Dia menciptakan langit tanpa tiang yang kamu melihatnya dan
Dia meletakkan gunung-gunung (di permukaan) bumi supaya bumi itu tidak menggoyangkan kamu; dan memperkembangbiakkan padanya segala macam jenis binatang. Dan Kami turunkan air hujan dari langit, lalu Kami tumbuhkan padanya segala macam tumbuh-tumbuhan yang baik.
(QS. LUQMAN : 10)

Kupersembahkan untuk semua yang mengasihiku dan kukasihi.
PENGUNAAN MODEL SIMULASI "DSSAT"
UNTUK MENDUGA POTENSI HASIL PADI SAWAH
DI EMPAT LOKASI

Oleh:
POP! REDJEKININGRUM
90235-AGK

PROGRAM PASCASARJANA
INSTITUT PERTANIAN BOGOR
1993
RINGKASAN

POPI REDJEKININGRUM. Penggunaan Model Simulasi "DSSAT" untuk Menduga Potensi Hasil Padi Sawah di Empat Lokasi (Di bawah bimbingan AHMAD BEY, sebagai Ketua, HIDAYAT PAWITAN dan LE ISTIQLAL AMIEN, sebagai Anggota).

Dalam upaya meningkatkan produksi padi guna menunjang pelestarian swasembada beras, diperlukan pengembangan teknologi budidaya tanaman padi dan upaya pengambilan keputusan yang tepat dan cepat dalam perencanaan pertanaman. Dalam usaha meningkatkan ketepatan pengambilan keputusan dalam mengelola pertanaman padi dibutuhkan suatu model yang dapat menduga keragaman dan hasil tanaman dari data yang tersedia.

Sifat genetis (tanaman), lingkungan fisik (tanah dan iklim) dan kultur teknis merupakan 3 komponen yang menentukan produksi tanaman. Dengan teknik simulasi dan modeling berbagai komponen tersebut dapat diintegrasikan secara langsung dalam menentukan potensi hasil tanaman.

Tujuan penelitian ini adalah : (1) menguji model DSSAT (Decision Support System for Agrotechnology Transfer) yang dikeluarkan oleh IBNSAT (International Benchmark Sites Network for Agrotechnology Transfer) yang aplikasinya digunakan untuk bidang pertanian dengan membandingkan hasil simulasi dan pengamatan di lapang, (2) mencoba mensimulasi pertanaman padi dengan beberapa cara pengelolaan tanah (pemupukan) dan pengelolaan tanaman (varietas dan waktu tanam) dan (3) melihat hasil simulasi dengan masukan skenario cuaca yang berubah akibat pemanasan bumi.
Penelitian ini merupakan studi kasus pendekatan wilayah menggunakan metode analisis sistem atau model simulasi. Simulasi dilakukan terhadap potensi hasil (produktivitas) tanaman dengan menggunakan model simulasi DSSAT. Model ini merupakan suatu sistem perangkat lunak yang memadukan model-model pertumbuhan tanaman dengan berbagai program terapannya. Untuk menduga potensi hasil diperlukan data harian iklim (radiasi matahari, suhu minimum, suhu maksimum, dan curah hujan); data-data tanah (diskripsi profil, analisis fisik dan kimia tanah serta klasifikasi tanah); data tanaman (waktu tanam, varietas, jarak tanam, populasi tanaman, dan fase pertumbuhan tanaman). Potensi hasil saat itu diperoleh dengan menjalankan program \textit{run} dalam crop model, sedang untuk melihat hasil simulasi pemupukan, varietas dan perubahan iklim dengan menjalankan program \textit{modify} dalam crop model.

Dibandingkan dengan hasil petak percobaan, model memberikan hasil yang sedikit lebih rendah tetapi hampir setara atau sedikit lebih tinggi dengan tingkat produksi petani, walaupun demikian hubungan antara hasil simulasi dan hasil percobaan sangat erat dengan nilai r^2 sebesar 87\% dengan galat baku pendugaan model (\textit{standar error of estimate}) sebesar 0.49 untuk Ngawi, r^2 sebesar 93\% dengan galat baku pendugaan sebesar 0.29 untuk Sukamandi, r^2 sebesar 91\% dengan galat baku pendugaan sebesar 0.38 untuk Cianjur, dan r^2 sebesar 89\% dengan galat baku pendugaan sebesar 0.42 untuk Sitiung.

Model menunjukkan bahwa pada semua lokasi percobaan penggunaan Urea dan USG dengan cara dibenam lebih efisien dibanding penggunaan Urea dengan cara
disebar, hal tersebut disebabkan oleh sifat unsur N yang mobil sehingga jika disebar akan mudah hilang.

Model juga menunjukkan bahwa untuk Ngawi penggunaan varietas IR-36 memberikan hasil tertinggi dan hasil terendah bila digunakan varietas IR-58, untuk Sukamandi hasil tertinggi dicapai jika digunakan IR-43 dan hasil terendah bila digunakan IR-58, untuk Cianjur penggunaan varietas IR-20 memberikan hasil tertinggi dan penggunaan IR-43 memberikan hasil terendah, untuk Sitiung hasil tertinggi dicapai bila digunakan IR-70 dan hasil terendah bila digunakan IR-8.

Dalam simulasi waktu tanam, model menunjukkan bahwa untuk daerah Ngawi hasil tertinggi diperoleh saat ditanam tanggal 21 Oktober (dasarian III Oktober) dan hasil terendah bila ditanam tanggal 11 Januari (dasarian II Januari), untuk daerah Sukamandi hasil tertinggi dicapai saat ditanam tanggal 11 Oktober (dasarian II Oktober) dan hasil terendah bila ditanam tanggal 21 Januari (dasarian III Januari), sedangkan untuk daerah Cianjur hasil tertinggi diperoleh saat ditanam tanggal 11 September (dasarian II September) dan hasil terendah bila ditanam tanggal 11 Januari (dasarian II Januari), dan untuk daerah Sitiung hasil tertinggi dicapai saat ditanam tanggal 11 Oktober (dasarian II Oktober) dan hasil terendah bila ditanam tanggal 1 Januari (dasarian I Januari).

Simulasi perubahan iklim menunjukkan bahwa dengan meningkatnya gas-gas rumah kaca di atmosfir setara 555 ppm CO₂ akan mengakibatkan peningkatan radiasi matahari, suhu maksimum, suhu minimum, dan curah hujan. Akibat adanya peningkatan CO₂ di atmosfir diperkirakan akan terjadi perubahan kondisi iklim pada

Untuk lebih meyakinkan kita akan keterandalan model DSSAT untuk diterapkan di Indonesia sesuai dengan kondisi wilayahnya sebaiknya dilakukan juga simulasi pada berbagai komoditas lainnya yang telah tersedia dalam model dengan berbagai macam perlakuan.
PENGUNAAN MODEL SIMULASI "DSSAT"
UNTUK MENDUGA POTENSI HASIL PADI SAWAH
DI EMPAT LOKASI

Oleh:
Popi Redjekiningrum
90235

Tesis sebagai salah satu syarat untuk memperoleh gelar
Magister Sains pada Program Pascasarjana
Institut Pertanian Bogor

PROGRAM PASCASARJANA
INSTITUT PERTANIAN BOGOR
1993
Judul : PENGGUNAAN MODEL SIMULASI "DSSAT" UNTUK MENDUGA POTENSI HASIL PADI SAWAH DI 4 LOKASI
Nama Mahasiswa : POPI REDJEKININGRUM
Nomor Pokok : 90235
Jurusan : AGROKLIMATOLOGI

Menyetujui :

1. Komisi Pembimbing

(Dr. Ir. Ahmad Bey)
Ketua

(Dr. Ir. Hidayat Pawitan)
Anggota

(Dr. Le Istiqal Amien)
Anggota

2. Ketua Program Studi

(Dr. Ir. M.Bl. de Rozari)

Tanggal Lulus : 22 Mei 1993
RIWAYAT HIDUP

UCAPAN TERIMA KASIH

Puji dan Syukur penulis panjatkan ke hadirat Allah SWT karena berkat rahmat dan hidayah-Nya penelitian dan penyusunan tesis ini dapat diselesaikan.

Tesis yang berjudul "Penggunaan Model Simulasi 'DSSAT' untuk Menduga Potensi Hasil Padi Sawah " disusun sebagai salah satu syarat untuk memperoleh gelar Magister Sains pada Program Pascasarjana Institut Pertanian Bogor.

Keberhasilah penulis dalam menempuh pendidikan di Program Pascasarjana IPB dan dalam penulisan tesis ini tidak terlepas dari bantuan serta dorongan berbagai pihak. Oleh sebab itu penulis sampaikan ucapan terima kasih kepada:

(1). Dr. Ir. Syarifuddin Karama, sebagai Kepala Pusat Penelitian Tanah dan Agroklimat.
(2). Prof. Dr. Ir. Edi Guhardja, sebagai Direktur Program Pascasarjana Institut Pertanian Bogor,
(3). Dr. Ir. Manuel Blantran de Rozari, sebagai Ketua Jurusan Agroklimatologi,
(4). Dr. Ir. Ahmad Bey, sebagai Ketua Komisi Pembimbing,
(5). Dr. Ir. Hidayat Pawitan, sebagai Pembimbing,
(6). Dr. Le Istiqlal Amien, sebagai Pembimbing dan Ketua Kelit Agroklimat Pusat Penelitian Tanah dan Agroklimat.
(7). Seluruh staf Kelit Agroklimat Pusat Penelitian Tanah dan Agroklimat Bogor,

Ucapan terima kasih khusus penulis sampaikan kepada suami (mas Adi) dan anak tercinta (Alifiana), atas doa dan pengorbanan yang diberikan kepada penulis selama ini. Juga kami haturkan terima kasih kepada Bapak Dr. M. Sudjadi yang telah memberi dorongan semangat kepada penulis untuk melanjutkan studi.

Semoga Allah SWT senantiasa melimpahkan rahmat dan hidayah-Nya kepada kita semua.

Bogor, Mei 1993

Penulis
<table>
<thead>
<tr>
<th>Bab</th>
<th>Daftar Bab</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Pendahuluan</td>
<td>1</td>
</tr>
<tr>
<td>A.</td>
<td>Latar Belakang</td>
<td>1</td>
</tr>
<tr>
<td>B.</td>
<td>Tujuan Penelitian</td>
<td>3</td>
</tr>
<tr>
<td>II.</td>
<td>Tinjauan Pustaka</td>
<td>4</td>
</tr>
<tr>
<td>A.</td>
<td>Morfologi, Pertumbuhan dan Produktivitas</td>
<td>4</td>
</tr>
<tr>
<td>1.</td>
<td>Tinggi Tanaman</td>
<td>6</td>
</tr>
<tr>
<td>2.</td>
<td>Daun dan Anakan</td>
<td>6</td>
</tr>
<tr>
<td>3.</td>
<td>Malai</td>
<td>8</td>
</tr>
<tr>
<td>B.</td>
<td>Hasil dan Komponen Hasil</td>
<td>9</td>
</tr>
<tr>
<td>1.</td>
<td>Hasil</td>
<td>9</td>
</tr>
<tr>
<td>2.</td>
<td>Komponen Hasil</td>
<td>9</td>
</tr>
<tr>
<td>C.</td>
<td>Lingkungan Iklim Tanaman Padi</td>
<td>10</td>
</tr>
<tr>
<td>1.</td>
<td>Curah Hujan</td>
<td>10</td>
</tr>
<tr>
<td>2.</td>
<td>Radiasi Matahari</td>
<td>12</td>
</tr>
<tr>
<td>3.</td>
<td>Lama Penyinaran</td>
<td>14</td>
</tr>
<tr>
<td>4.</td>
<td>Suhu Udara</td>
<td>14</td>
</tr>
<tr>
<td>5.</td>
<td>Kelembaban Udara</td>
<td>16</td>
</tr>
<tr>
<td>6.</td>
<td>Pemanfaatan Mintakat Agroklimat</td>
<td>17</td>
</tr>
<tr>
<td>D.</td>
<td>Tanah dan Potensi Lahan untuk Tanaman Padi</td>
<td>19</td>
</tr>
<tr>
<td>1.</td>
<td>Lahan Pertanaman Padi</td>
<td>20</td>
</tr>
<tr>
<td>2.</td>
<td>Potensi Lahan untuk Padi sawah</td>
<td>22</td>
</tr>
<tr>
<td>3.</td>
<td>Sifat Fisik dan Kimia Tanah</td>
<td>23</td>
</tr>
<tr>
<td>a.</td>
<td>Tekstur Tanah</td>
<td>23</td>
</tr>
<tr>
<td>b.</td>
<td>Reaksi Tanah (Kemasaman Tanah)</td>
<td>24</td>
</tr>
<tr>
<td>c.</td>
<td>Kapasitas Tukar Kation</td>
<td>25</td>
</tr>
<tr>
<td>d.</td>
<td>Potensial Redoks</td>
<td>26</td>
</tr>
<tr>
<td>E.</td>
<td>Analisis Sistem, Simulasi dan Model</td>
<td>26</td>
</tr>
<tr>
<td>F.</td>
<td>Model Simulasi dan Potensi Hasil Tanaman</td>
<td>31</td>
</tr>
<tr>
<td>G.</td>
<td>DSSAT (Decision Support System for Agrotechnology Transfer)</td>
<td>33</td>
</tr>
<tr>
<td>1.</td>
<td>DSSAT Shell</td>
<td>34</td>
</tr>
<tr>
<td>2.</td>
<td>Database Management System (DBMS)</td>
<td>34</td>
</tr>
<tr>
<td>3.</td>
<td>Agrotechnology Transfer Application</td>
<td>35</td>
</tr>
<tr>
<td>4.</td>
<td>Crop Model</td>
<td>35</td>
</tr>
</tbody>
</table>
III. METODE PENELITIAN ... 37
 A. Tempat dan Waktu ... 37
 B. Bahan dan Alat .. 37
 C. Metode Penelitian .. 38
 1. Model Simulasi dan Potensi Hasil 38
 2. Model Simulasi DSSAT 39
 a. Masukan Model ... 39
 b. Keluaran Model .. 51
 3. Simulasi Pemupukan .. 52
 4. Simulasi Varietas .. 52
 5. Simulasi Waktu Tanam 53
 6. Simulasi Perubahan Iklim 53
 a. Pendugaan Kondisi Iklim Pada Saat Konsentrasi
 CO₂ Atmosfer Mencapai 555 ppm 53
 b. Pendugaan Kondisi Iklim pada Tahun 2010,
 2030, dan 2050 .. 54
 c. Pendugaan Potensi Hasil Padi Akibat Perubahan
 Iklim pada Tahun 2010, 2030 dan 2050 55

IV. HASIL DAN PEMBAHASAN ... 56
 A. Ringkasan Percobaan Penanaman Padi di 4 lokasi 56
 1. Ngawi ... 56
 2. Sukamandi .. 57
 3. Cianjur ... 57
 4. Sitiung ... 58
 5. Relevansinya untuk Percobaan Simulasi 59
 B. Model DSSAT untuk Pendugaan Potensi Hasil Padi
 Masukan dan Keluaran Model 59
 C. Hasil Simulasi untuk Pendugaan Potensi Hasil Padi 60
 1. Kasus Ngawi ... 60
 2. Kasus Sukamandi ... 62
 3. Kasus Cianjur ... 64
 4. Kasus Sitiung ... 66
 D. Simulasi Pemupukan ... 69
 E. Simulasi Varietas ... 72
 F. Simulasi Waktu Tanam .. 75
 G. Simulasi Perubahan Iklim 80
 1. Pendugaan Kondisi Iklim pada Saat Konsentrasi CO₂
 Atmosfer Mencapai 555 ppm 80
 2. Pendugaan Keadaan Iklim pada Tahun 2010, 2030, dan
 2050 ... 83
 3. Pendugaan Potensi Hasil Padi Akibat Perubahan Iklim pada
 Tahun 2010, 2030 dan 2050 86
V. KESIMPULAN DAN SARAN
 Kesimpulan ... 89
 Saran ... 91

DAFTAR PUSTAKA 92

LAMPIRAN ... 97
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Nomor</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sifat-sifat morfologik yang dikaitkan dengan potensi hasil pada padi</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Suhu optimal dan suhu kritis pada tiap-tiap stadium tumbuh padi</td>
<td>15</td>
</tr>
<tr>
<td>3.</td>
<td>Pemanfaatan sifat dan kisaran optimum curah hujan, suhu udara dan intensitas radiasi surya dalam budidaya padi</td>
<td>19</td>
</tr>
<tr>
<td>4.</td>
<td>Jenis tanah utama yang digunakan untuk budidaya tanaman padi</td>
<td>21</td>
</tr>
<tr>
<td>5.</td>
<td>Sumber data dan file-file keluaran program retrieve</td>
<td>41</td>
</tr>
<tr>
<td>6.</td>
<td>Pendugaan albedo tanah dari data tekstur dan kandungan bahan organik</td>
<td>42</td>
</tr>
<tr>
<td>7.</td>
<td>Kelompok tanah untuk menduga kurva runoff (CN2)</td>
<td>43</td>
</tr>
<tr>
<td>8.</td>
<td>Kurva runoff (CN2) untuk beberapa kondisi hidrologi dan penutupan tanaman</td>
<td>44</td>
</tr>
<tr>
<td>9.</td>
<td>Potensi hasil padi dan keluaran lengkap model simulasi DSSAT</td>
<td>52</td>
</tr>
<tr>
<td>10.</td>
<td>Format data masukan model simulasi GISS, GFDL dan UKMO</td>
<td>54</td>
</tr>
<tr>
<td>11.</td>
<td>Hubungan antara hasil simulasi dan pengamatan gabah kering (kg/ha) di Ngawi</td>
<td>61</td>
</tr>
<tr>
<td>12.</td>
<td>Hubungan antara hasil simulasi dan pengamatan gabah kering (kg/ha) di Sukamandi</td>
<td>63</td>
</tr>
<tr>
<td>13.</td>
<td>Hubungan antara hasil simulasi dan pengamatan gabah kering (kg/ha) di Cianjur</td>
<td>64</td>
</tr>
<tr>
<td>14.</td>
<td>Hubungan antara hasil simulasi dan pengamatan gabah kering (kg/ha) di Sitiung</td>
<td>67</td>
</tr>
<tr>
<td>15.</td>
<td>Hasil simulasi pengaruh beberapa sumber, dosis dan cara pemberian pupuk N pada potensi hasil padi di Ngawi</td>
<td>69</td>
</tr>
<tr>
<td>16.</td>
<td>Hasil simulasi pengaruh beberapa sumber, dosis dan cara pemberian pupuk N pada potensi hasil padi di Sukamandi</td>
<td>70</td>
</tr>
<tr>
<td>17.</td>
<td>Hasil simulasi pengaruh beberapa sumber, dosis dan cara pemberian pupuk N pada potensi hasil padi di Cianjur</td>
<td>71</td>
</tr>
<tr>
<td>18.</td>
<td>Hasil simulasi pengaruh beberapa sumber, dosis dan cara pemberian pupuk N pada potensi hasil padi di Sitiung</td>
<td>72</td>
</tr>
<tr>
<td>19.</td>
<td>Hasil simulasi pengaruh beberapa macam varietas padi pada potensi hasil di Ngawi</td>
<td>73</td>
</tr>
<tr>
<td>20.</td>
<td>Hasil simulasi pengaruh beberapa macam varietas padi pada potensi hasil di Sukamandi</td>
<td>74</td>
</tr>
<tr>
<td>21.</td>
<td>Hasil simulasi pengaruh beberapa macam varietas padi pada potensi hasil Cianjur</td>
<td>74</td>
</tr>
<tr>
<td>22.</td>
<td>Hasil simulasi pengaruh beberapa macam varietas padi pada potensi hasil Sitiung</td>
<td>75</td>
</tr>
<tr>
<td>23.</td>
<td>Beberapa alternatif waktu tanam di daerah Ngawi menurut model tanaman DSSAT</td>
<td>76</td>
</tr>
</tbody>
</table>
24. Beberapa alternatif waktu tanam di daerah Sukamandi menurut model tanaman DSSAT ... 78
25. Beberapa alternatif waktu tanam di daerah Cianjur menurut model tanaman DSSAT ... 79
26. Beberapa alternatif waktu tanam di Sitiung menurut model tanaman DSSAT ... 81
27. Perbedaan kondisi rata-rata hasil simulasi model GISS, GFDL dan UKMO pada 555 ppm CO$_2$ dengan kondisi aktual 330 ppm CO$_2$... 82
28. Perbedaan kondisi rata-rata hasil simulasi model GISS pada tahun 2010, 2030 dan 2050 dengan kondisi aktual 330 ppm CO$_2$... 86

Lampiran

1. Spesifikasi, konstanta genetik dan lengas tanah pada model simulasi DSSAT dalam pendugaan potensi hasil padi (klaus: Ngawi) ... 98
2. Spesifikasi, konstanta genetik dan lengas tanah pada model simulasi DSSAT dalam pendugaan potensi hasil padi (klaus: Sukamandi, Jabar) ... 100
3. Spesifikasi, konstanta genetik dan lengas tanah pada model simulasi DSSAT dalam pendugaan potensi hasil padi (klaus: Cianjur, Jabar) ... 102
4. Spesifikasi, konstanta genetik dan lengas tanah pada model simulasi DSSAT dalam pendugaan potensi hasil padi pada percobaan varietas (klaus: Sitiung, Sumbar) ... 102
5. Potensi hasil padi dan keluaran lengkap model simulasi DSSAT kaus Ngawi (perlakuan 1) ... 103
6. Potensi hasil padi dan keluaran lengkap model simulasi DSSAT kaus Ngawi (perlakuan 12) ... 104
7. Potensi hasil padi dan keluaran lengkap model simulasi DSSAT kaus Sukamandi (perlakuan 1) ... 105
8. Potensi hasil padi dan keluaran lengkap model simulasi DSSAT kaus Sukamandi (perlakuan 13) ... 106
9. Potensi hasil padi dan keluaran lengkap model simulasi DSSAT kaus Cianjur (perlakuan 1) ... 107
10. Potensi hasil padi dan keluaran lengkap model simulasi DSSAT kaus Cianjur (perlakuan 13) ... 108
11. Potensi hasil padi dan keluaran lengkap model simulasi DSSAT kaus Sitiung (perlakuan 1) ... 109
12. Potensi hasil padi dan keluaran lengkap model simulasi DSSAT kaus Sitiung (perlakuan 8) ... 110
DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Nomor</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Skema arah dan alternatif sifat suatu metode analisis kuantitatif</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>dan model (Bey, 1989)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Diagram alir tahapan model simulasi disederhanakan dari Hillel (1977)</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>Struktur dan Diskripsi DSSAT (IBSNAT Project, 1986)</td>
<td>36</td>
</tr>
<tr>
<td>4</td>
<td>Hubungan antara simulasi dan observasi hasil gabah kering pada percobaan efisiensi pemupukan N di Ngawi</td>
<td>62</td>
</tr>
<tr>
<td>5</td>
<td>Hubungan antara simulasi dan observasi hasil gabah kering pada percobaan efisiensi pemupukan N di Sukamandi</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>Hubungan antara simulasi dan observasi hasil gabah kering pada percobaan efisiensi pemupukan N di Cianjur</td>
<td>66</td>
</tr>
<tr>
<td>7</td>
<td>Hubungan antara simulasi dan observasi hasil gabah kering pada percobaan varietas di Sitiung</td>
<td>68</td>
</tr>
</tbody>
</table>

Lampiran

<table>
<thead>
<tr>
<th>Nomor</th>
<th>Teks</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fluktuasi radiasi matahari di Ngawi (21-10-1980 s/d 01-03-1981)</td>
<td>112</td>
</tr>
<tr>
<td>2</td>
<td>Fluktuasi curah hujan di Ngawi (21-10-1980 s/d 01-03-1981)</td>
<td>112</td>
</tr>
<tr>
<td>3</td>
<td>Fluktuasi suhu minimum di Ngawi (21-10-1980 s/d 01-03-1981)</td>
<td>113</td>
</tr>
<tr>
<td>4</td>
<td>Fluktuasi suhu maksimum di Ngawi (21-10-1980 s/d 01-03-1981)</td>
<td>113</td>
</tr>
<tr>
<td>5</td>
<td>Fluktuasi radiasi matahari di Sukamandi (01-10-1981 s/d 28-02-1982)</td>
<td>114</td>
</tr>
<tr>
<td>6</td>
<td>Fluktuasi curah hujan di Sukamandi (01-10-1981 s/d 28-02-1982)</td>
<td>114</td>
</tr>
<tr>
<td>7</td>
<td>Fluktuasi suhu minimum di Sukamandi (01-10-1981 s/d 28-02-1982)</td>
<td>115</td>
</tr>
<tr>
<td>8</td>
<td>Fluktuasi suhu maksimum di Sukamandi (01-10-1981 s/d 28-02-1982)</td>
<td>115</td>
</tr>
<tr>
<td>10</td>
<td>Fluktuasi curah hujan di Cianjur (18-12-1981 s/d 31-05-1982)</td>
<td>116</td>
</tr>
<tr>
<td>11</td>
<td>Fluktuasi suhu minimum di Cianjur (18-12-1981 s/d 31-05-1982)</td>
<td>117</td>
</tr>
<tr>
<td>12</td>
<td>Fluktuasi suhu maksimum di Cianjur (18-12-1981 s/d 31-05-1982)</td>
<td>117</td>
</tr>
<tr>
<td>13</td>
<td>Fluktuasi radiasi matahari di Sitiung (01-11-1991 s/d 31-03-1992)</td>
<td>118</td>
</tr>
<tr>
<td>14</td>
<td>Fluktuasi curah hujan di Sitiung (01-11-1991 s/d 31-03-1992)</td>
<td>118</td>
</tr>
<tr>
<td>15</td>
<td>Fluktuasi suhu minimum di Sitiung (01-11-1991 s/d 31-03-1992)</td>
<td>119</td>
</tr>
<tr>
<td>16</td>
<td>Fluktuasi suhu maksimum di Sitiung (01-11-1991 s/d 31-03-1992)</td>
<td>119</td>
</tr>
</tbody>
</table>
I. PENDAHULUAN

A. Latar Belakang

Dalam upaya meningkatkan produksi padi guna menunjang pelestarian swasembada beras maka diperlukan pengembangan teknologi budidaya tanaman padi dan upaya pengambilan keputusan yang tepat dalam pertanaman padi. Dalam usaha meningkatkan ketepatan pengambilan keputusan dalam mengelola pertanaman padi dibutuhkan suatu rumusan model yang dapat menduga produksi dari data yang tersedia. Untuk memenuhi maksud tersebut kita perlu memperhatikan pengaruh sifat genetis, kultur teknis, dan keadaan lingkungan fisik tanaman terhadap pertumbuhan dan perkembangan tanaman padi, karena keberhasilan budidaya tanaman ditentukan
oleh pertumbuhannya. Jika pertumbuhan tanaman baik, hasil panen akan baik dan petani akan memetik keuntungan dari usahanya. Sebaliknya bila pertumbuhan tanaman jelek petani akan menderita kerugian.

Dalam budidaya padi, pertumbuhan atau fenotipe merupakan gabungan beberapa indikator tumbuh seperti tinggi tanaman, anakan, warna dan luas daun, serta berat bahan hijauan. Walaupun masing-masing indikator tumbuh sangat tergantung pada sifat genetik tanaman, namun sifat genetik tanaman masih dapat berubah akibat pengaruh lingkungan sehingga akan terbentuk fenotipe tertentu.

