. Kemudian identifikasi sub-sistem berupa departemen-departemen yang dimiliki PT. IMI, bahwa operasinalnya dilakukan di dua tempat berbeda. Pada kantor Jakarta terdapat departemen pemasaran, departemen keuangan, pembelian,
gudang. Pada pabrik Bogor terdapat departemen produksi, seksi keuangan dan administrasi, seksi gudang dan ekspedisi, departemen laboratorium, dan departemen teknik.

Tahap usaha pendefinisian adalah mengamati secara umum PT. IMI kemudian ke masing-masing departemen dengan urutan tertentu. Berdasarkan pengamatan dalam operasionalnya PT. IMI belum memiliki satu sistem informasi berbasis komputer yang dapat memberikan informasi yang dibutuhkan manajemen untuk pengambilan keputusan manajerial. Oleh karena itu, PT. IMI perlu menerapkan suatu sistem informasi berbasis komputer, untuk memperoleh peluang dapat memenangkan persaingan bisnis dalam industri sirup glukosa. Tahap pencarian solusi adalah untuk mencari solusi untuk dapat meraih peluang memenangkan persaingan. Salah satu solusi adalah PT. IMI menerapkan sistem informasi berbasis komputer. Sistem informasi perencanaan produksi merupakan satu fungsi yang sangat penting, sehingga PT. IMI dapat memproduksi tepat waktu dan jumlah sesuai permintaan konsumen, yang akhirnya konsumen dapat terpuaskan. Dalam jangka panjang perusahaan dapat memperbanyak jumlah konsumen karena pelayanan konsumen yang tepat waktu, yang akhirnya PT. IMI dapat bersaing dalam industri sirup Glukosa. Sistem informasi yang dikembangkan sesuai dengan mekanisme yang ada di PT. IMI.

Melalui pempertimbangan adanya berbagai kendala dalam pendekatan sistem, maka pengkajian suatu perihal seyogyanya memenuhi karakteristik: kompleks dimana interaksi antar elemen cukup rumit, dinamis dalam arti faktornya ada yang berubah menurut waktu dan ada pendugaan ke masa depan, probabilistik yaitu diperlukannya fungsi peluang dalam inferensi kesimpulan maupun rekomendasi. Aplikasi sistem seharusnya disesuaikan dengan keterbatasan tenaga, waktu dan biaya di mana tidak setiap persoalan manajemen diselesaikan dengan pendekatan sistem. Pembatasan ruang lingkup seringkali digunakan untuk mendapatkan pengkajian yang efisien dan operasional (Eriyatno, 1998).
C. FORMULASI PERMASALAHAN

D. TATA LAKSANA

1. Kajian Pustaka

Kajian pustaka dilakukan untuk mempelajari teknik-teknik yang berhubungan peramalan, perencanaan kebutuhan bahan (material requirements planning) dan penghitungan biaya produksi.

2. Pengamatan Sistem

Pengamatan terhadap sistem dapat dilakukan dengan menggunakan model sistem umum perusahaan yang dapat dilihat pada Gambar 14:

![Diagram Sistem Umum Perusahaan](attachment:image)

Gambar 14. Model sistem umum suatu perusahaan (McLeod, 1996)

Tahap lanjut pengamatan sistem dilanjutkan dengan pengamatan terhadap semua elemen lingkungan, kemudian dilakukan pengidentifikasi sub sistem - sub sistem perusahaan. Sub sistem perusahaan diamati berdasarkan departemen fungsional perusahaan melalui struktur organisasi perusahaan.

3. Pendefinisian Masalah

Tahap ini dilakukan melalui analisis terhadap komponen-komponen sistem berdasarkan urutan tertentu yaitu; evaluasi standar, pembandingan keluaran sistem dengan standar yang ditetapkan, melakukan evaluasi manajemen, melaksanakan evaluasi pengolahan informasi, mengevaluasi
masukan dan sumber daya masukan, dan melakukan evaluasi proses transformasi, dan evaluasi terhadap sumber daya keluaran.

4. Pengumpulan Data dan Informasi

Data dan informasi yang relevan dikumpulkan baik melalui wawancara dengan pihak PT. IMI dan bahan dokumen yang dimiliki perusahaan, pencatatan data historis, dan observasi lapangan.

5. Perancangan Sistem

Setelah observasi dan kajian pustaka, dapat dilakukan identifikasi berbagai hal yang dibutuhkan oleh pihak-pihak yang dilibatkan dalam sistem yang akan dirancang. Jika semua identifikasi kebutuhan telah terpenuhi serta data dan informasi diperoleh, dapat dilakukan perancangan sistem yang dapat memenuhi kebutuhan pengguna dan pelaku yang dilibatkan dalam sistem yang dirancang.

6. Implementasi Sistem

Alat Bantu yang digunakan untuk pengembangan sistem informasi perencanaan produksi terpadu adalah Microsoft Visual Basic 6.0 untuk pengembangan sistem secara keseluruhan. Pelacakan dan pengujian program komputer dilakukan selama dan sesudah program selesai. Microsoft Access digunakan sebagai format pangkalan data yang telah dirancang dengan CASE tools PowerDesigner 6.0 DataArchitect. WindowHelpDesigner 8 untuk pembuatan bantuan penggunaan sistem, instalasi program aplikasi dengan WiseInstallMaster 8.
Verifikasi sistem dilakukan verifikasi data untuk menguji kesesuaian sistem dengan kebutuhan pengguna khususnya pengguna data dan laporan. Dibutuhkan data masukan yang sesuai dengan kebutuhan pengguna untuk dapat dilakukan verifikasi. Pengujian juga secara langsung merupakan pengujian terhadap keluaran sistem, jika data masukan sesuai maka dihasilkan keluaran yang sesuai dengan kebutuhan pengguna.

Gambar 15. Tahapan kegiatan pengembangan SISIDU
IV. PENGAMATAN SISTEM

A. KEADAAN UMUM PT. IMI

<table>
<thead>
<tr>
<th>Tahun</th>
<th>Permintaan sirup glukosa (ton)</th>
<th>Peringkat (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>3878,72</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>3879,83</td>
<td>0,03</td>
</tr>
<tr>
<td>1998</td>
<td>3981,45</td>
<td>2,62</td>
</tr>
<tr>
<td>1999</td>
<td>4104,34</td>
<td>3,08</td>
</tr>
<tr>
<td>2000</td>
<td>4241,91</td>
<td>3,35</td>
</tr>
<tr>
<td>2001</td>
<td>4283,63</td>
<td>0,98</td>
</tr>
</tbody>
</table>

Sumber: Departemen Produksi PT. IMI

Untuk memenuhi permintaan konsumen yang semakin meningkat, PT. IMI menambah kapasitas produksi terpasang menjadi 700 ton per bulan.

PT. IMI menggunakan tepung tapioka sebagai bahan baku utama untuk memproduksi sirup glukosa karena memiliki rendemen cukup tinggi dan harga relatif murah. Tepung tapioka diolah dari singkong. Tepung tapioka yang digunakan adalah tepung tapioka yang berkadar air maksimal 40 persen. Rendemen yang dihasilkan tepung tapioka basah sekitar 55-70 persen dan PT. IMI menetapkan standar rendemen sekitar 65 persen.

Bahan baku utama untuk PT. IMI, awalnya dipasok oleh perusahaan lain. Untuk mempermudah dan dapat dikoordinasi langsung oleh PT. IMI, maka didirikan PT. Gunung Sumber Kasih (GSK) yang berlokasi di Lampung berstatus sebagai anak perusahaan PT. IMI. PT. GSK mengolah singkong
menjadi tepung tapioka basah atau tepung tapioka kering dan merupakan pemasok utama bahan baku produksi PT. IMI.

B. SUB SISTEM PT. IMI

Dewan direksi memiliki wewenang tertinggi dalam menjalankan operasional perusahaan dan bertanggung jawab atas kelangsungan aktifitas perusahaan. Dewan direksi membawahi kepala kantor dan kepala pabrik, kegiatan administrasi umum berada di Jakarta, sedangkan kegiatan produksi berada di Bogor.

Kegiatan perusahaan pada kantor Jakarta di bawah tanggung jawab kepala kantor yang bertugas mengawasi dan mengkoordinasikan agar operasi perusahaan berjalan sesuai dengan tujuan strategis perusahaan. Kepala kantor membawahi departemen pemasaran, departemen keuangan, bagian pembelian dan departemen gudang.
Departemen pemasaran bertugas untuk mencari konsumen, merencanakan tingkat penjualan potensial yang dibuat berdasarkan tingkat order aktual yang masuk ke departemen pemasaran, menetapkan jadwal produksi yang disesuaikan dengan order konsumen, untuk dilaksanakan pabrik (departemen produksi), juga bertugas melakukan penagihan pembayaran kepada konsumen.

Departemen keuangan bertugas untuk mencatat buku kas besar dan kas kecil, menerima laporan keuangan dari seksi administrasi dan keuangan pabrik dan melaporkannya ke kepala kantor.

Departemen pembelian bertanggung jawab terhadap pengadaan bahan baku utama, bahan baku penolong, spare part mesin dan kebutuhan pabrik lainnya.

Departemen gudang bertanggung jawab untuk mendata sirup glukosa yang keluar masuk gudang dan mencatat barang-barang keperluan kantor pusat yang dibeli oleh departemen pembelian.

Operasional pabrikasi di Bogor dibawah tanggung jawab seorang kepala pabrik. Kepala pabrik merupakan posisi tertinggi pada pabrik yang bertugas untuk mengkoordinasikan semua kegiatan dalam pabrik baik kegiatan produksi maupun kegiatan non produksi serta bertanggung jawab kepada dewan direksi mengenai seluruh operasional pabrik. Departemen yang berada di bawah tanggung jawab kepala pabrik adalah departemen produksi, departemen teknik, departemen pengawasan mutu, seksi administrasi dan keuangan, bagian gudang, seksi pengiriman, serta seksi keamanan.

Departemen produksi dipimpin seorang kepala departemen produksi memiliki fungsi sebagai penghitung kebutuhan bahan untuk menetapkan jumlah bahan yang harus dipesan, bertanggung jawab terhadap semua kegiatan dalam proses produksi sesuai dengan jadwal produksi dan melakukan pengawasan terhadap kesinambungan proses produksi. Untuk tugas mengawasi kesinambungan produksi, kepala departemen produksi dibantu kepala shift. Kepala shift bertugas mengawasi dan mengkoordinir operasi produksi.
Seksi keuangan dan administrasi pabrik langsung dibawah pimpinan kepala pabrik, bertugas untuk memutuskan semua surat-surat yang berhubungan dengan keuangan, baik pemasukan maupun pengeluaran untuk dan dari produksi, dari karyawan dan dari inventaris pabrik. Seksi gudang dipimpin seorang kepala seksi yang mempunyai aktifitas; penerimaan penyimpanan bahan baku untuk produksi. Hal-hal yang berkaitan dengan persediaan bahan dilaporkan kepada kepala pabrik.

Departemen pengawasan mutu dipimpin seorang kepala departemen pengawasan mutu, bertanggung jawab mengendalikan dan memeriksa kualitas bahan baku produksi dan glukosa yang dihasilkan, serta membuat laporan hasil analisa bahan yang diperiksa. Departemen ini ikut berperan dalam menentukan suplier perusahaan bersama-sama dengan bagian pembelian dan bertanggung jawab terhadap mutu produk sirup glukosa.

Departemen teknik bertanggung jawab terhadap peralatan dan mesin produksi, melakukan pemeliharaan peralatan dan mesin produksi.

Seksi pengiriman dan penerimaan (ekspedisi) bertugas untuk mencatat semua barang yang masuk dan keluar pabrik. Barang-barang tersebut antara lain bahan baku utama, bahan baku penolong, bahan bakar dan glukosa. Mencatat jenis barang masuk, nomor kendaraan dan awak pengangkut, melakukan penimbangan dan pencatatan pengiriman dengan baik.

Seksi keamanan bertanggung jawab terhadap keamanan, ketertiban dan kebersihan pabrik. Mengawasi personal yang masuk dan keluar pabrik serta menyiapkan absensi karyawan.

Sistem bisnis terintegrasi bebasis komputer tidak sepenuhnya dibuat dalam penelitian untuk PT. IMI. Sistem informasi perencanaan produksi terpadu hanya mengintegrasikan sebagian fungsi departemen PT. IMI. Sistem yang dikembangkan adalah fungsi yang berkaitan dengan aktifitas perencanaan produksi dalam arti luas. Proses mulai dari peramalan penjualan dan perkiraan penjualan potensial (melibatkan departemen pemasaran), penjadwalan dan perencanaan kebutuhan bahan (melibatkan departemen produksi), dan penghitungan biaya produksi (departemen keuangan). Bagian gudang secara tidak
langsung terkait yang memberi informasi persediaan produk dan bahan, dan pembelian melakukan pembelian bahan baku.

C. SISTEM PERENCANAAN OPERASIONAL PT. IMI

Perencanaan operasional perusahaan merupakan penetapan terlebih dahulu tentang aktifitas perusahaan yang akan dilakukan diwaktu mendatang dengan rentang waktu pendek (satu bulan atau minggu). Sistem perencanaan operasional PT. IMI yang diamati lebih difokuskan pada aktifitas yang berhubungan dengan perencanaan produksi yakni peramalan penjualan, perencanaan tingkat penjualan potensial, penjadwalan produksi, perencanaan kebutuhan bahan (material requirements planning/ MRP) serta perhitungan biaya produksi terdiri dari biaya pengadaan bahan baku, upah tenaga kerja langsung, dan biaya tak langsung pabrik. Pembatasan dilakukan, karena penelitian ini memiliki keterbatasan sumber daya, maka tidak dibuat sepenuhnya sistem bisnis terpadu berbasis komputer pada PT. IMI yang memiliki cakupan luas.

Untuk mengetahui dan menetapkan tingkat penjualan sirup glukosa untuk periode mendatang, departemen pemasaran menetapkannya berdasarkan jumlah order yang datang dari konsumen. Sebagian besar sirup glukosa dijual secara kontinyu kepada perusahaan-perusahaan besar seperti PT. Inasentra, PT. Manna Dunia Boga, PT. Mitra Panganan, PT. Van Melle, sehingga penentuan tingkat penjualan produk sirup glukosa untuk periode berikutnya lebih mudah dilakukan. PT. IMI tetap memperhatikan pesanan produk dari perusahaan-perusahaan kecil (konsumen umum) dan dapat dijadikan sebagai konsumen potensial untuk mengantisipasi apabila terjadi masalah dengan perusahaan-perusahaan besar yang merupakan prioritas PT. IMI. Sementara untuk konsumen umum yang memesan dalam jumlah kecil akan dilayani apabila perusahaan memiliki sumber daya atau sedang tidak ada pemesanan produk dari perusahaan besar.