Tanah/lahan dan cuaca/iklim merupakan faktor lingkungan fisik tanaman padi. Tanah/lahan merupakan lingkungan fisik yang relatif masih dapat diperbaiki apabila ternyata kurang sesuai dengan pertumbuhan dan perkembangan tanaman padi. Akan tetapi iklim merupakan salah satu faktor lingkungan fisik pertanaman yang belum dapat dikendalikan dan sangat berpengaruh terhadap pertumbuhan dan produksi tanaman. Perubahan iklim dalam jangka waktu yang panjang dapat mengakibatkan perubahan produksi.

Berdasarkan data iklim, tanah dan tanaman pada kegiatan masa lampau dan sekarang, dapat diformulasikan suatu model pendugaan untuk menghitung produksi padi untuk masa yang akan datang. Pendugaan ini terutama sekali dimungkinkan karena adanya selang waktu antara kesadaran akan suatu kejadian dengan timbulnya kejadian tersebut. Dalam hal ini adalah antara pengaruh yang diakibatkan oleh unsur iklim, tanah dan tanaman terhadap tanaman padi dengan besarnya produksi yang diakibatkan pengaruh tersebut.
Dengan memperoleh model pendugaan berdasarkan unsur iklim, tanah, dan tanaman kita dapat mengetahui besarnya keragaman hasil yang dijelaskan oleh besarnya keragaman ketiga unsur tersebut terhadap produksi padi. Karena selang waktu pengamatan cukup panjang dan produksi sangat dipengaruhi oleh faktor-faktor iklim, tanah dan tanaman, pengambilan keputusan menjadi penting dalam mengelola pertanaman padi. Pada situasi ini model dibutuhkan untuk menentukan kapan produksi tersebut akan meningkat sehingga tindakan-tindakan bijaksana dapat dilakukan. Oleh karena itu model pendugaan merupakan bantuan penting dalam perencanaan yang efektif dan efisien.

B. Tujuan Penelitian

Tujuan dari penelitian ini adalah:

(1). Menguji model DSSAT (Decision Support System for Agrotechnology Transfer) yang dikeluarkan oleh IBSNAT (International Benchmark Sites Network for Agrotechnology Transfer) yang aplikasinya digunakan untuk bidang pertanian, dengan membandingkan hasil simulasi dan pengamatan di lapang.

(2). Mencoba mensimulasi pertanaman padi dengan beberapa cara pengelolaan tanah (pemupukan) dan pengelolaan tanaman (varietas dan waktu tanam).

(3). Melihat hasil simulasi dengan masukan skenario cuaca yang berubah akibat pemanasan bumi.
II. TINJAUAN PUSTAKA

A. Morfologi, Pertumbuhan dan Produktivitas

Evans (1978) menyatakan bahwa pemia yang berhasil mungkin memiliki ideotype tertentu dalam programnya ketika melakukan seleksi, tetapi ukuran yang digunakannya sangat beragam dari seorang pemulia ke pemulia lainnya dan dari satu lingkungan tertentu ke lingkungan lainnya. Selanjutnya dikatakan bahwa tiap sifat morfologik dan fisiologik dapat mempengaruhi hasil melalui berbagai cara yang saling berkaitan pada berbagai kondisi lingkungan dan teknik budidaya yang berbeda.

Menurut Moore (1979) bentuk luar tanaman merupakan hasil akhir proses morfogenesis, yakni suatu proses pemisahan dan perkembangan sel-sel menjadi bentuk jaringan atau organ tanaman. Proses morfogenesis tersebut terjadi dalam tingkat seluler dan merupakan proses yang menentukan asal-muasal sifat-sifat morfologik dan bentuk keseluruhan tanaman atau organ. Oleh karena morfologi menyangkut berbagai organ dan bentuk, maka evaluasi terhadap sifat-sifat morfologik dilakukan secara visual, kuantitatif atau makroskopik. Lebih jauh dikatakan bahwa pengenalan terhadap organ atau bagian tanaman tidak dapat dipisahkan dari proses

Tabel 1. Sifat-sifat morfologik yang dikaitkan dengan potensi hasil pada padi

<table>
<thead>
<tr>
<th>Bagian tanaman</th>
<th>Bentuk yang diinginkan</th>
<th>Pengaruhnya terhadap fotosintesis dan hasil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daun</td>
<td>Tebal</td>
<td>- Dikaitkan dengan sifat daun yang tumbuh tegak.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Laju fotosintesis tiap satuan luas daun tinggi.</td>
</tr>
<tr>
<td></td>
<td>Pendek dan kecil</td>
<td>- Lebih tegak. Distribusi daun merata pada tajuk.</td>
</tr>
<tr>
<td></td>
<td>Tegak</td>
<td>- Permukaan yang kena sinar matahari lebih luas sehingga distribusi penyinaran pada daun lebih merata.</td>
</tr>
<tr>
<td>Batang Anakan</td>
<td>Pendek dan kaku</td>
<td>- Mencegah kerebahan.</td>
</tr>
<tr>
<td></td>
<td>Kompak dan tegak</td>
<td>- Penetrasi sinar matahari lebih merata.</td>
</tr>
<tr>
<td></td>
<td>Anakan banyak</td>
<td>- Cocok untuk berbagai jarak tanam.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Mampu mengikompensasi rumpun-rumpun yang mati.</td>
</tr>
<tr>
<td>Malai</td>
<td>Sterilitas rendah</td>
<td>- Indeks luas daun yang besar dapat dicapai dengan singkat.</td>
</tr>
<tr>
<td></td>
<td>(gabah isi tinggi)</td>
<td>- Memenuhi syarat untuk pemupukan dosis tinggi.</td>
</tr>
<tr>
<td></td>
<td>Nisbah gabah/jerami</td>
<td>- Hasil gabah tinggi.</td>
</tr>
</tbody>
</table>

Sumber: Yoshida (1981)
1. Tinggi Tanaman

2. Daun dan Anakan

Menurut Tsunoda (1964) pemupukan akan meningkatkan ILD dan akan memperbaiki sistem asimilasinya, tetapi berbagai varietas menunjukkan sifat-sifat yang spesifik. Tsunoda menyimpulkan bahwa daun-daun yang tipis dan terkulai (droopy) akan lebih cocok menerima radiasi yang tinggi bila hanya sedikit daun yang dapat dihasilkan pada tiap satuan luas sebagaimana halnya pada pemupukan ringan. Sebaliknya bila varietas bersangkutan dapat menghasilkan banyak daun, seperti pada pemupukan berat, maka daun yang lurus dan tegaklah yang lebih cocok.

3. Malai

Selanjutnya Murata dan Matsushima (1978) menyatakan bahwa aktivitas fotosintesis malai padi sangat rendah dan bahkan negatif, hal ini berbeda dengan gandum. Posisi malai yang letaknya di atas tajuk kurang produktif dibandingkan bila malai tersebut letaknya di bawah permukaan tajuk.
B. Hasil dan Komponen Hasil

1. Hasil

Menurut Tsunoda (1964), Engledow dan Wadhan (1963) menganalisis hasil padi-padian menjadi komponen-komponennya yaitu: (i) jumlah tanaman tiap satuan luas, (ii) jumlah malai tiap tanaman, (iii) jumlah gabah pada tiap malai, dan (iv) berat tiap butir gabah.

Hasil gabah padi biasanya ditetapkan pada kadar air 14%. Untuk mengetahui hubungan antara hasil gabah dengan hasil biomas total, digunakan indeks hasil (IH), yang dihitung dengan rumus:

\[
IH = \frac{\text{hasil gabah kering}}{\text{berat bahan kering total}}
\]

Hasil gabah kering = IH x berat bahan kering total

Persamaan ini memberikan petunjuk bahwa hasil dapat ditingkatkan dengan jalan meningkatkan IH atau meningkatkan produksi bahan kering.

Namun demikian menurut Yoshida (1981) peningkatan hasil bahan kering tidak selalu disertai oleh naiknya hasil gabah kering. Indeks hasil rata-rata untuk varietas unggul adalah 0.5 sedangkan hasil bahan kering adalah 10-20 ton/ha.

2. Komponen Hasil

Dengan memecah hasil menjadi komponen-komponennya, maka hasil gabah tiap hektar dapat dinyatakan sebagai berikut:

Hasil (ton/ha) = jumlah malai/m² x jumlah gabah/malai x % gabah isi x bobot 1000 butir (g) x 10^{-5}
jumlah gabah/m2 x % gabah isi x bobot 1000 butir (g) x 105

Bobot 1000 butir tampaknya relatif lebih tetap, karena tergantung pada ukuran lemma dan palea yang besarnya telah mencapai maksimal 5 hari sebelum berbunga. Sementara itu, jumlah malai/m2 ditentukan selama periode sampai 10 hari setelah anakan maksimal, sedangkan jumlah gabah/malai ditetapkan selama periode tumbuh 32 hari sampai 5 hari sebelum berbunga.

C. Lingkungan Iklim Tanaman Padi

Seperti halnya tanaman lainnya, hampir semua unsur iklim berpengaruh terhadap pertumbuhan dan produksi tanaman padi, antara lain: suhu udara, curah hujan, radiasi matahari, angin dan kelembaban udara.

1. Curah Hujan

Air merupakan komponen utama dalam pertumbuhan tanaman, karena air berfungsi dan berperan dalam berbagai proses fisiologis tanaman (Pierre et al., 1966). Kekurangan air pada tanaman padi menyebabkan berkurangnya ILD (Indeks Luas Daun) dan menggulungnya daun serta tertutupnya stomata. Sehingga secara fisiologis
dapat menurunkan laju fotosintesis dan terganggunya mobilitas unsur hara dan hasil berbagai sintesis. Akibatnya produksi bahan kering, jumlah anakan, dan hasil gabah akan berkurang (IRRI, 1974; Vergara, 1976).

Kramer (1969) menyatakan bahwa, air bagi tanaman berfungsi sebagai: (i) komponen utama sel-sel; (ii) pelarut bahan-bahan anorganik dan organik di dalam tanah dan tubuh tanaman yang selanjutnya diangkut ke bagian-bagian tubuh tanaman yang memerlukan; (iii) pereaksi dalam proses fotosintesis dan hidrolitik; (iv) pemantap turgor sel-sel atau jaringan untuk kelangsungan pembelahan dan pembe- saran sel atau pertumbuhan jaringan; dan (v) pemantap suhu tanah dan tanaman melalui evapotranspirasi. Intensitas hujan dan kemampuan tanah menahan air menimbulkan perbedaan ekosistem tergenang yang cocok untuk padi sawah dan ekosistem lembab untuk padi gogo. Produktivitas lahan dan produksi padi dari sistem sawah lebih tinggi dibandingkan dengan sistem gogo. Diantara sistem sawah, lahan sawah berpengairan lebih produktif dari lahan sawah tadah hujan. Keragaman produktivitas dan produksi padi itu terjadi karena, baik secara langsung maupun tidak, air mempengaruhi metabolisme karbon dan protein.

Lebih jauh Satari (1983) mengemukakan bahwa padi memiliki jaringan aerenkhym yang berfungsi sebagai penyalur udara dari daun ke akar. Oleh karena itu, padi cocok untuk sistem sawah yang justru dalam keadaan sawah kesuburan tanah meningkat. Sebab itu berkurangnya curah hujan dapat mengurangi ketersediaan air dan menurunkan produksi padi. Dengan demikian, curah hujan menyediakan air bagi tanaman padi dan air adalah penghubung antara lingkungan perakaran padi yaitu
tanah dengan lingkungan daun dan batang yaitu lingkungan atas tanah-cuaca atau iklim. Nisbah antara bagian atas padi dan akar padi (top/root ratio) adalah suatu abstraksi dari kualitas lingkungan cuaca-iklim dan lingkungan tanah.

Dari beberapa penelitian di IRRI (1975 dan 1978) diketahui bahwa dengan curah hujan 200-300 mm/bulan sudah cukup untuk menanam padi. Namun lebih jauh Kung (1971) memperkirakan kebutuhan air padi dengan memperhitungkan laju evapotranspirasi tanaman (ET crop) dan air perkolasi harian, adalah sekitar 85-185 mm/bulan untuk padi sawah, sedangkan untuk tanaman yang diusahakan secara kering (padi gogo) sekitar 75-125 mm/bulan. Dalam perencanaan pertanian di suatu daerah berdasarkan data curah hujan rata-rata jangka panjang (long term average), Oldeman (1975) memperkirakan bahwa suatu daerah memungkinkan untuk ditanami padi bila rata-rata curah hujannya lebih dari 100 mm/bulan.

2. Radiasi Matahari

Yoshida (1981) menunjukkan hubungan antara orientasi daun dengan koefisien daya tangkap sinar surya dari daun dalam persamaan berikut:

\[
\frac{I}{I_o} = -K \times (ILD)
\]

dimana,
- \(I_o\) : intensitas sinar surya yang jatuh di permukaan kanopi daun
- \(I\) : intensitas sinar surya yang masuk sela-sela tanaman
- ILD : indeks luas daun (total luas daun per unit luas pertanaman)
- \(K\) : koefisien daya tangkap sinar surya daripada daun

Persamaan ini menunjukkan bahwa agar \(I/I_o\) besar atau sinar surya yang masuk sela-sela tanaman tinggi, maka \(K\) harus kecil atau ILD harus besar.

Hayashi dan Ito (1962) menghitung nilai \(K\) untuk padi berdaun tegak dan padi berdaun rebah berturut-turut adalah 0,3 dan 0,8. Hal ini dijelaskan pula oleh De Datta (1981) bahwa sudut daun yang lebih kecil dengan bidang normal (daun tegak) lebih ideal dibandingkan dengan sudut daun yang besar (daun rebah) dalam kaitannya dengan efisiensi pemanfaatan radiasi surya yang diterima permukaan daun. Selanjutnya dikatakan bahwa daun tegak adalah salah satu ciri utama dari varietas padi unggul. Jadi penanaman varietas padi unggul mempertinggi panen sinar surya agar memberi hasil panen gabah tinggi pula.

Daya tangkap sinar surya dari varietas padi unggul yang tinggi menyebabkan laju fotosintesis tinggi pula. Akibatnya, varietas padi unggul memerlukan hara lebih banyak untuk mengimbangi laju fotosintesis itu. Pemupukan diperlukan untuk memenuhi kebutuhan hara padi bila hara tersedia tanah tidak mencukupi.
Laju serapan hara oleh akar padi cenderung meningkat dengan meningkatnya intensitas sinar surya (Darwis, 1982).

3. Lama Penyiraman

Di Indonesia, embut panjang hari kurang dari 50 menit, sebab itu gatra panjang hari dan lama penyinaran (fotoperiodisitas) tidak begitu menjadi kendala usaha peningkatan produksi padi.

4. Suhu Udara

Pertumbuhan padi sangat dipengaruhi oleh suhu udara, baik fluktuasi maupun sebaran hariannya. Nishihima (1976) mengemukakan bahwa kisaran suhu maksimum dan minimum yang baik untuk padi adalah 30-33° C dan 15-18° C. Sedangkan Chang
dan Oka (1976) menyatakan bahwa varietas Indika mempunyai kisaran suhu optimum untuk proses fotosintesis sebesar 25-33° C dan untuk varietas Japonica 18-33° C.

Tabel 2. Suhu optimal dan kritis pada tiap-tiap stadium tumbuh padi

<table>
<thead>
<tr>
<th>Stadia tumbuh</th>
<th>Optimum</th>
<th>Kritis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>rendah</td>
</tr>
<tr>
<td>Perkecambahan</td>
<td>20-35</td>
<td>10</td>
</tr>
<tr>
<td>Perkecambahan kecambah</td>
<td>25-30</td>
<td>12-13</td>
</tr>
<tr>
<td>Perakaran</td>
<td>24-28</td>
<td>16</td>
</tr>
<tr>
<td>Perkembangan daun</td>
<td>31</td>
<td>7-12</td>
</tr>
<tr>
<td>Perakaran</td>
<td>25-31</td>
<td>9-16</td>
</tr>
<tr>
<td>Inisiasi malai</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>Diferensiasi malai</td>
<td>-</td>
<td>15-20</td>
</tr>
<tr>
<td>Anthesis - pembungaan</td>
<td>30-33</td>
<td>22</td>
</tr>
<tr>
<td>Pematangan</td>
<td>20-25</td>
<td>12-18</td>
</tr>
</tbody>
</table>

Sumber: Yoshida (1981)

hasilkan digunakan tanaman padi untuk tumbuh. Tetapi pertumbuhan yang berlebihan menurunkan jumlah gabah.

Suhu udara ternyata juga mempengaruhi umur padi seperti halnya yang dikemukakan oleh Tanaka (1976) bahwa menurut teori "heat unit", umur tanaman (tingkat kematangan gabah) ditentukan oleh total panas yang diterima tanaman padi sehingga umur padi cenderung akan makin pendek dengan makin tingginya suhu udara.

5. Kelembaban Udara

Kisaran kelembaban nisbi optimum untuk tanaman padi adalah 50% - 90% (Tanaka, 1976). Di Indonesia yang beriklim tropik basah, embut kelembaban nisbi tidak merupakan kendala usaha meningkatkan produksi padi. Tetapi di dataran tinggi, kelembaban lebih dari 95% dapat menyebabkan agregasi tepung sari dan hal ini akan mengganggu penyerbukan. Menurut Kato (1976) kelembaban tinggi secara tak langsung menurunkan produksi padi, karena penyakit *Helminthosporium* dan *Pyricularia oryzae*.
6. Pemanfaatan Mintakat Agroklimat

Pada ekosistem sawah, air diperlukan untuk evapotranspirasi dan perkolasi. Diduga bahwa laju evapotranspirasi berkisar antara 3-7 mm/hari dan perkolasi 1,2 mm/hari. Dengan peluang curah hujan 75% jumlah air yang diperlukan itu dapat dipenuhi dengan curah hujan sebesar 183-366 mm/bulan. Pada klasifikasi Oldeman digunakan batas terendah curah hujan untuk padi sawah >200 mm/bulan; bulan dengan curah hujan > 200 mm disebut bulan basah.

Pada ekosistem gogo, laju perkolasi lebih besar dari ekosistem sawah. Tetapi pada ekosistem gogo, perkolasi terhenti setelah tercapai kapasitas lapang. Air yang tersimpan di pori-pori tanah masih bisa dimanfaatkan akar tanaman. Sebab itu perkolasi diabaikan sehingga evapotranspirasi pada padi gogo diduga sebesar 90-200 mm/bulan yang dapat dipenuhi dengan curah hujan sebesar 146-293 mm/bulan.

Ekosistem gogorancah menggabungkan ekosistem gogo selama 1,5-2 bulan, dan selanjutnya memperlakukan padi sebagaimana halnya ekosistem sawah.
Persyaratan kebutuhan curah hujan, sesuai dengan ekosistem gogo (1,5-2 bulan) dan ekosistem sawah selama sisa periode tumbuh padi.

<table>
<thead>
<tr>
<th>Unsur cuaca</th>
<th>Keragaman¹</th>
<th>Kebutuhan optimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dasar pertimbangan</td>
<td>Waktu</td>
<td>Tempat</td>
</tr>
<tr>
<td>Curah hujan</td>
<td>Besar</td>
<td>Besar</td>
</tr>
<tr>
<td>1. Pemilihan sistem budidaya</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Waktu tanam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Intensitas tanam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suhu udara</td>
<td>Moderat</td>
<td>Besar</td>
</tr>
<tr>
<td>1. Pemilihan varietas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Waktu dan pola tanam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensitas sinar surya</td>
<td>Moderat</td>
<td>Moderat</td>
</tr>
<tr>
<td>1. Waktu dan pola tanam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Pendugaan hari</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Keragaman besar berarti ekstrim dan dapat merupakan kendala produksi dan pengembangan.
Keragaman moderat berarti berembut relatif kecil tapi berpengaruh terhadap produksi dan pengembangan.

D. Tanah dan Potensi Lahan untuk Tanaman Padi

Tanah merupakan tubuh alam berbentuk tiga demensi yang dihasilkan oleh faktor-faktor pembentuknya seperti iklim, bahan induk, vegetasi, relief, dan waktu. Tanah juga merupakan media untuk pertumbuhan tanaman yang dibudidayakan manusia untuk menghasilkan makanan.

Lapisan atas atau lapisan olah tanah yang dapat berbeda-beda atau berubah sifat kimia dan fisiknya, merupakan bagian utama bagi tanaman. Para ahli mencurahkan segala upaya untuk mempertahankan, melestarikan, atau memperbaikinya guna
menciptakan kondisi pertumbuhan yang optimal bagi pertumbuhan tanaman agar dicapai produktivitas tanah setinggi mungkin.

Aneka ragamnya iklim, batuan dan bahan induk serta bentuk wilayah/lereng menyebabkan terbentuknya aneka ragam jenis tanah di Indonesia. Masing-masing jenis tanah dicirikan oleh status kesuburannya. Namun kondisi pertumbuhan tanaman pada umumnya ditentukan pula oleh bentukan-bentukan alamiah, baik dalam bentuk padat (kongkresi), dalam bentuk senyawa kimia (garam) atau oleh kondisi topografi lahan yang merupakan penghambat, baik bersifat sementara maupun permanen.

1. Lahan Pertanaman Padi

Dalam peninjauan potensi lahan pertanian perlu dibedakan persyaratan tumbuh antara tiga macam budidaya tanaman padi, yakni (i) padi sawah, (ii) padi pasang surut dan lebak, serta (iii) padi gogo (ladoang).

Untuk budidaya padi sawah, pengairan dapat mengatasi persyaratan tumbuh serta kendala-kendalanya. Sedangkan untuk padi lebak atau pasang surut, perlu dikuasai agroteknologinya dalam kondisi media tumbuh tetap berair sepanjang tahun.
Sebaliknya, untuk budidaya padi gogo masih seluruhnya tergantung dari air hujan.

Tabel 4. Jenis tanah utama yang digunakan untuk budidaya tanaman padi

<table>
<thead>
<tr>
<th>Jenis tanah utama</th>
<th>Sawah pengairan/</th>
<th>Sawah pasang</th>
<th>Gogo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tadah hujan</td>
<td>surut</td>
<td></td>
</tr>
<tr>
<td>Organosol dangkal</td>
<td>---</td>
<td>oo</td>
<td>---</td>
</tr>
<tr>
<td>Aluvial dan Gleisol</td>
<td>oo</td>
<td>oo</td>
<td>0</td>
</tr>
<tr>
<td>Regosol</td>
<td>0</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td>Grumosol</td>
<td>0</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td>Mediteran</td>
<td>0</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td>Latosol</td>
<td>oo</td>
<td>---</td>
<td>00</td>
</tr>
<tr>
<td>Podsolik Merah Kuning</td>
<td>0</td>
<td>---</td>
<td>00</td>
</tr>
<tr>
<td>Andosol</td>
<td>---</td>
<td>---</td>
<td>0</td>
</tr>
</tbody>
</table>

oo = areal utama tanaman padi
o = areal yang tidak luas

Masing-masing jenis tanah memiliki potensi sendiri untuk budidaya padi, baik yang tadah hujan maupun yang disawahkan dengan pengairan. Masing-masing macam budidaya padi dapat meliputi lebih dari dua jenis tanah utama; bahkan padi gogo dapat meliputi hampir semua jenis tanah utama yang dijumpai (Tabel 4).
2. Potensi Lahan untuk Padi Sawah

Tanaman padi sawah sangat peka terhadap kekurangan air. Curah hujan yang cukup untuk tanaman lain, untuk tanaman padi masih diperlukan tambahan pengairan. Padi merupakan tanaman yang paling luas diairi. Lahan yang berpotensi untuk dijadikan lahan sawah ialah lahan yang mampu menampung air, sehingga mampu menyediakan air dalam bentuk genangan. Untuk itu diperlukan topografi yang datar, lapisan tanah yang dalam, cukup kedap air, dan lapisan atas yang dapat dilumpurkan, sehingga kehilangan air dapat dikurangi.

Potensi tanah sawah sangat ditentukan oleh kesuburan atau kemampuannya dalam menyediakan hара. Sifat ini sangat ditentukan oleh sifat fisik, kimia, dan fisikokimia. Di antara sifat fisik yang terpenting adalah (i) tekstur lapisan atas, (ii) kedalaman lapisan atas yang sebaiknya lebih dari 15 cm, dan (iii) permeabilitas. Sifat fisikokimia yang terpenting adalah kemasaman tanah (pH), potensial redoks (Eh), kapasitas tukar kation (KTK), serta tenaga kinetik dan keseimbangan kimia (Ponnamperuma, 1977).

Dalam menentukan potensi lahan untuk dijadikan sawah Pusat Penelitian Tanah (1982) menentukan sifat-sifat sebagai berikut:
- Kedalaman efektif tanah antara 25-75 cm.
- Tekstur lapisan atas lebih halus dari lempung halus.
- Kandungan batu-batu di permukaan kurang dari 50%.
- pH tanah antara 3,0-8,0.
- Kedalaman lapisan yang mengandung pirit 1,5% lebih dalam dari 25 cm.
- Lereng kurang dari 5%.
- Ketinggian tempat kurang dari 1000 m dpl.
- Kedalaman genangan kurang dari 75 cm.
- Kelas drainase tanah agak terhambat sampai terhambat.
- Banjir kurang dari 4 bulan setahun.
- Salinitas air kurang dari 4000 m mhos/cm.
- Untuk tanah gambut, kedalaman gambut kurang 150 cm dan tingkat dekomposisi gambut adalah saprik sampai hemik.

Banyak lahan datar di Indonesia yang berpotensi untuk dijadikan sawah. Namun sebelum dijadikan sawah, diperlukan tindakan untuk menghilangkan atau mengurangi faktor pembatasnya, antara lain dengan reklamasi atau drainase.

3. Sifat Fisik dan Kimia Tanah

a. Tekstur Tanah

Akibat dari perbedaan kepekaan dari bermacam-macam mineral yang dikandung batuan induk terhadap pelapukan kimiawi dan fisik, maka terbentuk berbagai ukuran butir-butir mineral kerikil, pasir, debu, dan liat. Tekstur tanah ditetapkan secara grafik dengan segitiga tekstur. Moormaun dan Van Breemen (1978) membedakan empat kategori tekstur tanah, yaitu:

* Berpasir : apabila pasir atau pasir berlempung adalah fraksi utama tekstur

* Berlempung : apabila fraksi utama tekstur adalah pasir halus, pasir sangat halus, atau pasir sangat halus berlempung; tanah disebut berlempung kasar bila mengandung 18% liat, dan berlempung halus bila mengandung 18-35% liat.

* Berdebu : apabila kandungan liat 35%, pasir kasar, pasir halus atau campuran keduanya <18%; tanah berdebu kasar mengandung
<18% liat; berdebu halus mengandung 18-35% liat.

* Berliat : tanah liat mengandung > 35% liat; tanah berliat halus mengandung 35-60% dan tanah berliat sangat halus mengandung >60% liat.

Tekstur yang cocok untuk pertanaman padi belum dapat ditentukan secara pasti. Pertanaman padi tidak dijumpai di lahan berkerikil lebih dari 35% volume. Pada tanah berpasir, berlempung kasar, dan berdebu kasar sampai kedalaman 50 cm, jarang dijumpai pertanaman padi kecuali bila lapisan bawah bertekstur halus sehingga dapat menahan kehilangan air melalui perkolasi.

b. Reaksi Tanah (Kemasaman Tanah)

Tingkat kemasaman, keanekaragaman, dan kebasaan tanah dinyatakan dalam pH, yaitu logaritma negatif dari konsentrasi ion H⁺ (pH = - log [H⁺]). Tingkat kemasaman erat kaitannya dengan tingkat pelapukan, macam mineral liat dan KTK (Brady, 1974).

Tanah masam umumnya dijumpai di daerah tropik yang beriklim basah. Air hujan mencuci silika bebas dan unsur pembentuk basa melalui perkolasi atau aliran air permukaan, dan meninggalkan mineral liat sejenis kaolinit (Si/Al 1:1) serta hidroksida aluminium dan besi. Kandungan bahan organik yang tinggi seperti di tanah gambut dalam keadaan basah juga menyebabkan tanah masam karena menumpuknya ion H dari dekomposisi bahan organik itu. Di daerah tropik yang beriklim sedang, unsur pembentuk basa tidak seluruhnya tercuci baik dari kompleks adsorpsi maupun dari larutan tanah, sehingga terjadi keseimbangan konsentrasi ion
H dan OH; ini membuat tanah bereaksi netral. Makin kering iklim, makin tertumpuk unsur pembentuk basa dikompleks adsorpsi. Bila garam kuat dari pembentuk basa (Na₂CO₃, K₂CO₃, CaCO₃, dan asam lemah (H₂CO₃) berada dalam larutan, akan terjadi hidrolisis dan reaksi seperti berikut:

\[2 \text{Na}^+ + \text{CO}_3^{2-} + 2 \text{H}_2\text{O} \rightarrow 2 \text{Na}^+ + 2 \text{OH}^- + \text{H}_2\text{CO}_3 \]

Disosiasi NAOH lebih kuat dari disosiasi H₂CO₃ menyebabkan reaksi menurun ke kanan. Maka ion OH⁻ makin menumpuk yang membuat tanah bereaksi basa.

c. Kapasitas Tukar Kation

Aktivitas permukaan butir liat, disamping menentukan daya pegang air dari tanah juga menentukan kemampuan tanah menegang kation. Kemampuan maksimal tanah menegang kation dinyatakan dalam kapasitas tukar kation (KTK). Umumnya permukaan butir liat diduduki oleh kation Ca, Mg, K, dan Na yang dikenal sebagai unsur pembentuk basa. Besaranya kandungan unsur pembentuk basa secara relatif dinyatakan dalam kejenuhan basa (% dari KTK). Kapasitas tukar kation akan sangat menentukan efisieni penggunaan pupuk.
d. Potensial Redoks

Dua sampai tiga minggu setelah penggenangan tanah, potensial redoks akan turun dari 400-600 mV menjadi sekitar 100 mV. Besarnya nilai potensial redoks sangat ditentukan oleh aerasi tanah atau tingkat reduksi tanah. Potensial redoks akan mempengaruhi (i) status N, (ii) ketersediaan P dan S, dan (iii) konsentrasi Fe, Mn, SO₃, dan unsur Ca, Mg, Zn, Mo.

E. Analisis Sistem, Simulasi dan Model

Analisis sistem (seperti agroekosistem dan tanaman) adalah suatu studi tentang sistem dan/atau organisasi dengan menggunakan azas-azas ilmiah yang dapat menghasilkan suatu konsepsi dan/atau model. Konsepsi dan model tersebut dapat digunakan sebagai dasar kebijakan, perubahan struktur, taktik dan strategi pengelolaan sistem tersebut.

Patten (dalam Mustari, 1985) mengemukakan bahwa analisis sistem adalah serangkaian teknik untuk:

(1) mengidentifikasi sifat-sifat makro dari suatu sistem, yang merupakan perwujudan interaksi antar komponen ekosistem atau antar subsistem.

(2) menjelaskan interaksi atau proses-proses yang berperan pada suatu sistem secara keseluruhan akibat adanya masukan.

(3) menduga atau meramal apa yang mungkin terjadi pada sistem jika beberapa faktor atau komponen dalam sistem tersebut berubah.

Dari uraian tersebut di atas dapat disimpulkan bahwa sebenarnya analisis sistem adalah metode ilmiah yang merupakan dasar dalam pemecahan masalah dalam pengelolaan sistem tersebut.
Simulasi sebagai salah satu kegiatan dalam analisis agroekosistem dan tanaman secara garis besar meliputi tiga kegiatan utama (Soerianegara, dalam Las, 1992), yaitu:

1. merumuskan model yang menggambarkan sistem dan proses yang terjadi di dalamnya.
2. memodifikasi/memanipulasi model atau melakukan eksperimentasi.
3. mempergunakan model dan data untuk memecahkan persoalan.

Dalam analisis agroekosistem dan simulasi yang banyak berperan adalah model. Model dapat berupa konsepsi mental, hubungan empirik atau kumpulan pernyataan-pernyataan matematik/statistik atau dapat juga dinyatakan sebagai representasi sederhana dari suatu sistem yang kompleks (Bey, 1989).

Model-model dalam bidang klimatologi umumnya dapat dikelompokkan menjadi model-model deterministik, parametrik, stokastik, atau kombinasinya (Haan, 1977). Dengan dasar itu, dapat dipandang bahwa model sebagai kombinasi dari komponen-komponen yang masing-masing mewakili sebuah titik dalam suatu spektrum yang kontinyu, mulai dari deterministik murni pada satu sisi hingga stokastik murni pada sisi lain (Gambar 1).

Gambar 1. Skema arah dan alternatif sifat suatu metode analisis kuantitatif dan model (Bey, 1989).

Lebih lanjut dikatakan bahwa metode analisis kuantitatif iklim dibedakan atas metode kausal dan time series. Metode Kausal mengasumsikan bahwa faktor yang akan diramal mempunyai hubungan sebab akibat yang konstan dengan satu atau lebih peubah bebas. Pada tahap awal metode analisis ini menentukan bentuk hubungan tersebut. Sedangkan dalam metode Time Series (runut waktu), sistem yang diramal dianggap sebagai suatu kotak hitam (black box) yang mengabaikan faktor-faktor yang mempengaruhi sistem tersebut. Jadi peramalan hanya didasarkan pada nilai-nilai (numerik) kejadian yang telah lalu.

Penggunaan model sangat bermanfaat untuk mengkaji suatu sistem yang rumit, seperti suatu ekosistem spesifik atau agroekosistem dan neraca air suatu wilayah. Menurut Soerianegara (dalam Las, 1992) keuntungan penggunaan model dalam penelitian dengan pendekatan analisis sistem adalah:
(1) memungkinkan kita melakukan penelitian yang bersifat lintas sektoral dengan ruang lingkup lebih luas.

(2) mampu menentukan tujuan kegiatan pengelolaan dan perbaikan terhadap sistem yang dihadapi.

(3) dapat dipakai untuk melakukan eksperimentasi atau skenario tanpa mengganggu/memberikan perlakuan tertentu terhadap sistem.

(4) dapat dipakai untuk menduga/meramal kelakuan dan keadaan sistem pada masa yang akan datang dan/atau menyusun suatu skenario yang mungkin terjadi pada sistem tersebut.

(5) dari segi waktu dan biaya lebih efisien.

Bey (1989) berpendapat bahwa bagaimanapun baiknya model yang dirancang ia tetap mempunyai keterbatasan dan merupakan distorsi dari sistem yang sebenarnya. Oleh karena itu, model harus digunakan secara teliti dan seksama dengan data yang sesahih dan selengkap mungkin.

Menurut Hillel (1977) penyusunan suatu model dilakukan melalui tahapan-tahapan utama yang terdiri dari:

(1) Spesifikasi dan identifikasi sistem dan masalah
(2) Penyusunan/penentuan model konsepsi untuk sistem
(3) Penyusunan dan pemeriksaan program (komputer)
(4) Pemeriksaan parameter dan pengumpulan data
(5) Pelaksanaan eksperimentasi dan pengujian model
(6) Penyusunan kesimpulan dan rekomendasi

Pada Gambar 2. disajikan alur kegiatan dan tahapan dari pemodelan suatu sistem.
Gambar 2. Diagram alir tahapan model simulasi
Disederhanakan dari Hillel (1977).
F. Model Simulasi dan Potensi Hasil Tanaman

Menurut Tanaka (1983) potensi produksi suatu tanaman merupakan produksi bahan kering pada periode tertentu, dimana akar tumbuh pada kondisi lingkungan optimal, memperoleh masukan air dan hara yang cukup. Laju pertumbuhan tanaman hanya tergantung pada energi surya yang diperoleh tanaman. Oleh sebab itu untuk menduga potensi hasil suatu tanaman pada umumnya adalah dengan mengkonversi total PAR yang diterima tanaman menjadi bahan kering sesuai dengan kemampuan genetik tanaman, pengelolaan dan masukan. Dengan teknik simulasi dan modeling, berbagai peubah tersebut dapat diintegrasikan secara langsung dalam menentukan potensi tanaman.

Bakema dan Jansen (1985) menyatakan bahwa model simulasi tanaman disusun oleh satu gugus persamaan yang menghitung fotosintesis potensial tanaman sebagai fungsi dari data cuaca harian dan perkembangan tanaman, serta luas daun.
Charles dan Edward (dalam Las, 1992) menuliskan persamaan laju produksi biomass per satuan waktu sebagai berikut:

\[\frac{dw}{dt} = eR_t - R_s \]

\(R_t \) adalah jumlah energi radiasi yang diintersepsi tanaman selama i hari dengan efisiensi tanaman menggunakan energi (\(e \)). \(R_s \) adalah kehilangan (perombakan) biomass akibat respirasi. Efisiensi \(e \), merupakan fungsi dari pengelolaan, pemupukan, lengas tanah dan konstanta genetik tanaman.

Penning de Vries et al. (1989) mengisyratkan bahwa model simulasi untuk menduga hasil tanaman setidaknya harus bertitik tolak dari peubah genetik dan cuaca. Peubah genetik yang digunakan antara lain fenologi, laju pertumbuhan potensial, dan tipe daun, sedangkan peubah cuaca adalah radiasi surya dan suhu udara. Diasumsikan bahwa air dan atmosfir (\(CO_2 \)) tidak menjadi kendala atau dapat dimanipulasi.

Lebih lanjut Penning de Vriest et al. (1989) menyatakan bahwa sesuai dengan tujuannya, asumsi yang digunakan, jumlah dan jenis peubah yang dibatkan, men-stratifikasikan sistem simulasi pendugaan potensi tanaman atas empat aras, yaitu:

1. **Aras I**: potensi hasil suatu tanaman (dengan peubah genetik tertentu pada suatu kondisi iklim, dengan asumsi bahwa air, faktor tanah dan hara pada kondisi optimal. Laju pertumbuhan tanaman hanya dipengaruhi oleh radiasi surya dan suhu udara.

2. **Aras II**: potensi hasil suatu tanaman pada kondisi lengas tanah dan iklim tertentu, dimana faktor tanah dan hara dianggap dalam keadaan optimal. Laju pertumbuhan tanaman merupakan fungsi dari radiasi surya suhu udara, dan status lengas tanah.

3. **Aras III**: potensi hasil suatu tanaman pada kondisi iklim, lengas tanah dengan aras nitrogen tertentu. Laju pertumbuhan tanaman merupakan fungsi dari radiasi surya, suhu udara, lengas tanah, dan aras nitrogen dalam tanah.

G. DSSAT (Decision Support System for Agrotechnology Transfer)

DSSAT adalah program perangkat lunak mikrokumputer yang memadukan database tanah, tanaman dan iklim dengan model tanaman dan program-program aplikasi untuk mensimulasi hasil selama beberapa tahun untuk keperluan strategi pengelolaan tanaman. Di dalamnya terdapat model tanaman untuk padi, jagung, gandum, kedelai dan tanaman pangan utama lainnya dan model aplikasi untuk menduga iklim dan untuk mengevaluasi strategi. DSSAT juga dapat digunakan untuk validasi
model tanaman, hal ini memungkinkan pemakai membandingkan hasil simulasi dengan hasil pengamatan. Validasi model tanaman dilakukan dengan jalan memasukkan set data minimum, menjalankan model dan membandingkan keluarannya. Dengan kemampuannya dalam mensimulasi hasil, DSSAT memberikan informasi-informasi kepada kita sehingga bisa mengetahui apa yang diharapkan dimasa yang akan datang. Oleh karena itu program ini mempercepat kita dalam mengevaluasi tanaman-tanaman baru, produksi dan praktek adopsi.

DSSAT terdiri dari 4 komponen yaitu:

- DSSAT shell
- Data Base Management System (DBMS)
- Agrotechnologi Transfer Application
- Crop Model

1. DSSAT shell

DSSAT shell dibuat untuk pemakai dengan sistem komputer mikro pada harddisk yang merupakan menu program DSSAT. Dengan DSSAT shell ini ketiga komponen dalam DSSAT lainnya muncul dalam menu, sehingga pemakai mudah memilih dan menjalankan program DSSAT DBMS, Agrotechnologi Transfer Application dan Crop Model.

2. Database Management System (DBMS)

DBMS mengelola penyimpanan, organisasi dan pengeluaran data dalam DSSAT. Data yang dikumpulkan oleh pemakai dimasukkan melalui program dalam
DBMS. Kemudian disertakan juga program yang akan meringkas dan menganalisis input data. Setelah memasukkan data, pemakai dapat memanggil atau mengeluarkan informasi untuk dipakai dalam menerapkan alih teknologi dan model tanaman.

3. Agrotechnology Transfer Application

4. Crop Model

Crop model adalah program yang mensimulasi proses pertumbuhan dan perkembangan tanaman pangan dengan menggunakan data yang dimasukkan dalam DBMS. Crop model mampu menduga pertumbuhan dan perkembangan harian berat kering, luas daun, perkembangan fenologi, hasil dan lain-lain tergantung dari model tanaman tersebut. Tanaman pangan yang digunakan dalam model ini adalah padi, jagung, kedelai, gandum, sorgum, ketang, kacang tanah, buncis, dan lain-lain. Struktur dan deskripsi DSSAT disajikan dalam Gambar 3 berikut ini.
III. METODE PENELITIAN

A. Tempat dan Waktu

B. Bahan dan Alat

Bahan yang digunakan dalam penelitian ini adalah data sekunder yang terdiri dari:

(1). Data iklim harian, yang meliputi radiasi matahari, suhu minimum, suhu maksimum, dan curah hujan; data-data tersebut diperoleh dari Stasiun Klimatologi Gunung Medan (Sitiung), Stasiun Klimatologi Ngale (Ngawi), Stasiun Klimatologi Pusakanegara (Sukamandi), dan Stasiun Klimatologi Pacet (Cianjur) selama masa pertanaman dan selama runut waktu 20 tahun untuk simulasi perubahan iklim.
(2). Data-data tanah, yang meliputi informasi tanah ditempat percobaan meliputi klasifikasi dimana untuk percobaan Sitiung adalah very fine clayey, mixed, isohyperthermic, Typic Hapludults (USDA), di Cianjur adalah fine clayey isohyperthermic, Typic Paleaquults, di Sukamandi adalah fine clay, mixed, isohyperthermic, Vertic Tropaquults, dan di Ngawi adalah very fine smectitic, isohyperthermic Eutric Pelludert; serta informasi mengenai diskripsi profil pada kedalaman tanam; analisis kimia dan fisika tanah.

(3). Data tanaman, meliputi data waktu tanam, varietas tanaman, jarak tanam, populasi tanaman dan fase pertumbuhan tanaman serta data hasil tanaman,

(4). Data penunjang lainnya, misal letak geografis lokasi penelitian, data yang berhubungan dengan lokasi percobaan (perlakuan-perlakuan, pengelolaan irigasi).

Alat-alat yang digunakan dalam penelitian ini adalah alat yang dibutuhkan dalam analisis data, antara lain: (i) komputer mikro PC.AT, (ii) paket program 'spread sheet' (iii) paket program Dbase-3 (iv) paket program statgraf, dan (v) paket program model simulasi DSSAT.

C. Metode Penelitian

1. Model Simulasi dan Potensi Hasil

Penelitian ini merupakan studi kasus pendekatan wilayah menggunakan metode analisis sitem atau model simulasi. Simulasi dilakukan terhadap potensi hasil tanaman. Pemodelan atau simulasi dilakukan berdasarkan data sekunder. Beberapa peubah yang datanya tidak tersedia atau kurang lengkap diduga dengan pendekatan
empirik dan matematik melalui transformasi data yang ada atau dibangkitkan berdasarkan indikator fisik.

Untuk menduga potensi hasil (produktivitas) tanaman padi dilakukan dengan model simulasi. Model yang digunakan adalah model pertumbuhan tanaman melalui pendekatan ekofisiologi dan potensi genetik tanaman.

Model Simulasi yang digunakan dalam penelitian ini adalah 'rice model' dari model-model tanaman (crop models) DSSAT yang dikeluarkan oleh IBSNAT. Model ini merupakan suatu sistem perangkat lunak yang memadukan model-model simulasi perubahan iklim dan model-model pertumbuhan tanaman dengan berbagai program penerapannya.

2. Model Simulasi DSSAT

a. Masukan Model

Model Simulasi DSSAT terdiri dari 4 komponen utama, tetapi yang digunakan dalam penelitian ini adalah 2 komponen penting DSSAT yaitu DBMS dan 'crop models'.

DBMS mengelola penyimpanan dan pengeluaran data dalam DSSAT. DBMS terdiri dari 17 form (form a s/d s) yang harus diisi dimana dalam program ini form yang bertanda asterisk berarti harus dilengkapi karena merupakan masukan utama model yaitu:

- FORM A : informasi institusional
- FORM B : informasi stasiun iklim
- FORM C : data-data iklim '
- FORM E : data percobaan
- FORM F : faktor dan level percobaan
- FORM H : plot percobaan
- FORM I : kesusutan tanah
- FORM J : kandungan air tanah
- FORM M : pertanaman
- FORM N : pemupukan
- FORM O : bioksida dan hormon
- FORM P : pengelolaan irigasi
- FORM Q : kerusakan tanaman
- FORM R : tahap pertumbuhan dan komponen hasil
- FORM S : konsentrasi unsur hara

Data-data dalam DBMS tersebut belum bisa langsung digunakan sebagai masukan data dalam model tanaman karena struktur data DBMS berbeda dengan struktur data model tanaman dimana model tanaman menghendaki masukan data dalam bentuk file ASCII. Untuk itu data harus dikonversi dengan program "retrive" yang merupakan salah satu program DBMS. Setelah di "retrive" kita dapatkan 10 file masukan model tanaman yang pada dasarnya dikelompokkan menjadi tiga data yaitu: data iklim, tanah dan tanaman.

1). FILE 1, berisi data iklim harian

2). FILE 2, berisi ciri-ciri profil tanah

4). FILE 5, berisi kondisi-kondisi awal profil tanah.

5). FILE 6, berisi data pengelolaan irigasi.

6). FILE 7, berisi data manajemen pupuk

7). FILE 8, berisi data manajemen perlakuan

8). FILE 9, berisi data koefisien genetik

9). FILE A, berisi contoh data pengukuran tanaman

10). FILE B, berisi data observasi untuk grafik.

Secara umum program retrieve disajikan pada Tabel 5 berikut.

<table>
<thead>
<tr>
<th>Sumber data</th>
<th>File-file keluaran</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORM C-1</td>
<td>FILE 1</td>
</tr>
<tr>
<td>FORM H</td>
<td>FILE 4</td>
</tr>
<tr>
<td>FORM I-1, J-1</td>
<td>FILE 5</td>
</tr>
<tr>
<td>FORM P</td>
<td>FILE 6</td>
</tr>
<tr>
<td>FORM N</td>
<td>FILE 7</td>
</tr>
<tr>
<td>FORM F-1,F-2,M,R-1,FILE 2 & 9</td>
<td>FILE 8</td>
</tr>
<tr>
<td>FORM R-1, R-2, S</td>
<td>FILE A</td>
</tr>
<tr>
<td>FORM R-1, R-2, S</td>
<td>FILE B</td>
</tr>
</tbody>
</table>

(1). FILE1: Data Iklim Harian

Data-data iklim yang diperlukan adalah:

a. Tahun Pengamatan

b. Julian date (urutan hari dalam setahun dari nomor 1 untuk tanggal 1 Januari hingga nomor 365 dan 366 (tahun kabisat) untuk tanggal 31 Desember)

c. Radiasi Matahari (MJ/m²)
d. Suhu Maksimum (° C)
e. Suhu Minimum (° C)
f. Curah Hujan (mm)

Data iklim didapatkan dari pengamatan harian dari stasiun iklim terdekat.

2). FILE2: Ciri-ciri Profil Tanah

a). Albedo Tanah (Soil Albedo = SALB)

Diukur dengan albedometer atau diprediksi dari kandungan bahan bahan organik dan tekstur. Di bawah ini disajikan tabel pendugaan albedo tanah dari data tekstur dan kandungan bahan organik (Jones dan Kiniry, 1986).

Tabel 6. Pendugaan albedo tanah dari data tekstur dan kandungan bahan organik

<table>
<thead>
<tr>
<th>Kandungan BO</th>
<th>Tekstur</th>
<th>Albedo</th>
</tr>
</thead>
<tbody>
<tr>
<td>BO > 10</td>
<td>semua</td>
<td>0.08</td>
</tr>
<tr>
<td>5 < BO < 10</td>
<td>semua</td>
<td>0.11</td>
</tr>
<tr>
<td>2 < BO < 5</td>
<td>semua</td>
<td>0.13</td>
</tr>
<tr>
<td>BO < 2</td>
<td>liat berpasir, lempung liat berdebu, liat berdebu, pasir</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>lempung berpasir, lempung, lempung berliat, lempung liat berpasir, pasir kasar berlempeun, pasir kasar, pasir</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>liat berdebu, debu</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>lempung berpasir halus</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>pasir berlempeun, lempung berpasir kasar</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>lempung berpasir sangat halus</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>pasir halus berlempeun, pasir sangat halus berlempeun</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>pasir halus, pasir sangat halus</td>
<td>0.19</td>
</tr>
</tbody>
</table>

b). Koefisien Drainase (SWCON)

Koefisien Drainase menduga drainase profil. Diukur dari porositas (PO).

Sedang porositas diukur dari bobot jenis (BD).
PO(L) = 1 - BD(L)/2.65

SWCON = (PO(L) - DUL(L))/PO(L)

c). Koefisien Evaporasi Tanah (U)

Diduga dari klas tekstur tanah lapisan atas.

d). Kurva runoff

Kurva runoff untuk menduga runoff. Pada Tabel 7 disajikan kelompok tanah untuk menduga runoff.

<table>
<thead>
<tr>
<th>Kelompok Tanah</th>
<th>Deskripsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Potensi runoff paling rendah. Meliputi pasir dalam dengan sangat sedikit kandungan debu dan liat, juga sedimen loess dalam dengan sangat cepat</td>
</tr>
<tr>
<td>B</td>
<td>Potensi runoff agak rendah. Terutama tanah berpasir yang lebih dangkal dibanding A, dan loess yang lebih dangkal atau kurang teragregat dibanding A, kelompok ini secara keseluruhan mempunyai infiltrasi diatas rata-rata setelah diairi.</td>
</tr>
<tr>
<td>C</td>
<td>Potensi runoff sangat tinggi. Mencakup tanah dangkal dan tanah yg. mengandung liat dan koloid cukup, meskipun kurang dibanding kelompok D. Kelompok ini mempunyai infiltrasi dibawah rata-rata setelah penjenuhan.</td>
</tr>
<tr>
<td>D</td>
<td>Potensi runoff paling tinggi. Mencakup terutama tanah liat dengan % swelling tinggi, tetapi pada kelompok ini termasuk juga tanah dangkal dengan sub-horizon impermiabel dekat permukaan</td>
</tr>
</tbody>
</table>

Sedang kurva CN2 untuk beberapa kondisi hidrologi disajikan pada Tabel 8.
Tabel 8. Kurva runoff (CN2) untuk beberapa kondisi hidrologi dan penutupan tanaman (USDA, Soil Conservation Service, 1972)

<table>
<thead>
<tr>
<th>Landuse/penutupan</th>
<th>Perlakuan/praktek</th>
<th>Kondisi hidrologi</th>
<th>Kel. Tanah</th>
</tr>
</thead>
<tbody>
<tr>
<td>alur tan</td>
<td>alur lurus</td>
<td>jelek</td>
<td>74 81 88 91</td>
</tr>
<tr>
<td></td>
<td>alur lurus</td>
<td>baik</td>
<td>67 78 85 89</td>
</tr>
<tr>
<td></td>
<td>berkontur</td>
<td>jelek</td>
<td>70 79 84 88</td>
</tr>
<tr>
<td></td>
<td>berkontur</td>
<td>baik</td>
<td>65 75 82 86</td>
</tr>
<tr>
<td></td>
<td>berteras</td>
<td>jelek</td>
<td>66 74 80 82</td>
</tr>
<tr>
<td></td>
<td>berteras</td>
<td>baik</td>
<td>62 71 78 81</td>
</tr>
</tbody>
</table>

e). Ketebalan Lapisan Tanah (DLAYR)

Ada 3 hal yang perlu diperhatikan:

1). Total kedalaman pedon harus 2.0 m kecuali kalau lapisan batuan atau lapisan kedap air lainnya berada pada lapisan tanah yang lebih dangkal.

2). Pada lapisan 0-30 cm, tidak boleh ada lapisan tanah yang tebalnya melebihi 15 cm.

3). Pada lapisan lebih dari 30 cm, tidak boleh ada lapisan yang tebalnya melebihi 30 cm.

Kendala-kendala tersebut perlu diperhatikan agar simulasi infiltrasi dan ekstraksi air lebih akurat.

f). Kandungan air tanah

Kandungan air tanah dibagi 3:

a. SAT (saturated water content) : kandungan air tanah volumetrik saat jenuh

b. DUL (drained upper limit) : kandungan air tanah pada kapasitas lapang.

c. LL (lower limit) : kandungan air tanah pada titik layu permanen.

Ketiga kandungan air tanah ini diukur dari air yang diekstraksi tanaman. LL di-
tentukan oleh tiap lapisan tanah pada kedalaman kurang dari 2.0 meter atau lapisan impermiabel (batuan). DUL dan LL dapat diestimasi dengan menggunakan algoritma. Algoritma memerlukan data kandungan pasir, debu, liat, bahan organik, dan kandungan C organik pada tiap-tiap lapisan (I). Algoritma ini tidak tepat bila digunakan untuk tanah-tanah organik dan tanah yang telah mengalami pelapukan lanjut (highly weathered soils). Algoritma selengkapnya disajikan berikut ini:

Langkah pertama menghitung porositas dari BD pada -33 kPa dengan persamaan:

\[PO(I) = 1.0 - BD(I)/2.65 \]

dimana: 2.65 adalah kerapatan partikel mineral. Kemudian faktor koreksi (XZ) untuk kerapatan bahan organik yang lebih rendah dihitung dari persamaan:

\[XZ = \text{OC}(I) \times 0.0172 \]

dimana : OC adalah konsentrasi bahan organik (%)

Maksimum BD dihitung dengan persamaan:

\[\text{BDM}(I) = (1-XZ)/(1./\text{BD}(I) - XZ/0.224) \]

Nilai BDM kurang dari 2.5.

Pengaruh tekstur tanah pada LL(I) dan DUL(I) diduga dari variabel W1 dan W2.

Jika kandungan pasir lebih dari 75%:

\[W1 = 0.19 - 0.0017 \times \text{SAN}(I) \]
\[W2 = 0.429 - 0.00388 \times \text{SAN}(I) \]

Jika kandungan debu lebih dari 70%:

\[W1 = 0.16 \]
\[W2 = 0.1079 + 0.000504 \times \text{SIL}(I) \]
Untuk tanah yang lain:

\[W_1 = 0.0542 + 0.00409 \times CLA(I) \]
\[W_2 = 0.1079 + 0.000504 \times SIL(I) \]

L(I) dan DUL(I) dihitung dari persamaan:

\[L(I) = W_1 \times (1-XZ) \times (1.0+BDM(I)-BD(I) + 0.23 \times XZ) \]
\[DUL(I) = L(I) + W_2 \times (1-XZ)-(BDM(I)-BD(I)) \times 0.2 + 0.55 \times XZ \]

SAT(I) diduga dengan menggunakan persamaan:

\[SAT(I) = K(PO(I) - DUL(I)) + DUL(I) \]

dimana K = 0.5 untuk tanah berpasir dan tanah berlempung kasar dan 0.4 untuk tanah yang lain.