Untuk memperoleh tingkat penjualan yang lebih optimis dan meningkatkan pelayanan terhadap konsumen, PT IMI sebaiknya melakukan peramalan yang lebih baik dengan menerapkan metode peramalan yang sesuai dengan karakteristik data-data penjualan historis melalui
pengukuran akurasi metode yang digunakan. Rencana tingkat penjualan
ditetapkan berdasarkan hasil peramalan, tingkat order aktual konsumen dan
kapasitas perusahaan. Jika PT. IMI dapat menetapkan tingkat penjualan yang lebih
baik, maka semua konsumen perusahaan dapat dilayani tanpa membedakan
konsumen besar atau kecil.

Departemen pemasaran menetapkan rencana tingkat penjualan sirup
glukosa mingguan yang kemudian dijabarkan kedalam bentuk rencana
tingkat produksi mingguan dalam bentuk jadwal produksi. Setiap minggu,
tepatnya setiap hari Senin, departemen pemasaran akan memberikan rencana
penjualan yang diartikan sebagai permintaan produk secara lebih terperinci
berdasarkan permintaan harian untuk produksi minggu berikutnya kepada
kepala pabrik yang kemudian akan diteruskan ke departemen produksi
dalam hal ini kepala departemen produksi dalam bentuk order kerja per hari.
Sehingga departemen produksi dapat melakukan proses produksi sesuai
dengan yang dijadwalkan.

Berdasarkan rencana produksi, departemen produksi melakukan
perhitungan kebutuhan bahan baku dan bahan penolong dengan
memperhitungkan jadwal produksi, tingkat persedian produk dan bahan baku
yang ada digudang, kebutuhan standar bahan (bill of material/BOM). BOM
merupakan daftar dan jumlah komponen yang diperlukan untuk merakit atau
memproses suatu produk akhir, untuk menghitung total kebutuhan bahan adalah
dengan mengalikan jumlah produk yang akan diproduksi dengan standar butuh
bahan pada BOM. Perhitungan bahan produksi merupakan penentuan secara
rinci jumlah bahan baku, bahan penolong dan lainnya yang diperlukan untuk
produksi pada periode mendatang. PT. IMI dalam pengadaan bahan secara
umum menggunakan tingkat pemesanan tetap misalnya untuk bahan baku
tepung tapioka dipesan sekitar 400-600 ton per bulan.

Setelah didapatkan perhitungan rinci jumlah kebutuhan bahan yang
diperlukan untuk berproduksi, hasilnya dilaporkan kepada bagian
pembelian. Bagian pembelian berdasarkan persetujuan direksi akan
menentukan tingkat harga yang dapat dibeli perusahaan, dengan
mempertimbangkan kondisi keuangan perusahaan. Harga transaksi yang
terjadi berdasarkan harga pasar yang sedang berlaku dan tawar menawar antara perusahaan dengan pemasok. Bagian pembelian kemudian melakukan aktivitas pembelian dari para pemasok, dimana bagian pembelian mengirimkan *purchase order* (PO) kepada pemasok. PO tersebut dibuat rangkap tiga, untuk pemasok, departemen keuangan kantor, dan bagian pembelian (sebagai arsip). Jenis pembelian yang dilakukan perusahaan adalah pembelian untuk langsung digunakan (*hand to mouth buying*), jenis pembelian yang didasarkan bahwa jumlah pembelian adalah sejumlah kebutuhan sekarang. Jenis ini dilakukan untuk mencegah persediaan yang terlalu banyak di gudang.

Bahan baku utama yang tiba di perusahaan dari pemasok, dilakukan pemeriksaan oleh petugas gudang. Pemeriksaan meliputi kuantitas pesanan (volume/berat) dan jumlah yang diterima, dengan cara penimbangan seluruh bahan baku atau sesuai dengan jenis bahan yang diterima. Petugas gudang mencatat jumlah tersebut dalam surat jalan yang dikeluarkan pemasok dan Laporan Penerimaan Bahan Baku (LPB) yang dikeluarkan bagian gudang. LPB dibuat rangkap tiga yaitu; lembaran putih untuk pemasok yang dijadikan sebagai bukti penagihan, lembaran merah untuk bagian pembelian, lembaran kuning untuk bagian gudang sebagai arsip.

Bagian pembelian secara keseluruhan menghitung jumlah biaya yang dibutuhkan untuk pengadaan bahan sampai di perusahaan. Seksi administrasi dan keuangan pabrik menghitung jumlah kebutuhan biaya tenaga kerja langsung untuk melakukan produksi sesuai dengan rencana produksi berdasarkan standar biaya yang ditetapkan. Hasil jumlah kebutuhan biaya produksi langsung dilaporkan ke direksi melalui departemen keuangan perusahaan.
V. PERANCANGAN SISTEM

A. SPESIFIKASI SISTEM

1. Deskripsi Sistem

Sistem informasi perencanaan produksi terpadu disingkat menjadi SISIDU merupakan sistem informasi berbasis komputer. SISIDU mengacu pada konsep sistem bisnis terintegrasi berbasis komputer (computer integrated business system/CIBS), sistem yang mengintegrasikan keseluruhan fungsi-fungsi departemen perusahaan kedalam satu sistem informasi terpadu. SISIDU hanya mengintegrasikan beberapa fungsi dari departemen PT. IMI yang berkaitan dengan perencanaan produksi dalam arti luas, mulai dari peramalan penjualan, perkiraan penjualan potensial produk, penjadawalan produksi, perencanaan kebutuhan bahan dan jumlah biaya produksi. Sistem dapat menyediakan informasi tepat waktu, tepat sasaran, dan akurat sehingga dapat mempermudah proses pengambilan keputusan yang berkaitan dengan perencanaan produksi.

Pada pengembangan SISIDU diperlukan masukan sistem antara lain data-data histori penjualan dan data pesanan aktual produk yang diperoleh dari departemen pemasaran, data persediaan produk data persediaan bahan diperoleh dari bagian gudang pabrik, data daftar standar butuh bahan untuk menghasilkan satu produk jadi (bill of material) diperoleh dari departemen produksi, data harga setiap bahan baku dari bagian pembelian, data standar biaya tenaga kerja langsung dan standar biaya tak langsung pabrik dan diperoleh dari departemen keuangan.

Sistem informasi perencanaan produksi terpadu dapat melakukan fungsi penyimpanan dan pengolahan data masukan kemudian mengolahnya menjadi informasi yang berguna untuk perencanaan produksi. Keluaran dari sistem SISIDU berupa informasi yang telah diolah, ringkas dan memberikan kemudahan untuk mendapatkan informasi yang cepat dan akurat yang dapat dimanfaatkan oleh
manajemen menengah PT. IMI. Departemen-departemen yang secara fokus terkait pada sistem informasi perencanaan produksi terpadu adalah departemen pemasaran, departemen produksi, departemen keuangan. Sedangkan bagian gudang memberi informasi persediaan produk atau bahan serta bagian pembelian memanfaatkan informasi jumlah bersih bahan yang harus dipesan, bagian gudang dan pembelian tidak melakukan proses (tidak sebagai pelaku) dan hanya bersifat pendukung sistem.

2. Analisa Kebutuhan Informasi

Suatu sistem informasi memiliki komponen-komponen yang saling berinteraksi dan setiap komponen tersebut mempunyai kebutuhan yang berbeda. Komponen pada sistem ini adalah departemen pemasaran, departemen keuangan, departemen produksi, bagian gudang dan bagian pembelian kebutuhan masing-masingnya adalah sebagai berikut;

a. Departemen Marketing
 - Informasi histori penjualan
 - Informasi pesanan aktual produk
 - Informasi jumlah konsumen

b. Departemen Produksi
 - Informasi jadwal produksi
 - Informasi persediaan awal produk
 - Informasi persediaan awal bahan
 - Informasi daftar standar butuh bahan (Bill of Material)

c. Departemen Keuangan
 - Informasi pemesanan bahan
 - Informasi standar biaya tenaga kerja langsung
 - Informasi standar biaya tak langsung pabrik

d. Bagian Gudang
 - Informasi pemesanan bahan
 - Informasi pemasok
e. Bagian Pembelian

- Informasi pemesanan bahan
- Informasi bahan
- Informasi pemasok

Komponen-komponen tersebut menjadi pelaku sekaligus pengguna dari sistem SISIDU. Pelaku berfungsi untuk pengadaan, pengolahan, pengambilan dan penghapusan data. Sedangkan pengguna membutuhkan informasi dari sistem. Pelaku sekaligus pengguna sistem adalah departemen marketing, departemen produksi, departemen keuangan, bagian gudang, serta bagian pembelian. Kebutuhan informasi untuk masing-masing pengguna dapat dilihat pada tabel 4 berikut:

Tabel 4. Matriks kebutuhan informasi pemakai sistem SISIDU

<table>
<thead>
<tr>
<th>Jenis Informasi</th>
<th>Departemen</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pemasaran</td>
<td>Produksi</td>
<td>Gudang</td>
<td>Keuangan</td>
<td>Pembelian</td>
<td></td>
</tr>
<tr>
<td>Informasi histori penjualan</td>
<td>√√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Minggu penjualan</td>
<td>√√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Jumlah penjualan</td>
<td>√√</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Satuan</td>
<td>√√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informasi pesanan aktul produk</td>
<td>√√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nama konsumen</td>
<td>√√</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nama produk</td>
<td>√√</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tanggal pesan</td>
<td>√√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tanggal tersedia</td>
<td>√√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Jumlah pesan</td>
<td>√√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Satuan</td>
<td>√√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informasi pemasok</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nama perusahaan</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Kontak person</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Alamat</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nomor telepon</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informasi konsumen</td>
<td>√√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nama perusahaan</td>
<td>√√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>- Alamat</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Nomor telepon</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Informasi jadwal produksi</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Tanggal produksi</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- No. jadwal produksi</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Jumlah produksi</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Nama produk</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Informasi persediaan produk</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Nama produk</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Tanggal</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Satuan</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Stock on hand</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Informasi persediaan bahan</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Kode bahan</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Nama bahan</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Tanggal</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Satuan</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Lead time</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Stock on hand</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Informasi bill of material</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Kode bahan</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Nama bahan</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Jumlah butuh/ton tapioka</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Satuan</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Informasi pemesanan bahan</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Kode bahan</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Nama bahan</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Tanggal pesan</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Jumlah pesan</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Total harga</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Pemasok</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Informasi Bahan</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Jenis bahan</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Kode bahan</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>- Nama bahan</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Harga satuan bahan</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Minimal pesan</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Satuan</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Leadtime</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>- Pemasok</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Informasi standar biaya TKL</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Upah TKL/ton produk glukosa</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informasi standar biaya tak langsung pabrik</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Gaji tenaga kerja</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Pemeliharaan gedung</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Pemeliharaan alat</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Listrik</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Depresiasi gedung</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Depresiasi alat-alat</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan; ✓/ sangat memerlukan informasi
✓ memerlukan informasi
- tidak memerlukan informasi

3. Kebutuhan Perangkat Lunak dan Perangkat Keras

SISIDU dibuat dalam bentuk rapid prototype, suatu bentuk kerangka dasar sistem untuk pengembangan lebih lanjut sampai sistem dapat dioperasikan dengan teknologi jaringan. Untuk pengembangan sistem SISIDU dibutuhkan perangkat lunak:

1. Sistem Operasi Microsoft Windows 98
2. Microsoft Visual Basic 6.0, perangkat lunak yang digunakan untuk mengimplementasikan sistem yang telah dirancang.
3. Adobe Photoshop 7.0, untuk pengolahan gambar.
4. Microsoft Access, perangkat lunak yang digunakan untuk merancang pangkalan data.
5. WindowHelpDesigner 6, perangkat lunak yang digunakan untuk merancang sistem bantuan pemakaian SISIDU.

7. Instalasi program dengan WiselInstallMaker 8.

Pada pengembangan sistem SISIDU dibutuhkan perangkat keras, yakni satu set komputer PC dengan prosesor pentium II 233 MHz, Harddisk 10 GB, 128 RAM, Monitor 14 inch 800 x 600, printer Inkjet HP. SISIDU dapat dioperasikan pada komputer dengan spesifikasi minimum PC Pentium dengan prosesor II 233 MHZ, harddisk kosong 50 MB, RAM 64 MB, Monitor 14 inch 800 x 600, printer, keyboard, mouse, dengan sistem operasi Windows 95 atau yang lebih tinggi.

4. Kebutuhan Tenaga

Untuk melakukan pengembangan suatu sistem informasi pada tahapan perancangan, implementasi dan pelaksanaan sistem dibutuhkan personil yakni analis sistem, pemrogram, pengumpul data, dan operator komputer. Pada pembuatan SISIDU ini, semuanya dilakukan oleh satu personil.

Analis sistem bertanggung jawab menganalisa, merancang bangun, mengimplementasikan, menguji dan mengembangkan sistem. Pemrogram bertanggung jawab untuk membuat kode program, pengujian program, mencari kesalahan program dan melakukan koreksi jika terdapat kesalahan kode program pada tahap implementasi sistem. Pengumpul data bertanggung jawab menganalisa kebutuhan data dan mengorganisasi data. Operator komputer bertanggung jawab memasukkan data, mengakses data, mendistribusikan keluaran berupa informasi.

5. Masukan dan Keluaran Sistem

Masukan sistem terdiri dari data histori penjualan, data pesanan aktual, data persediaan produk, data persediaan bahan, data daftar standar butuh bahan (Bill of Material), data harga bahan baku, data standar biaya tenaga kerja langsung, data standar biaya tak langsung pabrik.
Keluaran sistem adalah daftar bahan, daftar pemasok, daftar konsumen, laporan tingkat penjualan potensial, laporan jadwal produksi, laporan stok (persediaan) akhir produk, laporan upah tenaga kerja langsung, laporan biaya tak langsung pabrik, laporan pemesanan bahan, rincian pemesanan bahan, laporan biaya pengadaan bahan baku, laporan akhir masing-masing bahan baku. Pada Gambar 16 adalah gambar masukan dan keluaran sistem informasi perencanaan produksi terpadu.

Gambar 16. Diagram masukan dan keluaran SISIDU

Sistem informasi SISIDU terdiri dari data-data masukan dan melalui pengolahan atau transformasi dihasilkan data-data yang menjadi hasil dari suatu sistem informasi. Data-data masukan diperoleh dari departemen pemasaran (data histori penjualan dan data pesanan aktual produk), departemen produksi (data daftar standar butuh bahan), departemen keuangan (data standar upah tenaga kerja langsung dan data standar biaya tak langsung pabrik), bagian gudang (data persediaan produk dan bahan). Keluaran yang dihasilkan sistem yakni informasi pelaporan berbentuk visual pada layar monitor atau dalam bentuk cetak printer.
6. Pemeliharaan Sistem

Pemeliharaan perangkat lunak SISIDU perlu dilakukan supaya kinerja dan keandalannya tetap baik. Penggandaan (back up) perangkat lunak dan data perlu dilakukan setiap terjadi perubahan untuk menghindari kegagalan operasi sistem karena ada kerusakan teknis dan non teknis pada perangkat lunak dan data sistem. Hasil penggandaan disimpan ditempat aman, dan tetap dilakukan pembaruan secara berkala terhadap perubahan data. Pemeliharaan berupa pencegahan dilakukan terhadap virus komputer yang dapat merusak perangkat lunak dan data sistem. Pemantauan rutin dilakukan untuk mencari dan memperbaiki kesalahan perangkat lunak data.