3). FILE4: Parameter-parameter kesetimbangan Nitrogen Tanah

File ini terdiri dari parameter-parameter perlakuan Nitrogen yang spesifik.

Diperlukan satu set data id untuk masing-masing perlakuan dari percobaan.

a). INSTS : Institute ID
b). Sites : Site ID
c). YR : Tahun
d). EXPTNO : Jumlah Percobaan
e). TRTNO : Jumlah Perlakuan
f). STRAW : Berat residu organik tanaman sebelumnya atau penambahan pupuk hijau (kg/ha)
g). SDEP : Kedalaman residu dari permukaan (cm)
h). SCN : C:N rasio residu tanaman sebelumnya, kg C/kg N (default = 75.0)

i). ROOT : berat kering residu akar tanaman sebelumnya, kg/ha (default = 500).

4). FILE5: Kondisi Awal Profil Tanah

Parameter-parameter air tanah dan Nitrogen tanah ditentukan file di bawah ini:

a). DNLAYR(I) : tebal lapisan tanah (cm)
b). SW(I) : kandungan air tanah awal (cm³ cm⁻³)
c). NH4(I) : amonium tanah di lapisan i (mg elemen N/kg tanah)
d). NO3(I) : nitrat tanah di lapisan i (mg elemen N/kg tanah)
e). PH(I) : pH tanah di lapisan i pada tanah:air 1:1, default = 7 terdapat dalam subroutine SOILNI.

5). FILE6: Data Manajemen Irrigasi

ITEMP : waktu irigasi (Julian date)
AMT : jumlah tambahan irigasi pada tanggal ITEMP (mm).
6). FILE7: Data Manajemen Pemupukan

Garis Pertama

TRTNO : Jumlah Perlakuan
INSTE : Insitute ID
SITE : Site ID
YR : Tahun Percobaan
EXPTNO : jumlah experiment

Garis Kedua

FDAY(J) : Julian date
AFERT(J) : Jumlah pupuk yang ditambahkan pada FDAY (kg)
DFERT(J) : kedalaman pemupukan (cm)
IFTYPE(J) : tipe pupuk
IMC(J) : metode untuk menempatkan dan menyebaran pupuk:

1. Disebar di tanah jenuh - tidak dibenam
2. Disebar di tanah jenuh - sangat sedikit dibenamkan
3. Disebar di tanah jenuh - sedikit dibenamkan
4. Disebar di tanah jenuh - agak dibenamkan
5. Disebar di tanah jenuh - agak baik dibenamkan
6. Disebar di tanah jenuh - dibenamkan dengan baik
7. Disebar di tanah jenuh - dibenamkan sepenuhnya
8. Dibenamkan sedalam 2 cm di bawah permukaan air
9. Dibenamkan-USG
10. Upland

7). FILE8: Data Manajemen Perlakuan

File8 terdiri dari data manajemen tanaman untuk masing-masing perlakuan pada semua ulangan. Dalam satu percobaan masing-masing perlakuan memerlukan dua baris data.

Pada baris pertama, mengidentifikasi kode perlakuan, deskripsi perlakuan, jenis tanah dan varietas perlakuan.

Pada garis kedua, mengidentifikasi hari dimulainya simulasi, tanggal tanam, jarak tanam, dan data manajemen perlakuan lainnya.

Format Baris Pertama

TRTNO : jumlah perlakuan
TITLET : judul perlakuan
ISOILT : tipe tanah
KVARTY : varietas yang digunakan dalam perlakuan
ISWCON : switch simulasi CO₂
 0 = tidak disimulasi
 1 = disimulasi
CO₂ : konsentrasi karbon dioksida
PCO₂ : tekanan parsial karbon dioksida
Format Baris Kedua

ISIM : tanggal Julian dimulainya simulasi

ISOW : tanggal pertanaman atau tanggal persiapan pembibitan

PLANTS : populasi tanaman (tanaman/m²)

ROWSPC : jarak tanam (m)

SDEPTH : kedalaman tanam (cm).

IIIRR : switch irigasi:
1. upland, sebar langsung, tanpa irigasi
2. upland, sebar langsung, irigasi sesuai jadwal
3. upland, sebar langsung, irigasi teknis
4. sebar langsung, diasumsikan tidak ada stres air, neraca air dan nitrogen tidak digunakan.
5. disemaikan, diasumsikan tidak ada stres air, neraca air dan nitrogen tidak digunakan
6. dilumpurkan, melalui pembibitan, irigasi dari air hujan
7. dilumpurkan, melalui pembibitan, irigasi teknis
8. dilumpurkan, melalui pembibitan, irigasi sesuai jadwal
9. dilumpurkan, sebar langsung, irigasi teknis
10. dilumpurkan, sebar langsung, hujan
11. dilumpurkan, sebar langsung, irigasi sesuai jadwal lapang
12. neraca air dan model N tidak digunakan

ISWNIT : switch untuk menunjukkan routine nitrogen digunakan
0:tidak digunakan, diasumsikan nitrogen cukup
1:subroutine nitrogen digunakan

EFFIRR : bagian dari efisiensi sistem irigasi

DSOIL : kedalaman penggenangan (m)

PHINT : interval phyllochron (day degree). Untuk padi default = 83.00

IPHN : pada model legume, switch untuk menunjukkan bahwa model fenologi digunakan
0: fenologi digunakan
1: fenologi tidak digunakan, tahap-tahap fenologi dimasukkan

NYR : jumlah tahun untuk menjalankan simulasi.

File-file hasil program retrieve tersebut merupakan data masukan untuk model tanaman DSSAT. Berdasarkan data yang ada pada rumusan model maka dengan model tanaman ini dapat diperoleh keluaran dengan prosedur sebagai berikut:

1. Data iklim, data tanah dan data tanaman dimasukkan dalam database management system (DBMS).
2. Setelah memasukkan data dalam DBMS, kemudian memanggil atau mengeluarkan informasi untuk dipakai dalam aplikasi program simulasi model tanaman.
3. Mengolah data dengan program simulasi model tanaman DSSAT.
4. Validasi model dilakukan dengan membandingkan hasil simulasi dengan hasil pengamatan.

b. Keluaran model

Data-data masukan yang telah diolah dalam model tanaman DSSAT menghasilkan keluaran potensi hasil, biomass, ILD, N yang diserap, prosentase N, dan air tanah yang dapat diserap pada 7 fase pertumbuhan tanaman. Dan validasi model dilakukan dengan membandingkan hasil simulasi dengan hasil pengamatan. Contoh keluaran model disajikan pada Tabel 9 berikut.
Tabel 9. Potensi hasil padi dan keluaran lengkap model simulasi DSSAT.

a. Produksi biomas, indeks luas daun, N-uptake, % N, air yang diambil oleh tanaman

<table>
<thead>
<tr>
<th>Tgl</th>
<th>Fase Pertumbuhan</th>
<th>Biomas gr/m²</th>
<th>ILD</th>
<th>NUPT N%</th>
<th>ADT³</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 Oct</td>
<td>Perkecambahan</td>
<td>1</td>
<td>0.02</td>
<td>0.4</td>
<td>3.60</td>
</tr>
<tr>
<td>16 Nov</td>
<td>Akhir anak</td>
<td>3.</td>
<td>0.05</td>
<td>1.0</td>
<td>3.83</td>
</tr>
<tr>
<td>4 Des</td>
<td>Inisiasi malai</td>
<td>49.</td>
<td>0.29</td>
<td>14.5</td>
<td>2.93</td>
</tr>
<tr>
<td>5 Jan</td>
<td>Pembungaan</td>
<td>662.</td>
<td>4.09</td>
<td>94.7</td>
<td>1.51</td>
</tr>
<tr>
<td>13 Jan</td>
<td>Awal pengisian biji</td>
<td>803.</td>
<td>4.47</td>
<td>109.9</td>
<td>1.14</td>
</tr>
<tr>
<td>27 Jan</td>
<td>Akhir pengisian biji</td>
<td>1032.</td>
<td>3.52</td>
<td>32.7</td>
<td>.45</td>
</tr>
<tr>
<td>1 Feb</td>
<td>Matang Fisiologi</td>
<td>1070.</td>
<td>0.73</td>
<td>31.6</td>
<td>.41</td>
</tr>
</tbody>
</table>

b. Hasil dan komponen hasil:

<table>
<thead>
<tr>
<th></th>
<th>Simulasi</th>
<th>Pengamatan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembungaan</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Matang panen</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>Hasil biji (kg/ha)</td>
<td>6925</td>
<td>6800</td>
</tr>
<tr>
<td>Bobot biji (g/biji)</td>
<td>0.0230</td>
<td>0.0239</td>
</tr>
<tr>
<td>Jumlah biji/m²</td>
<td>22676</td>
<td>20650</td>
</tr>
<tr>
<td>ILD maksimum</td>
<td>4.48</td>
<td>4.32</td>
</tr>
<tr>
<td>Produksi biomas (kg/ha)</td>
<td>10704</td>
<td>9256</td>
</tr>
<tr>
<td>Brangkasan (kg/ha)</td>
<td>4285</td>
<td>3842</td>
</tr>
<tr>
<td>Produksi (kg/ha)</td>
<td>6925</td>
<td>6800</td>
</tr>
</tbody>
</table>

³ ILD = indeks luas daun; NUPT = N yang diserap; %N = % N; ADT = air tanah yang diserap tanaman

3. Simulasi Pemupukan

Untuk mendapatkan hasil simulasi dengan berbagai alternatif pemupukan dilakukan dengan cara menjalankan model tanaman DSSAT kemudian mengubah manajemen pemupukan dengan menjalankan "modify program" yang telah tersedia
dalam program DSSAT dengan beberapa alternatif (bentuk pupuk, dosis pupuk dan cara pemberian pupuk) sedang perlakuan lainnya diasumsikan tidak berubah. Keluaran yang diperoleh adalah prakiraan potensi hasil pada beberapa alternatif pemupukan.

4. Simulasi Varietas

Untuk mendapatkan hasil simulasi dengan berbagai alternatif varietas dilakukan dengan cara menjalankan model tanaman DSSAT kemudian mengubah varietas dengan program modify program yang telah tersedia dalam program DSSAT dengan beberapa alternatif, perlakuan lainnya diasumsikan tidak berubah. Keluaran yang diperoleh adalah prakiraan potensi hasil pada beberapa varietas.

5. Simulasi Waktu Tanam

Pada perlakuan yang sama dilakukan alternatif beberapa waktu tanam, dengan menjalankan program modify dalam model tanaman DSSAT. Perlakuan waktu tanam yang digunakan adalah per dekade (10 harian). Keluaran yang diperoleh adalah prakiraan potensi hasil pada beberapa alternatif waktu tanam.

6. Simulasi Perubahan Iklim

a. Pendugaan kondisi iklim pada saat konsentrasi CO₂ atmosfer mencapai 555 ppm

Model-model perubahan iklim yang digunakan adalah model GISS (Goddard Institute for Space Studies), model GFDL (Geophysical Fluid Dynamics Laboratory), dan model UKMO (United Kingdom Meteorological Office). Ketiga model tersebut
menggunakan skenario yang memadukan nisbah peubah iklim (suhu, curah hujan, dan radiasi matahari) dengan kondisi dimana kandungan CO₂ menjadi dua kali lipat dari kondisi awal sebelum revolusi industri dimana peubah iklim teramati (dari 280 ppm menjadi 555 ppm).

Data masukan model tersebut adalah data iklim harian radiasi matahari, suhu maksimum, suhu minimum, dan curah hujan selama selama ± 20 tahun. Format data masukan disajikan pada Tabel 10 berikut ini.

Tabel 10. Format data masukan model simulasi GISS, GFDL dan UKMO

<table>
<thead>
<tr>
<th>INST/SITE_ID</th>
<th>JD</th>
<th>RAD</th>
<th>TMAX</th>
<th>TMIN</th>
<th>CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRNG</td>
<td>1</td>
<td>21.75</td>
<td>31.6</td>
<td>22.4</td>
<td>10</td>
</tr>
<tr>
<td>CRNG</td>
<td>2</td>
<td>15.68</td>
<td>31.6</td>
<td>22.4</td>
<td>10</td>
</tr>
<tr>
<td>CRNG</td>
<td>3</td>
<td>13.60</td>
<td>33.2</td>
<td>21.9</td>
<td>25</td>
</tr>
<tr>
<td>CRNG</td>
<td>4</td>
<td>14.20</td>
<td>30.8</td>
<td>23.3</td>
<td>0</td>
</tr>
<tr>
<td>CRNG</td>
<td>5</td>
<td>10.60</td>
<td>32.3</td>
<td>20.9</td>
<td>10</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Pada Tabel 10 di atas, INST/SITE_ID adalah institut ID dan site ID dimana dalam hal ini CR adalah Puslitonak dan NG adalah Ngawi, JD adalah Julian Date yaitu urutan hari dalam setahun dari nomor 1 untuk tanggal 1 Januari hingga nomor 365 dan 366 (tahun kabisat) untuk tanggal 31 Desember, RAD adalah radiasi matahari, TMAX adalah suhu maksimum, TMIN adalah suhu minimum dan CH adalah curah hujan.
Asumsi yang digunakan dalam simulasi ini adalah bahwa konsentrasi CO$_2$ di atmosfir pada saat periode pengamatan data aktual sekitar 330 ppm.

b. Pendugaan Kondisi Iklim pada Tahun 2010, 2030 dan 2050

c. Pendugaan Potensi Hasil Padi Akibat Perubahan Iklim pada Tahun 2010, 2030, dan 2050

IV. HASIL DAN PEMBAHASAN

A. Ringkasan Percobaan Penanaman Padi di 4 lokasi

1. Ngawi

Kelompok Peneliti Kesuburan Tanah Pusat Penelitian Tanah dan Agroklimat telah melakukan penelitian bekerjasama dengan Proyek INSFFER (International Trials on Nitrogen Fertilizer Efficiency in Wetland Rice) mengenai pengaruh beberapa sumber pupuk N dan efisiensinya terhadap padi sawah pada tanah Vertisol Ngawi pada MH. 1980/1981. Percobaan dilakukan tanpa irigasi dengan menggunakan variasi padi IR-36. Sebagai pupuk dasar diberikan 40 kg/ha P dan 40 kg/ha K dalam bentuk TSP dan KCL. Sumber pupuk N adalah Urea, SCU (Sulfur Coated Urea) dan USG (Urea Supergranuler). Tanah Vertisol di lokasi penelitian pada umumnya diciptakan oleh tanah liat yang mudah mengkerut waktu kering (retak) dan membengkak waktu basah dengan mineral liat utamanya montmorilonit. PH di daerah ini di lapisan atas netral (pH 7). Daerah percobaan Ngawi pada musim penghujan mempunyai curah hujan rata-rata per dasarian sebesar 177 mm, suhu maksimum rata-rata 32.1º C, suhu minimum rata-rata 22.8º C, dan radiasi matahari rata-rata per hari 19.5 MJ/m². Spesifikasi umum tapak penelitian, konstanta genetik dan lengas tanah sesuai dengan format model tanaman DSSAT yang digunakan dalam pendugaan hasil padi dimuat dalam Tabel Lampiran 1 sedang fluktuasi iklim harian selama pertumbuhan tanaman disajikan dalam Gambar Lampiran 1,2,3,4.
2. Sukamandi

Puslitannak bekerjasama dengan proyek INSFFER pada MH. 1981/1982 telah melakukan penelitian di Sukamandi. Percobaan dilakukan tanpa irigasi dengan menggunakan varietas padi IR-36. Sebagai pupuk dasar diberikan 100 kg/ha TSP. Sumber pupuk N adalah Urea, SCU dan USG. Tanah Ultisol di daerah ini dicirikan oleh tampil jenis translokasi liat dan mengalami pencucian intensif dari unsur pembentuk basa (kejenuhan basa > 35%). Tanah bereaksi masam dengan pH 5.5. Daerah percobaan Sukamandi merupakan dataran rendah yang pada musim penghujan mempunyai curah hujan rata-rata 191 mm/dasarian, suhu maksimum rata-rata 29.1° C, suhu minimum 22.7° C dan radiasi matahari 15.1 MJ/m²/hari. Spesifikasi umum tapak penelitian, konstanta genetik dan lengas tanah sesuai dengan format model tanaman DSSAT yang digunakan dalam pendugaan hasil padi dimuat dalam Tabel Lampiran 2 sedang fluktuasi iklim harian selama pertumbuhan tanaman disajikan dalam Gambar Lampiran 5, 6, 7, 8.

3. Cianjur

daerah yang tinggi dengan curah hujan rata-rata 234 mm/dasarian pada musim hujan, suhu maksimum rata-rata 23.3° C, suhu minimum rata-rata 17.0° C dan radiasi matahari 11.7 MJ/m²/hari. Spesifikasi umum tapak penelitian, konstanta genetik dan lengas tanah sesuai dengan format model tanaman DSSAT yang digunakan dalam pendugaan hasil padi dimuat dalam Tabel Lampiran 3 sedang fluktuasi iklim harian selama pertumbuhan tanaman disajikan dalam Gambar Lampiran 9, 10, 11, 12.

4. Sitiung

PuslitTanak bekerjasama dengan Tropsoil Project pada MH. 1991/1992 melakukan percobaan respon varietas terhadap pemupukan P dan bahan organik di Sitiung, Sumatera Barat. Percobaan dilakukan tanpa irigasi dengan menggunakan varietas IR-64 dan IR-70, sebagai pupuk dasar diberikan 90 kg/ha Urea dan 120 kg/ha KCl. Jenis tanah di lokasi penelitian adalah Ultisol (USDA) yang mempunyai sifat tampak jenis translokasi liat dan mengalami pencucian intensif dari unsur pembentuk basa (kejenuhan basa > 35%). Tanah bereaksi agak masam dengan PH 6. Daerah percobaan Sitiung pada musim penghujan merupakan daerah dengan curah hujan rata-rata 239 mm/dasarian, suhu maksimum rata 29.7° C, suhu minimum minimum 23.0° C dan radiasi matahari 9.5 MJ/m²/hari. Spesifikasi umum tapak penelitian, konstanta genetik dan lengas tanah sesuai dengan format model tanaman DSSAT yang digunakan dalam pendugaan hasil padi dimuat dalam Tabel Lampiran 4 sedang fluktuasi iklim harian selama pertumbuhan tanaman disajikan dalam Gambar Lampiran 13, 14, 15, 16.
5. Relevansinya untuk Percobaan Simulasi

Percobaan-percobaan di Ngawi, Sitiung, Sukamandi dan Cianjur memiliki data yang cukup lengkap. Data-data yang tersedia memenuhi kriteria untuk dijadikan minimum data set dalam model tanaman DSSAT. Data-data tersebut adalah data iklim harian (curah hujan, suhu maksimum, suhu minimum, suhu maksimum dan radiasi matahari), data tanah (diskripsi profil, analisis fisik dan kimia tanah), data tanaman (tanggal tanam, manajemen perlakuan, manajemen pupuk, fase pertumbuhan tanaman, jarak tanam, varietas data produksi dan lain-lain). Data-data tersebut cukup lengkap dan sangat relevan untuk digunakan sebagai data masukan model tanaman DSSAT. Disamping itu lokasi percobaan sudah cukup mewakili, dimana Ngawi mewakili wilayah yang relatif kering dan Sitiung mewakili wilayah yang relatif basah dengan tanah yang relatif kurang subur, sedangkan Cianjur dan Sukamandi mewakili wilayah yang relatif basah dengan tanah yang relatif subur.

B. Model DSSAT untuk Pendugaan Potensi Hasil Padi

Masukan dan Keluaran Model

Pendugaan potensi hasil tanaman dilakukan terhadap tanaman padi di 4 lokasi percobaan yaitu Ngawi (Jawa Timur), Sitiung (Sumatera Barat), Sukamandi (Jawa Barat), dan Cianjur (Jawa Barat). Data iklim harian yang digunakan terdiri dari data harian radiasi matahari (MJ/m²), suhu udara maksimum dan minimum (°C), dan curah hujan (mm). Sifat fisik, kimia dan penciri tanah lainnya diperoleh dari hasil studi Pusat Penelitian Tanah dan Agroklimat. Data tanaman dan produksi diperoleh dari hasil pengamatan di masing-masing lokasi percobaan saat berlangsungnya
percobaan. Pendugaan potensi hasil dilakukan pada keadaan iklim yang berlaku saat berlangsungnya percobaan.

Data iklim, tanah dan tanaman dimasukkan dalam Database Management System (DBMS) dalam format-format yang telah ditentukan (FORM A s/d FORM R). Setelah semua data dimasukkan dalam DBMS kita belum bisa langsung menggunakankannya sebagai masukan model tanaman karena struktur data masukan model harus ASCII, sehingga perlu di 'retrieve' dulu. Setelah dilakukan retrieve akan dihasilkan FILE-FILE (FILE1,2,4,5,6,7,8,9,A,B). Kesepuluh FILE inilah yang digunakan sebagai masukan.

Keluaran yang dihasilkan oleh model ini adalah produksi biomas, ILD, N yang diserap, prosentase N dan air yang diambil tanaman kumulatif selama 8 fase pertumbuhan tanaman yaitu masa perkecambahan, perkecambahan sampai akhir anakan, akhir anakan sampai inisiasi malai, inisiasi malai sampai pembungaan, pembungaan sampai awal pengisian biji, awal pengisian biji sampai akhir pengisian biji, akhir pengisian biji sampai matang fisiologi. Keluaran simulasi juga menampilkan hasil dan potensi hasil dari masing-masing perlakuan yang digunakan.

C. Hasil Simulasi untuk Pendugaan Potensi Hasil Padi

1. Kasus Ngawi

Dalam kasus ini dilakukan simulasi dengan menggunakan model tanaman DSSAT untuk menduga potensi hasil dari masing-masing perlakuan, perlakuananya adalah pemupukan (sumber, dosis, dan cara pemberian pupuk) sehingga masukan lainnya dianggap sama dalam mempengaruhi potensi hasil. Setelah didapatkan
simulasi potensi hasil (hasil gabah kering) kemudian dibandingkan antara hasil pengamatan dengan simulasi hasil gabah kering pada setiap perlakuan. Hubungan antara hasil simulasi dan pengamatan pada masing-masing perlakuan disajikan dalam Tabel 11 berikut ini.

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>No.</th>
<th>Sumber N</th>
<th>dosis</th>
<th>cara pemberian kg/ha</th>
<th>Simulasi</th>
<th>Pengamatan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kontrol</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>2585</td>
<td>2600</td>
<td></td>
</tr>
<tr>
<td>2. Urea</td>
<td>29</td>
<td>split dua kali</td>
<td>3664</td>
<td>4000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. SCU</td>
<td>29</td>
<td>dishbar, waktu tanam</td>
<td>3885</td>
<td>4200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. USG</td>
<td>29</td>
<td>dibenam, sedalam 10-12 cm</td>
<td>4077</td>
<td>4400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Urea</td>
<td>58</td>
<td>split dua kali</td>
<td>3486</td>
<td>4486</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Urea</td>
<td>58</td>
<td>dishbar waktu tanam</td>
<td>3139</td>
<td>4400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. SCU</td>
<td>58</td>
<td>dishbar waktu tanam</td>
<td>4486</td>
<td>5200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. USG</td>
<td>58</td>
<td>dibenam, sedalam 10-12 cm</td>
<td>5189</td>
<td>5200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Urea</td>
<td>87</td>
<td>split, dua kali</td>
<td>6855</td>
<td>5200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Urea</td>
<td>87</td>
<td>dishbar waktu tanam</td>
<td>4456</td>
<td>7400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. SCU</td>
<td>87</td>
<td>dishbar waktu tanam</td>
<td>5975</td>
<td>5800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. USG</td>
<td>87</td>
<td>dibenam, sedalam 10-12 cm</td>
<td>6925</td>
<td>6200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hasil simulasi menunjukkan bahwa penggunaan pupuk SCU dan USG ternyata lebih efektif dibanding pupuk Urea biasa, hal ini ditunjukkan oleh pengaruhnya terhadap hasil dimana penggunaan pupuk SCU dan USG memberikan hasil relatif lebih tinggi dibanding penggunaan Urea biasa. Akan tetapi hasil simulasi juga menunjukkan bahwa penggunaan Urea dengan cara di-split dua kali lebih efisien dibanding jika diberikan Urea dengan cara disebar hanya pada waktu tanam. Hasil simulasi terhadap potensi hasil tertinggi sebesar 6925 kg/ha dicapai pada penggunaan USG dengan dosis 87 kg/ha dan cara pemberian dibenamkan sedalam 10-12 cm.
Sebagai gambaran dengan dosis pupuk dari Supra Insus 250 kg/ha Urea memberikan hasil sebesar 5115 kg/ha (BPS, 1981).

Hubungan antara simulasi dan pengamatan hasil gabah kering menghasilkan nilai r^2 sebesar 87% (Gambar 4). Hal ini menunjukkan bahwa terdapat hubungan yang erat antara simulasi dan pengamatan serta 87% keragaman hasil simulasi dapat dijelaskan oleh keragaman hasil pengamatan. Sedangkan galat baku pendugaan model (standar error of estimate) sebesar 0.49.

![Gambar 4. Hubungan antara simulasi dan observasi hasil gabah kering pada percobaan efisiensi pemupukan N di Ngawi](image)

2. Kasus Sukamandi

Dalam kasus Sukamandi seperti halnya kasus di Ngawi, yang paling menentukan dalam mempengaruhi potensi hasil adalah pemupukan baik dosis, bentuk maupun cara pemberiannya.
Setelah dilakukan simulasi dengan menggunakan model tanaman DSSAT maka didapatkan hasil seperti tertera dalam Tabel 12 berikut.

Tabel 12. Hubungan antara hasil simulasi dan pengamatan hasil gabah kering (kg/ha) di Sukamandi

<table>
<thead>
<tr>
<th>No.</th>
<th>Sumber N</th>
<th>dosage</th>
<th>cara pemberian</th>
<th>Simulasi</th>
<th>Pengamatan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kontrol</td>
<td>0</td>
<td>-</td>
<td>4123</td>
<td>5570</td>
</tr>
<tr>
<td>2.</td>
<td>Urea</td>
<td>29</td>
<td>split dua kali</td>
<td>4749</td>
<td>5890</td>
</tr>
<tr>
<td>3.</td>
<td>SCU</td>
<td>29</td>
<td>disebab, waktu tanam</td>
<td>5573</td>
<td>6260</td>
</tr>
<tr>
<td>4.</td>
<td>USG</td>
<td>29</td>
<td>dibenam, sedalam 10-12 cm</td>
<td>4575</td>
<td>5110</td>
</tr>
<tr>
<td>5.</td>
<td>Urea</td>
<td>58</td>
<td>split dua kali</td>
<td>2123</td>
<td>3100</td>
</tr>
<tr>
<td>6.</td>
<td>SCU</td>
<td>58</td>
<td>disebab waktu tanam</td>
<td>3123</td>
<td>4330</td>
</tr>
<tr>
<td>7.</td>
<td>USG</td>
<td>58</td>
<td>dibenam, sedalam 10-12 cm</td>
<td>3575</td>
<td>4490</td>
</tr>
<tr>
<td>8.</td>
<td>Urea</td>
<td>87</td>
<td>split dua kali</td>
<td>4125</td>
<td>5430</td>
</tr>
<tr>
<td>9.</td>
<td>SCU</td>
<td>87</td>
<td>disebab waktu tanam</td>
<td>4129</td>
<td>5460</td>
</tr>
<tr>
<td>10.</td>
<td>USG</td>
<td>87</td>
<td>dibenam, sedalam 10-12 cm</td>
<td>4750</td>
<td>5930</td>
</tr>
<tr>
<td>11.</td>
<td>Urea</td>
<td>116</td>
<td>split dua kali</td>
<td>2125</td>
<td>3210</td>
</tr>
<tr>
<td>12.</td>
<td>SCU</td>
<td>116</td>
<td>disebab waktu tanam</td>
<td>5575</td>
<td>6100</td>
</tr>
<tr>
<td>13.</td>
<td>USG</td>
<td>116</td>
<td>dibenam, sedalam 10-12 cm</td>
<td>5578</td>
<td>6780</td>
</tr>
</tbody>
</table>

Hasil simulasi menunjukkan bahwa hasil tertinggi sebesar 5578 kg/ha dicapai saat digunakan pupuk USG dengan dosage 116 kg/ha dan cara pemberian dibenam sedalam 10-12 cm, hasil tersebut tidak jauh berbeda jika digunakan SCU dengan dosage 116 kg/ha dan cara pemberian disebab saat tanam dimana memberikan hasil sebesar 5575 kg/ha. Sebagai gambaran dengan dosage pupuk dari Supra Insus 250 kg/ha Urea memberikan hasil sebesar 4101 kg/ha (BPS, 1981).

Hubungan antara simulasi dan pengamatan hasil gabah kering menghasilkan nilai r^2 sebesar 93% (Gambar 5) dengan galat baku dugaan sebesar 0.29. Hal ini menunjukkan bahwa terdapat hubungan yang erat antara simulasi dan pengamatan serta 93% keragaman hasil simulasi dapat dijelaskan oleh keragaman hasil pengamatan.
3. Kasus Cianjur

Kasus Cianjur juga sama dengan kasus di Sukamandi yaitu ditekankan pada pengaruh pemupukan dalam mempengaruhi potensi hasil. Setelah dilakukan simulasi dengan menggunakan model tanaman DSSAT maka didapatkan hasil seperti tertera dalam Tabel 13 berikut.

Tabel 13. Hubungan antara hasil simulasi dan pengamatan hasil gabah kering (kg/ha) di Cianjur

<table>
<thead>
<tr>
<th>No.</th>
<th>Sumber N</th>
<th>dosis</th>
<th>cara pemberian</th>
<th>Simulasi</th>
<th>Pengamatan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kontrol</td>
<td>0</td>
<td>-</td>
<td>2377</td>
<td>3000</td>
</tr>
<tr>
<td>2.</td>
<td>Urea</td>
<td>29</td>
<td>split dua kali</td>
<td>2664</td>
<td>3200</td>
</tr>
<tr>
<td>3.</td>
<td>SCU</td>
<td>29</td>
<td>disebar, waktu tanam</td>
<td>3357</td>
<td>4200</td>
</tr>
<tr>
<td>4.</td>
<td>USG</td>
<td>29</td>
<td>dibenam, sedalam 10-12 cm</td>
<td>2870</td>
<td>3800</td>
</tr>
<tr>
<td>5.</td>
<td>Urea</td>
<td>58</td>
<td>split dua kali</td>
<td>3709</td>
<td>4600</td>
</tr>
<tr>
<td>6.</td>
<td>SCU</td>
<td>58</td>
<td>disebar waktu tanam</td>
<td>3739</td>
<td>5000</td>
</tr>
<tr>
<td>7.</td>
<td>USG</td>
<td>58</td>
<td>dibenam, sedalam 10-12 cm</td>
<td>4206</td>
<td>5200</td>
</tr>
<tr>
<td>8.</td>
<td>Urea</td>
<td>87</td>
<td>split dua kali</td>
<td>4209</td>
<td>5200</td>
</tr>
<tr>
<td>9.</td>
<td>SCU</td>
<td>87</td>
<td>disebar waktu tanam</td>
<td>4816</td>
<td>5200</td>
</tr>
<tr>
<td>10.</td>
<td>USG</td>
<td>87</td>
<td>dibenam, sedalam 10-12 cm</td>
<td>5515</td>
<td>6800</td>
</tr>
<tr>
<td>11.</td>
<td>Urea</td>
<td>116</td>
<td>split dua kali</td>
<td>4265</td>
<td>6200</td>
</tr>
<tr>
<td>12.</td>
<td>SCU</td>
<td>116</td>
<td>disebar waktu tanam</td>
<td>4698</td>
<td>6600</td>
</tr>
<tr>
<td>13.</td>
<td>USG</td>
<td>116</td>
<td>dibenam, sedalam 10-12 cm</td>
<td>5690</td>
<td>7000</td>
</tr>
</tbody>
</table>

Hasil simulasi menunjukkan bahwa potensi hasil tertinggi sebesar 5698 kg/ha dicapai saat dipupuk USG 116 kg/ha dengan cara pemberian dibenam. Hasil tersebut sesuai dengan percobaan efisiensi pemupukan yang menyatakan bahwa penggunaan pupuk USG dan SCU lebih efisien dibanding Urea biasa, hal ini disebabkan karena SCU melepaskan nitrogen secara lambat sehingga tidak mudah hilang, sedangkan USG yang dibenamkan pada lapisan reduksi menghasilkan \(\text{NH}_4^+ \) yang stabil dan tidak mudah hilang. Hasil simulasi juga menunjukkan bahwa penggunaan Urea dengan
cara displit cenderung lebih efisien dibanding jika disebarkan, hal ini sesuai pula dengan
hasil penelitian bahwa pupuk Urea yang disebarkan akan mudah hilang karena unsur N
bersifat mobil. Sebagai gambaran dengan dosis pupuk dari Supra Insus 250 kg/ha
Urea memberikan hasil sebesar 3974 kg/ha (BPS, 1981).

Hubungan antara hasil simulasi dan pengamatan hasil gabah kering panen di
Cianjur menghasilkan nilai r^2 sebesar 91\% (Gambar 6) dengan galat baku penduga-
an sebesar 0.38.

Gambar 5. Hubungan antara simulasi dan observasi hasil gabah kering pada
percobaan efisiensi pemupukan N di Sukamandi
Gambar 6. Hubungan antara simulasi dan observasi hasil gabah kering pada percobaan efisiensi pemupukan N di Cianjur

4. Kasus Situasi

Dalam kasus ini perlakuan yang digunakan untuk simulasi potensi hasil adalah varietas, sehingga dalam menghasilkan keluaran ditekankan bahwa hanya varietas yang mempunyai sumbangan terbesar dalam menentukan potensi hasil sedangkan faktor lainnya dianggap sama dalam semua perlakuan. Setelah dilakukan simulasi didapatkan hubungan antara hasil gabah kering hasil simulasi dan pengamatan pada masing-masing perlakuan yang disajikan dalam Tabel 14 berikut.
Tabel 14. Hubungan antara hasil simulasi dan pengamatan hasil gabah kering (kg/ha) di Situng

<table>
<thead>
<tr>
<th>No</th>
<th>dosis P</th>
<th>bahan org.</th>
<th>varietas</th>
<th>Simulasi</th>
<th>Pengamatan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>-</td>
<td>IR-64</td>
<td>3023</td>
<td>4012</td>
</tr>
<tr>
<td>2.</td>
<td>135</td>
<td>-</td>
<td>IR-64</td>
<td>3343</td>
<td>4340</td>
</tr>
<tr>
<td>3.</td>
<td>0</td>
<td>-</td>
<td>IR-70</td>
<td>3511</td>
<td>4572</td>
</tr>
<tr>
<td>4.</td>
<td>135</td>
<td>-</td>
<td>IR-70</td>
<td>3635</td>
<td>4732</td>
</tr>
<tr>
<td>5.</td>
<td>0</td>
<td>10</td>
<td>IR-64</td>
<td>3074</td>
<td>4019</td>
</tr>
<tr>
<td>6.</td>
<td>135</td>
<td>10</td>
<td>IR-64</td>
<td>3486</td>
<td>4376</td>
</tr>
<tr>
<td>7.</td>
<td>0</td>
<td>10</td>
<td>IR-70</td>
<td>3541</td>
<td>4629</td>
</tr>
<tr>
<td>8.</td>
<td>135</td>
<td>10</td>
<td>IR-70</td>
<td>3641</td>
<td>4861</td>
</tr>
</tbody>
</table>

Hasil simulasi menunjukkan bahwa penggunaan varietas IR-70 lebih baik dibanding IR-64, hal ini terlihat pada pengaruhnya terhadap hasil dimana dengan IR-70 hasil lebih tinggi. Hasil simulasi juga menunjukkan bahwa penggunaan bahan organik meningkatkan hasil padi. Hasil tertinggi sebesar 3641 kg/ha dicapai pada saat digunakan varietas IR-70 dan penambahan 10 ton/ha bahan organik. Sebagai gambaran dengan dosis pupuk dari Supra Insus 250 kg/ha Urea memberikan hasil sebesar 3884 kg/ha (BPS, 1991).

Hubungan antara simulasi dan pengamatan menghasilkan nilai r^2 sebesar 89% (Gambar 7). Hal ini menunjukkan bahwa terdapat hubungan yang erat antara simulasi dan pengamatan serta 89% keragaman hasil simulasi dapat dijelaskan oleh keragaman hasil pengamatan. Sedangkan galat baku pendugaan sebesar 0.42.
Gambar 7. Hubungan antara simulasi dan observasi hasil gabah kering pada percobaan varietas di Sitiung

Dari 4 kasus yang telah digunakan untuk percobaan simulasi tersebut diatas terlihat bahwa pada umumnya hasil simulasi menunjukkan angka yang lebih rendah dibanding hasil pengamatan (under estimated), hal ini disebabkan oleh : (1) dari beberapa contoh keluaran terlihat bahwa memang berat gabah hasil simulasi lebih rendah dibanding hasil pengamatan, (2) percobaan terlalu over estimated karena hanya percobaan pada petakan kecil sehingga memungkinkan terjadi kesalahan konversi hasil dalam tiap petakan ke kilogram per hektar. Namun demikian bila dibandingkan dengan tingkat produksi petani hasil simulasi menunjukkan angka yang hampir setara.
D. **Simulasi Pemupukan**

Dari hasil simulasi terdahulu yang menunjukkan bahwa penggunaan USG dengan cara dibenam lebih efisien dibanding dengan cara disebarkan, maka berikut ini disajikan potensi hasil dari beberapa alternatif dosis, bentuk dan cara pemberian pupuk. Pada Tabel 15 disajikan pengaruh beberapa alternatif sumber, dosis dan cara pemberian pupuk pada potensi hasil padi di Ngawi.

Tabel 15. Hasil simulasi pengaruh beberapa sumber, dosis dan cara pemberian pupuk N pada potensi hasil padi di Ngawi.

<table>
<thead>
<tr>
<th>No.</th>
<th>Sumber N</th>
<th>dosis</th>
<th>cara pemberian kg/ha</th>
<th>Hasil (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Urea</td>
<td>29</td>
<td>disebarkan</td>
<td>3722</td>
</tr>
<tr>
<td>2.</td>
<td>Urea</td>
<td>29</td>
<td>dibenam</td>
<td>3748</td>
</tr>
<tr>
<td>3.</td>
<td>USG</td>
<td>29</td>
<td>dibenam, sedalam 10-12 cm</td>
<td>4240</td>
</tr>
<tr>
<td>4.</td>
<td>Urea</td>
<td>58</td>
<td>disebarkan</td>
<td>3460</td>
</tr>
<tr>
<td>5.</td>
<td>Urea</td>
<td>58</td>
<td>dibenam</td>
<td>3889</td>
</tr>
<tr>
<td>6.</td>
<td>USG</td>
<td>58</td>
<td>dibenam, sedalam 10-12 cm</td>
<td>5289</td>
</tr>
<tr>
<td>7.</td>
<td>Urea</td>
<td>87</td>
<td>disebarkan</td>
<td>3978</td>
</tr>
<tr>
<td>8.</td>
<td>Urea</td>
<td>87</td>
<td>dibenam</td>
<td>4443</td>
</tr>
<tr>
<td>9.</td>
<td>USG</td>
<td>87</td>
<td>dibenam, sedalam 10-12 cm</td>
<td>5858</td>
</tr>
<tr>
<td>10.</td>
<td>Urea</td>
<td>150</td>
<td>disebarkan</td>
<td>4641</td>
</tr>
<tr>
<td>11.</td>
<td>Urea</td>
<td>150</td>
<td>dibenam</td>
<td>4985</td>
</tr>
<tr>
<td>12.</td>
<td>USG</td>
<td>150</td>
<td>dibenam, sedalam 10-12 cm</td>
<td>6129</td>
</tr>
<tr>
<td>13.</td>
<td>Urea</td>
<td>300</td>
<td>disebarkan</td>
<td>4511</td>
</tr>
<tr>
<td>14.</td>
<td>Urea</td>
<td>300</td>
<td>dibenam</td>
<td>4482</td>
</tr>
<tr>
<td>15.</td>
<td>USG</td>
<td>300</td>
<td>dibenam, sedalam 10-12 cm</td>
<td>6123</td>
</tr>
</tbody>
</table>

Untuk kasus Ngawi diperoleh hasil simulasi bahwa penggunaan pupuk Urea dan USG dengan cara dibenam lebih efisien dibanding penggunaan Urea dengan cara disebarkan, hal tersebut disebabkan oleh sifat unsur N yang mobil sehingga jika disebarkan akan mudah hilang. Potensi hasil tertinggi sebesar 6129 kg/ha dicapai jika dipupuk USG dengan dosis 150 kg/ha yang diberikan dengan cara dibenamkan.
Untuk kasus Sukamandi seperti halnya Ngawi disimulasi pengaruh beberapa alternatif sumber, dosis dan cara pemberian pupuk pada potensi hasil yang disajikan pada Tabel 16 berikut ini.

Tabel 16. Hasil simulasi pengaruh beberapa sumber, dosis dan cara pemberian pupuk N pada potensi hasil padi di Sukamandi.

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>No.</th>
<th>Sumber N</th>
<th>dosis</th>
<th>cara pemberian kg/ha</th>
<th>Hasil (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Urea</td>
<td>29</td>
<td>disebur</td>
<td></td>
<td>3898</td>
</tr>
<tr>
<td>2.</td>
<td>Urea</td>
<td>29</td>
<td>dibenam</td>
<td></td>
<td>4409</td>
</tr>
<tr>
<td>3.</td>
<td>USG</td>
<td>29</td>
<td>dibenam, sedalam 10-12 cm</td>
<td></td>
<td>4508</td>
</tr>
<tr>
<td>4.</td>
<td>Urea</td>
<td>58</td>
<td>disebur</td>
<td></td>
<td>3615</td>
</tr>
<tr>
<td>5.</td>
<td>Urea</td>
<td>58</td>
<td>dibenam</td>
<td></td>
<td>3719</td>
</tr>
<tr>
<td>6.</td>
<td>USG</td>
<td>58</td>
<td>dibenam, sedalam 10-12 cm</td>
<td></td>
<td>3991</td>
</tr>
<tr>
<td>7.</td>
<td>Urea</td>
<td>87</td>
<td>disebur</td>
<td></td>
<td>3671</td>
</tr>
<tr>
<td>8.</td>
<td>Urea</td>
<td>87</td>
<td>dibenam</td>
<td></td>
<td>3773</td>
</tr>
<tr>
<td>9.</td>
<td>USG</td>
<td>87</td>
<td>dibenam, sedalam 10-12 cm</td>
<td></td>
<td>3704</td>
</tr>
<tr>
<td>10.</td>
<td>Urea</td>
<td>116</td>
<td>disebur</td>
<td></td>
<td>3715</td>
</tr>
<tr>
<td>11.</td>
<td>Urea</td>
<td>116</td>
<td>dibenam</td>
<td></td>
<td>4807</td>
</tr>
<tr>
<td>12.</td>
<td>USG</td>
<td>116</td>
<td>dibenam, sedalam 10-12 cm</td>
<td></td>
<td>5955</td>
</tr>
<tr>
<td>13.</td>
<td>Urea</td>
<td>300</td>
<td>disebur</td>
<td></td>
<td>4767</td>
</tr>
<tr>
<td>14.</td>
<td>Urea</td>
<td>300</td>
<td>dibenam</td>
<td></td>
<td>4830</td>
</tr>
<tr>
<td>15.</td>
<td>USG</td>
<td>300</td>
<td>dibenam, sedalam 10-12 cm</td>
<td></td>
<td>5125</td>
</tr>
</tbody>
</table>

Hasil simulasi menunjukkan bahwa penggunaan Urea dan USG dengan cara dibenam lebih efisien dibanding penggunaan Urea dengan cara disebur. Potensi hasil tertinggi sebesar 5955 kg/ha diperoleh jika dipupuk USG dengan dosis 116 kg/ha yang diberikan dengan cara dibenamkan.

Untuk kasus Cianjur juga disimulasi pengaruh beberapa alternatif sumber, dosis dan cara pemberian pupuk pada potensi hasil yang disajikan pada Tabel 17 berikut ini.
Tabel 17. Hasil simulasi pengaruh beberapa sumber, dosis dan cara pemberian pupuk N pada potensi hasil padi di Cianjur

<table>
<thead>
<tr>
<th>Perlakuan</th>
<th>No.</th>
<th>Sumber N</th>
<th>dosis</th>
<th>cara pemberian kg/ha</th>
<th>Hasil (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Urea</td>
<td>29</td>
<td>disebar</td>
<td></td>
<td></td>
<td>2997</td>
</tr>
<tr>
<td>2. Urea</td>
<td>29</td>
<td>dibenam</td>
<td></td>
<td></td>
<td>3009</td>
</tr>
<tr>
<td>3. USG</td>
<td>29</td>
<td>dibenam, sedalam 10-12 cm</td>
<td></td>
<td></td>
<td>3021</td>
</tr>
<tr>
<td>4. Urea</td>
<td>58</td>
<td>disebar</td>
<td></td>
<td></td>
<td>3993</td>
</tr>
<tr>
<td>5. Urea</td>
<td>58</td>
<td>dibenam</td>
<td></td>
<td></td>
<td>4003</td>
</tr>
<tr>
<td>6. USG</td>
<td>58</td>
<td>dibenam, sedalam 10-12 cm</td>
<td></td>
<td></td>
<td>4326</td>
</tr>
<tr>
<td>7. Urea</td>
<td>87</td>
<td>disebar</td>
<td></td>
<td></td>
<td>3004</td>
</tr>
<tr>
<td>8. Urea</td>
<td>87</td>
<td>dibenam</td>
<td></td>
<td></td>
<td>4679</td>
</tr>
<tr>
<td>9. USG</td>
<td>87</td>
<td>dibenam, sedalam 10-12 cm</td>
<td></td>
<td></td>
<td>5023</td>
</tr>
<tr>
<td>10. Urea</td>
<td>116</td>
<td>disebar</td>
<td></td>
<td></td>
<td>3002</td>
</tr>
<tr>
<td>11. Urea</td>
<td>116</td>
<td>dibenam</td>
<td></td>
<td></td>
<td>3011</td>
</tr>
<tr>
<td>12. USG</td>
<td>116</td>
<td>dibenam, sedalam 10-12 cm</td>
<td></td>
<td></td>
<td>5638</td>
</tr>
<tr>
<td>13. Urea</td>
<td>300</td>
<td>disebar</td>
<td></td>
<td></td>
<td>3003</td>
</tr>
<tr>
<td>14. Urea</td>
<td>300</td>
<td>dibenam</td>
<td></td>
<td></td>
<td>3024</td>
</tr>
<tr>
<td>15. USG</td>
<td>300</td>
<td>dibenam, sedalam 10-12 cm</td>
<td></td>
<td></td>
<td>5009</td>
</tr>
</tbody>
</table>

Hasil simulasi menunjukkan bahwa penggunaan Urea dan USG dengan cara dibenam lebih efisien dibanding penggunaan Urea dengan cara disebar. Potensi hasil tertinggi sebesar 5638 kg/ha diperoleh jika dipupuk USG dengan dosis 116 kg/ha yang diberikan dengan cara dibenamkan.

Untuk kasus Sitiung seperti halnya 3 daerah yang lain juga disimulasikan pengaruh beberapa alternatif sumber, dosis dan cara pemberian pupuk pada potensi hasil yang disajikan pada Tabel 18 berikut ini.

Hasil simulasi menunjukkan bahwa penggunaan Urea dan USG dengan cara dibenam lebih efisien dibanding penggunaan Urea dengan cara disebar. Potensi hasil tertinggi sebesar 4585 kg/ha diperoleh jika dipupuk Urea dengan dosis 200 kg/ha yang diberikan dengan cara dibenamkan.
Tabel 18. Hasil simulasi pengaruh beberapa sumber, dosis dan cara pemberian pupuk N pada potensi hasil padi di Sitinjau

<table>
<thead>
<tr>
<th>No.</th>
<th>Sumber N</th>
<th>dosis</th>
<th>cara pemberian kg/ha</th>
<th>Hasil (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Urea</td>
<td>45</td>
<td>disebar</td>
<td>3209</td>
</tr>
<tr>
<td>2.</td>
<td>Urea</td>
<td>45</td>
<td>dibenam</td>
<td>3479</td>
</tr>
<tr>
<td>3.</td>
<td>Urea</td>
<td>90</td>
<td>disebar</td>
<td>3258</td>
</tr>
<tr>
<td>4.</td>
<td>Urea</td>
<td>90</td>
<td>dibenam</td>
<td>3439</td>
</tr>
<tr>
<td>5.</td>
<td>Urea</td>
<td>135</td>
<td>disebar</td>
<td>3074</td>
</tr>
<tr>
<td>6.</td>
<td>Urea</td>
<td>135</td>
<td>dibenam</td>
<td>3535</td>
</tr>
<tr>
<td>7.</td>
<td>Urea</td>
<td>200</td>
<td>disebar</td>
<td>4274</td>
</tr>
<tr>
<td>8.</td>
<td>Urea</td>
<td>200</td>
<td>dibenam</td>
<td>4585</td>
</tr>
<tr>
<td>9.</td>
<td>USG</td>
<td>300</td>
<td>disebar</td>
<td>4209</td>
</tr>
<tr>
<td>10.</td>
<td>Urea</td>
<td>300</td>
<td>dibenam</td>
<td>4492</td>
</tr>
<tr>
<td>11.</td>
<td>Urea</td>
<td>400</td>
<td>disebar</td>
<td>4258</td>
</tr>
<tr>
<td>12.</td>
<td>Urea</td>
<td>400</td>
<td>dibenam</td>
<td>4344</td>
</tr>
</tbody>
</table>

E. Simulasi Varietas

Simulasi varietas dilakukan untuk melihat pengaruh beberapa jenis varietas padi sawah terhadap potensi hasil padi sawah. Varietas-varietas yang digunakan untuk simulasi sudah tersedia dalam format model DSSAT. Untuk kasus Ngawi hasil simulasi pengaruh beberapa varietas terhadap potensi hasil disajikan pada Tabel 19 berikut ini. Simulasi ini dilakukan pada perlakuan bentuk pupuk USG dengan dosis 87 kg/ha yang diberikan dengan cara dibenamkan.

Hasil simulasi menunjukkan bahwa penggunaan varietas IR-36 memberikan hasil gabah tertinggi yaitu sebesar 6658 kg/ha sedang hasil terendah bila digunakan varietas IR-58 dengan 3877 kg/ha. Hasil tersebut sesuai dengan penelitian yang menyatakan bahwa varietas padi yang ditanam mempengaruhi peningkatan produksi padi, hal ini dipengaruhi oleh sifat masing-masing varietas yang spesifik, seperti
responsnya terhadap pemupukan, daya toleransinya terhadap sifat tanah tertentu, daya
tahan terhadap serangan hama dan penyakit dan tingkat hasil dari varietas.

Tabel 19. Hasil simulasi pengaruh beberapa macam varietas padi pada
potensi hasil di Ngawi

<table>
<thead>
<tr>
<th>No.</th>
<th>Perlakuan Varietas</th>
<th>Hasil (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>IR-8</td>
<td>6176</td>
</tr>
<tr>
<td>2.</td>
<td>IR-20</td>
<td>6218</td>
</tr>
<tr>
<td>3.</td>
<td>IR-36</td>
<td>6658</td>
</tr>
<tr>
<td>4.</td>
<td>IR-43</td>
<td>4362</td>
</tr>
<tr>
<td>5.</td>
<td>IR-58</td>
<td>3877</td>
</tr>
<tr>
<td>6.</td>
<td>IR-54</td>
<td>4479</td>
</tr>
<tr>
<td>7.</td>
<td>IR-64</td>
<td>4044</td>
</tr>
<tr>
<td>8.</td>
<td>IR-60</td>
<td>3940</td>
</tr>
<tr>
<td>9.</td>
<td>IR-66</td>
<td>5104</td>
</tr>
<tr>
<td>10.</td>
<td>IR-70</td>
<td>4884</td>
</tr>
</tbody>
</table>

Untuk kasus Sukamandi hasil simulasi pengaruh beberapa varietas terhadap
potensi hasil disajikan pada Tabel 20 berikut ini. Hasil simulasi ini dilakukan pada
perlakuan bentuk pupuk USG dengan dosis 116 kg/ha yang diberikan dengan cara
dibenamkan. Perlakuan ini memberikan hasil tertinggi pada varietas IR-36.

Hasil simulasi menunjukkan bahwa penggunaan varietas IR-43 memberikan
hasil gabah tertinggi yaitu sebesar 5885 kg/ha sedang hasil terendah bila digunakan
varietas IR-58 dengan 1922 kg/ha.

Untuk kasus Cianjur hasil simulasi pengaruh beberapa varietas terhadap
potensi hasil disajikan pada Tabel 21 berikut ini. Hasil simulasi ini dilakukan pada
perlakuan bentuk pupuk USG dengan dosis 116 kg/ha yang diberikan dengan cara
dibenamkan. Perlakuan ini memberikan hasil tertinggi pada varietas IR-36.
Tabel 20. Hasil simulasi pengaruh beberapa macam varietas padi pada potensi hasil di Sukamandi

<table>
<thead>
<tr>
<th>No.</th>
<th>Perlakuan</th>
<th>Varietas</th>
<th>Hasil (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>IR-8</td>
<td>2042</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>IR-20</td>
<td>4097</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>IR-36</td>
<td>3835</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>IR-43</td>
<td>5885</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>IR-58</td>
<td>1922</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>IR-54</td>
<td>2387</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>IR-64</td>
<td>2201</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>IR-60</td>
<td>2125</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td>IR-66</td>
<td>2083</td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td>IR-70</td>
<td>4017</td>
</tr>
</tbody>
</table>

Tabel 21. Hasil simulasi pengaruh beberapa macam varietas padi pada potensi hasil di Cianjur

<table>
<thead>
<tr>
<th>No.</th>
<th>Perlakuan</th>
<th>Varietas</th>
<th>Hasil (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>IR-8</td>
<td>3087</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>IR-20</td>
<td>5602</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>IR-36</td>
<td>3008</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>IR-43</td>
<td>1454</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>IR-58</td>
<td>4494</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>IR-54</td>
<td>4327</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>IR-64</td>
<td>4191</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>IR-60</td>
<td>4610</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td>IR-66</td>
<td>4046</td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td>IR-70</td>
<td>4268</td>
</tr>
</tbody>
</table>

Hasil simulasi menunjukkan bahwa penggunaan varietas IR-20 memberikan hasil gabah tertinggi yaitu sebesar 5602 kg/ha sedang hasil terendah bila digunakan varietas IR-43 dengan 1454 kg/ha.
Untuk kasus Sitiung hasil simulasi pengaruh beberapa varietas terhadap potensi hasil disajikan pada Tabel 22 berikut ini. Hasil simulasi ini dilakukan pada perlakuan bentuk pupuk Urea dengan dosis 135 kg/ha yang diberikan dengan cara dibenamkan.