B. RANCANG BANGUN SISTEM

Rancang bangun sistem merupakan tahap lanjut dari spesifikasi sistem. Rancang bangun sistem SISIDU terdiri dari rancang bangun umum dan rancang bangun terinci.

1. Rancang Bangun Umum

Merupakan proses penggambaran secara umum sistem yang akan dikembangkan untuk penguna sistem. Rancang bangun umum digunakan untuk pemodelan fungsional sistem SISIDU dengan menggunakan CASE (computer aided system engineering) tools PowerDesigner 6 ProcessAnalyst. Rancang bangun umum menjadi pengantar ke rancang bangun rinci sistem dan dilakukan identifikasi elemen-elemen sistem informasi yang akan dibuat desainnya. Teknik rancang bangun sistem yang dipakai dalam rancang bangun umum adalah struktur sistem dan diagram arus data (data flow diagram/DFD), yang menggambarkan aliran informasi keseluruhan sistem.
a. Struktur Sistem

Struktur sistem digambarkan dalam bentuk diagram terstruktur dan hierarki yang berfungsi untuk menggambarkan organisasi sistem informasi SISIDU yang menunjukkan hubungan antar elemen data. SISIDU dirancang terdiri dari tiga sub sistem yakni; Tingkat Penjualan, Perencanaan Kebutuhan Bahan, dan Biaya Produksi (lihat Gambar 17).

![Diagram Sisidu](image)

Gambar 17. Struktur sistem informasi perencanaan produksi terpadu

b. Diagram Arus Data

Diagram arus data (data flow diagram/DFD) merupakan penggambaran aliran informasi untuk keseluruhan sistem. DFD dapat menggambarkan suatu sistem secara logika tanpa melihat lingkungan fisik data tersebut mengalir dan lingkungan fisik data tersebut disimpan. DFD menggambarkan arus data secara terstruktur
dan sebagai dokumentasi yang baik untuk sistem. Rancang bangun SISIDU menggunakan DFD tingkat 0 dan tingkat 1. DFD tingkat 0 digunakan untuk menggambarkan hubungan atau interaksi antara pelaku dan pengguna terhadap sistem yang dikembangkan. Tahap awal DFD menggambarkan keseluruhan sistem secara garis besar pada DFD tingkat 0 dan pada DFD tingkat 1 menggambarkan sistem lebih terinci. DFD tingkat 1 memberikan gambaran aliran informasi antara sub-sistem, pelaku dan pengguna SISIDU. Gambar DFD tingkat 0 dapat dilihat pada Gambar 18 dan DFD tingkat 1 dapat dilihat pada Gambar 19.

Gambar 18. Diagram alir data tingkat 0
Gambar 19. Diagram alir data tingkat 1 untuk fungsi pemasaran dan produksi
2. Rancang Bangun Terinci

Setelah dibuat model fungsional sistem dengan DFD tingkat 0 dan DFD tingkat 1, maka aliran data antar obyek dalam sistem dapat dipahami sehingga mempermudah perancangan basis data sistem. Perancangan basis data dilakukan pada tahap rancang bangun terinci.

Rancang bangun terinci dibuat dengan alat bantu (CASE tools) PowerDesigner 6 DataArchitect. Tahapan rancang bangun terinci sistem dilakukan dengan dua tahap; pertama pembuatan model data konseptual (conceptual data model/CDM). CDM merupakan model yang menggambarkan hubungan antar kesatuan (entity) di dalam sistem tanpa mempertimbangkan detail implementasi fisiknya, menggambarkan struktur logika suatu pangkalan data yang belum memenuhi untuk diimplementasikan secara fisik dalam program, harus ditransformasikan ke dalam model data fisik.

Model data konseptual terdiri dari beberapa kesatuan (entity), antar kesatuan memiliki hubungan yang berbeda satu dengan yang lainnya. Hubungan
antar kesatuan (entity) dapat berupa hubungan satu ke satu (one to one/1-1), satu ke banyak (one to many/1-M) dan banyak ke banyak (many to many/M-M). Gambar konseptual data model sistem SISIDU dapat dilihat pada Gambar 21.

Gambar 21. Diagram model data konseptual SISIDU
Setelah CDM dibuat dilakukan perancangan model data fisik yang dirancang berdasarkan model data konseptual yang telah diuji dan tidak terdapat kesalahan model. Model data fisik (*physical data model/PDM*) menggambarkan diagram hubungan antar kesatuan (*entity*) atau tabel dalam sistem dengan memperhatikan implementasinya secara rinci. Dengan memperhatikan tipe dan bentuk laporan, maka dapat disusun hubungan antar dokumen (*file*) data yang dalam bentuk tabel-tabel data.

Implementasi model data konseptual dilakukan melalui transformasi kesatuan (*entity*) yang terdapat pada model menjadi dokumen-dokumen pangkalan data dalam bentuk tabel data yang akan digunakan untuk mentransformasikan model data konseptual dengan pangkalan data berformat Microsoft Access. Model data fisik dapat dilihat pada Gambar 22.
VI. PEMBAHASAN HASIL

A. PERENCANAAN PRODUKSI

PT. Indonesian Maltose Industry (PT. IMI) menghasilkan produk sirup glukosa yang menghadapi pasar persaingan sempurna. Sirup glukosa menghadapi ketidakpastian tentang tingkat permintaannya dari konsumen untuk periode-periode ke depanya. PT. IMI perlu membuat keputusan yang akurat mengenai tingkat produksi yang harus dilakukan sehingga sirup glukosa yang dihasilkan dapat terjual dan tidak terjadi kelebihan produksi yang mengakibatkan penumpukan produk di gudang akibat tidak terjual atau terjadi kekurangan produk akibat permintaan yang lebih besar dari jumlah produksi sehingga permintaan konsumen tidak terpenuhi. Penumpukan sirup glukosa di gudang membuat modal perusahaan tidak lancar akibat produk terlambat dijual, sebaliknya kekurangan jumlah produk yang tersedia mengakibatkan hilangnya kesempatan pendapatan perusahaan.

Pada model deret berkala pendugaan masa depan (misalnya tingkat penjualan) dilakukan berdasarkan nilai (data-data) masa lalu dari satu variabel. Tujuan model ini adalah untuk menemukan pola dalam deret data historis dan mengetralpolasi pola deret tersebut, selanjutnya mengetralpolasikannya ke masa depan. Pada Model kausal (sebab akibat) diasumsikan bahwa faktor
yang diramalkan menunjukkan suatu hubungan sebab akibat dengan satu atau lebih variabel bebas. Model deret berkala sering kali dapat digunakan dengan mudah untuk meramal, sedangkan model kausal dapat digunakan dengan hasil yang baik untuk pengambilan kebijakan atau keputusan. Untuk sistem SISIDU digunakan model deret berkala karena faktor yang diramalkan hanya satu variabel yakni nilai (data) penjualan masa lalu untuk memperkirakan penjualan di masa depan dan lebih mudah dalam pemakaianinya untuk meramalkan tingkat penjualan.

Jika data yang dibutuhkan tersedia, suatu hubungan peramalan dapat dihipotesiskan sebagai fungsi waktu atau variabel bebas kemudian diuji. Pada model deret berkala untuk memilih metode adalah dengan memperhatikan jenis pola datanya, jenis pola data dapat dibedakan menjadi empat jenis;

1. Pola horisontal, jika nilai data berfluktuasi di sekitar nilai rata-rata yang konstan (stasioner terhadap nilai rata-rata).
2. Pola musiman, jika deret data dipengaruhi oleh faktor musiman (misalnya kuartal tahun tertentu, bulanan, hari-hari pada minggu tertentu).
3. Pola siklis, jika datanya dipengaruhi oleh fluktuasi ekonomi jangka panjang seperti yang berhubungan dengan siklus bisnis.
4. Pola trend, jika pada deret data terdapat kenaikan atau penurunan sekueter jangka panjang dalam data.

Peramal mempunyai banyak pilihan metode untuk melakukan fungsi peramalan penjualan dan beragam dalam hal ketepatan, ruang lingkup, horison waktu dan biayanya. Tugas utama peramal adalah untuk memilih metode mana yang cocok untuk masing-masing keadaan data histori yang dimiliki. Kemudian berapa besar kepercayaan terhadap metode tersebut, berapa banyak masukan dari pengambil keputusan sebelum penugasa dijadikan dasar untuk merencanakan kegiatan produksi.

Teknik peramalan pada sistem menggunakan perangkat lunak yang sudah ada yaitu Minitab 11 for Windows diintegrasikan ke dalam sistem SISIDU (Minitab diintegrasikan untuk kebutuhan penelitian). Contoh metode untuk deret data adalah metode rata-rata bergerak. Pada metode ini

Semakin akurat hasil peramalan penjualan sirup glukosa, semakin kecil kesalahan peramalan dan semakin sedikit sediaan untuk menjaga tingkat pelayanan terhadap konsumen. Hasil peramalan dapat dijadikan sebagai satu masukan penting untuk menetapkan tingkat penjualan potensial suatu produk dengan memasukkan pertimbangan dari manajemen atau masukan lainnya, seperti tingkat permintaan aktual sirup glukosa. Sesuai dengan periode yang terdapat di PT. IMI, periode rencana penjualan pada sistem SISIDU adalah mingguan (untuk perencanaan jangka pendek).

Berdasarkan jadwal produksi, dibuat perencanaan kebutuhan bahan (material requirements planning/MRP), dengan MRP dapat dihitung kebutuhan bahan baku sirup glukosa secara rinci untuk memenuhi jadwal produksi. MRP merupakan suatu teknik mengelola persediaan bahan baku sirup glukosa yang bersifat permintaak tak bebas (dependent demand), karena jumlah permintaan bahan baku sirup glukosa dari PT. IMI ke pemasok tergantung pada jumlah permintaan sirup glukosa dari konsumen ke PT. IMI. Semakin tinggi permintaan sirup glukosa dari konsumen, maka jumlah kebutuhan bahan bakunya juga meningkat. Sirup glukosa bersifat permintaan bebas (independent demand) karena permintaannya tidak tergantung pada permintaan bahan lainnya. Masukan untuk MRP adalah jadwal produksi, persediaan bahan, dan standar butuh masing-masing bahan untuk menghasilkan satu ton sirup glukosa (bill of material).

Jumlah kebutuhan kotor bahan baku diketahui dengan mengalikan jumlah sirup glukosa yang diproduksi dengan standar butuh bahan. Kebutuhan bersih dihitung dengan mengurangkan kebutuhan kotor dengan persediaan awal. Kemudian dilakukan pemesanan bahan yang harus mempertimbangkan waktu tenggang (lead time) pemesanan dan jumlah minimal pesan bahan yang ditetapkan oleh pemasok.

Setelah dihitung kebutuhan bersih bahan, biaya pengadaan bahan baku dapat dihitung. Biaya bahan baku merupakan jumlah modal yang dikeluarkan untuk pengadaan seluruh bahan baku sirup glukosa yang dipesan. Upah tenaga kerja langsung dihitung berdasarkan kuantitas keluaran sirup glukosa yang diproduksi dalam satuan ton dikalikan dengan standar upah per ton memproduksi sirup glukosa. Biaya tak langsung pabrik dihitung berdasarkan standar yang ditetapkan oleh PT. IMI. Standar biaya tak langsung pabrik ditetapkan untuk periode satu bulanan, pada SISIDU biaya tak langsung pabrik dihitung untuk periode mingguan. Komponen biaya tak langsung pabrik PT. IMI adalah gaji tenaga kerja tidak langsung misalnya kepala produksi, karyawan administrasi dan satpam, biaya pemeliharaan gedung pabrik, biaya pemeliharaan alat termasuk mesin-mesin.
produksi, biaya listrik yang dihitung berdasarkan rata-rata pemakaian listrik pada periode-periode sebelumnya, biaya depresiasi gedung dan biaya depresiasi alat termasuk mesin-mesin produksi.

Jumlah biaya pengadaan bahan baku glukosa, upah tenaga kerja langsung dan biaya tak langsung pabrik merupakan jumlah biaya produksi. Jumlah biaya produksi digunakan untuk mengetahui biaya per unit produk dengan cara biaya total produksi dibagi dengan jumlah produksi dalam satuan Rupiah per kilogram.

B. PERANCANGAN SISTEM

Pada pengembangan SISIDU dilakukan pendekatan sistem untuk memahami PT. IMI sebagai satu sistem bisnis. Melalui pendekatan sistem dapat diketahui adanya masalah yang memiliki potensi menimbulkan kerugian atau keuntungan. Hasil pendekatan sistem diketahui bahwa PT. IMI belum memiliki sistem informasi berbasis komputer untuk menunjang fungsi manajemen PT. IMI. Untuk dapat menunjang fungsi manajemen PT. IMI, dikembangkan sistem informasi perencanaan produksi terpadu (SISIDU) berbasis komputer. SISIDU dikembangkan karena perencanaan produksi merupakan fungsi kunci yang menentukan proses produksi tepat waktu sesuai dengan keinginan konsumen. Melalui penerapan SISIDU diharapkan PT. IMI secara konsisten dapat memproduksi tepat waktu sehingga dapat memuaskan konsumen. Dalam jangka panjang kondisi tersebut membuat PT. IMI akan memiliki keunggulan kompetitif dibanding pesaingnya.

SISIDU mengacu pada konsep sistem bisnis terintegrasi berbasis komputer (computer integrated business system/CIBS). CIBS mengintegrasikan semua fungsi manajerial departemen yang dimiliki suatu perusahaan kedalam satu sistem informasi manajemen berbasis komputer. Dengan satu sistem informasi terintegrasi dalam satu perusahaan membuat sistem pengambilan keputusan antar departemen lebih terkoordinasi dan sinkron karena memiliki satu sistem penyedia informasi. Luasnya cakupan CIBS sehingga sulit pada penelitian ini dibuat satu sistem informasi sepenuhnya mengacu pada konsep
CIBS. SISIDU dibatasi untuk beberapa fungsi manajerial dan mencakup beberapa departemen. SISIDU hanya mengintegrasikan fungsi yang berkaitan dengan aktifitas perencanaan produksi ke dalam satu sistem informasi berbasis komputer. Menurut Welsch (1995), rangkaian perencanaan produksi meliputi peramalan penjualan, perkiraan penjualan potensial, penjadwalan produksi, perencanaan kebutuhan bahan dan biaya produksi.

Setelah diketahui adanya peluang PT. IMI untuk memiliki keunggulan kompetitif melalui penerapan SISIDU, maka dilakukan spesifikasi sistem. Inti spesifikasi sistem adalah untuk mengidentifikasi kebutuhan pengguna dan analisa masukan dan keluaran SISIDU. Pengguna SISIDU adalah departemen yang terkait dengan perencanaan produksi yakni departemen pemasaran, produksi dan keuangan. Identifikasi lainnya adalah kebutuhan perangkat lunak dan keras serta personil untuk pembuatan SISIDU.

Berdasarkan model sistem SISIDU dilakukan perancangan pangkalan data dalam bentuk model data konseptual yang dilanjutkan dengan model data fisik SISIDU. Dengan model data fisik dapat dibuat pangkalan data dalam format Microsoft Access yang kembangkan lebih lanjut menggunakan Microsoft Visual Basic 6 menjadi satu program komputer, pembuatan program dilakukan pada tahap implementasi.
Berdasarkan model sistem SISIDU pada diagram alir data tingkat I, bahwa proses pertama adalah peramalan penjualan sirup glukosa untuk periode berikutnya. Alat untuk melakukan peramalan penjualan sirup glukosa yakni menggunakan program aplikasi Minitab 11 for Windows yang umum digunakan pada bidang statistika dengan memanfaatkan fungsi menu statistika, sub menu time series. Untuk melakukan peramalan penjualan sirup glukosa dibutuhkan data penjualan sirup glukosa pada periode-periode sebelumnya. Tabel berikut berisi data histori penjualan PT. IMI (periode mingguan).

<table>
<thead>
<tr>
<th>No</th>
<th>Periode</th>
<th>Total Penjualan</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11/03 - 16/03/2002 (minggu II Maret)</td>
<td>101.614</td>
<td>kg</td>
</tr>
<tr>
<td>2</td>
<td>18/03 - 23/03/2002 (minggu III Maret)</td>
<td>109.074</td>
<td>kg</td>
</tr>
<tr>
<td>3</td>
<td>25/03 - 30/03/2002 (minggu IV Maret)</td>
<td>96.345</td>
<td>kg</td>
</tr>
<tr>
<td>4</td>
<td>01/04 - 06/04/2002 (minggu I April)</td>
<td>105.196</td>
<td>kg</td>
</tr>
<tr>
<td>5</td>
<td>08/04 - 13/04/2002 (minggu II April)</td>
<td>100.811</td>
<td>kg</td>
</tr>
</tbody>
</table>

Terhadap data penjualan di atas dilakukan peramalan penjualan sirup glukosa dengan menggunakan Minitab 11. Metode yang digunakan adalah metode yang memberi nilai akurasi yang lebih baik. Metode ini didapatkan dengan cara melakukan coba-coba terhadap metode peramalan yang terdapat pada program Minitab 11. Hasil coba-coba metode yang terbaik terhadap data pada tabel 5 diperoleh bahwa metode single exponential smoothing memberikan nilai akurasi pengukuran yang lebih baik. Maka ditetapkan bahwa metode yang
digunakan untuk meramalkan penjualan sirup glukosa untuk periode minggu IV April 2002 adalah metode single exponential smoothing. Di bawah ini yang merupakan keluaran dari program Minitab 11 dengan metode single exponential smoothing (cara melakukan forecasting dengan Minitab 11 dapat dilihat pada Lampiran 3).

Single Exponential Smoothing

<table>
<thead>
<tr>
<th>Data</th>
<th>Penjualan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>5.00000</td>
</tr>
<tr>
<td>NMissing</td>
<td>0</td>
</tr>
</tbody>
</table>

Smoothing Constant

Alpha: 0.114702

Accuracy Measures

MAPE: 4
MAD: 4126
MSD: 22627782

<table>
<thead>
<tr>
<th>Row</th>
<th>Time</th>
<th>Penjualan</th>
<th>Smooth</th>
<th>Predict</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>101614</td>
<td>104066</td>
<td>104383</td>
<td>-2769.24</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>109074</td>
<td>104640</td>
<td>104066</td>
<td>5008.39</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>96345</td>
<td>103689</td>
<td>104640</td>
<td>-8295.08</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>105196</td>
<td>103862</td>
<td>103689</td>
<td>1507.38</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>100811</td>
<td>103512</td>
<td>103862</td>
<td>-3050.52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Row</th>
<th>Period</th>
<th>Forecast</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>104066</td>
<td>97281.0</td>
<td>110850</td>
</tr>
</tbody>
</table>

Analisa terhadap keluaran di atas diperoleh hasil peramalan penjualan potensial sirup glukosa untuk minggu IV April 2002 adalah 104.066 kilogram. Dengan perkiraan terendah (lower) sebesar 97.281 kilogram dan perkiraan penjualan terbesar (upper) pada nilai 110.850 kilogram sirup glukosa. Hasil peramalan penjualan dapat dinilai ketepatan metode yang dipakai berdasarkan nilai akurasi pengukurannya. Akurasi metode yang digunakan adalah nilai dari MAPE, MAD, dan MSD. Nilai tengah kesalahan persentase absolute (mean absolute percentage error/MAPE), menunjukkan kesalahan nilai tengah absolut dalam persen. Nilai MAPE pada keluaran di atas adalah empat persen menunjukkan bahwa metode yang digunakan memiliki akurasi yang baik. Nilai deviasi rata-rata absolut (mean absolute deviation/MAD) merupakan
penyimpangan nilai rata-rata absolut. Nilai MAD 4126 adalah penyimpangan yang tidak besar terhadap besarnya nilai rata-rata penjualan. Sedangkan nilai penyimpangan kuadrat nilai tengah (mean square deviation/MSD) adalah 22.627.782, lebih kecil dibandingkan dengan nilai MSD metode lain.

Perkiraan tingkat penjualan untuk periode minggu IV April 2002 ditetapkan dengan membandingkan hasil peramalan penjualan terhadap jumlah permintaan aktual produk dari konsumen untuk penyerahan pada minggu IV April 2002, dengan ketentuan;

1. Jika hasil peramalan > jumlah order aktuell, maka
 Tingkat penjualan potensial ditetapkan sesuai dengan hasil peramalan.
2. Jika hasil peramalan ≤ jumlah order aktuell, maka
 Tingkat penjualan potensial ditetapkan sama dengan total order aktuell konsumen.

faktor pentingnya PT. IMI melakukan peramalan penjualan sirup glukosa. Berikut adalah tabel data pesanan produk dalam satuan kilogram untuk masa penyerahan minggu IV April 2002.

<table>
<thead>
<tr>
<th>Kode Produk</th>
<th>Nama Produk</th>
<th>22/04/02</th>
<th>23/04/02</th>
<th>24/04/02</th>
<th>25/04/02</th>
<th>26/04/02</th>
<th>27/04/02</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR0001</td>
<td>Glukosa</td>
<td>17.900</td>
<td>16.600</td>
<td>16.300</td>
<td>17.100</td>
<td>16.900</td>
<td>16.000</td>
<td>100.800</td>
</tr>
</tbody>
</table>

Jumlah total permintaan untuk minggu IV April 2002 dibandingkan dengan nilai hasil peramalan penjualan sirup glukosa diperoleh bahwa hasil peramalan 104.066 kilogram lebih tinggi dari pada total permintaan aktual 100.800 kilogram. Untuk mengantisipasi permintaan mendadak konsumen dan tidak melakukan pemesanan sesuai ketentuan, maka tingkat penjualan potensial ditetapkan sesuai dengan hasil peramalan penjualan. Selisih antara hasil peramalan dengan total permintaan aktual untuk periode minggu IV April 2002 adalah;

\[\text{Selisih} = \text{Hasil peramalan penjualan (kg)} - \text{Jumlah order aktual (kg)} \]
\[= 104.066 \text{ kg} - 100.800 \text{ kg} \]
\[= 3.266 \text{ kg.} \]

Proses produksi terhadap jumlah selisih tersebut adalah dengan membagi rata selisih tersebut untuk masing-masing hari kerja yakni enam hari produksi untuk satu minggu yaitu \(\frac{3.266 \text{ kg}}{6} = 538 \text{ kg} \), dibulatkan. Jadi sejumlah 538 kilogram sirup glukosa harus diproduksi untuk setiap hari dengan cara menambahkannya pada setiap kolom pesanan pada tabel 6 diatas.

Hasil pertambahan jumlah selisih peramalan penjualan dengan order aktual disebut sebagai perkiraan penjualan potensial produk sirup glukosa, karena hasil peramalan sudah mempertimbangkan permintaan aktual konsumen. Tabel 7 berikut merupakan perkiraan penjualan potensial periode minggu IV April 2002. Nilai pada kolom 3 adalah nilai pada kolom 3 tabel, tabel 6 ditambah selisih hasil peramalan terhadap jumlah order aktual \((17900 + 538 = 18438) \), analog dengan kolom seterusnya.
Tabel 7. Perkiraan penjualan potensial produk (kg) untuk periode minggu IV April 2002

<table>
<thead>
<tr>
<th>Kode Produk</th>
<th>Nama Produk</th>
<th>22/04/02</th>
<th>23/04/02</th>
<th>24/04/02</th>
<th>25/04/02</th>
<th>26/04/02</th>
<th>27/04/02</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Glukosa</td>
<td>18,438</td>
<td>17,138</td>
<td>16,838</td>
<td>17,638</td>
<td>17,438</td>
<td>16,538</td>
<td>104,028</td>
</tr>
</tbody>
</table>

Tabel 8. Data persediaan awal produk (kg) untuk minggu IV April 2002

<table>
<thead>
<tr>
<th>Kode Produk</th>
<th>Nama Produk</th>
<th>22/04/02</th>
<th>23/04/02</th>
<th>24/04/02</th>
<th>25/04/02</th>
<th>26/04/02</th>
<th>27/04/02</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Glukosa</td>
<td>640</td>
<td>202</td>
<td>164</td>
<td>426</td>
<td>338</td>
<td>0</td>
</tr>
</tbody>
</table>

Jumlah produksi sirup glukosa (kilogram) per hari yang akan diproduksi dalam jadwal produksi adalah dengan menggunakan rumusan berikut:

1. Jika \(\Sigma \text{penjualan potensial (kg)} > \text{stok awal produk, maka} \\
\(\Sigma \text{produksi produk (kg)} = \Sigma \text{penjualan potensial (kg)} - \Sigma \text{stok awal produk (kg)} \)

2. Jika \(\Sigma \text{penjualan potensial} \leq \Sigma \text{stok awal produk, maka} \\
\(\Sigma \text{produksi produk (kg)} = 0 \) (tidak ada produk yang akan diproduksi).

Tabel 9. Hasil perhitungan jadwal produksi (kg) periode minggu IV April 2002

<table>
<thead>
<tr>
<th>Kode Produk</th>
<th>Nama Produk</th>
<th>22/04/02</th>
<th>23/04/02</th>
<th>24/04/02</th>
<th>25/04/02</th>
<th>26/04/02</th>
<th>27/04/02</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PR0001</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Glukosa</td>
<td>17.798</td>
<td>16.996</td>
<td>16.674</td>
<td>17.212</td>
<td>17.100</td>
<td>16.538</td>
</tr>
</tbody>
</table>

Karena satuan unit produksi yang digunakan oleh PT. IMI adalah dalam Fe yang diartikan satu Fe adalah satu kali masakan (satu kali final/batch). Untuk sekali masakan diproyeksikan menghasilkan 4.500 kilogram glukosa yang membutuhkan waktu sekitar empat jam proses produksi. Satu hari kerja produksi terdapat dua shift kerja dan setiap shift melakukan dua kali final, satu hari bagian produksi melakukan empat kali final. Maka untuk satu hari diproyeksikan dapat diproduksi maksimal 18.000 kilogram produk glukosa. PT. IMI menetapkan standar bahwa setiap satu kali masakan diproyeksikan menghasilkan sekitar 4.500 kilogram produk, sehingga jumlah bahan baku tepung tapioka dan bahan pembantu lainnya disesuaikan untuk dapat menghasilkan glukosa sebanyak 4.500 kilogram.

Jadwal produksi dalam satuan kilogram terlebih dahulu dikonversi kedalam satuan masakan (final/batch). Rumus yang digunakan untuk menghitung jumlah masakan dalam satuan batch adalah:

\[\sum \text{masakan awal} = \sum \text{produksi dijadwalkan (kg)} / 4500 \]

Tabel 10. Hasil perhitungan jumlah masakan awal produksi minggu IV April 2002

<table>
<thead>
<tr>
<th>Kode Produk</th>
<th>Nama Produk</th>
<th>22/04/02</th>
<th>23/04/02</th>
<th>24/04/02</th>
<th>25/04/02</th>
<th>26/04/02</th>
<th>27/04/02</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PR0001</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Glukosa</td>
<td>3,96</td>
<td>3,77</td>
<td>3,71</td>
<td>3,82</td>
<td>3,80</td>
<td>2,68</td>
</tr>
</tbody>
</table>

Hasil perhitungan jumlah masakan awal pada tabel 10 dibulatkan ke atas. Pembulatan ke atas dilakukan untuk menghindari kekurangan jumlah hasil produksi, sehingga kelebihan pembulatan tersebut dapat dijadikan sebagai persediaan produk, dan dapat disebut sebagai
persediaan pengaman (safety stock) untuk mengantisipasi order produk dari konsumen yang mendadak.

Tabel 11 merupakan hasil perhitungan jumlah masakan akhir produksi glukosa dengan menggunakan rumus;

\[
\Sigma \text{masakan akhir produksi} = \left[\left(\Sigma \text{masakan awal} \right) ^{p} \right] ^{\frac{1}{p}}
\]

<table>
<thead>
<tr>
<th>Kode Produk</th>
<th>Nama Produk</th>
<th>22/04/02</th>
<th>23/04/02</th>
<th>24/04/02</th>
<th>25/04/02</th>
<th>26/04/02</th>
<th>27/04/02</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR0001</td>
<td>Glukosa</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Hasil jadwal produksi dibuat laporan jadwal produksi, yang menentukan jumlah kilogram produk yang harus diproduksi setiap hari produksi. Berdasarkan jadwal produksi dapat dilakukan empat proses berikutnya yaitu menghitung stok akhir produk, menghitung kebutuhan kotor bahan produksi, menghitung upah tenaga kerja langsung dan menghitung biaya tak langsung pabrik.

Proses berikutnya adalah perhitungan persediaan akhir sirup glukosa dalam satuan kilogram. Perhitungan persediaan akhir produk dilakukan dengan mengikuti rumus berikut:

Persediaan akhir = \(\Sigma \) masakan akhir (kg) - \(\Sigma \) produksi jadwal (kg)

<table>
<thead>
<tr>
<th>Kode Produk</th>
<th>Nama Produk</th>
<th>22/04/02</th>
<th>23/04/02</th>
<th>24/04/02</th>
<th>25/04/02</th>
<th>26/04/02</th>
<th>27/04/02</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR0001</td>
<td>Glukosa</td>
<td>202</td>
<td>164</td>
<td>425</td>
<td>338</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
Berdasarkan tabel persediaan akhir produk di atas, maka produksi untuk awal periode minggu I Mei 2002 (tanggal 29 April - 4 Mei 2002), telah tersedia persediaan awal produk sebesar 112 kilogram.

Setelah diketahui jumlah produksi mingguan, berikutnya adalah proses penghitungan biaya yang dibutuhkan untuk upah tenaga kerja langsung yang terlibat langsung dalam proses produksi. Pada PT. IMI penghitungan biaya tenaga kerja langsung ditetapkan berdasarkan kebijakan manajemen perusahaan yang dihitung berdasarkan jumlah glukosa yang diproduksi dalam satuan ton. Kebijakan biaya tenaga kerja langsung setiap tiga bulan ditinjau untuk disesuaikan dengan keadaan ekonomi aktual. Upah dihitung berdasarkan kuantitas sirup glukosa yang diproduksi.