Tabel 22. Hasil simulasi pengaruh beberapa macam varietas padi pada potensi hasil di Sitiung

<table>
<thead>
<tr>
<th>No.</th>
<th>Perlakuan Varietas</th>
<th>Hasil (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>IR-8</td>
<td>1794</td>
</tr>
<tr>
<td>2.</td>
<td>IR-20</td>
<td>3846</td>
</tr>
<tr>
<td>3.</td>
<td>IR-36</td>
<td>2384</td>
</tr>
<tr>
<td>4.</td>
<td>IR-43</td>
<td>4006</td>
</tr>
<tr>
<td>5.</td>
<td>IR-58</td>
<td>2265</td>
</tr>
<tr>
<td>6.</td>
<td>IR-54</td>
<td>2840</td>
</tr>
<tr>
<td>7.</td>
<td>IR-64</td>
<td>3001</td>
</tr>
<tr>
<td>8.</td>
<td>IR-60</td>
<td>3347</td>
</tr>
<tr>
<td>9.</td>
<td>IR-66</td>
<td>2821</td>
</tr>
<tr>
<td>10.</td>
<td>IR-70</td>
<td>4782</td>
</tr>
</tbody>
</table>

Hasil simulasi menunjukkan bahwa penggunaan varietas IR-70 memberikan hasil gabah tertinggi yaitu sebesar 4782 kg/ha sedang hasil terendah bila digunakan varietas IR-8 dengan 1794 kg/ha.

F. Simulasi Waktu Tanam

Ketepatan waktu tanam merupakan faktor dominan produktivitas dan keberhasilan panen. Pada keadaan tadah hujan waktu tanam merupakan masalah karena keragaman dari awal musim hujan. Untuk itu diperlukan saat tanam yang tepat dalam budidaya padi sawah sehingga produktivitas meningkat. Model tanaman DSSAT
mampu mensimulasi pengaruh beberapa alternatif waktu tanam terhadap potensi hasil sehingga kita mengetahui kira-kira kapan saat yang paling tepat untuk menanam padi dengan kondisi sesuai dengan 3 daerah tersebut. Pada Tabel 23 disajikan beberapa alternatif waktu tanam di Ngawi dengan perlakuan dasar 87 kg/ha Urea dalam bentuk USG dan cara pemberian dibenamkan sedalam 10-12 cm dan varietas IR-36.

Tabel 23. Beberapa alternatif waktu tanam di daerah Ngawi menurut model tanaman DSSAT

<table>
<thead>
<tr>
<th>No.</th>
<th>Tgl tanam</th>
<th>CH (mm)</th>
<th>Hasil (kg/ha)</th>
<th>Biomassa (kg/ha)</th>
<th>ILD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>01-Sep</td>
<td>1087</td>
<td>3353</td>
<td>4752</td>
<td>1.35</td>
</tr>
<tr>
<td>2.</td>
<td>11-Sep</td>
<td>926</td>
<td>2675</td>
<td>3928</td>
<td>1.06</td>
</tr>
<tr>
<td>3.</td>
<td>21-Sep</td>
<td>1073</td>
<td>3494</td>
<td>5005</td>
<td>2.58</td>
</tr>
<tr>
<td>4.</td>
<td>01-Okt</td>
<td>1232</td>
<td>3129</td>
<td>4269</td>
<td>1.26</td>
</tr>
<tr>
<td>5.</td>
<td>11-Okt</td>
<td>1412</td>
<td>6224</td>
<td>10308</td>
<td>4.30</td>
</tr>
<tr>
<td>6.</td>
<td>21-Okt</td>
<td>1598</td>
<td>6303</td>
<td>10387</td>
<td>4.57</td>
</tr>
<tr>
<td>7.</td>
<td>01-Nop</td>
<td>1546</td>
<td>6276</td>
<td>10552</td>
<td>3.84</td>
</tr>
<tr>
<td>8.</td>
<td>11-Nop</td>
<td>1384</td>
<td>4276</td>
<td>6334</td>
<td>2.77</td>
</tr>
<tr>
<td>9.</td>
<td>21-Nop</td>
<td>1344</td>
<td>2575</td>
<td>3237</td>
<td>1.05</td>
</tr>
<tr>
<td>10.</td>
<td>01-Des</td>
<td>1289</td>
<td>4383</td>
<td>6125</td>
<td>2.75</td>
</tr>
<tr>
<td>11.</td>
<td>11-Des</td>
<td>1260</td>
<td>2733</td>
<td>3240</td>
<td>1.13</td>
</tr>
<tr>
<td>12.</td>
<td>21-Des</td>
<td>1260</td>
<td>3822</td>
<td>5173</td>
<td>2.41</td>
</tr>
<tr>
<td>13.</td>
<td>01-Jan</td>
<td>2069</td>
<td>2512</td>
<td>3392</td>
<td>1.13</td>
</tr>
<tr>
<td>14.</td>
<td>11-Jan</td>
<td>1963</td>
<td>4166</td>
<td>5837</td>
<td>2.55</td>
</tr>
<tr>
<td>15.</td>
<td>21-Jan</td>
<td>1888</td>
<td>2405</td>
<td>3358</td>
<td>1.15</td>
</tr>
<tr>
<td>16.</td>
<td>01-Feb</td>
<td>1852</td>
<td>4828</td>
<td>7320</td>
<td>2.12</td>
</tr>
<tr>
<td>17.</td>
<td>11-Feb</td>
<td>1729</td>
<td>2621</td>
<td>3408</td>
<td>0.90</td>
</tr>
<tr>
<td>18.</td>
<td>21-Feb</td>
<td>1314</td>
<td>2804</td>
<td>5239</td>
<td>2.43</td>
</tr>
</tbody>
</table>

Dari beberapa alternatif waktu tanam maka potensi hasil tertinggi padi sawah di Ngawi sebesar 6303 kg/ha jika ditanam pada dasarian III Oktober. Potensi tersebut didukung oleh pertumbuhan yang baik seperti dicerminkan oleh produksi biomassa sebesar 10387 kg/ha dan indeks luas daun (ILD) 4.57. Selama periode tumbuh, radiasi surya rata-rata 19.5 MJ/m²/hari, suhu udara 22.8 - 32.1° C, dan curah hujan
1598 mm atau 177 mm/dasarian. Terlihat disini bahwa terdapat potensi hasil yang berbeda untuk waktu tanam yang berbeda, hal ini menyangkut terutama kesesuaian iklim untuk tanaman tersebut. Fagi dan De Datta (1981) menyatakan bahwa intensitas sinar surya selama 30-45 hari sebelum panen menentukan pengisian malai dan hasil padi, sehingga untuk memperoleh hasil yang tinggi waktu tanam diaturagar fase reproduktif jatuh pada saat intensitas sinar surya tinggi. Juga Irsal Las (1984) menyarankan bahwa penanaman padi dimulai bila curah hujan dalam dekade awal > 55 millimeter dan dekade berikutnya > 70 mm. Dari hasil simulasi dinyatakan bahwa waktu tanam paling tepat adalah tanggal 21 Oktober dimana memang kondisi iklim pada saat itu terutama curah hujan sangat mendukung sehingga memberikan hasil yang tinggi. Hasil terendah dicapai bila ditanam tanggal 21 Januari (dasarian III Januari), hal ini disebabkan kondisi iklim terutama curah hujan tidak mendukung pertumbuhan tanaman dimana curah hujan relatif rendah. Untuk daerah Sukamandi alternatif beberapa waktu tanam disajikan pada Tabel 23 berikut ini.

Potensi hasil tertinggi sebesar 5855 kg/ha dicapai saat ditanam pada dasarian II Oktober. Potensi hasil tersebut dicerminkan oleh produksi biomas yang cukup tinggi sebesar 11392 kg/ha dan ILD 4.73. Selama periode pertumbuhan radiasi rata-rata 15.1 MJ/m²/hari, suhu udara rata-rata 22.7 - 29.1° C, dan curah hujan 1907 mm atau 191 mm/dasarian. Potensi hasil tinggi karena didukung oleh kondisi iklim yang baik terutama curah hujan yang relatif tinggi selama pertumbuhan tanaman. Sedang hasil terendah sebesar 1043 kg/ha dicapai saat ditanam tanggal 21 Januari (dasarian III Januari).
Tabel 24. Beberapa alternatif waktu tanam di daerah Sukamandi menurut model tanaman DSSAT

<table>
<thead>
<tr>
<th>No.</th>
<th>Tgl tanam</th>
<th>CH (mm)</th>
<th>Hasil (kg/ha)</th>
<th>Biomassa (kg/ha)</th>
<th>ILD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>01-Sep</td>
<td>1297</td>
<td>3078</td>
<td>5123</td>
<td>1.20</td>
</tr>
<tr>
<td>2.</td>
<td>11-Sep</td>
<td>1602</td>
<td>3505</td>
<td>6816</td>
<td>1.88</td>
</tr>
<tr>
<td>3.</td>
<td>21-Sep</td>
<td>1664</td>
<td>4937</td>
<td>9606</td>
<td>4.09</td>
</tr>
<tr>
<td>4.</td>
<td>01-Okt</td>
<td>1510</td>
<td>5050</td>
<td>10074</td>
<td>4.29</td>
</tr>
<tr>
<td>5.</td>
<td>11-Okt</td>
<td>1907</td>
<td>5855</td>
<td>11392</td>
<td>4.73</td>
</tr>
<tr>
<td>6.</td>
<td>21-Okt</td>
<td>1971</td>
<td>5184</td>
<td>10278</td>
<td>3.25</td>
</tr>
<tr>
<td>7.</td>
<td>01-Nop</td>
<td>1529</td>
<td>4986</td>
<td>9298</td>
<td>2.25</td>
</tr>
<tr>
<td>8.</td>
<td>11-Nop</td>
<td>1467</td>
<td>2877</td>
<td>5711</td>
<td>0.92</td>
</tr>
<tr>
<td>9.</td>
<td>21-Nop</td>
<td>1282</td>
<td>2644</td>
<td>5078</td>
<td>0.68</td>
</tr>
<tr>
<td>10.</td>
<td>01-Des</td>
<td>1028</td>
<td>1782</td>
<td>4178</td>
<td>0.59</td>
</tr>
<tr>
<td>11.</td>
<td>11-Des</td>
<td>972</td>
<td>1405</td>
<td>3530</td>
<td>0.54</td>
</tr>
<tr>
<td>12.</td>
<td>21-Des</td>
<td>691</td>
<td>1178</td>
<td>2933</td>
<td>0.44</td>
</tr>
<tr>
<td>13.</td>
<td>01-Jan</td>
<td>462</td>
<td>1118</td>
<td>2595</td>
<td>0.37</td>
</tr>
<tr>
<td>14.</td>
<td>11-Jan</td>
<td>374</td>
<td>1049</td>
<td>2065</td>
<td>0.27</td>
</tr>
<tr>
<td>15.</td>
<td>21-Jan</td>
<td>264</td>
<td>1043</td>
<td>1919</td>
<td>0.21</td>
</tr>
<tr>
<td>16.</td>
<td>01-Feb</td>
<td>218</td>
<td>1049</td>
<td>2065</td>
<td>0.27</td>
</tr>
<tr>
<td>17.</td>
<td>11-Feb</td>
<td>210</td>
<td>1060</td>
<td>1950</td>
<td>0.16</td>
</tr>
<tr>
<td>18.</td>
<td>21-Feb</td>
<td>122</td>
<td>1237</td>
<td>2276</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Untuk daerah Cianjur alternatif beberapa waktu tanam disajikan pada Tabel 25 berikut ini.

Potensi hasil tertinggi sebesar 6038 kg/ha dicapai saat ditanam pada dasarian II September. Potensi hasil tersebut dicerminkan oleh produksi biomassa yang cukup tinggi sebesar 10164 kg/ha dan ILD 5.36. Selama periode pertumbuhan radiasi rata-rata 11.7 MJ/m²/hari, suhu udara rata-rata 17.0 - 23.3º C, dan curah hujan 3516 mm atau 234 mm/dasarian. Hasil terendah sebesar 2865 kg/ha dicapai saat ditanam tanggal 21 Januari (dasarian III Januari).
Tabel 25. Beberapa alternatif waktu tanam di daerah Cianjur menurut model tanaman DSSAT

<table>
<thead>
<tr>
<th>No.</th>
<th>Tgl tanam</th>
<th>CH (mm)</th>
<th>Hasil (kg/ha)</th>
<th>Biomassa (kg/ha)</th>
<th>ILD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>01-Sep</td>
<td>3257</td>
<td>5843</td>
<td>10748</td>
<td>5.38</td>
</tr>
<tr>
<td>2.</td>
<td>11-Sep</td>
<td>3516</td>
<td>6038</td>
<td>10164</td>
<td>5.36</td>
</tr>
<tr>
<td>3.</td>
<td>21-Sep</td>
<td>3463</td>
<td>5400</td>
<td>8447</td>
<td>4.73</td>
</tr>
<tr>
<td>4.</td>
<td>01-Okt</td>
<td>3391</td>
<td>4657</td>
<td>7070</td>
<td>2.16</td>
</tr>
<tr>
<td>5.</td>
<td>11-Okt</td>
<td>3318</td>
<td>3908</td>
<td>5443</td>
<td>1.01</td>
</tr>
<tr>
<td>6.</td>
<td>21-Okt</td>
<td>3171</td>
<td>3728</td>
<td>4990</td>
<td>1.06</td>
</tr>
<tr>
<td>7.</td>
<td>01-Nop</td>
<td>3834</td>
<td>3427</td>
<td>4784</td>
<td>1.18</td>
</tr>
<tr>
<td>8.</td>
<td>11-Nop</td>
<td>3803</td>
<td>3389</td>
<td>4836</td>
<td>1.24</td>
</tr>
<tr>
<td>9.</td>
<td>21-Nop</td>
<td>4026</td>
<td>4675</td>
<td>7020</td>
<td>2.25</td>
</tr>
<tr>
<td>10.</td>
<td>01-Des</td>
<td>3936</td>
<td>4632</td>
<td>5971</td>
<td>2.27</td>
</tr>
<tr>
<td>11.</td>
<td>11-Des</td>
<td>3912</td>
<td>4528</td>
<td>5876</td>
<td>2.24</td>
</tr>
<tr>
<td>12.</td>
<td>21-Des</td>
<td>3934</td>
<td>4550</td>
<td>5876</td>
<td>2.26</td>
</tr>
<tr>
<td>13.</td>
<td>01-Jan</td>
<td>3248</td>
<td>3115</td>
<td>3902</td>
<td>1.23</td>
</tr>
<tr>
<td>14.</td>
<td>11-Jan</td>
<td>3032</td>
<td>3027</td>
<td>3741</td>
<td>1.11</td>
</tr>
<tr>
<td>15.</td>
<td>21-Jan</td>
<td>2804</td>
<td>2865</td>
<td>3521</td>
<td>1.02</td>
</tr>
<tr>
<td>16.</td>
<td>01-Feb</td>
<td>2776</td>
<td>3794</td>
<td>4947</td>
<td>1.14</td>
</tr>
<tr>
<td>17.</td>
<td>11-Feb</td>
<td>2655</td>
<td>4223</td>
<td>5471</td>
<td>1.21</td>
</tr>
<tr>
<td>18.</td>
<td>21-Feb</td>
<td>2694</td>
<td>4817</td>
<td>7014</td>
<td>2.25</td>
</tr>
</tbody>
</table>

Untuk daerah Sitiung alternatif beberapa waktu tanam disajikan pada Tabel 26 berikut ini.

Potensi hasil tertinggi sebesar 5233 kg/ha dicapai saat ditanam pada dasarian II Oktober. Potensi hasil tersebut dicerminkan oleh produksi biomasa yang cukup tinggi sebesar 9812 kg/ha dan ILD 4.38. Selama periode pertumbuhan radiasi rata-rata 9.5 MJ/m²/hari, suhu udara rata-rata 23.0 - 29.7°C, dan curah hujan 2873 mm atau 239 mm/dasarian. Sedang hasil terendah sebesar 2924 kg/ha dicapai saat ditanam tanggal 1 Januari (dasarian I Januari).
Tabel 26. Beberapa alternatif waktu tanam di daerah Sitiung menurut model tanaman DSSAT

<table>
<thead>
<tr>
<th>No.</th>
<th>Tgl tanam</th>
<th>CH (mm)</th>
<th>Hasil (kg/ha)</th>
<th>Biomassa (kg/ha)</th>
<th>ILD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>01-Sep</td>
<td>2367</td>
<td>4336</td>
<td>6990</td>
<td>2.19</td>
</tr>
<tr>
<td>2.</td>
<td>11-Sep</td>
<td>2521</td>
<td>4405</td>
<td>7697</td>
<td>2.73</td>
</tr>
<tr>
<td>3.</td>
<td>21-Sep</td>
<td>2661</td>
<td>3602</td>
<td>4998</td>
<td>1.49</td>
</tr>
<tr>
<td>4.</td>
<td>01-Okt</td>
<td>2807</td>
<td>3508</td>
<td>4996</td>
<td>1.56</td>
</tr>
<tr>
<td>5.</td>
<td>11-Okt</td>
<td>2873</td>
<td>5233</td>
<td>9812</td>
<td>4.38</td>
</tr>
<tr>
<td>6.</td>
<td>21-Okt</td>
<td>2814</td>
<td>4824</td>
<td>6811</td>
<td>2.38</td>
</tr>
<tr>
<td>7.</td>
<td>01-Nov</td>
<td>2840</td>
<td>4013</td>
<td>5201</td>
<td>1.28</td>
</tr>
<tr>
<td>8.</td>
<td>11-Nov</td>
<td>2932</td>
<td>3693</td>
<td>5290</td>
<td>1.66</td>
</tr>
<tr>
<td>9.</td>
<td>21-Nov</td>
<td>2568</td>
<td>4792</td>
<td>6057</td>
<td>2.21</td>
</tr>
<tr>
<td>10.</td>
<td>01-Des</td>
<td>2338</td>
<td>3803</td>
<td>5431</td>
<td>1.78</td>
</tr>
<tr>
<td>11.</td>
<td>11-Des</td>
<td>1970</td>
<td>4508</td>
<td>5748</td>
<td>2.23</td>
</tr>
<tr>
<td>12.</td>
<td>21-Des</td>
<td>1812</td>
<td>5078</td>
<td>6942</td>
<td>2.48</td>
</tr>
<tr>
<td>13.</td>
<td>01-Jan</td>
<td>1525</td>
<td>2924</td>
<td>4024</td>
<td>1.21</td>
</tr>
<tr>
<td>14.</td>
<td>11-Jan</td>
<td>1465</td>
<td>4279</td>
<td>5946</td>
<td>2.00</td>
</tr>
<tr>
<td>15.</td>
<td>21-Jan</td>
<td>1322</td>
<td>3717</td>
<td>5291</td>
<td>1.59</td>
</tr>
<tr>
<td>16.</td>
<td>01-Feb</td>
<td>1343</td>
<td>4755</td>
<td>5725</td>
<td>2.13</td>
</tr>
<tr>
<td>17.</td>
<td>11-Feb</td>
<td>1273</td>
<td>3736</td>
<td>5320</td>
<td>1.66</td>
</tr>
<tr>
<td>18.</td>
<td>21-Feb</td>
<td>1209</td>
<td>4526</td>
<td>5511</td>
<td>2.15</td>
</tr>
</tbody>
</table>

G. Simulasi Perubahan Iklim

1. Pendugaan kondisi iklim pada saat konsentrasi CO₂ atmosfer mencapai 555 ppm

 Studi tentang perubahan iklim pada dasarnya merupakan serangkaian model-model yang menggambarkan skenario perubahan iklim yang diarahkan pada model tanaman untuk menduga potensi hasil dan perubahan agronomis lainnya.

 Model-model perubahan iklim yang terandal saat ini adalah model GISS (Goddard Institute for Space Studies), model GFDL (Geophysical Fluid Dynamics Laboratory), dan model UKMO (United Kingdom Meteorological Office). Ketiga model tersebut menggunakan skenario yang memadukan nisbah peubah iklim (suhu,

Data masukan model tersebut adalah data iklim harian radiasi matahari, suhu maksimum, suhu minimum, dan curah hujan selama selama ± 20 tahun. Format data masukan untuk analisis ini sama dengan format data masukan untuk model GISS, GFDL dan UKMO seperti tertera dalam Tabel 10 pada halaman 54, hanya saja analisisnya sedikit lebih rumit. Asumsi yang digunakan dalam simulasi ini adalah bahwa konsentrasi CO₂ di atmosfir pada saat periode pengamatan data aktual sekitar 330 ppm. Kondisi iklim pada keadaan dimana konsentrasi CO₂ di atmosfir mencapai
555 ppm bila laju peningkatan CO$_2$ konstan untuk daerah Ngawi, Sukamandi dan Cianjur disajikan pada Tabel 27.

Dengan adanya peningkatan gas-gas rumah kaca di atmosfir setara dengan 555 ppm CO$_2$ (peningkatan konsentrasi 68%) untuk ketiga model pada 3 lokasi percobaan menunjukkan peningkatan radiasi matahari, suhu maksimum, suhu minimum, dan curah hujan. Untuk daerah Ngawi rata-rata peningkatan radiasi dari ketiga model tersebut sebesar 0.15 MJ/m2 atau 1.3%, rata-rata peningkatan suhu maksimum 3.01$^\circ$ C (9.6%), suhu minimum meningkat rata-rata 3$^\circ$ C (13.6%), dan curah hujan meningkat rata-rata 41.7 mm (31.8%).

Tabel 27. Perbedaan kondisi rata-rata hasil simulasi model GISS, GFDL dan UKMO pada 555 ppm CO$_2$ dengan kondisi aktual 330 ppm CO$_2$.

<table>
<thead>
<tr>
<th></th>
<th>Sukamandi</th>
<th>Ngawi</th>
<th>Cianjur</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Model GISS</td>
<td>-----------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Radiasi Matahari (MJ/m2)</td>
<td>0.33 (1.9)</td>
<td>0.23 (1.9)</td>
<td>0.22 (2.1)*</td>
</tr>
<tr>
<td>Suhu Maksimum (°C)</td>
<td>3.83 (12.6)</td>
<td>3.83 (12.2)</td>
<td>3.83 (1.3)</td>
</tr>
<tr>
<td>Suhu Minimum (°C)</td>
<td>3.83 (16.8)</td>
<td>3.81 (17.3)</td>
<td>3.83 (5.7)</td>
</tr>
<tr>
<td>Curah Hujan (mm)</td>
<td>19.6 (20.5)</td>
<td>24.1 (16.9)</td>
<td>1.09 (12.4)</td>
</tr>
<tr>
<td>B. Model GFDL</td>
<td>-----------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Radiasi Matahari (MJ/m2)</td>
<td>0.33 (2.1)</td>
<td>0.11 (0.9)</td>
<td>0.20 (1.5)</td>
</tr>
<tr>
<td>Suhu Maksimum (°C)</td>
<td>2.29 (7.6)</td>
<td>2.30 (7.3)</td>
<td>2.30 (0.3)</td>
</tr>
<tr>
<td>Suhu Minimum (°C)</td>
<td>2.30 (10.1)</td>
<td>2.29 (10.4)</td>
<td>1.56 (5.9)</td>
</tr>
<tr>
<td>Curah Hujan (mm)</td>
<td>20.7 (21.8)</td>
<td>24.4 (17.4)</td>
<td>1.09 (12.9)</td>
</tr>
<tr>
<td>C. Model UKMO</td>
<td>-----------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Radiasi Matahari (MJ/m2)</td>
<td>0.19 (1.2)</td>
<td>0.12 (1.1)</td>
<td>0.21 (5.3)</td>
</tr>
<tr>
<td>Suhu Maksimum (°C)</td>
<td>2.92 (9.6)</td>
<td>2.91 (9.3)</td>
<td>2.92 (0.9)</td>
</tr>
<tr>
<td>Suhu Minimum (°C)</td>
<td>2.92 (12.8)</td>
<td>2.90 (13.1)</td>
<td>2.92 (3.8)</td>
</tr>
<tr>
<td>Curah Hujan (mm)</td>
<td>59.1 (91.7)</td>
<td>76.5 (61.2)</td>
<td>3.35 (40.1)</td>
</tr>
</tbody>
</table>

*) angka dalam kurung menunjukkan prosentase kenaikan.
Untuk daerah Sukamandi rata-rata peningkatan radiasi dari ketiga model tersebut sebesar 0.28 MJ/m² atau 1.7%, rata-rata peningkatan suhu maksimum 3.01° C (9.9%), suhu minimum meningkat rata-rata 3.02° C (13.2%), dan curah hujan meningkat rata-rata 33.1 mm (44.7%). Untuk daerah Cianjur rata-rata peningkatan radiasi dari ketiga model tersebut sebesar 0.21 MJ/m² atau 2.9%, rata-rata peningkatan suhu maksimum 3.02° C (0.82%), suhu minimum meningkat rata-rata 2.77° C (4.9%), dan curah hujan meningkat rata-rata 1.84 mm (21.8%).

2. Pendugaan Keadaan Iklim pada Tahun 2010, Tahun 2030 dan Tahun 2050

Pada Tabel 28 terlihat bahwa secara umum pada dekade 2010 di Ngawi, Sukamandi dan Cianjur terjadi penurunan radiasi matahari. Hal ini mungkin disebabkan oleh adanya penutupan awan sehingga mengakibatkan radiasi yang datang akan terhalang. Akan tetapi pada dekade 2010 sampai 2050 secara umum terdapat peningkatan nilai pada keempat peubah iklim dibandingkan kondisi awal pada dekade tahun 1970 sampai 1990. Radiasi matahari pada awal dekade 2010 menurun sedikit (-0.01 % untuk Sukamandi dan -0.1% untuk Ngawi) tetapi kemudian meningkat lagi pada dekade-dekade selanjutnya. Penurunan nilai radiasi ini diduga hanya merupakan bias
perhitungan dari model (Susanti et al, 1993). Secara keseluruhan rata-rata laju peningkatan radiasi di Ngawi sebesar 0.05 MJ/m² (atau 0.4%) untuk setiap jangka waktu 20 tahun, suhu maksimum meningkat terus dengan laju kenaikan rata-rata sebesar 0.80 °C (2.5%) tiap 20 tahun, laju peningkatan rata-rata suhu minimum adalah 0.79 °C (3.6%) tiap 20 tahun, dan rata-rata laju peningkatan curah hujan adalah sebesar 0.9 mm (0.57%) tiap 20 tahun.