<table>
<thead>
<tr>
<th>Nama Biaya</th>
<th>Biaya standar (Rp)</th>
<th>Satun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upah tenaga kerja langsung</td>
<td>53.333</td>
<td>per ton produk</td>
</tr>
</tbody>
</table>

Untuk menghitung biaya tenaga kerja langsung (TKL) untuk periode minggu IV April 2002 adalah mengikuti rumusan berikut:

\[
\text{Upah TKL} = \left(\text{Standar Biaya/ton} \times \text{Total produksi terjadwal (masakan)} \times 4.5 \text{ ton}\right)
\]

\[
= \frac{53.333 \times 23 \times 4.5}{4} = 5.519.965,5
\]

<table>
<thead>
<tr>
<th>Nama Biaya</th>
<th>Upah TKL (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upah tenaga kerja langsung</td>
<td>5.519.965,5</td>
</tr>
</tbody>
</table>

Tahap berikutnya adalah proses untuk menghitung biaya tidak langsung pabrik, penghitungan biaya tidak langsung pabrik dilakukan berdasarkan horizon waktu yakni untuk satu minggu disesuaikan dengan periode jadwal produksi yakni mingguan. Komponen yang termasuk biaya tidak langsung pabrik adalah: gaji tenaga kerja tidak langsung, biaya pemeliharaan gedung, biaya listrik, depresiasi gedung dan depresiasi alat-alat (mesin-mesin). Gaji tenaga kerja tidak langsung ditetapkan dalam jumlah tertentu dan tidak dipengaruhi oleh besar kecilnya produksi selama waktu tersebut, biaya
pemeliharaan gedung merupakan biaya untuk memelihara keseluruhan gedung yang dikonversi dari bulanan menjadi mingguan, biaya listrik yakni listrik untuk keperluan penerangan ruangan dan alat-alat penggerak ruangan (seperti alat pendingin ruangan) dan mesin-mesin produksi yang diperkirakan tidak berbeda jauh antar periode waktu.

Proses perhitungan upah tenaga kerja langsung dan biaya tak langsung pabrik memiliki masukan berupa standar upah tenaga kerja langsung dan standar biaya tak langsung pabrik yang ditetapkan PT. IMI, dan standar tersebut dapat diperbarui (update) jika pihak manajemen melakukan perubahan untuk menyesuaikan dengan kondisi ekonomi. Berikut tabel standar biaya tidak langsung produksi (pabrik):

<table>
<thead>
<tr>
<th>Nama Komponen</th>
<th>Biaya Standar (Rp)</th>
<th>Satuan waktu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaji tenaga kerja</td>
<td>19.250.000</td>
<td>bulan</td>
</tr>
<tr>
<td>Pemeliharaan gedung</td>
<td>1.040.000</td>
<td>bulan</td>
</tr>
<tr>
<td>Pemeliharaan alat</td>
<td>2.510.000</td>
<td>bulan</td>
</tr>
<tr>
<td>Listrik</td>
<td>13.100.080</td>
<td>bulan</td>
</tr>
<tr>
<td>Depresiasi gedung</td>
<td>1.000.200</td>
<td>bulan</td>
</tr>
<tr>
<td>Depresiasi alat</td>
<td>2.000.600</td>
<td>bulan</td>
</tr>
</tbody>
</table>

Biaya tidak langsung produksi untuk mingguan dapat dihitung secara langsung dengan membaginya dengan jumlah minggu dalam satu bulan yaitu empat minggu. Berikut tabel hasil perhitungan biaya tidak langsung pabrik.

<table>
<thead>
<tr>
<th>Nama Komponen</th>
<th>Jumlah Biaya (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaji tenaga kerja</td>
<td>4.812.500</td>
</tr>
<tr>
<td>Pemeliharaan gedung</td>
<td>260.000</td>
</tr>
<tr>
<td>Pemeliharaan alat</td>
<td>627.500</td>
</tr>
<tr>
<td>Listrik</td>
<td>3.275.020</td>
</tr>
<tr>
<td>Depresiasi gedung</td>
<td>250.050</td>
</tr>
<tr>
<td>Depresiasi alat</td>
<td>500.150</td>
</tr>
<tr>
<td>Total</td>
<td>9.725.220</td>
</tr>
</tbody>
</table>

Berdasarkan jadwal produksi dapat dilakukan proses penghitungan kebutuhan kotor bahan untuk dapat berproduksi sesuai dengan yang dijadwalkan. Perhitungan kebutuhan bahan, dimulai dari perhitungan kebutuhan kotor bahan tepung tapioka yang dihitung berdasarkan rendemen
yang dimiliki tepung tapioka. PT. IML membuat perkiraan rendemen tepung tapioka adalah 65 persen. Untuk menghitung kebutuhan standar tepung tapioka pada sistem yang dikembangkan diasumsikan bahwa rendemen tepung tapioka adalah 65 persen.

Penghitungan kebutuhan kotor bahan memiliki masukan daftar standar butuh bahan (bill of material/BOM). BOM merupakan daftar standar butuh bahan untuk menghasilkan satu ton sirup glukosa. Kebutuhan kotor bahan diketahui dengan mengalikan jumlah ton sirup glukosa yang akan diproduksi dengan BOM masing-masing bahan, lihat tabel berikut:

<table>
<thead>
<tr>
<th>Kode Bahan</th>
<th>Nama Bahan</th>
<th>Kebutuhan</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHN1001</td>
<td>Tepung Tapioka</td>
<td>1.539</td>
<td>kg</td>
</tr>
<tr>
<td>BHN2001</td>
<td>Karbon</td>
<td>21.87</td>
<td>kg</td>
</tr>
<tr>
<td>BHN2002</td>
<td>Bentonit/F.Aid</td>
<td>3.87</td>
<td>kg</td>
</tr>
<tr>
<td>BHN2003</td>
<td>HCl</td>
<td>4.19</td>
<td>kg</td>
</tr>
<tr>
<td>BHN2004</td>
<td>Residu</td>
<td>164.73</td>
<td>kg</td>
</tr>
<tr>
<td>BHN2005</td>
<td>Soda Ash</td>
<td>1.67</td>
<td>kg</td>
</tr>
<tr>
<td>BHN2006</td>
<td>Bisulfat</td>
<td>0.27</td>
<td>Kg</td>
</tr>
<tr>
<td>Jumlah</td>
<td></td>
<td>1.735,6</td>
<td>kg</td>
</tr>
</tbody>
</table>

Untuk menghitung jumlah kebutuhan kotor bahan untuk memenuhi jadwal produksi adalah sesuai dengan rumus:

\[
\sum \text{Kebutuhan kotor bahan (kg)} = \sum \text{Masakan akhir (Fe) x } \sum \text{kebutuhan bahan (kg/Fe)}
\]

\[
\sum \text{kebutuhan bahan (kg/Fe)} = 4.5 \times \sum \text{kebutuhan bahan (kg/ton glukosa)}
\]

Hasil perhitungan kebutuhan bahan disebut kebutuhan kotor karena perusahaan memiliki persediaan bahan di gudang pabrik. Kebutuhan bersih merupakan jumlah bahan yang harus dipesan ke pemasok, jumlah kebutuhan bersih merupakan jumlah kebutuhan kotor dikurangi persediaan yang ada di gudang. Tabel 18 berisi hasil perhitungan kebutuhan kotor bahan. Nilai pada kolom 3 untuk baris tepung tapioka adalah hasil perkalian nilai pada kolom 3, tabel 11 dengan nilai 4,5 dan jumlah kebutuhan standar bahan (4 x 4,5 x 1,539 = 27702), analog untuk
Nilai 4,5 merupakan jumlah satu masakan produksi dengan satuan ton.

Tabel 18. Hasil perhitungan kebutuhan kotor bahan (kg) periode minggu IV April 2002

<table>
<thead>
<tr>
<th>Kode</th>
<th>Nama bahan</th>
<th>22/04/02</th>
<th>23/04/02</th>
<th>24/04/02</th>
<th>25/04/02</th>
<th>26/04/02</th>
<th>27/04/02</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHN2001</td>
<td>Karbon</td>
<td>394</td>
<td>374</td>
<td>374</td>
<td>383.9</td>
<td>374</td>
<td>364.2</td>
<td>2,264.1</td>
</tr>
<tr>
<td>BHN2002</td>
<td>Bentonit</td>
<td>69.7</td>
<td>66.3</td>
<td>66.3</td>
<td>67.9</td>
<td>66.3</td>
<td>64.4</td>
<td>400.9</td>
</tr>
<tr>
<td>BHN2003</td>
<td>HCl</td>
<td>75.5</td>
<td>71.7</td>
<td>71.7</td>
<td>73.6</td>
<td>71.7</td>
<td>69.8</td>
<td>434</td>
</tr>
<tr>
<td>BHN2004</td>
<td>Residu</td>
<td>2.965,2</td>
<td>2.816,9</td>
<td>2.891</td>
<td>2.965,2</td>
<td>2.816,9</td>
<td>2.742,8</td>
<td>17.049,7</td>
</tr>
<tr>
<td>BHN2005</td>
<td>Soda Ash</td>
<td>30.1</td>
<td>28.6</td>
<td>28.6</td>
<td>29.3</td>
<td>28.6</td>
<td>27.8</td>
<td>173</td>
</tr>
<tr>
<td>BHN2006</td>
<td>Bisulfit</td>
<td>5</td>
<td>4,7</td>
<td>4,7</td>
<td>4,8</td>
<td>4,7</td>
<td>4,5</td>
<td>28,4</td>
</tr>
</tbody>
</table>

Jumlah kebutuhan kotor masing-masing bahan dihitung per hari dan kebutuhan kotor per minggu dijadikan sebagai jumlah total kebutuhan kotor. Total kebutuhan kotor per minggu digunakan untuk menghitung kebutuhan bahan bersih untuk kebutuhan seminggu. Jadi untuk mempermudah perhitungan maka ditetapkan untuk penghitungan kebutuhan bersih bahan adalah dengan memakai jumlah kebutuhan kotor bahan per minggu.

Setelah kebutuhan kotor bahan diketahui proses selanjutnya adalah perhitungan kebutuhan bersih bahan dan hasilnya merupakan jumlah bersih bahan yang harus dipesan ke pemasok karena bahan tersebut tidak mencukupi di gudang pabrik untuk memenuhi kebutuhan produksi yang direncanakan. Penghitungan kebutuhan bersih bahan dihitung dengan mengikuti rumusan berikut:

1. Jika \(\Sigma \) kebutuhan kotor per minggu > 0, maka
 \[\Sigma \text{Kebutuhan bersih bahan per minggu} = \Sigma \text{kebutuhan kotor per minggu} - \text{persediaan awal bahan}. \]

2. Jika \(\Sigma \) kebutuhan kotor per minggu \(\leq 0 \), maka
 \[\Sigma \text{Kebutuhan bersih bahan per minggu} = 0 \] atau tidak ada pemesanan bahan.

Proses untuk perhitungan kebutuhan bersih bahan memiliki masukan yakni status persediaan awal masing-masing bahan yang tersedia di gudang.
PT. IMI melakukan pemesanan bahan sesuai dengan jumlah perhitungan kebutuhan bahan bersih. Tidak melakukan perhitungan terhadap bahan yang dalam masa pesan (bahan yang sudah di pesan tetapi belum sampai di perusahaan) sesuai dengan konsep Waters (1992), dimana jumlah bahan yang dipesan adalah selisih jumlah kebutuhan bersih bahan terhadap persediaan bahan yang sedang di pesan. Karena masa tenggang waktu (lead time) pemesanan bahan sama dengan jangka waktu pemesanan bahan yakni tujuh hari, persediaan dalam pesan tidak dimasukkan.

Setelah diketahui jumlah kebutuhan bersih masing-masing bahan, dilakukan proses perhitungan jumlah bahan yang akan dipesan ke pemasok dan waktu pemesanan bahan. Proses penetapan waktu (tanggal) pemesanan bahan dibutuhkan masukan data tenggang waktu pemesanan masing-masing bahan yang dilakukan pada proses perhitungan kebutuhan bersih bahan. Data tenggang waktu pemesanan bahan diperoleh dari PT. IMI adalah merupakan perkiraan tenggang waktu pemesanan maksimal masing-masing bahan. Tenggang waktu (lead time) pemesanan merupakan waktu yang diperlukan untuk diterimanya bahan baku mulai saat dilakukan pemesanan sampai bahan tersebut sampai di tempat perusahaan pemesan. Data tenggang waktu berfungsi untuk menetapkan kapan seharusnya dilakukan pemesanan sehingga bahan tersebut tersedia saat diperlukan untuk produksi (datang tepat waktu). Waktu _pemesanan yang ditetapkan pada sistem SISIDU adalah bersifat tetap yakni satu kali untuk satu minggu, yang disesuaikan dengan SISIDU yang menggunakan jumlah kebutuhan total per minggu pada setiap awal minggu produksi. Untuk melakukan proses perhitungan kapan (tanggal) seharusnya dilakukan pemesanan bahan mengikuti rumus berikut;

1. Jika \(\sum \) Pemesanan bahan > 0, maka
 \[\text{Tanggal pemesanan bahan} = \text{Tanggal akan berproduksi} - \text{Tenggang waktu pesan} \]

2. Jika \(\sum \) Pemesanan bahan \(\leq 0 \), maka
 \[\text{Tanggal pemesanan bahan} = 0 \] (tidak dilakukan pemesanan bahan)
Kemudian tahap berikut adalah melakukan penghitungan berapa jumlah bahan yang harus dipesan untuk memenuhi produksi yang telah dijadwalkan. Untuk melakukan proses diperlukan masukan berupa data jumlah minimal pemesan setiap bahan yang dilakukan pada proses sebelumnya. Kuantitas minimal pemesanan biasanya ditentukan oleh perusahaan supplier bahan, tidak dapat melakukan pemesanan bahan dibawah jumlah minimal pesan bahan. Untuk melakukan perhitungan jumlah bahan yang harus dipesan mengikuti rumus berikut ini;

1. Jika $\sum \text{Kebutuhan bahan} (\text{kg}) \leq \sum \text{Minimal pesan} (\text{kg})$ dan
 $\sum \text{Kebutuhan bahan} (\text{kg}) > 0$, maka
 $\sum \text{pesan bahan} (\text{kg}) = \sum \text{minimal pesan} (\text{kg})$
2. Jika $\sum \text{Kebutuhan bahan} (\text{kg}) > \sum \text{Minimal pesan} (\text{kg})$, maka
 $\sum \text{pesan bahan} = \sum \text{Kebutuhan bahan}$
3. Jika $\sum \text{Kebutuhan bahan} (\text{kg}) \leq 0$, maka
 $\sum \text{pesan} = 0$ (tidak dilakukan pemesanan bahan)

Proses selanjutnya adalah penghitungan persediaan akhir bahan yang merupakan selisih antara jumlah persediaan awal dan bahan dipesan terhadap pemakaian bahan per hari, yang akan menghasilkan laporan keadaan persediaan akhir bahan. Untuk melakukan proses penghitungan persediaan akhir bahan adalah sebagai berikut;

$\sum \text{Stok akhir} (\text{kg}) = (\sum \text{Stok Awal} + \sum \text{Bahan dipesan}) - \sum \text{Kebutuhan kotor bahan per hari}$

Tabel 19. Data tenggang waktu pemesanan dan jumlah minimal pemesanan bahan

<table>
<thead>
<tr>
<th>Kode Bahan</th>
<th>Nama Bahan</th>
<th>Tenggang Waktu</th>
<th>Minimal Pesan</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHN1001</td>
<td>Tepung tapioka</td>
<td>7 hari</td>
<td>8000</td>
<td>Kg</td>
</tr>
<tr>
<td>BHN2001</td>
<td>Karbon</td>
<td>7 hari</td>
<td>500</td>
<td>Kg</td>
</tr>
<tr>
<td>BHN2002</td>
<td>Bentonit/F. Aid</td>
<td>7 hari</td>
<td>300</td>
<td>Kg</td>
</tr>
<tr>
<td>BHN2003</td>
<td>HCl</td>
<td>7 hari</td>
<td>400</td>
<td>Kg</td>
</tr>
<tr>
<td>BHN2004</td>
<td>Residu</td>
<td>7 hari</td>
<td>4000</td>
<td>Kg</td>
</tr>
<tr>
<td>BHN2005</td>
<td>Soda Ash</td>
<td>7 hari</td>
<td>200</td>
<td>Kg</td>
</tr>
<tr>
<td>BHN2006</td>
<td>Bisulfat</td>
<td>7 hari</td>
<td>50</td>
<td>Kg</td>
</tr>
</tbody>
</table>

Untuk periode minggu IV April 2002, hasil perhitungan jumlah kebutuhan bersih bahan, waktu pemesanan, jumlah pemesanan, dan jumlah
persediaan akhir tepung tapioka dapat dilihat pada tabel 20. Nilai pada kolom 2, tanggal 22 April adalah nilai pada kolom 3, tabel 18. Nilai pada kolom 3 adalah jumlah total kebutuhan kotor tepung tapioka minggu IV. Nilai kolom 5 adalah nilai kolom 3 dikurangi nilai kolom 4 pada baris pertama. Jumlah pesan (kolom 6) adalah nilai kebutuhan bersih (kolom 3) ditambah lima persen nilai tersebut \((153238 \times 5\%) + 153238 = 160900\). Penambahan lima persen dilakukan untuk mengantisipasi fluktuasi rendemen tepung tapioka yang digunakan. Stok akhir dihitung dihitung dari jumlah nilai pada kolom 4 dan 6 hasilnya dikurangi nilai pada kolom 2 \((160900 + 6050 - 27702 = 139248\).

<table>
<thead>
<tr>
<th>Tanggal</th>
<th>Kebutuhan Kotor (kg)</th>
<th>Total Kebutuhan Kotor (kg)</th>
<th>Stok Awal (kg)</th>
<th>Kebutuhan Bersih (kg)</th>
<th>Jumlah Pesan (kg)</th>
<th>Tanggal Pesan</th>
<th>Stok Akhir (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/04/02</td>
<td>27.702</td>
<td>159.288</td>
<td>6050</td>
<td>153.238</td>
<td>160.900</td>
<td>15/04/02</td>
<td>139.248</td>
</tr>
<tr>
<td>23/04/02</td>
<td>26.317</td>
<td>0</td>
<td>139.248</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>112.931</td>
</tr>
<tr>
<td>24/04/02</td>
<td>26.317</td>
<td>0</td>
<td>112.194</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>86.614</td>
</tr>
<tr>
<td>25/04/02</td>
<td>27.010</td>
<td>0</td>
<td>86.614</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>59.604</td>
</tr>
<tr>
<td>26/04/02</td>
<td>26.317</td>
<td>0</td>
<td>59.604</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>33.287</td>
</tr>
<tr>
<td>27/04/02</td>
<td>25.625</td>
<td>0</td>
<td>33.287</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>7.662</td>
</tr>
</tbody>
</table>

Tabel 21 merupakan hasil perhitungan hasil perhitungan jumlah kebutuhan bersih bahan, waktu pemesanan, jumlah pemesanan, dan jumlah persediaan akhir soda ash. Cara penghitungan nilai pada tabel 21 analog dengan perhitungan pada tabel 20, kecuali pada kolom jumlah pesan. Jumlah pesan untuk soda ash adalah 160 \((152.4 \times 5\%) + 152.4 = 160\). Berdasarkan
ketentuan bahwa minimal pesan soda ash adalah 200 kilogram, maka soda ash yang dipesan ke pemasok adalah 200 bukan 160 kilogram.

<table>
<thead>
<tr>
<th>Tanggal</th>
<th>Kebutuhan Kotor (kg)</th>
<th>Total Kebutuhan Kotor (kg)</th>
<th>Stok Awal (kg)</th>
<th>Kebutuhan Bersih (kg)</th>
<th>Jumlah pesan (kg)</th>
<th>Tanggal Pesan</th>
<th>Stok Akhir (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/04/02</td>
<td>30,1</td>
<td>173</td>
<td>20,60</td>
<td>152,4</td>
<td>200</td>
<td>15/04/02</td>
<td>190,5</td>
</tr>
<tr>
<td>23/04/02</td>
<td>28,6</td>
<td>0</td>
<td>190,5</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>161,9</td>
</tr>
<tr>
<td>24/04/02</td>
<td>28,6</td>
<td>0</td>
<td>161,9</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>133,3</td>
</tr>
<tr>
<td>25/04/02</td>
<td>29,3</td>
<td>0</td>
<td>133,3</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>104</td>
</tr>
<tr>
<td>26/04/02</td>
<td>28,6</td>
<td>0</td>
<td>104</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>75,4</td>
</tr>
<tr>
<td>27/04/02</td>
<td>27,8</td>
<td>0</td>
<td>75,4</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>47,6</td>
</tr>
</tbody>
</table>

Proses berikutnya adalah menghitung biaya yang dibutuhkan untuk pengadaan bahan utama dan bahan pembantu untuk membelinya dengan jumlah sesuai dengan jumlah bersih bahan yang dipesan ke pemasok masing-masing bahan. Pada tabel 27 merupakan adalah jumlah biaya yang dibutuhkan untuk membeli bahan baku.

Terdapat satu proses yang bersifat incidental dilakukan jika terdapat pembaruan standar biaya tenaga kerja langsung dan biaya tak langsung pabrik, jika pihak manajemen PT. IMI. Proses penghitungan biaya standar tersebut berada diluar cakupan sistem SISIDU. Hasil perubahan standar biaya tersebut dijadikan sebagai masukan untuk proses penghitungan upah tenaga kerja langsung dan biaya tak langsung pabrik.

Tabel 22. Jumlah biaya pembelian bahan periode Minggu IV April 2002

<table>
<thead>
<tr>
<th>Kode Bahan</th>
<th>Nama Bahan</th>
<th>Jumlah dipesan (kg)</th>
<th>Harga per kg (Rp)</th>
<th>Total (Rp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHN1001</td>
<td>Topup apioka</td>
<td>160.900</td>
<td>500</td>
<td>80.450.000</td>
</tr>
<tr>
<td>BHN2001</td>
<td>Karbon</td>
<td>2.167</td>
<td>5.000</td>
<td>10.835.000</td>
</tr>
<tr>
<td>BHN2002</td>
<td>Benoti/F. Aid</td>
<td>369</td>
<td>500</td>
<td>184.500</td>
</tr>
<tr>
<td>BHN2003</td>
<td>HCl</td>
<td>430</td>
<td>1400</td>
<td>602.000</td>
</tr>
<tr>
<td>BHN2004</td>
<td>Residu</td>
<td>17.325</td>
<td>380</td>
<td>6.583.500</td>
</tr>
<tr>
<td>BHN2005</td>
<td>Soda Ash</td>
<td>200</td>
<td>1860</td>
<td>372.000</td>
</tr>
<tr>
<td>BHN2006</td>
<td>Bisulfet</td>
<td>50</td>
<td>3300</td>
<td>165.000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>92.192.000</td>
</tr>
</tbody>
</table>
Selanjutnya adalah mengitung biaya total produk yang merupakan jumlah dari biaya tak langsung pabrik, upah tenaga kerja langsung dan biaya pemelihara bahan. Berdasarkan biaya total produksi dapat diketahui harga pokok penjualan produk sirup glukosa (biaya per unit produk). Nilai biaya per unit produk dihitung dengan cara total biaya produksi dibagi dengan jumlah produksi mingguan \(\frac{107.437.185.5}{(23 \times 4500)} = 1.038 \). Jumlah produksi mingguan adalah jumlah masakan selama satu minggu yaitu 23 masakan (dari table 11) dikali dengan jumlah satu masakan 4500 kilogram sama dengan 103.500 kilogram sirup glukosa.

| Tabel 23. Total biaya produksi dan biaya per unit produk minggu IV April 2002 |
|---------------------------------|-----------------|
| Jenis biaya | Jumlah (Rp) |
| Biaya pembelian bahan | 92.192.000,00 |
| Upah tenaga kerja langsung | 9.725.220,00 |
| Biaya tak langsung pabrik | 5.519.965,50 |
| Total biaya produksi | 107.437.185,50 |
| Biaya/unit sirup glukosa (Rp/kg)| 1.038 |

C. IMPLEMENTASI DAN VERIFIKASI

Implementasi sistem informasi perencanaan produksi terpadu merupakan merupakan tahap penulisan kode-kode program komputer sampai dihasilkan satu program aplikasi yang yang diberi nama SISIDU (Sistem Informasi Perencanaan Produksi Terpadu). Penulisan kode-kode program berdasarkan rancangan model sistem dan rancangan pangkalan data yang dilakukan pada tahap rancang bangun umum dan rancang bangun terinci sistem. Penulisan kode-kode program komputer dibuat dengan memanfaatkan perangkat lunak pembantu Microsoft Visual Basic 6, suatu perangkat lunak pengembang yang digunakan untuk membuat suatu program aplikasi. Program aplikasi merupakan program yang hanya berfungsi untuk fungsi tertentu (khusus).

Pemilihan perangkat lunak tersebut karena Visual Basic 6 memiliki kemampuan reaksi terhadap tindakan pengguna dan kemudahannya dalam membangun suatu antar muka pengguna grafis (graphical user interface). Visual Basic 6 juga memiliki kemampuan untuk diintegrasikan dengan perangkat
lunak pembantu lainnya sehingga akan menghasilkan perangkat lunak aplikasi yang lebih luas aplikasinya.

Proses penulisan kode-kode program di dasarkan pada bagan alir desain terinci yang di buat pada rancangan bangun terinci sistem. Kode-kode program merupakan instruksi-instruksi yang berfungsi untuk mengendalikan operasi program sehingga program dapat bekerja sesuai dengan yang di rancang oleh analis sistem pada desain terinci sistem.

perangkat lunak WiseInstallMaker dan hasilnya diberi nama SISIDU.exe. SISIDU.exe merupakan file set up yang dibutuhkan jika pada saat melakukan instalasi program SISIDU pada personal computer lain, sehingga SISIDU.exe dapat dioperasikan secara langsung pada komputer PC yang tidak terinstal perangkat lunak Visual Basic 6.0 di dalamnya.

Tampilan awal program SISIDU adalah form login, pada form tersebut pengguna diharuskan mengisi user name dan password dengan benar. Sistem akan memeriksa identitas tipe pemakai, pemakai yang memiliki hak akses dan mengisi user name dan password dengan benar akan muncul form utama sistem SISIDU. Hasil implementasi berupa tampilan program aplikasi SISIDU dapat dilihat pada Lampiran 6.

dilakukan diperoleh bahwa keluaran sistem yang dibuat sesuai dengan rancangan yang dibuat.

Setelah verifikasi dilakukan selanjutnya adalah melakukan validasi sistem. Validasi sistem merupakan pengujian sejauhmana kesesuaian sistem yang dikembangkan terhadap sistem yang telah berjalan di PT. IMI. Pada sistem sebelumnya peramalan penjualan tidak dilakukan, tingkat penjualan ditetapkan berdasarkan jumlah permintaan yang masuk ke departemen pemasaran. Pada sistem yang lama tidak ada penerapan penggunaan perencanaan kebutuhan bahan (material requirements planning/MRP) untuk mengelola persediaan bahan baku. Sistem pemesanan ditetapkan berdasarkan jumlah pemesanan tetap per bulan yang ditentukan oleh kepala pabrik, sehingga tingkat persediaan bahan cukup besar atau mengalami kekurangan bahan. Pada sistem yang lama tidak dilakukan perhitungan biaya tak langsung pabrik sesuai kaidah penganggaran perusahaan, yakni tidak memasukkan unsur depresiasi dan pemeliharaan gedung dan alat untuk penentuan harga pokok penjualan produk. Semua perhitungan dan penyimpanan data dilakukan secara manual pada perangkat lunak Microsoft Excel, sehingga ditemui kesulitan dalam mengelola dan mengorganisasikan data-data yang berhubungan dengan perencanaan produksi.

SISIDU mengintegrasikan aktivitas rangkaian perencanaan produksi terpadu dan menyempurnakan sistem yang diterapkan PT. IMI, sehingga pengelolaan informasi dapat dilakukan dengan cepat, tepat yang dapat membantu fungsi manajemen sebagai dasar untuk pengambilan keputusan pada rangkaian perencanaan produksi.

D. KELEBIHAN DAN KEKURANGAN SISTEM

1. Kelebihan Sistem

 a. SISIDU dapat memberikan informasi yang berhubungan dengan perencanaan produksi terpadu mulai dari peramalan penjualan, perkiraan penjualan perencanaan kebutuhan bahan, dan biaya produksi kedalam satu sistem informasi yang merupakan fungsi departemen pemasaran, produksi, dan keuangan.
b. User Friendly, mudah digunakan oleh pemakai karena menggunakan Bahasa Indonesia pada komponen antar mukanya. Terdapat fasilitas login yang dapat dilakukan perubahan nama pengguna dan kaia sandi pengguna.

2. Kekurangan Sistem

SISIDU merupakan aplikasi stand alone, masih dalam bentuk rapid prototype dan belum mencapai sistem jaringan dan real time untuk mengintegrasikan secara penuh proses pengolahan informasi antar departemen-departemen perusahaan yang berbeda lokasi.

E. REKOMENDASI OPERASIONALISASI SISTEM

Perangkat lunak aplikasi SISIDU dikembangkan untuk membantu proses perencanaan produksi dalam arti luas yang melibatkan lintas bagian (departemen) di PT. IMI dan menggabungkan lintas fungsi-fungsi perencanaan kedalam satu sistem informasi.

Instalasi dan pemakaian perangkat lunak ini dapat dilakukan dengan mudah (user friendly) oleh pemakai. Pemakaian SISIDU dapat secara optimal jika dapat terpenuhi kebutuhan perangkat keras dan perangkat lunak yang dibutuhkan adalah satu set komputer pribadi dengan prosesor minimal Pentium 233 MMX, memori (RAM) 64 MB dan VGA 8 MB (high colour), ruang kosong pada harddisk minimal 50 MB, resolusi monitor 800 x 600 pixels, CD ROM 32x, dan sistem operasi Windows 9x/2000/Me/NT.