<table>
<thead>
<tr>
<th></th>
<th>Sukamandi</th>
<th>Ngawi</th>
<th>Cianjur</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Tahun 2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiasi Matahari (MJ/m²)</td>
<td>-0.01 (-0.01)</td>
<td>-0.01 (-0.1)</td>
<td>-0.1 (0.4)*</td>
</tr>
<tr>
<td>Suhu Maksimum (°C)</td>
<td>1.09 (3.6)</td>
<td>1.09 (3.5)</td>
<td>1.09 (0.5)</td>
</tr>
<tr>
<td>Suhu Minimum (°C)</td>
<td>1.09 (4.8)</td>
<td>1.08 (4.9)</td>
<td>1.09 (3.2)</td>
</tr>
<tr>
<td>Curah Hujan (mm)</td>
<td>6.1 (3.4)</td>
<td>10.8 (7.0)</td>
<td>0.61 (6.8)</td>
</tr>
<tr>
<td>B. Tahun 2030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiasi Matahari (MJ/m²)</td>
<td>0.18 (1.1)</td>
<td>0.13 (1.1)</td>
<td>0.13 (1.6)</td>
</tr>
<tr>
<td>Suhu Maksimum (°C)</td>
<td>2.18 (7.2)</td>
<td>2.17 (6.9)</td>
<td>2.18 (3.6)</td>
</tr>
<tr>
<td>Suhu Minimum (°C)</td>
<td>2.18 (9.6)</td>
<td>2.16 (9.8)</td>
<td>2.18 (2.7)</td>
</tr>
<tr>
<td>Curah Hujan (mm)</td>
<td>12.2 (10.3)</td>
<td>10.3 (6.2)</td>
<td>0.65 (7.9)</td>
</tr>
<tr>
<td>C. Tahun 2050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiasi Matahari (MJ/m²)</td>
<td>0.20 (1.2)</td>
<td>0.14 (1.1)</td>
<td>0.13 (0.8)</td>
</tr>
<tr>
<td>Suhu Maksimum (°C)</td>
<td>3.48 (11.4)</td>
<td>3.48 (11.1)</td>
<td>3.48 (10.4)</td>
</tr>
<tr>
<td>Suhu Minimum (°C)</td>
<td>3.48 (15.3)</td>
<td>3.46 (15.7)</td>
<td>3.48 (11.1)</td>
</tr>
<tr>
<td>Curah Hujan (mm)</td>
<td>11.8 (8.9)</td>
<td>13.5 (8.7)</td>
<td>0.74 (9.12)</td>
</tr>
</tbody>
</table>

*) angka dalam kurung menunjukkan prosentase kenaikan.

Di Sukamandi rata-rata laju peningkatan radiasi sebesar 0.07 MJ/m² (atau 0.4%) untuk setiap jangka waktu 20 tahun, suhu maksimum meningkat dengan laju kenaikan
rata-rata sebesar 0.80 °C (2.6%) tiap 20 tahun, laju peningkatan rata-rata suhu minimum adalah 0.80 °C (3.5%) tiap 20 tahun, dan rata-rata laju peningkatan curah hujan adalah sebesar 1.3 mm (1.8%) tiap 20 tahun. Di Cianjur rata-rata laju peningkatan radiasi sebesar 0.08 MJ/m² (0.13%) untuk setiap jangka waktu 20 tahun, suhu maksimum meningkat dengan laju kenaikan rata-rata sebesar 0.80 °C (3.3%) tiap 20 tahun, laju peningkatan rata-rata suhu minimum adalah 0.80 °C (2.6%) tiap 20 tahun, dan rata-rata laju peningkatan curah hujan adalah sebesar 0.04 mm (0.77%) tiap 20 tahun. Sehingga secara umum terlihat bahwa di Sukamandi peningkatan radiasi, suhu maksimum dan suhu minimum lebih cepat dibanding di Ngawi dan Cianjur. Hal ini diduga karena kondisi fisik yang berbeda dari ketiganya, sehingga mengakibatkan perbedaan kondisi iklimnya. Sukamandi merupakan daerah yang letaknya tidak jauh dari pusat pengembangan industri, sehingga dengan cepat terjadi peningkatan CO₂ dari hasil pembakaran. Sedangkan daerah Ngawi masih cukup banyak penutupan vegetasinya, dan daerah Cianjur merupakan dataran tinggi sehingga mengakibatkan lebih banyak awan dibanding daerah Sukamandi. Curah hujan di Sukamandi meningkat pada dekade 2030 terus terjadi penurunan pada dekade 2050. Sedangkan di daerah Ngawi curah hujan terus menurun dari dekade 2010 hingga 2050. Di daerah Cianjur pada dekade 2010 hingga 2050 curah hujan terus meningkat walaupun peningkatannya masih lebih kecil dibanding Sukamandi dan Ngawi, hal tersebut diduga berkaitan dengan kondisi fisik wilayahnya.

Analisis dan simulasi mengenai keadaan potensi hasil dan jumlah kandungan biomas tanaman padi pada dekade 2010, 2030 dan 2050 di 3 lokasi dilakukan dengan model tanaman DSSAT. Hasil analisis dan simulasi disajikan pada Tabel 29 berikut.

<table>
<thead>
<tr>
<th></th>
<th>Saat ini</th>
<th>2010</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGAWI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potensi hasil gabah kering (kg/ha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tahun Normal</td>
<td>6925</td>
<td>3569</td>
<td>2956</td>
<td>2423</td>
</tr>
<tr>
<td>- Tahun El Nino</td>
<td>2969</td>
<td>1721</td>
<td>1529</td>
<td>1370</td>
</tr>
<tr>
<td>Biomassa (kg/ha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tahun Normal</td>
<td>10644</td>
<td>6748</td>
<td>5595</td>
<td>4584</td>
</tr>
<tr>
<td>- Tahun El Nino</td>
<td>5975</td>
<td>2977</td>
<td>2931</td>
<td>2597</td>
</tr>
<tr>
<td>SUKAMANDI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potensi hasil gabah kering (kg/ha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tahun Normal</td>
<td>5578</td>
<td>4220</td>
<td>3473</td>
<td>2890</td>
</tr>
<tr>
<td>Biomassa (kg/ha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tahun Normal</td>
<td>9777</td>
<td>7607</td>
<td>6569</td>
<td>5366</td>
</tr>
<tr>
<td>- Tahun El Nino</td>
<td>5461</td>
<td>2717</td>
<td>2603</td>
<td>2551</td>
</tr>
<tr>
<td>CIANJUR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potensi hasil gabah kering (kg/ha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tahun Normal</td>
<td>5690</td>
<td>4488</td>
<td>2340</td>
<td>1644</td>
</tr>
<tr>
<td>- Tahun El Nino</td>
<td>2345</td>
<td>2313</td>
<td>2224</td>
<td>1100</td>
</tr>
<tr>
<td>Biomassa (kg/ha)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tahun Normal</td>
<td>9464</td>
<td>7435</td>
<td>6234</td>
<td>5644</td>
</tr>
<tr>
<td>- Tahun El Nino</td>
<td>5027</td>
<td>3193</td>
<td>3068</td>
<td>2738</td>
</tr>
</tbody>
</table>
dekade 2010, 6234 kg/ha pada dekade 2030 dan akhirnya biomassa terendah dicapai pada dekade 2050 sebesar 5644 kg/ha.

KESIMPULAN DAN SARAN

Kesimpulan

1. Dalam upaya pengambilan keputusan yang tepat dan cepat dalam perencanaan pertanaman padi diperlukan model yang dapat menduga keragaan dan hasil tanaman. Model tanaman DSSAT yang dikeluarkan oleh IBSNAT cukup handal untuk menduga produksi, hal ini tercermin dari hubungan antara simulasi dan pengamatan menghasilkan nilai r^2 sebesar 87% untuk Ngawi dan galat baku pendugaan (standar error of estimate) sebesar 0.49, r^2 sebesar 93% dan galat baku pendugaan sebesar 0.29 untuk Sukamandi, untuk Cianjur r^2 sebesar 91% dan galat baku pendugaan sebesar 0.38, sedangkan untuk Sitiung r^2 sebesar 89% dan galat baku pendugaan sebesar 0.42.

2. Menurut model, untuk semua lokasi percobaan penggunaan USG dan Urea dengan cara dibenam lebih efisien dibanding penggunaan Urea dengan cara disebbar.

3. Menurut model dengan menggunakan varietas IR-8, IR-20, IR-36, IR-43, IR-58, IR-54, IR-64, IR-60, IR-66, IR-70, untuk Ngawi penggunaan varietas IR-36 menghasilkan gabah kering tertinggi sebesar 6658 kg/ha sedang hasil terendah bila digunakan varietas IR-58 dengan hasil 3877 kg/ha. Untuk Sukamandi hasil tertinggi sebesar 5885 kg/ha bila menggunakan varietas IR-43 dan hasil terendah sebesar 1922 kg/ha bila menggunakan varietas IR-58. Untuk Cianjur hasil tertinggi sebesar 5602 kg/ha bila menggunakan varietas IR-20 dan hasil terendah 1454 kg/ha bila menggunakan IR-43. Dan untuk Sitiung hasil tertinggi sebesar 4782 kg/ha bila menggunakan IR-70 dan hasil terendah 1794 kg/ha bila menggunakan IR-8.

4. Menurut model, potensi hasil tertinggi di Ngawi sebesar 6303 kg/ha dicapai jika ditanam pada 21 Oktober (dasarian III Oktober), sedang hasil terendah sebesar 2405 kg/ha dicapai saat ditanam tanggal 21 Januari (dasarian III Januari). Untuk Sukamandi hasil tertinggi sebesar 5855 dicapai bila ditanam pada tanggal 11 Oktober (dasarian II Oktober), sedang hasil terendah sebesar
1043 kg/ha dicapai saat ditanam tanggal 21 Januari (dasarian III Januari). Untuk Cianjur hasil tertinggi sebesar 6038 kg/ha dicapai bila ditanam tanggal 11 September, sedang hasil terendah sebesar 2865 kg/ha dicapai saat ditanam tanggal 21 Januari. Dan untuk Situung hasil tertinggi sebesar 5233 kg/ha dicapai bila ditanam tanggal 11 Oktober, sedang hasil terendah sebesar 2924 kg/ha dicapai bila ditanam tanggal 1 Januari (dasarian I Januari).

5. Menurut model dengan adanya peningkatan gas-gas rumah kaca di atmosfir setara 555 ppm CO₂ di semua lokasi percobaan diperkirakan akan mengakibatkan terjadinya kenaikan intensitas radiasi matahari, suhu maksimum dan suhu minimum, serta curah hujan. Adanya peningkatan CO₂ di atmosfir diperkirakan juga akan meningkatkan radiasi, suhu maksimum, suhu minimum, dan curah hujan pada dekade tahun 2010, 2030 dan 2050. Secara kesebaran rata-rata laju peningkatan radiasi di Ngawi sebesar 0.05 MJ/m² (atau 0.4%) untuk setiap jangka waktu 20 tahun, suhu maksimum meningkat terus dengan laju kenaikan rata-rata sebesar 0.80 °C (2.5%) tiap 20 tahun, laju peningkatan rata-rata suhu minimum adalah 0.79 °C (3.6%) tiap 20 tahun, dan rata-rata laju peningkatan curah hujan adalah sebesar 0.9 mm (0.57%) tiap 20 tahun. Di Sukamandi rata-rata laju peningkatan radiasi sebesar 0.07 MJ/m² (atau 0.4%) untuk setiap jangka waktu 20 tahun, suhu maksimum meningkat dengan laju kenaikan rata-rata sebesar 0.80 °C (2.6%) tiap 20 tahun, laju peningkatan rata-rata suhu minimum adalah 0.80 °C (3.5%) tiap 20 tahun, dan rata-rata laju peningkatan curah hujan adalah sebesar 1.3 mm (1.8%) tiap 20 tahun. Di Cianjur rata-rata laju peningkatan radiasi sebesar 0.08 MJ/m² (0.13%) untuk setiap jangka waktu 20 tahun, suhu maksimum meningkat dengan laju kenaikan rata-rata sebesar 0.80 °C (3.3%) tiap 20 tahun, laju peningkatan rata-rata suhu minimum adalah 0.80 °C (2.6%) tiap 20 tahun, dan rata-rata laju peningkatan curah hujan adalah sebesar 0.04 mm (0.77%) tiap 20 tahun. Peningkatan CO₂ pada prinsipnya mengakibatkan perubahan kondisi iklim yang pada akhirnya mempengaruhi potensi hasil (produktivitas) dan kandungan biomassa tanaman padi. Di Ngawi, Situung, Sukamandi, dan Cianjur terjadi penurunan produktivitas dari dekade 2010 sampai dengan 2050.

Saran

1. Model simulasi DSSAT disarankan untuk digunakan dalam menduga potensi hasil karena model ini mempunyai beberapa keunggulan dibanding dengan model lainnya, diantaranya meskipun masukan model sangat kompleks namun format masukan datanya sudah tertentu dalam form-form yang telah tersedia dalam model sehingga akan mempermudah kita dalam memasukkan data.

2. Karena konstanta genetik yang tersedia dalam model hanya terbatas pada beberapa jenis varietas saja, maka apabila kita ingin menggunakan model ini untuk varietas lain yang tidak tersedia dalam model disarankan untuk menghitung nilai-nilai konstanta genetik varietas dengan menggunakan data suhu udara dan fase pertumbuhan tanaman.

3. Untuk menguji keterandalan model, maka disarankan untuk mengadakan simulasi di beberapa wilayah dengan kondisi fisik dan lingkungan yang berbeda-beda dengan menggunakan komoditas lain yang telah tersedia dalam model tanaman DSSAT dengan berbagai macam perlakuan.
DAFTAR PUSTAKA

LAMPIRAN
Tabel Lampiran 1. Spesifikasi, konstanta genetik dan lengas tanah pada model simulasi DSSAT dalam pendugaan potensi hasil padi (kasus: Ngawi).

<table>
<thead>
<tr>
<th>Spesifikasi wilayah dan masukan (umum):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kasus: Cangakan, Kabupaten Ngawi, Jatim</td>
</tr>
<tr>
<td>Perlakuan 1: Tanpa irigasi, perlakuan kontrol</td>
</tr>
<tr>
<td>Perlakuan 2: Tanpa irigasi, dosis pupuk 29-40-40 kg/ha N-P-K, bentuk pupuk Urea dan cara pemberian pupuk displit dua kali</td>
</tr>
<tr>
<td>Perlakuan 3: Tanpa irigasi, dosis pupuk 29-40-40 kg/ha N-P-K, bentuk pupuk SCU dan cara pemberian disedar waktu tanam</td>
</tr>
<tr>
<td>Perlakuan 4: Tanpa irigasi, dosis pupuk 29-40-40 kg/ha N-P-K, bentuk pupuk USG dan cara pemberian dibenamkan sedalam 10-12 cm</td>
</tr>
<tr>
<td>Perlakuan 5: Tanpa irigasi, 58-40-40 kg/ha N-P-K, Urea, displit dua kali</td>
</tr>
<tr>
<td>Perlakuan 6: Tanpa irigasi, 58-40-40 kg/ha N-P-K, Urea, disedar waktu tanam</td>
</tr>
<tr>
<td>Perlakuan 7: Tanpa irigasi, 58-40-40 kg/ha N-P-K, SCU, disedar waktu tanam</td>
</tr>
<tr>
<td>Perlakuan 8: Tanpa irigasi, 58-40-40 kg/ha N-P-K, USG, dibenamkan sedalam 10-12 cm.</td>
</tr>
<tr>
<td>Perlakuan 9: Tanpa irigasi, 87-40-40 kg/ha N-P-K, Urea, displit dua kali</td>
</tr>
<tr>
<td>Perlakuan 10: Tanpa irigasi, 87-40-40 kg/ha N-P-K, Urea, disedar waktu tanam</td>
</tr>
<tr>
<td>Perlakuan 11: Tanpa irigasi, 87-40-40 kg/ha N-P-K, SCU, disedar saat tanam</td>
</tr>
<tr>
<td>Perlakuan 12: Tanpa irigasi, 87-40-40 kg/ha N-P-K, USG, dibenamkan sedalam 10-12 cm</td>
</tr>
</tbody>
</table>

| Jarak tanam: 20 X 20 cm (25 rumpun/m²) |
| Varietas: IR-36 |
| Data iklim: Ngale, Ngawi (7°24' S dan 111°26' E), Jatim menurut masa tanam |
| Tipe lahan: lahan sawah |
| Tekstur tanah: liat berdebu |

Konstanta genetik:

fase vegetatif	550.00 DD
fase reproductif	149.00 DD
fase pengisian biji	300.00 DD
lama penyinaran	11.7
jumlah biji potensial	70.0
berat biji	0.0230 gram/biji
Status lengas tanah dan perakaran menurut kedalaman:

<table>
<thead>
<tr>
<th>Kedalaman (cm)</th>
<th>TLP</th>
<th>KL</th>
<th>Jenuh</th>
<th>AT</th>
<th>Awal</th>
<th>Perakaran</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5</td>
<td>.236</td>
<td>.367</td>
<td>.395</td>
<td>.131</td>
<td>-</td>
<td>0.878</td>
</tr>
<tr>
<td>5 - 13</td>
<td>.236</td>
<td>.367</td>
<td>.395</td>
<td>.131</td>
<td>-</td>
<td>0.878</td>
</tr>
<tr>
<td>13 - 27</td>
<td>.289</td>
<td>.414</td>
<td>.429</td>
<td>.125</td>
<td>-</td>
<td>0.577</td>
</tr>
<tr>
<td>27 - 42</td>
<td>.289</td>
<td>.414</td>
<td>.429</td>
<td>.125</td>
<td>-</td>
<td>0.577</td>
</tr>
<tr>
<td>42 - 56</td>
<td>.240</td>
<td>.370</td>
<td>.398</td>
<td>.130</td>
<td>-</td>
<td>0.323</td>
</tr>
<tr>
<td>56 - 71</td>
<td>.240</td>
<td>.370</td>
<td>.398</td>
<td>.130</td>
<td>-</td>
<td>0.323</td>
</tr>
<tr>
<td>71 - 90</td>
<td>.280</td>
<td>.406</td>
<td>.421</td>
<td>.126</td>
<td>-</td>
<td>0.164</td>
</tr>
<tr>
<td>90 - 110</td>
<td>.280</td>
<td>.406</td>
<td>.421</td>
<td>.126</td>
<td>-</td>
<td>0.164</td>
</tr>
</tbody>
</table>

TLP : titik layu permanen
KL : kapasitas lapang
AT : air tersedia (KL-TLP)
Awal : lengas tanah pada awal masa tanam
Perakaran : kerapatan perakaran cm³/cm³ tanah

Tabel lampiran 2. Spesifikasi, konstanta genetik dan lengas tanah pada model simulasi DSSAT dalam pendugaan potensi hasil padi (kasius: Sukamandi, Jabar).

Spesifikasi wilayah dan masukan (umum):

<table>
<thead>
<tr>
<th>Kasus</th>
<th>Sukamandi, Kabupaten Subang, Jabar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan 1</td>
<td>Tanpa irigasi, kontrol</td>
</tr>
<tr>
<td>Perlakuan 2</td>
<td>Tanpa irigasi, dosis (29-100-0 kg/ha N-P-K, Urea, displit dua kali</td>
</tr>
<tr>
<td>Perlakuan 3</td>
<td>Tanpa irigasi, dosis (29-100-0 kg/ha N-P-K), SCU, disebar waktu tanam</td>
</tr>
<tr>
<td>Perlakuan 4</td>
<td>Tanpa irigasi, dosis (29-100-0 kg/ha N-P-K), USG dibenamkan sedalam 10-12 cm</td>
</tr>
<tr>
<td>Perlakuan 5</td>
<td>Tanpa irigasi, dosis (58-100-0 kg/ha N-P-K), Urea, displit dua kali</td>
</tr>
<tr>
<td>Perlakuan 6</td>
<td>Tanpa irigasi, dosis (58-100-0 kg/ha N-P-K), SCU, disebar waktu tanam</td>
</tr>
<tr>
<td>Perlakuan 7</td>
<td>Tanpa irigasi, dosis (58-100-0 kg/ha N-P-K), USG, dibenamkan sedalam 10-12 cm</td>
</tr>
<tr>
<td>Perlakuan 8</td>
<td>Tanpa irigasi, dosis (87-100-0 kg/ha N-P-K), Urea displit dua kali</td>
</tr>
<tr>
<td>Perlakuan 9</td>
<td>Tanpa irigasi, dosis (87-100-0 kg/ha NPK), Urea, disebar waktu tanam</td>
</tr>
<tr>
<td>Perlakuan 10</td>
<td>Tanpa irigasi, dosis (87-100-0 kg/ha N-P-K), USG, dibenamkan sedalam 10-12 cm</td>
</tr>
<tr>
<td>Perlakuan 11</td>
<td>Tanpa irigasi, dosis (116-100-0 kg/ha N-P-K), Urea displit dua kali</td>
</tr>
<tr>
<td>Perlakuan 12</td>
<td>Tanpa irigasi, dosis (116-100-0 kg/ha N-P-K), SCU, disebar waktu tanam</td>
</tr>
<tr>
<td>Perlakuan 13</td>
<td>Tanpa irigasi, dosis (116-100-0 kg/ha N-P-K), USG, dibenamkan sedalam 10-12 cm</td>
</tr>
<tr>
<td>Jarak tanam</td>
<td>20 X 20 cm (25 rumpun/m²)</td>
</tr>
<tr>
<td>Varietas</td>
<td>IR-36</td>
</tr>
<tr>
<td>Data iklim</td>
<td>Pusakanegara (6°15'S dan 107°45'E), Jabar, menurut masa tanam</td>
</tr>
<tr>
<td>Tipe lahan</td>
<td>lahan sawah</td>
</tr>
<tr>
<td>Tekstur tanah</td>
<td>liat berdebu</td>
</tr>
</tbody>
</table>

Konstanta genetik:

fase vegetatif	550.00 DD
fase reproduktif	149.00 DD
fase pengisian biji	300.00 DD
lama penyinaran	11.7
jumlah biji potensial	70.0
berat biji	0.0230 gram/biji
Status lengan tanah dan perakaran menurut kedalaman:

<table>
<thead>
<tr>
<th>Kedalaman (cm)</th>
<th>TLP</th>
<th>KL</th>
<th>Jenuh</th>
<th>AT</th>
<th>Awal</th>
<th>Perakaran</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5</td>
<td>.285</td>
<td>.411</td>
<td>.426</td>
<td>.126</td>
<td>-</td>
<td>1.000</td>
</tr>
<tr>
<td>5 - 10</td>
<td>.285</td>
<td>.411</td>
<td>.426</td>
<td>.126</td>
<td>-</td>
<td>1.000</td>
</tr>
<tr>
<td>10 - 15</td>
<td>.223</td>
<td>.353</td>
<td>.402</td>
<td>.130</td>
<td>-</td>
<td>.200</td>
</tr>
<tr>
<td>15 - 20</td>
<td>.289</td>
<td>.415</td>
<td>.430</td>
<td>.126</td>
<td>-</td>
<td>.200</td>
</tr>
</tbody>
</table>

Spesifikasi wilayah dan masukan (umum):

<table>
<thead>
<tr>
<th>Kasus</th>
<th>Hagarmanah, Kabupaten Cianjur, Jabar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan 1</td>
<td>Tanpa irigasi, kontrol</td>
</tr>
<tr>
<td>Perlakuan 2</td>
<td>Tanpa irigasi, dosis (29-100-0 kg/ha N-P-K, Urea, displit dua kali</td>
</tr>
<tr>
<td>Perlakuan 3</td>
<td>Tanpa irigasi, dosis (29-100-0 kg/ha N-P-K), SCU, disebiar waktu tanam</td>
</tr>
<tr>
<td>Perlakuan 4</td>
<td>Tanpa irigasi, dosis (29-100-0 kg/ha N-P-K), USG dibenamkan sedalam 10-12 cm</td>
</tr>
<tr>
<td>Perlakuan 5</td>
<td>Tanpa irigasi, dosis (58-100-0 kg/ha N-P-K), Urea, displit dua kali dua kali</td>
</tr>
<tr>
<td>Perlakuan 6</td>
<td>Tanpa irigasi, dosis (58-100-0 kg/ha N-P-K), SCU, disebiar waktu tanam</td>
</tr>
<tr>
<td>Perlakuan 7</td>
<td>Tanpa irigasi, dosis (58-100-0 kg/ha N-P-K), USG, dibenamkan sedalam 10-12 cm</td>
</tr>
<tr>
<td>Perlakuan 8</td>
<td>Tanpa irigasi, dosis (87-100-0 kg/ha N-P-K), Urea displit dua kali</td>
</tr>
<tr>
<td>Perlakuan 9</td>
<td>Tanpa irigasi, dosis (87-100-0 kg/ha NPK), Urea, disebiar waktu tanam</td>
</tr>
<tr>
<td>Perlakuan 10</td>
<td>Tanpa irigasi, dosis (87-100-0 kg/ha N-P-K), USG, dibenamkan sedalam 10-12 cm</td>
</tr>
<tr>
<td>Perlakuan 11</td>
<td>Tanpa irigasi, dosis (116-100-0 kg/ha N-P-K), Urea displit dua kali</td>
</tr>
<tr>
<td>Perlakuan 12</td>
<td>Tanpa irigasi, dosis (116-100-0 kg/ha N-P-K), SCU, disebiar waktu tanam</td>
</tr>
<tr>
<td>Perlakuan 13</td>
<td>Tanpa irigasi, dosis (116-100-0 kg/ha N-P-K), USG, dibenamkan sedalam 10-12 cm</td>
</tr>
<tr>
<td>Jarak tanam</td>
<td>20 X 20 cm (25 rumpun/m²)</td>
</tr>
<tr>
<td>Varietas</td>
<td>IR-36</td>
</tr>
<tr>
<td>Data iklim</td>
<td>Cipanas (6°45'S dan 107°1'E), Jabar, menurut masa tanam</td>
</tr>
<tr>
<td>Tipe lahan</td>
<td>lahan sawah</td>
</tr>
<tr>
<td>Tekstur tanah</td>
<td>liat berdebu</td>
</tr>
</tbody>
</table>
Konstanta genetik:

<table>
<thead>
<tr>
<th>Fase</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetatif</td>
<td>550.00 DD</td>
</tr>
<tr>
<td>Reproduktif</td>
<td>149.00 DD</td>
</tr>
<tr>
<td>Pengisian biji</td>
<td>300.00 DD</td>
</tr>
<tr>
<td>Lama penyinaran</td>
<td>11.7</td>
</tr>
<tr>
<td>Jumlah biji potensial</td>
<td>70.0</td>
</tr>
<tr>
<td>Berat biji</td>
<td>0.0230 gram/biji</td>
</tr>
</tbody>
</table>

Status lengas tanah dan perakaran menurut kedalaman:

<table>
<thead>
<tr>
<th>Kedalaman (cm)</th>
<th>TLP</th>
<th>KL</th>
<th>Jenuh</th>
<th>AT</th>
<th>Awal</th>
<th>Perakaran</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5</td>
<td>.285</td>
<td>.411</td>
<td>.426</td>
<td>.126</td>
<td>-</td>
<td>1.000</td>
</tr>
<tr>
<td>5 - 10</td>
<td>.285</td>
<td>.411</td>
<td>.426</td>
<td>.126</td>
<td>-</td>
<td>1.000</td>
</tr>
<tr>
<td>10 - 15</td>
<td>.223</td>
<td>.353</td>
<td>.402</td>
<td>.130</td>
<td>-</td>
<td>.200</td>
</tr>
<tr>
<td>15 - 20</td>
<td>.289</td>
<td>.415</td>
<td>.430</td>
<td>.126</td>
<td>-</td>
<td>.200</td>
</tr>
</tbody>
</table>

Tabel lampiran 4. Spesifikasi, konstanta genetik dan lengas tanah pada model simulasi DSSAT dalam pendugaan potensi hasil padi pada percobaan varietas (kasus: Sitiung, Sumbar).