Sistem memiliki kemampuan untuk dapat dioperasikan oleh pemakai sistem (user) meliputi departemen pemasaran, departemen keuangan, departemen produksi untuk fungsi peramalan penjualan, perkiraan penjualan perencanaan kebutuhan bahan, dan biaya produksi.

VII. KESIMPULAN DAN SARAN

A. KESIMPULAN

Penelitian ini membuat satu sistem informasi perencanaan produksi terpadu yang diberi nama SISIDU. SISIDU mengacu pada konsep sistem bisnis terintegrasi berbasis komputer (computer integrated business system), suatu sistem yang mengintegrasikan keseluruhan fungsi manajerial departemen perusahaan kedalam satu sistem informasi berbasis komputer. SISIDU hanya mengintegrasikan fungsi yang berkaitan dengan perencanaan produksi ke dalam satu sistem informasi manajemen berbasis komputer. SISIDU dimulai dari penetapan perkiraan penjualan potensial yang ditetapkan berdasarkan hasil peramalan penjualan setelah memasukkan pertimbangan jumlah pesanan aktual produk dari konsumen untuk masa produksi berikutnya. Tingkat penjualan potensial dikonversi menjadi jadwal produksi mingguan untuk menentukan tingkat produksi harian.

Verifikasi merupakan pengujian kesesuaian sistem yang diimplementasikan dengan model sistem yang dibuat. Verifikasi berupa pemasukan data yang berhubungan dengan perencanaan produksi. Verifikasi dilakukan terhadap data-data yang dibutuhkan untuk perencanaan produksi periode minggu IV April 2002, seperti data data histori penjualan, data permintaan aktual produk, data persediaan awal produk dan bahan baku, daftar standar butuh bahan, standar biaya tak langsung pabrik dan standar upah tenaga kerja langsung. Keluaran SISIDU meliputi informasi perkiraan penjualan potensial, jadwal produksi, persediaan akhir produk, persediaan akhir bahan, pemesanan bahan dan kebutuhan biaya produksi
yang meliputi biaya pengadaan bahan, biaya tak langsung pabrik dan upah tenaga kerja langsung. Verifikasi yang dilakukan sesuai dengan analisa rancangan sistem.

Validasi sistem merupakan pengujian tingkat kesesuaian sistem yang dikembangkan terhadap sistem yang telah berjalan di PT. IMI. Sistem sebelumnya peramalan penjualan tidak dilakukan, tidak ada penerapan penggunaan perencanaan kebutuhan bahan (*material requirements planning*/*MRP*) untuk mengelola persediaan bahan baku. Pada sistem yang lama tidak tidak memasukkan unsur depresiasi dan pemeliharaan gedung dan alat untuk penentuan harga pokok penjualan produk. Semua perhitungan dan penyimpanan data dilakukan secara manual pada perangkat lunak Microsoft Excel, sehingga ditemui kesulitan dalam mengelola dan mengorganisasikan data-data yang berhubungan dengan perencanaan produksi.

B. SARAN

1. Pengembangan lebih lanjut sehingga sistem berfungsi penuh sampai terbangun aplikasi teknologi jaringan agar SISIDU yang mengacu pada *computer integrated business system* dapat diakses secara langsung dari bagian-bagian perusahaan secara *real time*.

2. Pengembangan lebih lanjut terhadap cakupan sistem sesuai dengan konsep CIBS untuk mengintegrasikan keseluruhan fungsi proses operasional perusahaan seperti fungsi pemasaran, produksi, keuangan, dan sumber daya manusia.

3. Agar perangkat lunak SISIDU dapat dioperasikan dengan baik perlu dilakukan berbagai pelatihan bagi pengguna untuk lebih memahami teknik peramalan, perencanaan kebutuhan bahan dan teknik penganggaran penunjang rugi laba. Serta pelatihan teknis cara pengoperasian perangkat lunak SISIDU.
DAFTAR PUSTAKA

Lampiran 1. Diagram alir proses produksi sirup glukosa di PT. IMI

Bahan baku tapioka (1.559 kg)

15-22 kg arang aktif 1.94 kg bentonit

Pelarutan Suspensi
PH 2.2-2.3, 19-21 oBe
15-20 menit

Pemasakan
140 oC, P=2.3 kg/cm², 5-15 menit
test iodin, standar DE

Soda Abu 1.67 kg

Netralisasi
15-20 menit

15-22 kg arang aktif 1.94 kg bentonit

Pemucatan I
60 menit, 36-38 °Brix

Penyaringan I
50-60 menit

Penguapan Awal
P_{steam}=1.2 kg/cm², P_{rakum}=0.8 kg/cm²
120-150 menit

Uap air (nilai referensi=24%)

15-22 kg arang aktif 1.94 kg bentonit

Pemucatan II
minimal 60 menit

Penyaringan II
60 menit

Arang aktif

Bisulfit 0.27 kg

Penguapan Akhir
P_{steam}=1.2 kg/cm², P_{rakum}=0.8 kg/cm²
180 menit

Uap air (nilai referensi=24%)

Sirup Glukosa
(1000 Kol)
Lampiran 2. Struktur Organisasi PT. Indonesian Maltose Industry

Dewan Komisaris

Dewan Direksi

Kepala Pabrik

Kepala Bagian Produksi

Kepala Bagian Laboratorium

Kepala Bagian Teknik

Kepala Keu & Adm

Kepala Gudang

Kepala Eksposisi

Kepala Keamanan

Karyawan

Karyawan

Teknis shift/non

Karyawan

Karyawan

Karyawan

Karyawan

Karyawan

Kepala Kantor

Kepala Bagian Pemasaran

Kepala Bagian Keuangan

Kepala Bagian Pembelian

Kepala Gudang

Karyawan

Karyawan

Karyawan

Karyawan

Karyawan

Sumber: Seksi Keuangan & Administrasi
Lampiran 3. Teknik Forecasting dengan Minitab 11 for Windows

Memulai Minitab

Pastikan program Minitab 11 for Windows telah terinstal pada Komputer yang akan dipakai, jika belum terinstal, maka instal program Minitab 11 yang disertakan pada paket CD program SISIDU. Jalankan Minitab dengan cara mengklik Menu Proses > Sub Menu Forecasting pada menu utama program aplikasi SISIDU.

Beberapa bagian penting pada jendela utama Minitab (lihat gambar dibawah):

- Bagian paling atas tertulis: Minlab-Untitled Worksheet, merupakan jendela terbuka yang belum memiliki nama.
- Menu yang tersedia adalah; File, Edit, Manip, Calc, Stat, Graph, Editor, Window, dan Help
- Tersedia tombol toolbar, untuk mengakses perintah secara cepat.
- Berikutnya jendela Session (tulisan Session pada bagian kiri atas jendela). Session window akan menampilkan hasil (out put) dari proses yang dilakukan oleh Minitab.
- Berikutnya adalah Data Window, di dalam data window ada lembar kerja (worksheet) yang berfungsi untuk memasukkan data. Dalam worksheet terdapat kolom yang diberi nama huruf C1, C2, C3, dan baris diberi nama 1, 2, 3, Tepat dibawah nama kolom ada sel-sel kosong yang dapat diberikan nama tertentu (misalnya; Penjualan).

Memasukkan Data

Untuk memasukkan data aktifkan window data dengan mengklik window data;
- Tuliskan data dalam sel-sel, dan masukkan satu variabel untuk satu kolom, (variabel: penjualan pada kolom C1).
- Untuk menghindari penulisan ulang data, simpan data sebagai File > Save Worksheet, berikan nama filenya (Penjualan Pemilahan 1)

Analisis Data
Salah satu analisis statistik yang tersedia pada minitab adalah Time Series yang dapat digunakan untuk forecasting penjualan. Untuk dapat melakukan analisis diperlukan pemahaman terhadap konsep forecasting.

![Gambar Time Series Data Penjualan](image)

untuk deret data tersebut dilakukan dengan single exponential smoothing, dan pada gambar form terdapat isian untuk pemulusan eksponensial tunggal;

- Klik C1 Penjualan yang terdapat dalam kotak teks yang terdapat pada bagian kiri form (tombol select tidak aktif sebelum C1 Penjualan terpilih).
- Klik tombol Select, maka secara otomatis kotak teks variabel akan terisi dengan Penjualan (sesuai dengan nama kolom C1 yang diberikan pada Data window).
- Klik [Forecast] untuk pilihan Weight to Use in Smoothing
- Klik [Generate Parameters] untuk menentukan jumlah yang harus periode yang akan di forecasting, dan dari nomor baris berapa dimulai dipakai untuk forecasting, (isikan dengan angka 1)
- Isikan Title dengan Peramalan Penjualan dan (12/04/2002) menandakan tanggal dilakukan forecasting.

- Klik tombol Options... untuk menentukan keluaran (out put) dan grafik forecasting, pilihan grafik terdiri dari tiga option button; (1) Plot Predicted vs Aktual; akan menampilkan grafik dalam bentuk garis prediksi dan garis aktual, (2) Plot Smoothed vs Aktual; akan menampilkan grafik dalam bentuk garis pemulusan dan garis aktual, (3) Do not display plot. Sedangkan pilihan Out put terdiri dari dua option button; (a) Summary Table, hanya menampilkan tabel ringkas. (b) Summary Table and Results table, akan menampilkan tabel ringkas dan hasil.

- Klik tombol Storage untuk menetapkan komponen apa yang akan disimpan yang meliputi Smoothed data, Fit, Residual, Forecast, Upper 95% prediction limits dan Lower 95% prediction limits. (berikut gambar keluaran pada jendela Session dan grafiknya pada jendela SES)
Lampiran 4. Perhitungan jumlah kebutuhan bersih, waktu pesan, jumlah pesan, dan persediaan akhir bahan

<table>
<thead>
<tr>
<th>Tanggal</th>
<th>Kebutuhan Kotor (kg)</th>
<th>Total Kebutuhan Kotor (kg)</th>
<th>Stok Awal (kg)</th>
<th>Kebutuhan Bersih (kg)</th>
<th>Jumlah pesan (kg)</th>
<th>Tanggal Pesan</th>
<th>Stok Akhir (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/04/02</td>
<td>391</td>
<td>2,261,1</td>
<td>200,5</td>
<td>2,060,6</td>
<td>2,164</td>
<td>15/04/02</td>
<td>1,970,5</td>
</tr>
<tr>
<td>23/04/02</td>
<td>374</td>
<td>0</td>
<td>1,970,5</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1,596,5</td>
</tr>
<tr>
<td>24/04/02</td>
<td>374</td>
<td>0</td>
<td>1,596,5</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>1,222,5</td>
</tr>
<tr>
<td>25/04/02</td>
<td>383,9</td>
<td>0</td>
<td>1,222,5</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>838,6</td>
</tr>
<tr>
<td>26/04/02</td>
<td>374</td>
<td>0</td>
<td>838,6</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>464,6</td>
</tr>
<tr>
<td>27/04/02</td>
<td>264,2</td>
<td>0</td>
<td>464,6</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>200,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tanggal</th>
<th>Kebutuhan Kotor (kg)</th>
<th>Total Kebutuhan Kotor (kg)</th>
<th>Stok Awal (kg)</th>
<th>Kebutuhan Bersih (kg)</th>
<th>Jumlah pesan (kg)</th>
<th>Tanggal Pesan</th>
<th>Stok Akhir (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/04/02</td>
<td>69,7</td>
<td>400,9</td>
<td>50</td>
<td>350,9</td>
<td>367</td>
<td>15/04/02</td>
<td>347,3</td>
</tr>
<tr>
<td>23/04/02</td>
<td>66,3</td>
<td>0</td>
<td>347,3</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>281</td>
</tr>
<tr>
<td>24/04/02</td>
<td>66,3</td>
<td>0</td>
<td>281</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>214,7</td>
</tr>
<tr>
<td>25/04/02</td>
<td>67,9</td>
<td>0</td>
<td>214,7</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>146,8</td>
</tr>
<tr>
<td>26/04/02</td>
<td>66,3</td>
<td>0</td>
<td>146,8</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>80,5</td>
</tr>
<tr>
<td>27/04/02</td>
<td>64,4</td>
<td>0</td>
<td>80,5</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>16,1</td>
</tr>
</tbody>
</table>

Tabel 3. Hasil perhitungan jumlah kebutuhan bersih, waktu pemesanan, jumlah pemesanan, dan jumlah persediaan akhir HCL untuk minggu IV April 2002.

<table>
<thead>
<tr>
<th>Tanggal</th>
<th>Kebutuhan Kotor (kg)</th>
<th>Total Kebutuhan Kotor (kg)</th>
<th>Stok Awal (kg)</th>
<th>Kebutuhan Bersih (kg)</th>
<th>Jumlah pesan (kg)</th>
<th>Tanggal Pesan</th>
<th>Stok Akhir (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/04/02</td>
<td>75,5</td>
<td>434</td>
<td>25</td>
<td>409</td>
<td>430</td>
<td>15/04/02</td>
<td>379,5</td>
</tr>
<tr>
<td>23/04/02</td>
<td>71,7</td>
<td>0</td>
<td>379,5</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>307,8</td>
</tr>
<tr>
<td>24/04/02</td>
<td>71,7</td>
<td>0</td>
<td>307,8</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>236,1</td>
</tr>
<tr>
<td>25/04/02</td>
<td>73,6</td>
<td>0</td>
<td>236,1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>162,5</td>
</tr>
<tr>
<td>26/04/02</td>
<td>71,7</td>
<td>0</td>
<td>162,5</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>90,8</td>
</tr>
<tr>
<td>27/04/02</td>
<td>69,8</td>
<td>0</td>
<td>90,8</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tanggal</th>
<th>Kebutuhan Kotor (kg)</th>
<th>Total Kebutuhan Kotor (kg)</th>
<th>Stok Awal (kg)</th>
<th>Kebutuhan Bersih (kg)</th>
<th>Jumlah pesan (kg)</th>
<th>Tanggal Pesan</th>
<th>Stok Akhir (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/04/02</td>
<td>2.965,2</td>
<td>17.049,7</td>
<td>550,20</td>
<td>16.499,5</td>
<td>17.325</td>
<td>15/04/02</td>
<td>14.937</td>
</tr>
<tr>
<td>23/04/02</td>
<td>2.816,9</td>
<td>0</td>
<td>14.937</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>12.120,1</td>
</tr>
<tr>
<td>24/04/02</td>
<td>2.816,9</td>
<td>0</td>
<td>12.120,1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>9.313,2</td>
</tr>
<tr>
<td>25/04/02</td>
<td>2.965,2</td>
<td>0</td>
<td>9.313,2</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>6.338</td>
</tr>
<tr>
<td>26/04/02</td>
<td>2.816,9</td>
<td>0</td>
<td>6.338</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>3.521,1</td>
</tr>
<tr>
<td>27/04/02</td>
<td>2.742,8</td>
<td>0</td>
<td>3.521,1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>778,3</td>
</tr>
</tbody>
</table>

Tabel 5. Hasil perhitungan jumlah kebutuhan bersih, waktu pemesanan, jumlah pemesanan, dan jumlah persediaan akhir bisulfat untuk minggu IV April 2002.

<table>
<thead>
<tr>
<th>Tanggal</th>
<th>Kebutuhan Kotor (kg)</th>
<th>Total Kebutuhan Kotor (kg)</th>
<th>Stok Awal (kg)</th>
<th>Kebutuhan Bersih (kg)</th>
<th>Jumlah pesan (kg)</th>
<th>Tanggal Pesan</th>
<th>Stok Akhir (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/04/02</td>
<td>5</td>
<td>28,4</td>
<td>4,20</td>
<td>24,2</td>
<td>50</td>
<td>15/04/02</td>
<td>49,2</td>
</tr>
<tr>
<td>23/04/02</td>
<td>4,7</td>
<td>0</td>
<td>49,2</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>44,5</td>
</tr>
<tr>
<td>24/04/02</td>
<td>4,7</td>
<td>0</td>
<td>44,5</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>39,8</td>
</tr>
<tr>
<td>25/04/02</td>
<td>4,8</td>
<td>0</td>
<td>39,8</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>35</td>
</tr>
<tr>
<td>26/04/02</td>
<td>4,7</td>
<td>0</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>30,3</td>
</tr>
<tr>
<td>27/04/02</td>
<td>4,5</td>
<td>0</td>
<td>30,3</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>25,8</td>
</tr>
</tbody>
</table>
Lampiran 5. Petunjuk Pemakaian Aplikasi SISIDU

SISIDU sebagai perangkat lunak aplikasi dilengkapi satu file bantuan (Sisidu.Hlp) yang dapat digunakan oleh pemakai. Untuk mengaksesnya dapat diakses melalui Start -> Program -> sisidu -> sisidu.hlp, atau melalui aplikasi SISIDU yang telah terbuka dan mengaksesnya melalui menu Bantuan -> Isi Bantuan.

Isi Bantuan adalah cara penggunaan program serta keterangan-keterangan lain yang dapat membantu pengguna dalam mengoperasikan program, dibawah ini adalah Isi Bantuan dan cara penggunaan SISIDU 2003.

SISIDU
COPYRIGHT © 2003

SISIDU adalah singkatan dari Sistem Informasi Perencanaan Produksi Terpadu.

SISIDU merupakan perangkat lunak aplikasi yang diharapkan dapat membantu menjadi penyedia informasi yang berhubungan dengan perencanaan produksi dalam arti luas (mulai dari peramalan penjualan, jadwal produksi, kebutuhan bahan, dan biaya produksi yang meliputi biaya bahan, biaya tenaga kerja langsung dan biaya tidak langsung pabrik).

INSTALASI PROGRAM

1. Masukkan CD setup SISIDU ke dalam CD ROM 8x - 52x
3. Setelah masuk ke dalam form instalasi tetapkan folder tujuan dimana program akan disimpan, secara default akan disimpan pada Program Files/Sisidu jika tidak ketikan direktori dan folder tujuan kemudian klik Next.
4. Tentukan Nama Group di Start Menu jika tidak secara tetap diberi nama Sisidu kemudian klik Next hingga Tombol Finish muncul.
7. Setelah selesai buka program dengan mengklik Sisidu.exe pada Desktop atau dari Start Menu.
8. Jika Instalasi gagal lihat Penanganan Kesalahan.
Persyaratan Untuk Menginstall Program

1. 1 Unit PC Minimal 233 MMX dengan RAM 64 MB, CD ROM 8x, Sound Card dan VGA 8 MB.
3. Ruang kosong pada Harddisk 150 MB.
4. Resolusi monitor 1024 x 768 pixels.

PENANGANAN KESALAHAN

4. Pengguna tidak dapat masuk ke sistem dan keluar pesan error: Nama Pengguna dan Password salah atau tidak ada, hubungi Administrator yang telah ditunjuk dan minta Nama dan Password baru.
5. Gambar dan tampilan sistem tidak beraturan: resolusi kurang atau lebih dari 1024 x 768 pixel, atau driver VGA belum terinstall dengan benar.
6. Keluar tampilan pesan error ketika membuka form data masukan: Basis data masih kosong, lakukan pengisian basis data secara berurutan, jika tetap muncul isikan beberapa data secara manual ke dalam file basis data sisidu.mdb kemudian buka kembali.
7. Kesalahan-kesalahan diluar penanganan di atas dapat menghubungi pembuat program melalui e-mail : yasirharahap@yahoo.com
Lampiran 6/ Panduan pemakaian SISIDU (User Guide)

1. Memulai Program

Pada komputer yang telah diinstal program SISIDU;
- Klik menu Start pada taskbar Windows yang berada pada sebelah kiri bawah monitor, klik Program kemudian klik SISIDU untuk menjalankan program aplikasi SISIDU.

Tampilan awal program SISIDU adalah tampilan log in seperti gambar berikut;

![Gambar 1. Form identifikasi pengguna](image.png)

![Gambar 2. Splash Screen](image.png)

Menu yang disediakan pada form menu utama SISIDU dapat digunakan dengan cara mengklik tombol sesuai dengan jenis data yang akan digunakan. Untuk administrator tersedia sub menu edit form log in.

Menu File berisi sub menu Proses untuk melakukan proses pengolahan untuk menghasilkan informasi yang berhubungan dengan perencanaan produksi. Sub menu Log off untuk melakukan Log in ulang, dan sub menu Exit untuk keluar dari program aplikasi SISIDU.

Menu Edit terdiri dari sub menu Edit Data untuk melakukan perubahan-perubahan data standar butuh bahan (bill of material), standar biaya tak langsung, tenggang waktu pemesanan dan minimal pesan bahan dari pemasok.

Sub menu Edit Log in (hanya dapat diakses administrator) untuk menambah atau menghapus pemakai program SISIDU.

Menu Window terdiri dari sub menu Vertical, Horizontal, Cascade untuk dapat menyusun secara vertikal, horizontal, cascade semua jendela yang sedang terbuka.

Menu Help berisi sub menu SISIDU Help berisi tentang bantuan instalasi program aplikasi SISIDU, sub menu Cari Content untuk mencari bantuan berdasarkan kata dan sub menu About berisi tentang pembuatan program SISIDU.

Berikut gambar menu utama program aplikasi SISIDU
Gambar 3. *Form* menu utama SISIDU

- Sub menu *Proses* pada menu *File* diklik untuk melakukan proses penghitungan yang berhubungan dengan perencanaan produksi.

Gambar 4. *Form* untuk melakukan proses
Proses dimulai dari peramalan penjualan. Proses peramalan dilakukan dengan memanfaatkan program Minitab 11 for Windows yang dihubungkan (OLE) dengan SISIDU.

- Klik tombol Minitab (1), untuk mulai melakukan peramalan. Pada field (a) merupakan tempat keluaran direktori file Minitab berada. Cara peramalan dengan menggunakan Minitab dapat dilihat pada Lampiran 2.
- Hasil (nilai) forecasting pada Minitab di-copy dan di-paste atau ditulis ulang pada field (b).
- Klik (2) untuk memilih tanggal mulai produksi seperti pada gambar berikut, keluaran pemilihannya tertera pada field (c)

Gambar 5. Tampilan pemilihan tanggal

- Berikutnya isikan field-field pada kotak (3), berupa jumlah kuantitas permintaan aktual glukosa.
- Isikan field-field pada kotak (4), berupa persediaan awal masing-masing bahan.
- Isikan field (5), berupa jumlah persediaan awal produk glukosa.
- Klik tombol perintah Proses, maka sistem akan memproses secara keseluruhan yang hasilnya dapat dilihat pada menu View, sub menu Report

Sub menu Edit Log in pada menu Edit hanya dapat diakses oleh Administrator untuk melakukan pembaharuan pemakai sistem SISIDU. Administrator dapat melakukan penambahan, menghapus dan menyimpan indentifikasi masing-masing pemakai sistem.
Gambar 6. *Form edit log in*

Sub menu Edit data untuk melakukan perubahan-perubahan standar upah tenaga kerja langsung, standar biaya tak langsung pabrik, standar butuh bahan (*bill of material*), dan data pemesanan bahan yang meliputi tenggang waktu pemesanan, jumlah minimal pesan dan harga masing-masing bahan.

Gambar 7. *Form Edit data standar*

- Klik tombol Edit (1) untuk dapat melakukan perubahan data-data standar.
Field (a) merupakan standar upah tenaga kerja langsung. Field (b) standar biaya tak langsung pabrik, field (c) standar data pemesanan masing-masing bahan, field (d) jumlah butuh tepung tapioka untuk menghasilkan satu ton glukosa, perhitungannya berdasarkan rendemen tepung tapioka yang digunakan, dan field (e) jumlah butuh bahan pembantu untuk dapat diproduksi satu ton glukosa.

- Klik Save (2), untuk melakukan penyimpanan perubahan masukan.

Sub menu Data dari menu View terdiri dari data pemasok dan data konsumen seperti pada gambar 8 berikut;

![Form data pemasok dan konsumen](image.png)

Gambar 8. Form data pemasok dan konsumen

Pada form data pemasok dan data konsumen dapat dilakukan pembaharuan data seperti melakukan penambahan, penghapusan dan penyimpanan perubahan data masukan.

- Daftar standar bahan memberikan informasi berupa jumlah masing-masing bahan untuk menghasilkan per satuan produk. Daftar ini menampilkan informasi kode bahan, nama bahan, satuan, dan kebutuhan standar bahan per ton glukosa yang akan dihasilkan. Berikut tampilan laporan standar butuh bahan

![Gambar 9. Tampilan informasi standar butuh bahan](image)

- Daftar Konsumen menampilkan informasi mengenai perusahaan-perusahaan yang menjadi pembeli glukosa yang dihasilkan PT. IMI. Field informasi meliputi nama perusahaan konsumen, kontak person, nomor telepon dan alamat konsumen. Tampilan informasi daftar konsumen dapat dilihat pada gambar 10.
Gambar 10. Tampilan informasi daftar konsumen

- Daftar Pemasok menampilkan informasi mengenai perusahaan yang memasok bahan-bahan ke PT. IMI. *Field* informasi adalah nama perusahaan pemasok, kontak person, nama bahan yang dipasok ke PT. IMI, nomor telepon dan alamat pemasok tersebut.

Gambar 11. Tampilan informasi daftar pemasok
- Laporan Perkiraan Penjualan potensial merupakan informasi yang menunjukkan tingkat penjualan untuk satu periode berikutnya. Perkiraan penjualan potensial dihitung berdasarkan hasil peramalan penjualan dan tingkat permintaan aktual produk dari pemasok. Laporan perkiraan penjualan menampilkan informasi tanggal, kode produk, nama produk, dan tingkat penjualan pada masing-masing hari selama periode produksi (Senin sampai Sabtu).

Gambar 12. Tampilan laporan perkiraan penjualan potensial

Gambar 13. Tampilan laporan jadwal produksi

Gambar 14. Tampilan laporan persediaan akhir produk
- Laporan Biaya TKL (tenaga kerja langsung), menampilkan informasi jumlah upah tenaga kerja langsung yang dibutuhkan untuk memproduksi glukosa sesuai dengan jadwal produksi. Jumlah upah tenaga kerja langsung di hitung berdasarkan jumlah ton glukosa yang dihasilkan dikalikan dengan standar upah per ton yang ditetapkan oleh PT. IMI. Standar upah tenaga kerja langsung dapat diubah pada form Edit data. Berikut tampilan laporan biaya TKL.

![Laporan Biaya TKL](image)

Gambar 15. Tampilan laporan biaya tenaga kerja langsung

- Laporan Biaya Tak Langsung Pabrik, memberikan informasi mengenai jumlah biaya tak langsung (over head) pabrik untuk satu periode produksi. Jumlah biaya tak langsung pabrik tidak tergantung pada jumlah produk yang dihasilkan dan merupakan jumlah biaya yang ditetapkan oleh PT. IMI. Standar biaya tak langsung dapat dirubah sesuai keputusan perusahaan. Informasi yang ditampilkan meliputi tanggal, nama komponen biaya yang meliputi gaji tenaga kerja, pemeliharaan gedung, pemeliharaan alat, listrik, depresiasi gedung, depresiasi alat. Laporan biaya tak langsung pabrik dapat dilihat pada gambar 16 berikut.
Gambar 16. Tampilan laporan biaya tak langsung pabrik

Gambar 17. Tampilan laporan pemesanan bahan

Gambar 18. Tampilan laporan persediaan akhir bahan
Laporan Biaya Bahan Baku merupakan informasi tentang biaya pengadaan bahan-bahan produksi yang dipesan dari pemasok. Biaya pengadaan masing-masing bahan dihitungkan berdasarkan perkalian jumlah pesan (kilogram) dengan harga bahan per kilogram bahan tersebut. Field informasi yang ditampilkan meliputi tanggal, kode bahan, nama bahan, jumlah pesan bahan (kilogram), harga bahan per kilogram (Rupiah), dan total (Rupiah). Berikut tampilan laporan biaya pengadaan bahan produksi.

Gambar 19. Tampilan laporan biaya pengadaan bahan baku

Sub menu View All Report dari menu View menampilkan keseluruhan laporan yang disediakan oleh SISIDU.

Menu Window berisi sub menu Vertical, Horizontal dan Cascade untuk menampilkan secara vertikal, horizontal dan cascade window yang terbuka.

Sub menu Cari Content dari menu Help, memberikan bantuan untuk mencari topik berdasarkan kata yang berhubungan dengan pengoperasian SISIDU. Gambar Help Topics SISIDU dapat dilihat pada gambar 20 berikut.
Laporan Biaya Bahan Baku merupakan informasi tentang biaya pengadaan bahan-bahan produksi yang dipesan dari pemasok. Biaya pengadaan masing-masing bahan dihitungkan berdasarkan perkalian jumlah pesan (kilogram) dengan harga bahan per kilogram bahan tersebut. Field informasi yang ditampilkan meliputi tanggal, kode bahan, nama bahan, jumlah pesan bahan (kilogram), harga bahan per kilogram (Rupiah), dan total (Rupiah). Berikut tampilan laporan biaya pengadaan bahan produksi.

Gambar 19. Tampilan laporan biaya pengadaan bahan baku

Sub menu View All Report dari menu View menampilkan keseluruhan laporan yang disediakan oleh SISIDU.

Menu Window berisi sub menu Vertical, Horizontal dan Cascade untuk menampilkan secara vertikal, horizontal dan cascade window yang terbuka.

Sub menu Cari Content dari menu Help, memberikan bantuan untuk mencari topik berdasarkan kata yang berhubungan dengan pengoperasian SISIDU. Gambar Help Topics SISIDU dapat dilihat pada gambar 20 berikut.
Gambar 20. Tampilan help topics SISIDU

Sub menu About (tentang program) dari menu Help

Keluaran About merupakan informasi yang dihasilkan dari SISIDU berupa informasi pengembang perangka lunak SISIDU dan perangkat lunak yang dipergunakan untuk membuat perangkat lunak aplikasi SISIDU.

Gambar 21. Tampilan about SISIDU