Spesifikasi wilayah dan masukan (umum):

<table>
<thead>
<tr>
<th>Kasus</th>
<th>Sitiung, Sumatera Barat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perlakuan 1</td>
<td>Tanpa irigasi dengan dosis pupuk (90-0-120 kg/ha N-P-K) dan varietas IR-64</td>
</tr>
<tr>
<td>Perlakuan 2</td>
<td>Tanpa irigasi, dosis (90-135-120 ka/ha N-P-K), varietas IR-64</td>
</tr>
<tr>
<td>Perlakuan 3</td>
<td>Tanpa irigasi, dosis (90-0-120 kg/ha N-P-K), varietas IR-70</td>
</tr>
<tr>
<td>Perlakuan 4</td>
<td>Tanpa irigasi, dosis (90-135-120 ka/ha N-P-K), varietas IR-70</td>
</tr>
<tr>
<td>Perlakuan 5</td>
<td>Tanpa irigasi, dosis pupuk (90-0-120 kg/ha), varietas IR-64 dan bahan organik 10 ton/ha</td>
</tr>
<tr>
<td>Perlakuan 6</td>
<td>Tanpa irigasi, dosis (90-135-120 ka/ha N-P-K), varietas IR-64 dan 10 ton/ha bahan organik</td>
</tr>
<tr>
<td>Perlakuan 7</td>
<td>Tanpa irigasi, dosis pupuk (90-0-120 kg/ha N-P-K), varietas IR-70 dan bahan organik 10 ton/ha</td>
</tr>
<tr>
<td>Perlakuan 8</td>
<td>Tanpa irigasi, dosis (90-135-120 ka/ha N-P-K), varietas IR-70 dan bahan organik 10 ton/ha</td>
</tr>
<tr>
<td>Jarak tanam</td>
<td>20 X 20 cm (25 rumpun/m²)</td>
</tr>
<tr>
<td>Varietas</td>
<td>IR 64, IR 70</td>
</tr>
<tr>
<td>Data Iklim</td>
<td>Gunung Medan, Sitiung (1°05'S,101°40'E), Sumbar, menurut masa tanam</td>
</tr>
<tr>
<td>Tipe lahan</td>
<td>lahan sawah</td>
</tr>
<tr>
<td>Tekstur tanah</td>
<td>liat berdebu</td>
</tr>
</tbody>
</table>
Konstanta genetik:

- Fase vegetatif: 480 DD, 480 DD
- Fase reproduktif: 100 DD, 120 DD
- Fase pengisian biji: 400 DD, 400 DD
- Lama penyinaran: 11.5, 10.5
- Jumlah biji potensial: 70.0, 75.0
- Berat biji: 0.0275 gram/biji, 0.0270 gram/biji

Status lengas tanah dan perakaran menurut kedalaman:

<table>
<thead>
<tr>
<th>Kedalaman (cm)</th>
<th>TLP</th>
<th>KL</th>
<th>Jenuh</th>
<th>AT</th>
<th>Awal</th>
<th>Perakaran</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>.280</td>
<td>.406</td>
<td>.421</td>
<td>.126</td>
<td></td>
<td>0.819</td>
</tr>
<tr>
<td>5</td>
<td>.280</td>
<td>.406</td>
<td>.421</td>
<td>.126</td>
<td></td>
<td>0.819</td>
</tr>
<tr>
<td>20</td>
<td>.325</td>
<td>.446</td>
<td>.461</td>
<td>.121</td>
<td></td>
<td>0.522</td>
</tr>
<tr>
<td>32</td>
<td>.325</td>
<td>.446</td>
<td>.461</td>
<td>.121</td>
<td></td>
<td>0.522</td>
</tr>
<tr>
<td>45</td>
<td>.338</td>
<td>.459</td>
<td>.474</td>
<td>.121</td>
<td></td>
<td>0.317</td>
</tr>
<tr>
<td>57</td>
<td>.338</td>
<td>.459</td>
<td>.474</td>
<td>.121</td>
<td></td>
<td>0.317</td>
</tr>
<tr>
<td>70</td>
<td>.329</td>
<td>.451</td>
<td>.466</td>
<td>.122</td>
<td></td>
<td>0.018</td>
</tr>
<tr>
<td>95 - 120</td>
<td>.325</td>
<td>.447</td>
<td>.462</td>
<td>.122</td>
<td></td>
<td>0.001</td>
</tr>
</tbody>
</table>

Tabel lampiran 5. Potensi hasil padi dan keluaran lengkap model DSSAT kasus Ngawi (perlakuan 1)

a. Produksi biomasa, indeks luas daun, N-uptake, % N, air yang diambil oleh tanaman

<table>
<thead>
<tr>
<th>Tanggal</th>
<th>Fase Pertumbuhan</th>
<th>Biomasa gr/m²</th>
<th>ILD</th>
<th>NUPT</th>
<th>N %</th>
<th>ADT¹³</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 Oct</td>
<td>Perkecambahan</td>
<td>1</td>
<td>0.02</td>
<td>0.4</td>
<td>3.60</td>
<td>14</td>
</tr>
<tr>
<td>16 Nov</td>
<td>Akhir anak</td>
<td>3</td>
<td>0.05</td>
<td>1.0</td>
<td>3.83</td>
<td>16</td>
</tr>
<tr>
<td>4 Des</td>
<td>Inisiasi malai</td>
<td>37.</td>
<td>0.29</td>
<td>9.0</td>
<td>2.40</td>
<td>14</td>
</tr>
<tr>
<td>5 Jan</td>
<td>Pembungaan</td>
<td>222</td>
<td>1.22</td>
<td>39.0</td>
<td>1.76</td>
<td>15</td>
</tr>
<tr>
<td>13 Jan</td>
<td>Awal pengisian biji</td>
<td>334</td>
<td>1.48</td>
<td>43.1</td>
<td>1.29</td>
<td>13</td>
</tr>
<tr>
<td>27 Jan</td>
<td>Akhir pengisian biji</td>
<td>515</td>
<td>0.89</td>
<td>25.9</td>
<td>0.50</td>
<td>15</td>
</tr>
<tr>
<td>1 Feb</td>
<td>Matang Fisiologi</td>
<td>547</td>
<td>0.43</td>
<td>27.4</td>
<td>0.50</td>
<td>14</td>
</tr>
</tbody>
</table>
b. Hasil dan komponen hasil:

<table>
<thead>
<tr>
<th>Simulasi</th>
<th>Observasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembungaan</td>
<td>5</td>
</tr>
<tr>
<td>Matang panen</td>
<td>32</td>
</tr>
<tr>
<td>Hasil biji (kg/ha)</td>
<td>2585</td>
</tr>
<tr>
<td>Bobot biji (g/biji)</td>
<td>0.0230</td>
</tr>
<tr>
<td>Jumlah biji/m²</td>
<td>9665</td>
</tr>
<tr>
<td>ILD maksimum</td>
<td>1.52</td>
</tr>
<tr>
<td>Biomasa (kg/ha)</td>
<td>5469</td>
</tr>
<tr>
<td>Brangkasan (kg/ha)</td>
<td>3246</td>
</tr>
<tr>
<td>Produksi (kg/ha)</td>
<td>2585</td>
</tr>
</tbody>
</table>

*ILD = indeks luas daun; *NUPT = N yang diserap; *ADT = air tanah yang diserap tanaman

Tabel Lampiran 6. Potensi hasil padi dan keluaran lengkap model simulasi DSSAT kasus Ngawi (perlakuan 12)

a. Produksi biomasa, indeks luas daun, N-uptake, % N, air yang diambil oleh tanaman

<table>
<thead>
<tr>
<th>Tanggal</th>
<th>Fase Pertumbuhan</th>
<th>Biomasa gr/m²</th>
<th>ILD</th>
<th>NUPT</th>
<th>N%</th>
<th>ADT(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 Oct</td>
<td>Perkecambahan</td>
<td>1.0</td>
<td>0.02</td>
<td>0.4</td>
<td>3.60</td>
<td>14</td>
</tr>
<tr>
<td>16 Nov</td>
<td>Akhir anakan</td>
<td>3.0</td>
<td>0.05</td>
<td>1.0</td>
<td>3.83</td>
<td>16</td>
</tr>
<tr>
<td>4 Dec</td>
<td>Inisiasi malai</td>
<td>49.0</td>
<td>0.52</td>
<td>14.5</td>
<td>2.93</td>
<td>14</td>
</tr>
<tr>
<td>5 Jan</td>
<td>Pembungaan</td>
<td>662.0</td>
<td>4.09</td>
<td>94.7</td>
<td>1.51</td>
<td>15</td>
</tr>
<tr>
<td>13 Jan</td>
<td>Awal pengisian biji</td>
<td>803.0</td>
<td>4.47</td>
<td>109.9</td>
<td>1.1</td>
<td>13</td>
</tr>
<tr>
<td>27 Jan</td>
<td>Akhir pengisian biji</td>
<td>1032.0</td>
<td>3.52</td>
<td>32.7</td>
<td>0.45</td>
<td>15</td>
</tr>
<tr>
<td>1 Feb</td>
<td>Matang Fisiologi</td>
<td>1070.0</td>
<td>0.73</td>
<td>31.6</td>
<td>0.41</td>
<td>14</td>
</tr>
</tbody>
</table>
b. Hasil dan komponen hasil:

<table>
<thead>
<tr>
<th></th>
<th>Simulasi</th>
<th>Observasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembungaan</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Matang panen</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>Hasil biji (kg/ha)</td>
<td>6925</td>
<td>7800</td>
</tr>
<tr>
<td>Bobot biji (g/biji)</td>
<td>0.0230</td>
<td>0.0239</td>
</tr>
<tr>
<td>Jumlah biji/m²</td>
<td>22676</td>
<td>-</td>
</tr>
<tr>
<td>ILD maksimum</td>
<td>4.48</td>
<td>-</td>
</tr>
<tr>
<td>Produksi biomas (kg/ha)</td>
<td>10704</td>
<td>-</td>
</tr>
<tr>
<td>Brangkasan (kg/ha)</td>
<td>4285</td>
<td>-</td>
</tr>
<tr>
<td>Produksi (kg/ha)</td>
<td>6925</td>
<td>7800</td>
</tr>
</tbody>
</table>

1) ILD = indeks luas daun; NUPT = N yang diserap; ADT = air tanah yang diserap tanaman

| Tabel Lampiran 7. Potensi hasil padi dan keluaran lengkap model simulasi DSSAT kasus Sukamandi (perlakuan 1) |

a. Produksi biomas, indeks luas daun, N-uptake, % N, air yang diambil oleh tanaman

<table>
<thead>
<tr>
<th>Tanggal</th>
<th>Fase Pertumbuhan</th>
<th>Biomasa gr/m²</th>
<th>ILD</th>
<th>NUPT</th>
<th>% N</th>
<th>ADT</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Oct</td>
<td>Perkecambahan</td>
<td>1.00</td>
<td>0.02</td>
<td>0.4</td>
<td>3.60</td>
<td>15</td>
</tr>
<tr>
<td>14 Nov</td>
<td>Akhir anakan</td>
<td>1.01</td>
<td>0.01</td>
<td>0.5</td>
<td>4.00</td>
<td>16</td>
</tr>
<tr>
<td>2 Dec</td>
<td>Inisiasi malai</td>
<td>18.00</td>
<td>0.27</td>
<td>7.6</td>
<td>5.18</td>
<td>14</td>
</tr>
<tr>
<td>4 Jan</td>
<td>Pembungaan</td>
<td>339.00</td>
<td>2.45</td>
<td>44.4</td>
<td>1.95</td>
<td>15</td>
</tr>
<tr>
<td>14 Jan</td>
<td>Awal pengisian biji</td>
<td>469.00</td>
<td>2.46</td>
<td>46.6</td>
<td>1.30</td>
<td>15</td>
</tr>
<tr>
<td>29 Jan</td>
<td>Akhir pengisian biji</td>
<td>667.00</td>
<td>1.85</td>
<td>26.8</td>
<td>1.20</td>
<td>17</td>
</tr>
<tr>
<td>3 Feb</td>
<td>Matang Fisiologi</td>
<td>668.00</td>
<td>1.55</td>
<td>26.5</td>
<td>1.22</td>
<td>15</td>
</tr>
</tbody>
</table>
b. Hasil dan komponen hasil:

<table>
<thead>
<tr>
<th>Simulasi</th>
<th>Observasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembungaan</td>
<td>3</td>
</tr>
<tr>
<td>Matang panen</td>
<td>34</td>
</tr>
<tr>
<td>Hasil biji (kg/ha)</td>
<td>4125</td>
</tr>
<tr>
<td>Bobot biji (g/biji)</td>
<td>0.023</td>
</tr>
<tr>
<td>Jumlah biji/m²</td>
<td>8940</td>
</tr>
<tr>
<td>ILD maksimum</td>
<td>2.62</td>
</tr>
<tr>
<td>Produksi biomas (kg/ha)</td>
<td>6687</td>
</tr>
<tr>
<td>Brangkasan (kg/ha)</td>
<td>2858</td>
</tr>
<tr>
<td>Produksi (kg/ha)</td>
<td>4125</td>
</tr>
</tbody>
</table>

\[\text{ILD} = \text{indeks luas daun}; \quad \text{NUPT} = N \text{ yang diserap}; \]
\[\%N = \% N; \quad \text{ADT} = \text{air tanah yang diserap tanaman} \]

Tabel Lampiran 8. Potensi hasil padi dan keluaran lengkap model simulasi DSSAT kasus Sukamandi (perlakuan 13)

a. Produksi biomas, indeks luas daun, N-uptake, % N, air yang diambil oleh tanaman

<table>
<thead>
<tr>
<th>Tanggal</th>
<th>Fase Pertumbuhan</th>
<th>Biomas (gr/m²)</th>
<th>ILD</th>
<th>NUPT</th>
<th>N%</th>
<th>ADT</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Oct</td>
<td>Perkecambahan</td>
<td>1.000</td>
<td>0.02</td>
<td>0.4</td>
<td>3.60</td>
<td>15</td>
</tr>
<tr>
<td>14 Nov</td>
<td>Akhir anakan</td>
<td>3.000</td>
<td>0.05</td>
<td>1.0</td>
<td>3.83</td>
<td>16</td>
</tr>
<tr>
<td>2 Dec</td>
<td>Inisiasi malai</td>
<td>46</td>
<td>0.57</td>
<td>14.0</td>
<td>3.03</td>
<td>13</td>
</tr>
<tr>
<td>4 Jan</td>
<td>Pembungaan</td>
<td>754.000</td>
<td>5.63</td>
<td>47.1</td>
<td>1.86</td>
<td>15</td>
</tr>
<tr>
<td>14 Jan</td>
<td>Awal pengisian biji</td>
<td>888.000</td>
<td>5.82</td>
<td>49.1</td>
<td>1.27</td>
<td>15</td>
</tr>
<tr>
<td>29 Jan</td>
<td>Akhir pengisian biji</td>
<td>997.500</td>
<td>5.08</td>
<td>24.1</td>
<td>0.50</td>
<td>16</td>
</tr>
<tr>
<td>3 Feb</td>
<td>Matang Fisiologi</td>
<td>1003.000</td>
<td>4.54</td>
<td>25.3</td>
<td>0.50</td>
<td>16</td>
</tr>
</tbody>
</table>
b. Hasil dan komponen hasil:

<table>
<thead>
<tr>
<th></th>
<th>Simulasi</th>
<th>Observasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembungaan</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Matang panen</td>
<td>34</td>
<td>36</td>
</tr>
<tr>
<td>Hasil biji (kg/ha)</td>
<td>5578</td>
<td>6780</td>
</tr>
<tr>
<td>Bobot biji (g/biji)</td>
<td>0.023</td>
<td>0.023</td>
</tr>
<tr>
<td>Jumlah biji/m²</td>
<td>9632</td>
<td>-</td>
</tr>
<tr>
<td>ILD maksimum</td>
<td>3.82</td>
<td>-</td>
</tr>
<tr>
<td>Produksi biomas (kg/ha)</td>
<td>8021</td>
<td>-</td>
</tr>
<tr>
<td>Brangkasan (kg/ha)</td>
<td>2806</td>
<td>-</td>
</tr>
<tr>
<td>Produksi (kg/ha)</td>
<td>5575</td>
<td>6780</td>
</tr>
</tbody>
</table>

\[\text{ILD} = \text{indeks luas daun};\quad \text{NUPT} = \text{N yang diserap};\]
\[\% N = \% N;\quad \text{ADT} = \text{air tanah yang diserap tanaman}\]

Tabel Lampiran 9. Potensi hasil padi dan keluaran lengkap model simulasi DSAAT kasus Cianjur (perlakuan 1)

a. Produksi biomas, indeks luas daun, N-uptake, % N, air yang diambil oleh tanaman

<table>
<thead>
<tr>
<th>Tanggal</th>
<th>Fase Pertumbuhan</th>
<th>Biomasa (gr/m²)</th>
<th>ILD</th>
<th>NUPT</th>
<th>N%</th>
<th>ADT(^{b)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Oct</td>
<td>Perkecambahan</td>
<td>1.</td>
<td>0.02</td>
<td>0.4</td>
<td>3.60</td>
<td>14</td>
</tr>
<tr>
<td>13 Nov</td>
<td>Akhir anakan</td>
<td>3.</td>
<td>0.05</td>
<td>1.0</td>
<td>3.82</td>
<td>16</td>
</tr>
<tr>
<td>2 Dec</td>
<td>Inisiasi malai</td>
<td>43.</td>
<td>0.35</td>
<td>10.7</td>
<td>2.50</td>
<td>16</td>
</tr>
<tr>
<td>3 Jan</td>
<td>Pembungaan</td>
<td>210.</td>
<td>1.03</td>
<td>39.2</td>
<td>1.87</td>
<td>12</td>
</tr>
<tr>
<td>13 Jan</td>
<td>Awal pengisian biji</td>
<td>310.</td>
<td>1.32</td>
<td>41.2</td>
<td>1.33</td>
<td>13</td>
</tr>
<tr>
<td>27 Jan</td>
<td>Akhir pengisian biji</td>
<td>471.</td>
<td>0.82</td>
<td>23.6</td>
<td>0.50</td>
<td>16</td>
</tr>
<tr>
<td>2 Feb</td>
<td>Matang Fisiologi</td>
<td>492.</td>
<td>0.37</td>
<td>24.8</td>
<td>0.50</td>
<td>16</td>
</tr>
</tbody>
</table>
b. Hasil dan komponen hasil:

<table>
<thead>
<tr>
<th></th>
<th>Simulasi</th>
<th>Observasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembungaan</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Matang panen</td>
<td>33</td>
<td>36</td>
</tr>
<tr>
<td>Hasil biji (kg/ha)</td>
<td>2377</td>
<td>3000</td>
</tr>
<tr>
<td>Bobot biji (g/biji)</td>
<td>0.0230</td>
<td>0.0239</td>
</tr>
<tr>
<td>Jumlah biji/m²</td>
<td>8887</td>
<td>-</td>
</tr>
<tr>
<td>ILD maksimum</td>
<td>1.32</td>
<td>-</td>
</tr>
<tr>
<td>Produksi biomas (kg/ha)</td>
<td>4923</td>
<td>-</td>
</tr>
<tr>
<td>Brangkasang (kg/ha)</td>
<td>2879</td>
<td>-</td>
</tr>
<tr>
<td>Produksi (kg/ha)</td>
<td>2377</td>
<td>3000</td>
</tr>
</tbody>
</table>

b) ILD = indeks luas daun; NUPT = N yang diserap;
 %N = % N;
 ADT = air tanah yang diserap tanaman

Tabel Lampiran 10. Potensi hasil padi dan keluaran lengkap model simulasi DSSAT kasus Cianjur (perlaku 13)

a. Produksi biomas, indeks luas daun, N-uptake, % N, air yang diambil oleh tanaman

<table>
<thead>
<tr>
<th>Tanggal</th>
<th>Fase Pertumbuhan</th>
<th>Biomassa gr/m²</th>
<th>ILD</th>
<th>NUPT</th>
<th>%N</th>
<th>ADT</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Oct</td>
<td>Perkecambahan</td>
<td>1.</td>
<td>0.02</td>
<td>0.4</td>
<td>3.60</td>
<td>14</td>
</tr>
<tr>
<td>13 Nov</td>
<td>Akhir anakan</td>
<td>3.</td>
<td>0.05</td>
<td>1.0</td>
<td>3.82</td>
<td>16</td>
</tr>
<tr>
<td>2 Dec</td>
<td>Inisiasi malai</td>
<td>102.</td>
<td>1.38</td>
<td>33.1</td>
<td>3.25</td>
<td>16</td>
</tr>
<tr>
<td>3 Jan</td>
<td>Pembungaan</td>
<td>481.</td>
<td>2.55</td>
<td>72.7</td>
<td>1.51</td>
<td>11</td>
</tr>
<tr>
<td>13 Jan</td>
<td>Awal pengisian biji</td>
<td>627.</td>
<td>3.02</td>
<td>76.6</td>
<td>1.22</td>
<td>12</td>
</tr>
<tr>
<td>27 Jan</td>
<td>Akhir pengisian biji</td>
<td>843.</td>
<td>2.17</td>
<td>37.8</td>
<td>0.45</td>
<td>15</td>
</tr>
<tr>
<td>2 Feb</td>
<td>Matang Fisiologi</td>
<td>897.</td>
<td>0.98</td>
<td>33.4</td>
<td>0.39</td>
<td>15</td>
</tr>
</tbody>
</table>
b. Hasil dan komponen hasil:

<table>
<thead>
<tr>
<th></th>
<th>Simulasi</th>
<th>Observasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembuangan</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Matang panen</td>
<td>33</td>
<td>36</td>
</tr>
<tr>
<td>Hasil biji (kg/ha)</td>
<td>5698</td>
<td>6800</td>
</tr>
<tr>
<td>Bobot biji (g/biji)</td>
<td>0.0230</td>
<td>0.0239</td>
</tr>
<tr>
<td>Jumlah biji/m²</td>
<td>18565</td>
<td>-</td>
</tr>
<tr>
<td>ILD maksimum</td>
<td>3.03</td>
<td>-</td>
</tr>
<tr>
<td>Produksi biomas (kg/ha)</td>
<td>8967</td>
<td>-</td>
</tr>
<tr>
<td>Brangkasan (kg/ha)</td>
<td>4631</td>
<td>-</td>
</tr>
<tr>
<td>Produksi (kg/ha)</td>
<td>5698</td>
<td>6800</td>
</tr>
</tbody>
</table>

\(b) \) ILD = indeks luas daun; Nupt = N yang diserap; ADT = air tanah yang diserap tanaman

Tabel Lampiran 11. Potensi hasil padi dan keluaran lengkap model simulasi DSSAT (perlakuan 1) di Sitiung

a. Produksi biomas, indeks luas daun, N-uptake, % N, air yang diambil oleh tanaman

<table>
<thead>
<tr>
<th>Tanggal</th>
<th>Fase Pertumbuhan</th>
<th>Biomasi gr/m²</th>
<th>ILD</th>
<th>Nupt</th>
<th>N%</th>
<th>ADT</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Nov</td>
<td>Perkecambahan</td>
<td>1.02</td>
<td>0.4</td>
<td>3.60</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>15 Jan</td>
<td>Akhir anakan</td>
<td>0.04</td>
<td>0.9</td>
<td>4.00</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>23 Jan</td>
<td>Inisiasi malai</td>
<td>0.34</td>
<td>20.3</td>
<td>4.22</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>28 Feb</td>
<td>Pembuangan</td>
<td>1.55</td>
<td>34.1</td>
<td>2.34</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>8 Mar</td>
<td>Awal pengisian biji</td>
<td>1.53</td>
<td>34.0</td>
<td>1.90</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>27 Mar</td>
<td>Akhir pengisian biji</td>
<td>0.30</td>
<td>20.3</td>
<td>1.40</td>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>30 Mar</td>
<td>Matang Fisiologi</td>
<td>0.20</td>
<td>14.8</td>
<td>1.03</td>
<td></td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
b. Hasil dan komponen hasil:

<table>
<thead>
<tr>
<th></th>
<th>Simulasi</th>
<th>Observasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembungaan</td>
<td>59</td>
<td>58</td>
</tr>
<tr>
<td>Matang panen</td>
<td>90</td>
<td>88</td>
</tr>
<tr>
<td>Hasil biji (kg/ha)</td>
<td>3023</td>
<td>4012</td>
</tr>
<tr>
<td>Bobot biji (g/biji)</td>
<td>0.0280</td>
<td>0.0275</td>
</tr>
<tr>
<td>Jumlah biji/m²</td>
<td>6325</td>
<td>-</td>
</tr>
<tr>
<td>ILD maksimum</td>
<td>1.56</td>
<td>-</td>
</tr>
<tr>
<td>Produksi biomas (kg/ha)</td>
<td>4417</td>
<td>-</td>
</tr>
<tr>
<td>Brangkasan (kg/ha)</td>
<td>1678</td>
<td>-</td>
</tr>
<tr>
<td>Produksi (kg/ha)</td>
<td>3023</td>
<td>4012</td>
</tr>
</tbody>
</table>

\[b) \text{ILD} = \text{indeks luas daun}; \quad \text{NUPT} = \text{N yang diserap};
\\%N = \% N;
\text{ADT} = \text{air tanah yang diserap tanaman}\]

Tabel Lampiran 12. Potensi hasil padi dan keluaran lengkap model simulasi DSSAT kasus Sitiung (perlakuan 8)

a. Produksi biomas, indeks luas daun, N-uptake, \% N, air yang diambil oleh tanaman

<table>
<thead>
<tr>
<th>Tanggal</th>
<th>Fase Pertumbuhan</th>
<th>Biomasa gr/m²</th>
<th>ILD</th>
<th>NUPT</th>
<th>%N</th>
<th>ADT b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Nov</td>
<td>Perkecambahan</td>
<td>1.0</td>
<td>0.02</td>
<td>0.4</td>
<td>3.60</td>
<td>15</td>
</tr>
<tr>
<td>15 Jan</td>
<td>Akhir anakan</td>
<td>13.0</td>
<td>0.17</td>
<td>5.1</td>
<td>4.00</td>
<td>15</td>
</tr>
<tr>
<td>23 Jan</td>
<td>Inisiasi malai</td>
<td>28.0</td>
<td>0.41</td>
<td>11.6</td>
<td>4.50</td>
<td>15</td>
</tr>
<tr>
<td>28 Feb</td>
<td>Pembungaan</td>
<td>186.0</td>
<td>1.07</td>
<td>34.2</td>
<td>1.89</td>
<td>13</td>
</tr>
<tr>
<td>8 Mar</td>
<td>Awal pengisian biji</td>
<td>250.0</td>
<td>0.98</td>
<td>34.3</td>
<td>1.42</td>
<td>14</td>
</tr>
<tr>
<td>27 Mar</td>
<td>Akhir pengisian biji</td>
<td>373.0</td>
<td>0.56</td>
<td>14.6</td>
<td>0.88</td>
<td>14</td>
</tr>
<tr>
<td>30 Mar</td>
<td>Matang Fisologi</td>
<td>406.0</td>
<td>0.36</td>
<td>12.4</td>
<td>0.75</td>
<td>13</td>
</tr>
</tbody>
</table>
b. Hasil dan komponen hasil:

<table>
<thead>
<tr>
<th></th>
<th>Simulasi</th>
<th>Observasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembungaan</td>
<td>59</td>
<td>58</td>
</tr>
<tr>
<td>Matang panen</td>
<td>90</td>
<td>88</td>
</tr>
<tr>
<td>Hasil biji (kg/ha)</td>
<td>3641</td>
<td>4861</td>
</tr>
<tr>
<td>Bobot biji (g/biji)</td>
<td>0.0280</td>
<td>0.0275</td>
</tr>
<tr>
<td>Jumlah biji/m²</td>
<td>7288</td>
<td>-</td>
</tr>
<tr>
<td>ILD maksimum</td>
<td>1.07</td>
<td>-</td>
</tr>
<tr>
<td>Produksi biomas (kg/ha)</td>
<td>5355</td>
<td>-</td>
</tr>
<tr>
<td>Brangkasan (kg/ha)</td>
<td>2147</td>
<td>-</td>
</tr>
</tbody>
</table>

Produksi (kg/ha) | 3641 | 4861 |

\(^{b)}\text{ILD} = \text{indeks luas daun}; \quad \text{NUPT} = \text{N yang diserap};
\quad \%N = \%N;
\quad \text{ADT} = \text{air tanah yang diserap tanaman}

Gambar lampiran 2. Fluktuasi hujan di Ngawi (21-10-1980 s/d 01-03-1981)

